JP4888479B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4888479B2
JP4888479B2 JP2008306032A JP2008306032A JP4888479B2 JP 4888479 B2 JP4888479 B2 JP 4888479B2 JP 2008306032 A JP2008306032 A JP 2008306032A JP 2008306032 A JP2008306032 A JP 2008306032A JP 4888479 B2 JP4888479 B2 JP 4888479B2
Authority
JP
Japan
Prior art keywords
wiring
adhesive layer
external connection
connection member
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008306032A
Other languages
Japanese (ja)
Other versions
JP2009100000A (en
Inventor
恵一 畠山
和彦 蔵渕
直也 鈴木
雅昭 安田
隆行 松崎
道生 宇留野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2008306032A priority Critical patent/JP4888479B2/en
Publication of JP2009100000A publication Critical patent/JP2009100000A/en
Application granted granted Critical
Publication of JP4888479B2 publication Critical patent/JP4888479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明は、シート状に加工した半導体装置用ダイボンディング材をシリコンウェハに貼り付けたときのウェハ反りを抑え、またこのダイボンディング材を用いて作製した半導体装置の吸湿リフロー処理によるはく離を低減できる半導体装置用ダイボンディング材、ダイボンディング材を貼り付けたシリコンウェハ、ならびにダイボンディング材を用いて製造される半導体装置に関するものである。   The present invention can suppress wafer warpage when a die bonding material for a semiconductor device processed into a sheet shape is attached to a silicon wafer, and can reduce peeling due to moisture absorption reflow processing of a semiconductor device manufactured using this die bonding material. The present invention relates to a die bonding material for a semiconductor device, a silicon wafer to which a die bonding material is attached, and a semiconductor device manufactured using the die bonding material.

従来、半導体装置にはデュアルインラインパッケージ(DIP)、クアッドフラットパッケージ(QFP)が用いられてきた。しかし、半導体素子の多ピン化、半導体装置の軽薄短小化に伴って、ボールグリッドアレイ(BGA)、ランドグリッドアレイ(LGA)等のパッケージが注目されており、近年はパッケージの大きさが半導体チップとほぼ同等なサイズにまで小型化したチップサイズパッケージ(CSP)が開発されている。これら半導体装置、いわゆるCSPの一般的な構造は、接着剤を用いて半導体チップを配線付外部接続部材に接着保持させ、半導体チップと外部接続部材の端子とをワイヤボンディングやTABのインナーリードボンディング等各種方法により電気的に接続し、さらに必要に応じてパッケージの一部又は全体を樹脂封止している。これらの半導体装置において、半導体チップの回路面が外部接続部材の逆側に配置してある方式はフェイスアップ方式と呼ばれている。このフェイスアップ方式では半導体チップと外部接続部材はワイヤボンディングにより接続され、半導体チップを外部接続部材に接続する接着剤層が樹脂封止により密閉される構造となる。   Conventionally, dual in-line packages (DIP) and quad flat packages (QFP) have been used for semiconductor devices. However, with the increase in the number of pins of semiconductor elements and the reduction in size and size of semiconductor devices, packages such as ball grid arrays (BGA) and land grid arrays (LGA) have been attracting attention. A chip size package (CSP) that has been reduced to almost the same size as the above has been developed. The general structure of these semiconductor devices, so-called CSPs, is that an adhesive is used to bond and hold a semiconductor chip to an external connection member with wiring, and the semiconductor chip and the terminal of the external connection member are bonded by wire bonding, TAB inner lead bonding, etc. Electrical connection is made by various methods, and a part or the whole of the package is sealed with resin as necessary. In these semiconductor devices, a method in which the circuit surface of the semiconductor chip is disposed on the opposite side of the external connection member is called a face-up method. In this face-up method, the semiconductor chip and the external connection member are connected by wire bonding, and the adhesive layer that connects the semiconductor chip to the external connection member is sealed by resin sealing.

配線付外部接続部材はポリイミドなどのフィルム基板やBT樹脂などのリジッド基板からなる基板の表面に配線層が形成され、場合により回路保護材のソルダレジストが塗布された構造である。基板の配線層は半導体チップ側、外部接続端子部側、及び基板の両面側に配置される構造に分けられる。この中で、配線層が半導体チップ側に配置される構造(サーキットイン構造)では接着フィルムを圧着する外部接続部材表面に、配線パターンによる1〜50μm程度の凹凸が存在する。   The external connection member with wiring has a structure in which a wiring layer is formed on the surface of a substrate made of a film substrate such as polyimide or a rigid substrate such as BT resin, and a solder resist as a circuit protection material is applied in some cases. The wiring layer of the substrate is divided into a structure that is disposed on the semiconductor chip side, the external connection terminal portion side, and the both surfaces side of the substrate. Among these, in the structure (circuit-in structure) in which the wiring layer is arranged on the semiconductor chip side, there are irregularities of about 1 to 50 μm due to the wiring pattern on the surface of the external connection member to which the adhesive film is pressed.

また、近年ではフェイスアップ方式の半導体装置において、チップを2枚、3枚と重ね、パッケージサイズを変えずに実装密度を高くするスタックドCSPも開発、量産されている。スタックドCSPでは実装密度の高さからチップ端部/ワイヤボンド端子の距離が近いため、現行で用いていたペースト状接着剤を用いることが困難であり、高信頼性ダイボンディング材の開発が求められている。通常、半導体装置用ダイボンディング材は30〜200μm程度の厚みが好適に用いられている(例えば、特許文献1及び特許文献2参照)。   In recent years, in a face-up type semiconductor device, a stacked CSP in which two or three chips are stacked to increase the mounting density without changing the package size has been developed and mass-produced. In a stacked CSP, the distance between the chip end / wire bond terminal is close due to the high mounting density, so it is difficult to use the paste adhesive that is currently used, and the development of a highly reliable die bonding material is required. ing. Usually, a die bonding material for a semiconductor device is suitably used with a thickness of about 30 to 200 μm (see, for example, Patent Document 1 and Patent Document 2).

特開平11−220051号公報(段落[0012][0014])Japanese Patent Laid-Open No. 11-220051 (paragraphs [0012] [0014]) 特開2000−256628号公報(段落[0015])JP 2000-256628 A (paragraph [0015])

上記のようなダイボンディング材の接着剤層をシリコンウェハに貼り付けた場合、ウェハと接着剤層の熱膨張係数差によってウェハに反りが生じる。ウェハ反りが大きい場合、その後のダイシングができないだけでなく、最悪の場合ウェハが割れる場合がある。   When the adhesive layer of the die bonding material as described above is attached to a silicon wafer, the wafer is warped due to a difference in thermal expansion coefficient between the wafer and the adhesive layer. If the wafer warpage is large, not only can dicing thereafter be performed, but the wafer may break in the worst case.

一方、フェイスアップ方式の半導体装置に吸湿リフロー処理を行った際、接着剤層に吸湿した水分がリフロー処理の高温で水蒸気化し、接着剤層を中心としたはく離等の不良が生じやすい。接着剤層の吸湿水分量を小さくすることで前述の不良を抑制することは可能であるが、接着剤の他の特性を維持しつつ吸湿水分量のみを小さくすることは困難であるため、フェイスアップ方式の半導体装置の信頼性を向上させることは困難であった。   On the other hand, when moisture absorption reflow treatment is performed on a face-up type semiconductor device, moisture absorbed in the adhesive layer is vaporized at a high temperature of the reflow treatment, and defects such as peeling around the adhesive layer are likely to occur. Although it is possible to suppress the above-mentioned defects by reducing the amount of moisture absorbed in the adhesive layer, it is difficult to reduce only the amount of moisture absorbed while maintaining other properties of the adhesive. It has been difficult to improve the reliability of an up-type semiconductor device.

従って、本発明はこれらの問題を解決するためのものであって、従来のダイボンディング材(フィルム材)の欠点を克服し、ウェハにダイボンディング材を貼り付けたあとのウェハ反りが小さく作業性に優れる半導体装置用ダイボンディング材、ダイボンディング材を貼り付けたシリコンウェハ、ならびにダイボンディング材を用いて製造される半導体装置の吸湿リフロー時に発生するはく離を抑制し高い信頼性を備えた半導体装置を提供することを目的とする。   Therefore, the present invention is for solving these problems, and overcomes the drawbacks of the conventional die bonding material (film material), and the wafer warpage after attaching the die bonding material to the wafer is small. Highly reliable semiconductor device that suppresses delamination that occurs during moisture reflow of semiconductor devices manufactured using die bonding materials, die bonding materials for semiconductor devices, and silicon wafers that are bonded to die bonding materials. The purpose is to provide.

本発明は、下記の半導体装置用ダイボンディング材、ダイボンディング材付半導体ウェハ及び半導体装置に関する。
(1)半導体装置用ダイボンディング材であって、接着剤層と少なくとも1層の保護フィルム層からなり、
接着剤層とSUS304の25℃におけるタック強度が50gf以下、
接着剤層の180℃における溶融粘度が50〜1×107Pa・sの範囲であり、
接着剤層の厚みが1〜20μm、かつ保護フィルム層の厚みが1〜30μmの範囲であることを特徴とする半導体装置用ダイボンディング材。
The present invention relates to the following die bonding material for a semiconductor device, a semiconductor wafer with a die bonding material, and a semiconductor device.
(1) A die bonding material for a semiconductor device, comprising an adhesive layer and at least one protective film layer,
The tack strength at 25 ° C. of the adhesive layer and SUS304 is 50 gf or less,
The melt viscosity at 180 ° C. of the adhesive layer is in the range of 50 to 1 × 10 7 Pa · s,
A die bonding material for a semiconductor device, wherein the adhesive layer has a thickness of 1 to 20 μm and the protective film layer has a thickness of 1 to 30 μm.

(2)接着剤層と保護フィルム層1層の厚みの和が40μm以下であることを特徴とする上記の半導体装置用ダイボンディング材。
(3)接着剤層硬化物及び保護フィルム層の25℃における引張り弾性率が、各々、3.0GPa以下であることを特徴とする上記の半導体装置用ダイボンディング材。
(4)接着剤層硬化物及び保護フィルム層の25℃〜150℃における平均線膨張係数が30.0×10-5/℃以下であることを特徴とする上記の半導体装置用ダイボンディング材。
(5)サンプル形状20mmφ×2.0mmの円盤形にした接着剤層硬化物の85℃/85%RH/168時間吸湿後における吸湿率が0.02g/以下であることを特徴とする上記の半導体装置用ダイボンディング材。
(2) The above-mentioned die bonding material for a semiconductor device, wherein the sum of the thicknesses of the adhesive layer and the protective film layer is 40 μm or less.
(3) Tensile elastic modulus at 25 ° C. of the cured adhesive layer and the protective film layer is 3.0 GPa or less, respectively.
(4) The die bonding material for a semiconductor device as described above, wherein an average linear expansion coefficient at 25 ° C. to 150 ° C. of the cured adhesive layer and the protective film layer is 30.0 × 10 −5 / ° C. or less.
(5) Sample shape 20 mm.phi × 2.0 mm moisture absorption at 85 ℃ / 85% RH / 168 hours after moisture absorption of the adhesive layer cured product was a disc-shaped and the equal to or less than 0.02 g / c m 3 The above-mentioned die bonding material for semiconductor devices.

(6)接着剤層硬化物の85℃/85%RH/168時間吸湿後の配線付外部接続部材とのダイシェア強度(265℃)が1.0MPa以上であることを特徴とす上記の半導体装置用ダイボンディング材。
(7)接着剤層硬化物の265℃における引張り弾性率が1〜20MPaの範囲であることを特徴とする上記の半導体装置用ダイボンディング材。
(6) The above semiconductor device characterized in that the die shear strength (265 ° C.) with the external connection member with wiring after moisture absorption of the cured adhesive layer at 85 ° C./85% RH / 168 hours is 1.0 MPa or more. Die bonding material.
(7) The die bonding material for a semiconductor device described above, wherein the adhesive layer cured product has a tensile elastic modulus at 265 ° C. of 1 to 20 MPa.

(8)本発明の半導体装置用ダイボンディング材と半導体ウェハとを、接着剤層と半導体ウェハの片面とが接するように貼り付けたダイボンディング材付半導体ウェハ。
(9)配線付外部接続部材と、接着剤層によって配線付外部接続部材に接続された半導体チップとを有する半導体装置であって、接着剤層が、本発明の半導体装置用ダイボンディング材から保護フィルムを剥離して得られる接着剤層であることを特徴とする半導体装置。
(10)更に、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤ、並びに、配線付外部接続部材の配線面、半導体チップ及びボンディングワイヤを封止している封止用樹脂を有する上記の半導体装置。
(8) A semiconductor wafer with a die bonding material, wherein the die bonding material for a semiconductor device of the present invention and the semiconductor wafer are bonded so that the adhesive layer and one surface of the semiconductor wafer are in contact with each other.
(9) A semiconductor device having an external connection member with wiring and a semiconductor chip connected to the external connection member with wiring by an adhesive layer, wherein the adhesive layer is protected from the die bonding material for a semiconductor device of the present invention. A semiconductor device comprising an adhesive layer obtained by peeling a film.
(10) Furthermore, a bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring, and a seal that seals the wiring surface of the external connection member with wiring, the semiconductor chip, and the bonding wire. Said semiconductor device which has stop resin.

(11)本発明のダイボンディング材付半導体ウェハを接着剤層付半導体チップに分割する工程、接着剤層付半導体チップと配線付外部接続部材とを、接着剤層と配線付外部接続部材の配線面とが接するように積層し、加熱加圧して半導体チップと配線付外部接続部材とを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む(10)記載の半導体装置の製造方法。   (11) The step of dividing the semiconductor wafer with a die bonding material of the present invention into semiconductor chips with an adhesive layer, the semiconductor chip with an adhesive layer and the external connection member with wiring, the wiring of the adhesive layer and the external connection member with wiring Laminating so that the surface is in contact, heating and pressing to connect the semiconductor chip and the external connection member with wiring, electrically connecting the semiconductor chip and the wiring of the external connection member with wiring with a bonding wire, and For sealing, the wiring surface of the external connection member with wiring, the semiconductor chip connected to the external connection member with wiring, and the bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring (10) The manufacturing method of the semiconductor device according to (10), which includes a step of sealing with resin.

(12)配線付外部接続部材に本発明の半導体装置用ダイボンディング材を、接着剤層が配線面に接するように貼り付ける工程、配線付外部接続部材に貼り付けた半導体装置用ダイボンディング材から保護フィルムを剥離する工程、配線付外部接続部材と半導体チップとを、配線付外部接続部材に貼り付けた接着剤層と半導体チップの片面とが接するように積層し、加熱加圧して配線付外部接続部材と半導体チップとを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む(10)記載の半導体装置の製造方法。   (12) From the step of attaching the die bonding material for a semiconductor device of the present invention to the external connection member with wiring so that the adhesive layer is in contact with the wiring surface, from the die bonding material for semiconductor device attached to the external connection member with wiring The process of peeling the protective film, the external connection member with wiring and the semiconductor chip are laminated so that the adhesive layer attached to the external connection member with wiring and one side of the semiconductor chip are in contact, and heated and pressurized to externally with wiring A step of connecting the connection member and the semiconductor chip, a step of electrically connecting the semiconductor chip and the wiring of the external connection member with wiring by a bonding wire, and a wiring surface of the external connection member with wiring and an external connection member with wiring Seal the connected semiconductor chip and the bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring with sealing resin. Method of manufacturing comprising the step (10) The semiconductor device according.

本発明の半導体装置用ダイボンディング材は、ウェハに貼り付けた後のウェハ反りを抑えることができ、ウェハに割れが生じることなく、良好なダイシング性を確保できるとともに、半導体装置の良好な耐リフロー性を確保できる。すなわち、本発明の半導体装置用ダイボンディング材は、組み立て性及び信頼性に優れ、それを用いて作製される半導体装置は、良好な耐リフロー性を有する信頼性に優れるものである。   The die bonding material for a semiconductor device of the present invention can suppress wafer warpage after being attached to a wafer, can ensure good dicing without cracking the wafer, and good reflow resistance of the semiconductor device. Can be secured. That is, the die bonding material for a semiconductor device of the present invention is excellent in assembling property and reliability, and the semiconductor device manufactured using the same is excellent in reliability having good reflow resistance.

ダイボンディング材をウェハに貼り付けた場合に生じるウェハ反りは、1接着剤層及び保護フィルム層の厚み、2接着剤層及び保護フィルム層の物性値、3ウェハの厚み、4ダイボンディング材のラミネート温度、に影響を受けると考えられる。   Wafer warpage that occurs when a die bonding material is attached to a wafer is as follows: (1) adhesive layer and protective film layer thickness, (2) adhesive layer and protective film layer physical properties, (3) wafer thickness, and (4) die bonding material laminate It is thought that it is influenced by temperature.

一方吸湿リフロー時に発生するはく離は、1ダイボンディング材と外部接続部材の界面に存在する初期欠陥の有無、2接着剤層に吸湿される吸湿水分量、3接着剤層の物性値、4接着剤層とそれと接する界面とのリフロー温度におけるダイシェア強度、に影響を受けると考えられる。   On the other hand, delamination that occurs during moisture absorption reflow is: (1) Presence or absence of initial defects at the interface between the die bonding material and external connection member, (2) Moisture absorption by the adhesive layer, (3) Physical property value of the adhesive layer, The die shear strength at the reflow temperature between the layer and the interface in contact with the layer is considered to be affected.

本発明者らはこれらの影響に着目し、これらを中心に研究を重ねた結果、ダイボンディング材を貼り付けたあとのウェハ反りと吸湿リフロー処理により生じるはく離は、接着剤層とSUS304のタック強度(25℃)が50gf以下、圧着温度付近である180℃における接着剤層の溶融粘度が50〜1×107Pa・s、接着剤層厚みが1〜20μm、保護フィルム層厚みが1〜30μmの条件を満たし、より好ましくは、接着剤層と保護フィルム層の厚みの和が40μm以下、接着剤層硬化物及び保護フィルム層の引張り弾性率(25℃)が3.0GPa以下、接着剤層硬化物及び保護フィルム層の平均線膨張係数(25〜150℃)が30.0×10-5/℃以下、接着剤層硬化物の85℃/85%RH/168時間吸湿後における吸湿率が0.02g/以下、接着剤層の85℃/85%RH/168時間吸湿後のダイシェア強度(265℃)が1.0MPa以上、接着剤層硬化物の引張り弾性率(265℃)が1〜20MPaの関係を満足するように設定することにより低減できることが分かった。 The inventors of the present invention focused on these effects, and as a result of repeated research centering on these effects, the wafer warp after the die bonding material was attached and the delamination caused by the moisture absorption reflow treatment are caused by the tack strength of the adhesive layer and SUS304. (25 ° C.) is 50 gf or less, the melt viscosity of the adhesive layer at 180 ° C. near the pressure bonding temperature is 50 to 1 × 10 7 Pa · s, the adhesive layer thickness is 1 to 20 μm, and the protective film layer thickness is 1 to 30 μm. More preferably, the sum of the thickness of the adhesive layer and the protective film layer is 40 μm or less, the tensile elastic modulus (25 ° C.) of the cured adhesive layer and the protective film layer is 3.0 GPa or less, and the adhesive layer the average linear expansion coefficient of the cured product and the protective film layer (25 to 150 ° C.) is 30.0 × 10 -5 / ℃ less, moisture absorption at 85 ℃ / 85% RH / 168 hours after moisture absorption of the adhesive layer cured There 0.02 g / c m 3 or less, the die shear strength after 85 ℃ / 85% RH / 168 hours hygroscopic adhesive layer (265 ° C.) or more 1.0 MPa, tensile modulus of the adhesive layer cured (265 ° C. ) Can be reduced by setting so as to satisfy the relationship of 1 to 20 MPa.

次に、本発明について詳細に説明する。
図1は、本発明の半導体装置用ダイボンディング材の一態様を示す断面図であり、接着剤層1とその片面に貼り付けた保護フィルム2からなる2層構造を有する。本発明の半導体装置用ダイボンディング材は、必要に応じ、接着剤層の両面に保護フィルムを貼り付けたものであってもよい。
本半導体装置に用いられるダイボンディング材の接着剤層を構成する接着剤組成物は特に限定するものではなく、熱可塑性樹脂としては、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエンゴム−スチレン樹脂、ポリブタジエン、スチレン−ブタジエン−エチレン樹脂、アクリル、ポリビニルブチラール、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド、ポリウレタン等公知のものが例示される。また、熱可塑性樹脂は後述の熱硬化性樹脂との反応が可能な官能基を有しても良い。具体的にはアミノ基、カルボキシル基、エポキシ基、水酸基、メチロール基、イソシアネート基、ビニル基、シラノール基等である。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、フラン樹脂、シアン酸エステル樹脂等公知のものが例示される。エポキシ樹脂は、特に限定されるものでなく、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシノール、ジヒドロキシナフタレン、ジシクロペンタジエンフェノール等のジグリシジルエーテル、エポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン、エポキシ化メタキシレンジアミン、シクロヘキサンエポキサイド等の脂環式エポキシ樹脂等が挙げられる。さらに、難燃付与のためにハロゲン化エポキシ樹脂、例えば、臭素化エポキシ樹脂等を用いることもできる。フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等の公知のフェノール樹脂がいずれも使用できる。たとえば、フェノール、クレゾール、p−t−ブチルフェノール、ノニルフェノール、p−フェニルフェノール等のアルキル置換フェノール、テルペン、ジシクロペンタジエン等の環状アルキル変性フェノール、ニトロ基、ハロゲン基、シアノ基、アミノ基等のヘテロ原子を含む官能基を有するもの、ナフタレン、アントラセン等の骨格を有するもの、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ピロガロール等の多官能性フェノールからなる樹脂、また、キシレン変性等、各種の変性フェノール樹脂が挙げられる。また、接着剤層にエポキシ樹脂やフェノール樹脂の硬化剤、及び硬化促進剤を添加することは何ら制限されない。たとえば、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミンなどの3級アミン化合物、芳香族ポリアミド、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、1−シアノエチル−2−フェニルイミダゾール等のイミダゾール誘導体、無水フタル酸、無水トリメリット酸等の有機酸、ジシアンジアミド、トリフェニルホスフィン、トリ(p−メチルフェニル)ホスフィン及びトリ(ノニルフェニル)ホスフィンなどの有機ホスフィン化合物、等公知のものが使用できる。以上の成分以外に、接着剤の性能を損なわない範囲で酸化防止剤、イオン補足剤などの有機、無機成分を添加することは何ら制限されない。微粒子状の無機成分としては水酸化アルミニウム、水酸化マグネシウム、カルシウム・アルミネート水和物等の金属水酸化物、シリカ、アルミナ、酸化ジルコニウム、酸化亜鉛、三酸化アンチモン、五酸化アンチモン、酸化マグネシウム、酸化チタン、酸化鉄、酸化コバルト、酸化クロム、タルク等の金属酸化物、炭酸カルシウム等の無機塩、アルミニウム、金、銀、ニッケル、鉄等の金属微粒子、あるいはカーボンブラック、ガラス等が挙げられる。また、各種のカップリング剤、例えばメルカプトシラン系カップリング剤、ウレイドシランカップリング剤等を配合してもよい。
Next, the present invention will be described in detail.
FIG. 1 is a cross-sectional view showing an embodiment of a die bonding material for a semiconductor device according to the present invention, which has a two-layer structure including an adhesive layer 1 and a protective film 2 attached to one surface thereof. The die bonding material for a semiconductor device of the present invention may have a protective film attached to both surfaces of the adhesive layer as necessary.
The adhesive composition constituting the adhesive layer of the die bonding material used in the semiconductor device is not particularly limited, and examples of the thermoplastic resin include acrylonitrile-butadiene copolymer, acrylonitrile-butadiene rubber-styrene resin, and polybutadiene. , Styrene-butadiene-ethylene resin, acrylic, polyvinyl butyral, polyamide, polyester, polyimide, polyamideimide, polyurethane and the like are exemplified. Further, the thermoplastic resin may have a functional group capable of reacting with a thermosetting resin described later. Specific examples include an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methylol group, an isocyanate group, a vinyl group, and a silanol group. Examples of the thermosetting resin include known resins such as epoxy resins, phenol resins, melamine resins, xylene resins, furan resins, and cyanate ester resins. Epoxy resin is not particularly limited, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, resorcinol, dihydroxynaphthalene, dicyclopentadienephenol, epoxidized phenol novolac resin, epoxidized cresol novolac resin, epoxidized Examples thereof include alicyclic epoxy resins such as trisphenylolmethane, epoxidized tetraphenylolethane, epoxidized metaxylenediamine, and cyclohexaneepoxide. Further, a halogenated epoxy resin such as a brominated epoxy resin can be used for imparting flame retardancy. As the phenol resin, any known phenol resin such as novolak type phenol resin and resol type phenol resin can be used. For example, alkyl-substituted phenols such as phenol, cresol, pt-butylphenol, nonylphenol, p-phenylphenol, cyclic alkyl-modified phenols such as terpene and dicyclopentadiene, hetero groups such as nitro groups, halogen groups, cyano groups, and amino groups Those having functional groups containing atoms, those having skeletons such as naphthalene and anthracene, resins composed of polyfunctional phenols such as bisphenol F, bisphenol A, bisphenol S, resorcinol, pyrogallol, and various modifications such as xylene modification A phenol resin is mentioned. Addition of an epoxy resin or phenol resin curing agent and a curing accelerator to the adhesive layer is not limited. For example, tertiary amine compounds such as triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, aromatic polyamide, boron trifluoride amine complexes such as boron trifluoride triethylamine complex, 1-cyanoethyl-2-phenylimidazole, etc. Imidazole derivatives, organic acids such as phthalic anhydride, trimellitic anhydride, organic phosphine compounds such as dicyandiamide, triphenylphosphine, tri (p-methylphenyl) phosphine and tri (nonylphenyl) phosphine, etc. are used. it can. In addition to the above components, addition of organic and inorganic components such as antioxidants and ion scavengers is not limited as long as the performance of the adhesive is not impaired. Fine inorganic components include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium aluminate hydrate, silica, alumina, zirconium oxide, zinc oxide, antimony trioxide, antimony pentoxide, magnesium oxide, Examples thereof include metal oxides such as titanium oxide, iron oxide, cobalt oxide, chromium oxide, and talc, inorganic salts such as calcium carbonate, metal fine particles such as aluminum, gold, silver, nickel, and iron, carbon black, and glass. Moreover, you may mix | blend various coupling agents, for example, a mercaptosilane type coupling agent, a ureidosilane coupling agent, etc.

また、保護フィルム層についても特に限定するものではなく、その具体例としては、ポリエステル、ポリオレフィン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリカーボネート、ポリアミド、ポリイミド、ポリメチルメタクリレート等のプラスチックフィルム、これらに含フッ素化合物等の離型材のコーティング処理を施したフィルムあるいはこれらのフィルムをラミネートした紙やこれらのフィルム積層体、離型性のある樹脂を含浸あるいはコーティング処理した紙等が挙げられる。保護フィルム層は加工時に認識が良いように顔料による着色が施されても良い。   Further, the protective film layer is not particularly limited, and specific examples thereof include polyester, polyolefin, polyphenylene sulfide, polyvinyl chloride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, Plastic films such as polycarbonate, polyamide, polyimide, polymethylmethacrylate, films that have been coated with a release material such as a fluorine-containing compound, or papers laminated with these films, film laminates of these, and release properties Examples include paper impregnated or coated with resin. The protective film layer may be colored with a pigment so as to be easily recognized during processing.

例えば、本発明において接着剤層に用いられる接着剤組成物には、エポキシ樹脂と組み合わせてキシレン変性フェノール樹脂等の低吸湿性フェノール樹脂を硬化剤として用いることにより、優れた耐吸湿特性が得られる。また、エポキシ基等の反応性基含有モノマーを含むアクリル共重合体を用いることにより、適切な架橋構造を形成させることによる優れた耐リフロークラック特性を与えることができる。また、エポキシ樹脂と非相溶性のアクリル共重合体、例えばエポキシ基含有アクリルゴム等を用いることにより、硬化後に明確な海島構造を形成させることによる優れた耐リフロークラック特性及び耐熱特性を与えることができる。さらに、無機フィラーの添加により高温弾性率が高く、かつ高温接着強度が高くなり、リフロークラック防止効果が働き、耐リフロークラック特性が優れる接着剤組成物を得ることができる。例えば、エポキシ樹脂及び硬化剤としてのフェノール樹脂の合計を100重量部として、エポキシ樹脂30〜70重量部、好ましくは40〜60重量部、硬化剤としてのフェノール樹脂30〜70重量部、好ましくは40〜60重量部、硬化促進剤0.1〜5重量部、好ましくは0.2〜3重量部、カップリング剤0.1〜10重量部、好ましくは0.2〜7重量部、エポキシ樹脂と非相溶性のアクリル共重合体10〜400重量部、好ましくは50〜300重量部、無機フィラー0.5〜40重量部、好ましくは1〜35重量部からなる接着剤組成物が好適に用いられる。   For example, in the adhesive composition used for the adhesive layer in the present invention, excellent moisture absorption resistance can be obtained by using a low hygroscopic phenol resin such as xylene-modified phenol resin as a curing agent in combination with an epoxy resin. . In addition, by using an acrylic copolymer containing a reactive group-containing monomer such as an epoxy group, it is possible to give excellent reflow crack resistance by forming an appropriate crosslinked structure. In addition, by using an acrylic copolymer incompatible with the epoxy resin, such as an epoxy group-containing acrylic rubber, it is possible to give excellent reflow crack resistance and heat resistance by forming a clear sea-island structure after curing. it can. Furthermore, the addition of an inorganic filler makes it possible to obtain an adhesive composition having a high high temperature elastic modulus, high high temperature adhesive strength, an effect of preventing reflow cracks, and excellent reflow crack resistance. For example, the total of the epoxy resin and the phenolic resin as the curing agent is 100 parts by weight, 30 to 70 parts by weight of the epoxy resin, preferably 40 to 60 parts by weight, 30 to 70 parts by weight of the phenolic resin as the curing agent, preferably 40 -60 parts by weight, curing accelerator 0.1-5 parts by weight, preferably 0.2-3 parts by weight, coupling agent 0.1-10 parts by weight, preferably 0.2-7 parts by weight, and epoxy resin An adhesive composition comprising 10 to 400 parts by weight, preferably 50 to 300 parts by weight of an incompatible acrylic copolymer, 0.5 to 40 parts by weight, preferably 1 to 35 parts by weight of an inorganic filler is suitably used. .

本発明の半導体装置用ダイボンディング材は、例えば、上記の接着剤組成物のワニスを保護フィルム上に塗布し、乾燥することによって作製することができる。ワニス化の溶剤は特に限定されないが、トルエン、キシレン、クロルベンゼン等の芳香族系、シクロヘキサノン、メチルエチルケトン、メチルエチルイソブチルケトン等のケトン系、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロドリン等の非プロトン系極性溶剤単独あるいは混合物が好適である。   The die bonding material for a semiconductor device of the present invention can be produced, for example, by applying the above adhesive composition varnish on a protective film and drying. The varnishing solvent is not particularly limited, but is aromatic such as toluene, xylene and chlorobenzene, ketones such as cyclohexanone, methyl ethyl ketone and methyl ethyl isobutyl ketone, and aprotic such as dimethylformamide, dimethylacetamide and N-methylpyrodoline. A polar system solvent alone or a mixture is preferred.

接着剤層の180℃における溶融粘度(180℃)は50〜1×107Pa・sの範囲であり、好適には1×102〜5×106Pa・sの範囲が好ましく、さらに好適には1×103〜1×106Pa・sの範囲が好ましい。50Pa・sより小さいと圧着条件における接着剤のはみ出し量が大きくなるためワイヤボンド端子をふさいでしまい好ましくない。逆に1×107Pa・sより大きいと圧着において配線等の凹凸に接着剤を充てんすることが困難となり、吸湿リフロー処理によるはく離が生じ易くなるからである。ここでの接着剤層の溶融粘度は、1946年度のJournal of Applied Physics 第17巻、458〜471項に記載された平行平板プラストメータ法により測定、算出した値で評価される。すなわち、接着剤層の溶融粘度(η)は、半径(r)の接着フィルムに加重を一定時間加え、接着剤層の厚さの変化を測定することにより、下式(1)からηについて解いて算出した。Z0は加重を加える前の接着剤層の厚さ、Zは加重を加えた後の接着剤層の厚さ、Vは接着剤層の体積、Fは加えた加重、tは加重を加えた時間である。

Figure 0004888479
溶融粘度を高くするには、フィラーの増量、接着剤層形成時の塗工温度の高温化、樹脂の高Tg化の手法が主に用いられる。更に、アクリル樹脂/エポキシ樹脂併用系の場合は、エポキシ樹脂の比率を低くすることにより、溶融粘度を高くすることが可能である。溶融粘度を低くするには、フィラーの減量、接着剤層形成時の塗工温度の低温化、樹脂の低Tg化の手法が主に用いられる。更に、アクリル樹脂/エポキシ樹脂併用系の場合は、エポキシ樹脂の比率を高くすることにより、溶融粘度を低くすることが可能である。 The melt viscosity (180 ° C.) at 180 ° C. of the adhesive layer is in the range of 50 to 1 × 10 7 Pa · s, preferably in the range of 1 × 10 2 to 5 × 10 6 Pa · s, and more preferably. Is preferably in the range of 1 × 10 3 to 1 × 10 6 Pa · s. If it is less than 50 Pa · s, the amount of the adhesive protruding under the pressure bonding condition increases, which is not preferable because the wire bond terminal is blocked. On the other hand, if it is larger than 1 × 10 7 Pa · s, it is difficult to fill the unevenness of the wiring or the like with the adhesive in the pressure bonding, and peeling due to the moisture absorption reflow treatment is likely to occur. The melt viscosity of the adhesive layer here is evaluated by a value measured and calculated by the parallel plate plastometer method described in Journal of Applied Physics Vol. 17, 458-471 of 1946. That is, the melt viscosity (η) of the adhesive layer can be solved for η from the following equation (1) by applying a load to the adhesive film of radius (r) for a certain period of time and measuring the change in the thickness of the adhesive layer. Calculated. Z 0 is the thickness of the adhesive layer before applying the weight, Z is the thickness of the adhesive layer after applying the weight, V is the volume of the adhesive layer, F is the applied weight, t is the applied weight It's time.
Figure 0004888479
In order to increase the melt viscosity, methods of increasing the amount of filler, increasing the coating temperature when forming the adhesive layer, and increasing the Tg of the resin are mainly used. Furthermore, in the case of an acrylic resin / epoxy resin combination system, it is possible to increase the melt viscosity by reducing the ratio of the epoxy resin. In order to lower the melt viscosity, the methods of reducing the filler, lowering the coating temperature when forming the adhesive layer, and lowering the Tg of the resin are mainly used. Furthermore, in the case of the acrylic resin / epoxy resin combination system, the melt viscosity can be lowered by increasing the ratio of the epoxy resin.

接着剤層の厚みは1〜20μmであり、好適には1〜15μmの範囲が好ましい。20μmより厚くなると半導体装置内の接着剤層体積が大きくなるため接着剤層に吸湿する水分量が多くなり、リフロー処理の高温で界面はく離等の不良が発生しやすく好ましくない。逆に接着剤層の厚みが1μm未満になると、圧着で外部接続部材上の凹凸に接着剤を追従させることが困難となり、完成した半導体装置中にボイド等が生じ、吸湿リフロー処理によりはく離が生じ易くなるからである。   The thickness of the adhesive layer is 1 to 20 μm, and preferably 1 to 15 μm. If the thickness is greater than 20 μm, the volume of the adhesive layer in the semiconductor device increases, so that the amount of moisture absorbed by the adhesive layer increases, and defects such as interfacial delamination are likely to occur at a high temperature of the reflow treatment, which is not preferable. Conversely, when the thickness of the adhesive layer is less than 1 μm, it becomes difficult to cause the adhesive to follow the irregularities on the external connection member by pressure bonding, voids are generated in the completed semiconductor device, and peeling occurs due to moisture absorption reflow processing. It is because it becomes easy.

接着剤層硬化物の85℃/85%RH/168時間吸湿後の吸湿率は0.02g/以下が好ましい。0.02g/より大きくなると吸湿後のリフローの高温により接着剤層に発生する蒸気圧が高くなり、接着剤層の厚みを薄くしてもリフロー処理により発生するはく離の低減が困難なためである。ここでの吸湿率は接着剤層を20mmφ×2.0mmの円盤状にし、175℃/5時間の後硬化を行った後に、初期質量を測定し、次いで85℃/85%RH/168時間吸湿処理を行い、吸湿前後の質量から下式(2)により吸湿率(Wvol)を算出した。ここでC0はサンプルの初期質量、Cは吸湿後質量、Vは吸湿前の体積である。

Figure 0004888479
Moisture absorption 85 ℃ / 85% RH / 168 hours after moisture absorption of the adhesive layer cured is preferably not more than 0.02g / c m 3. 0.02 g / larger than c m 3 the vapor pressure generated in the adhesive layer by a high temperature reflow after moisture absorption becomes high, it is difficult to reduce the flaking caused by even the reflow process by reducing the thickness of the adhesive layer Because. Here, the moisture absorption rate is obtained by making the adhesive layer into a disk shape of 20 mmφ × 2.0 mm, post-curing at 175 ° C./5 hours, measuring the initial mass, and then absorbing moisture at 85 ° C./85% RH / 168 hours. The moisture absorption (W vol ) was calculated from the mass before and after moisture absorption by the following equation (2). Here, C 0 is the initial mass of the sample, C is the mass after moisture absorption, and V is the volume before moisture absorption.
Figure 0004888479

接着剤層硬化物と配線付外部接続部材との85℃/85%RH/168時間吸湿後のダイシェア強度(265℃)は1.0MPa以上が好ましい。1.0MPaより小さくなると外部接続部材との密着性不足によりはく離が生じやすく、接着剤層の厚みを薄くしてもリフロー処理により発生するはく離の低減が困難なためである。ここでの上記の接着剤層硬化物のダイシェア強度は、以下のようにして測定した。半導体ウェハに接着剤層をラミネート後3.2mmにダイシングし、接着剤層付き半導体チップを得た。そのチップを180℃、2MPa、30秒の条件で基板に熱圧着し、次いで175℃で5時間、後硬化させた後に、JEDEC(J−STD−020B)にて定められているレベル1の吸湿処理(85℃/85%RH/168時間)行った。吸湿後のサンプルをボンドテスタ(Dage Precision Industries社製 Dage2400)を用いて265℃にて30秒間放置した後に、測定速度50μm/sec、測定高さ50μmの条件にてダイシェアを行い評価した。 The die shear strength (265 ° C.) of the cured adhesive layer and the external connection member with wiring after moisture absorption at 85 ° C./85% RH / 168 hours is preferably 1.0 MPa or more. If the pressure is less than 1.0 MPa, peeling is likely to occur due to insufficient adhesion to the external connection member, and even if the thickness of the adhesive layer is reduced, it is difficult to reduce peeling generated by the reflow process. Here, the die shear strength of the cured adhesive layer was measured as follows. After laminating the adhesive layer on the semiconductor wafer, it was diced to 3.2 mm to obtain a semiconductor chip with an adhesive layer. The chip was thermocompression bonded to the substrate under conditions of 180 ° C., 2 MPa, 30 seconds, then post-cured at 175 ° C. for 5 hours, and then level 1 moisture absorption as defined by JEDEC (J-STD-020B) Treatment (85 ° C./85% RH / 168 hours) was performed. The sample after moisture absorption was allowed to stand at 265 ° C. for 30 seconds using a bond tester (Dage Precision Industries, Dage 2400), and then evaluated by performing die shearing under conditions of a measurement speed of 50 μm / sec and a measurement height of 50 μm.

接着剤層硬化物の265℃における引張り弾性率(265℃)は1〜20MPaの範囲が好ましく、好適には1〜10MPaの範囲がより好ましい。1.0MPa未満では接着剤硬化物の凝集力不足のため、20MPaより高いと応力緩和が困難なため、接着剤層の厚みを薄くしてもリフロー処理により発生するはく離等不良の低減が困難なためである。ここでの接着剤層硬化物の引張り弾性率(265℃)は動的粘弾性測定装置(レオロジ社製 DVE−V4)を使用し、175℃/5時間の硬化処理を行った接着剤層に引っ張り加重をかけ、周波数10Hz、昇温速度5〜10℃/minの条件で−50℃〜300℃まで測定する温度依存性測定モードにて測定した。   The tensile elastic modulus (265 ° C.) at 265 ° C. of the cured adhesive layer is preferably in the range of 1 to 20 MPa, and more preferably in the range of 1 to 10 MPa. If it is less than 1.0 MPa, the cohesive strength of the adhesive cured product is insufficient, and if it is higher than 20 MPa, it is difficult to relieve stress. Because. The tensile elastic modulus (265 ° C.) of the cured adhesive layer here is obtained by using a dynamic viscoelasticity measuring device (DVE-V4 manufactured by Rheology Co., Ltd.) and performing the curing treatment at 175 ° C. for 5 hours. Measurement was performed in a temperature-dependent measurement mode in which a tensile load was applied and measurement was performed from −50 ° C. to 300 ° C. under conditions of a frequency of 10 Hz and a temperature increase rate of 5 to 10 ° C./min.

このようにして得られた半導体装置用ダイボンディング材を用いることにより、半導体ウェハに貼り付けた後のウェハ反りを低減できるとともに、それを用いて組み立てた半導体装置は良好な耐リフロー性を示し、優れた半導体装置を得ることができる。   By using the die bonding material for a semiconductor device thus obtained, the wafer warpage after being attached to a semiconductor wafer can be reduced, and the semiconductor device assembled using it exhibits good reflow resistance, An excellent semiconductor device can be obtained.

本発明のダイボンディング材付半導体ウェハは、図2に示すように、半導体装置用ダイボンディング材(1、2)と半導体ウェハ3とを、接着剤層1と半導体ウェハ3の片面とが接するように貼り付けたものである。接着剤層の両面が保護フィルムで保護されている場合には、片面の保護フィルムははがされる。半導体ウェハに貼り付けられる際の貼り付け温度は用いられるダイボンディング材によって異なるものの、通常50〜150℃で貼り付けられる。半導体ウェハは通常250〜400μm厚のものが好適に用いられるが、半導体装置の薄型化、チップスタック化に伴って50〜150μm前後の厚みのウェハが最近用いられるようになってきており、半導体ウェハが薄い場合に本発明の効果は大きい。すなわち、本発明に用いられる半導体ウェハの厚みは特に制限はされないが、通常、50〜400μmであり、特に50〜150μmの薄型ウェハに好適に用いることができる。また近年、例えば10μm、25μmといった、更に薄型のウェハも検討されており、本発明の接着フィルムはこのような超薄型のウェハ(10〜50μm)にも好適に使用することができる。接着剤層の厚みは1〜20μm、好適には5〜15μmが好ましい。20μmより厚くなると半導体ウェハ貼り付け後のウェハ反りが大きくなり、接着剤層や保護フィルム層の材料物性を最適化してもウェハ反りを低減することが難しくなるからである。保護フィルム層の厚みは1〜30μm、好適には1〜20μmが好ましい。30μmより厚くなると半導体ウェハ貼り付け後のウェハ反りが大きくなり、接着剤層や保護フィルム層の材料物性を最適化してもウェハ反りを低減することが難しくなるからである。逆に接着剤層や保護フィルム層の厚みが1μmより薄くなると外部からの損傷をうけやすくなるとともに、ダイシング個片化した接着剤層付き半導体チップを配線付外部接続部材に実装した後の半導体チップの反りが大きくなり、半導体チップを損傷する場合があるからである。接着剤層と保護フィルム層の厚みの和は40μm以下、好適には35μm以下が好ましい。接着剤層のみを薄くしてウェハ反りは接着剤層と保護フィルム層の両方の厚みに影響を受けるため、片方だけを薄くしてもウェハ反り低減効果は小さいからである。   As shown in FIG. 2, the semiconductor wafer with a die bonding material of the present invention is such that the die bonding material for semiconductor device (1, 2) and the semiconductor wafer 3 are in contact with the adhesive layer 1 and one surface of the semiconductor wafer 3. Is pasted on. When both surfaces of the adhesive layer are protected with a protective film, the protective film on one side is peeled off. Affixing temperature at the time of adhering to a semiconductor wafer varies depending on the die bonding material used, but is usually affixed at 50 to 150 ° C. Generally, a semiconductor wafer having a thickness of 250 to 400 μm is preferably used. However, a wafer having a thickness of about 50 to 150 μm has recently been used with the thinning of semiconductor devices and chip stacking. The effect of the present invention is great when the thickness is thin. That is, the thickness of the semiconductor wafer used in the present invention is not particularly limited, but is usually 50 to 400 μm, and can be preferably used for a thin wafer of 50 to 150 μm. In recent years, thinner wafers such as 10 μm and 25 μm have been studied, and the adhesive film of the present invention can be suitably used for such ultra-thin wafers (10 to 50 μm). The thickness of the adhesive layer is 1 to 20 μm, preferably 5 to 15 μm. If the thickness is greater than 20 μm, the wafer warp after the semiconductor wafer is bonded increases, and it becomes difficult to reduce the wafer warp even if the material properties of the adhesive layer and the protective film layer are optimized. The thickness of the protective film layer is 1 to 30 μm, preferably 1 to 20 μm. If the thickness is larger than 30 μm, the warpage of the wafer after the semiconductor wafer is bonded increases, and it becomes difficult to reduce the warpage of the wafer even if the material properties of the adhesive layer and the protective film layer are optimized. On the contrary, when the thickness of the adhesive layer or the protective film layer is thinner than 1 μm, it is easy to be damaged from the outside, and the semiconductor chip after mounting the dicing separated semiconductor chip with the adhesive layer on the external connection member with wiring This is because the warpage of the semiconductor chip may be increased and the semiconductor chip may be damaged. The sum of the thicknesses of the adhesive layer and the protective film layer is 40 μm or less, preferably 35 μm or less. This is because only the adhesive layer is made thin and the wafer warpage is affected by the thicknesses of both the adhesive layer and the protective film layer, so even if only one of the layers is made thin, the effect of reducing the wafer warp is small.

接着剤層硬化物及び保護フィルム層の25℃における引張り弾性率(25℃)は3.0GPa以下、好適には0.1〜2.0GPaが好ましい。引張り弾性率が3.0GPaより大きくなるとウェハ貼り付け後の半導体ウェハ反りが大きくなり、接着剤層や保護フィルム層の厚みを薄くしても半導体ウェハの反りを低減することが難しくなるからである。ここでの接着剤層硬化物及び保護フィルム層の引張り弾性率(25℃)は動的粘弾性測定装置(レオロジ社製 DVE−V4)を使用し、175℃/5時間の硬化処理を行った接着剤層及び保護フィルム層に引っ張り加重を加え、周波数10Hz、昇温速度5〜10℃/minの条件で−50℃〜300℃まで測定する温度依存性測定モードにて測定した。   The tensile modulus (25 ° C.) at 25 ° C. of the cured adhesive layer and the protective film layer is 3.0 GPa or less, preferably 0.1 to 2.0 GPa. This is because if the tensile modulus of elasticity is greater than 3.0 GPa, the warpage of the semiconductor wafer after wafer bonding increases, and it becomes difficult to reduce the warpage of the semiconductor wafer even if the thickness of the adhesive layer or the protective film layer is reduced. . The tensile modulus (25 ° C.) of the cured adhesive layer and the protective film layer was subjected to curing treatment at 175 ° C. for 5 hours using a dynamic viscoelasticity measuring device (DVE-V4 manufactured by Rheology). A tensile load was applied to the adhesive layer and the protective film layer, and the measurement was performed in a temperature dependence measurement mode in which measurement was performed from −50 ° C. to 300 ° C. under conditions of a frequency of 10 Hz and a temperature increase rate of 5 to 10 ° C./min.

接着剤層硬化物及び保護フィルム層の25〜150℃における平均線膨張係数(25〜150℃)は30.0×10-5/℃以下が好ましい。平均線膨張係数が30.0×10-5/℃より大きくなると、半導体ウェハ貼り付け後のウェハ反りが大きくなり、接着剤層や保護フィルム層の厚みを薄くしてもウェハ反りを低減することが難しくなるからである。ここでの接着剤層硬化物及び保護フィルム層の線膨張係数は175℃/5時間の硬化処理を行った接着剤層及び保護フィルム層を用い、熱機械分析装置を用いて室温からはんだ実装時の温度(265℃)まで測定を行った。25〜150℃の平均線膨張係数は25℃から150℃までの線膨張係数の傾きより求めた。 The average linear expansion coefficient (25 to 150 ° C.) at 25 to 150 ° C. of the cured adhesive layer and the protective film layer is preferably 30.0 × 10 −5 / ° C. or less. When the average linear expansion coefficient is larger than 30.0 × 10 −5 / ° C., the warpage of the wafer after the semiconductor wafer is adhered increases, and the warpage of the wafer is reduced even if the thickness of the adhesive layer or the protective film layer is reduced. Because it becomes difficult. Here, the linear expansion coefficient of the cured adhesive layer and the protective film layer is 175 ° C./5 hours when the adhesive layer and the protective film layer are used, and solder mounting is performed from room temperature using a thermomechanical analyzer. The temperature was measured up to (265 ° C.). The average linear expansion coefficient at 25 to 150 ° C. was determined from the slope of the linear expansion coefficient from 25 ° C. to 150 ° C.

接着剤層とSUS304の25℃におけるタック強度(25℃)は50gf以下であり、5〜30gfが好ましい。50gfより大きいとダイボンディング材を半導体ウェハに貼り付けた後に保護フィルム層をはがす際のウェハ割れやダイボンディング材切断行程における金型等への貼り付きが生じ、作業性が劣るためである。ここでの接着剤層のタック強度はタッキング試験器((株)レスカ社製、タッキング試験器)を用い、押し込み速度:2mm/sec、引き上げ速度:10mm/sec、停止加重:100gf/cm2、停止時間:1秒の条件にて、5.1mmφのSUS304に対するタック強度を測定し求めた。
タック強度を高くするには、フィラーの減量、塗工温度の低温化、樹脂の低Tg化、液状エポキシ樹脂の増量が有効である。一方、タック強度を下げるには、フィラーの増量、塗工温度の高温化、樹脂の高Tg化、液状エポキシ樹脂の減量が有効である。
The tack strength (25 ° C.) at 25 ° C. of the adhesive layer and SUS304 is 50 gf or less, preferably 5 to 30 gf. If it is larger than 50 gf, the wafer is cracked when the protective film layer is peeled off after the die bonding material is attached to the semiconductor wafer, and the die bonding material is attached to the die during the die bonding material cutting process, resulting in poor workability. The tack strength of the adhesive layer here uses a tacking tester (manufactured by Reska Co., Ltd., tacking tester), pushing speed: 2 mm / sec, pulling speed: 10 mm / sec, stop load: 100 gf / cm 2 , The tack strength against 5.1 mmφ SUS304 was measured and determined under the condition of a stop time of 1 second.
In order to increase the tack strength, it is effective to reduce the filler, lower the coating temperature, lower the resin Tg, and increase the liquid epoxy resin. On the other hand, increasing the filler strength, increasing the coating temperature, increasing the resin Tg, and reducing the liquid epoxy resin are effective in reducing the tack strength.

本発明の半導体装置は、本発明の半導体装置用ダイボンディング材を用いて作製されるものである。すなわち、本発明の半導体装置は、配線付外部接続部材と、接着剤層によって配線付外部接続部材に接続された半導体チップとを有する半導体装置であって、接着剤層が、本発明の半導体装置用ダイボンディング材から保護フィルムを剥離して得られる接着剤層であるものである。例えば、本初雨胃の半導体装置がフェイスアップ方式のものであるばあいには、更に、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤ、並びに、配線付外部接続部材の配線面、半導体チップ及びボンディングワイヤを封止している封止用樹脂を有する。
例えば、本発明の半導体装置用ダイボンディング材を用いてフェイスアップ方式の半導体装置を作製する際には、下記の二通りの方法を通常用いる。
The semiconductor device of the present invention is manufactured using the die bonding material for a semiconductor device of the present invention. That is, the semiconductor device of the present invention is a semiconductor device having an external connection member with wiring and a semiconductor chip connected to the external connection member with wiring by an adhesive layer, and the adhesive layer is the semiconductor device of the present invention. It is an adhesive layer obtained by peeling off the protective film from the die bonding material for use. For example, when the semiconductor device of this initial rain stomach is of the face-up type, a bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring, and wiring with It has a sealing resin that seals the wiring surface of the external connection member, the semiconductor chip, and the bonding wires.
For example, when producing a face-up type semiconductor device using the die bonding material for a semiconductor device of the present invention, the following two methods are usually used.

(1)半導体装置用ダイボンディング材を切り出して外部接続部材に貼り付け、その上にチップを圧着し、適宜必要に応じて硬化処理を行い、ワイヤボンド、半導体装置上面を樹脂封止により密閉した後に封止材の後硬化を行い、半導体装置を得る。あるいは、(2)半導体ウェハの裏面に半導体装置用ダイボンディング材を貼り付け、得られたダイボンディング材付き半導体ウェハをダイシングしてダイボンディング材付き半導体チップを得る。保護フィルムを剥離した後、このチップを直接外部接続部材に圧着する。前述いずれかの方法により半導体チップを外部接続部材に圧着後、適宜必要に応じて硬化処理を行い、ワイヤボンド、半導体装置上面を樹脂封止により密閉した後に封止材の後硬化を行い、半導体装置を得る。なお、ダイシングは、ダイボンディング材付半導体ウェハをそのままダイシングしてもよいし、図3に示すように、保護フィルム2を剥離した後、半導体ウェハ3に貼り付いて残った接着剤層1によってダイシングテープ4に貼り付けて行なってもよい。 (1) A die bonding material for a semiconductor device is cut out and attached to an external connection member, a chip is pressure-bonded thereon, a curing treatment is appropriately performed, and the upper surface of the wire bond and the semiconductor device is sealed by resin sealing. Later, post-curing of the sealing material is performed to obtain a semiconductor device. Alternatively, (2) a semiconductor device die bonding material is attached to the back surface of the semiconductor wafer, and the obtained semiconductor wafer with a die bonding material is diced to obtain a semiconductor chip with a die bonding material. After peeling off the protective film, the chip is directly bonded to the external connection member. After the semiconductor chip is pressure-bonded to the external connection member by any of the methods described above, a curing treatment is appropriately performed as necessary. After the upper surface of the wire bond and the semiconductor device is sealed by resin sealing, the sealing material is post-cured, and the semiconductor Get the device. In the dicing, the semiconductor wafer with the die bonding material may be diced as it is, or as shown in FIG. 3, after the protective film 2 is peeled off, the dicing is performed by the adhesive layer 1 remaining on the semiconductor wafer 3. You may affix on the tape 4 and carry out.

上記(1)の方法は、具体的には、配線付外部接続部材に本発明の半導体装置用ダイボンディング材を、接着剤層が配線面に接するように貼り付ける工程、配線付外部接続部材に貼り付けた半導体装置用ダイボンディング材から保護フィルムを剥離する工程、配線付外部接続部材と半導体チップとを、配線付外部接続部材に貼り付けた接着剤層と半導体チップの片面とが接するように積層し、加熱加圧して配線付外部接続部材と半導体チップとを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む。   Specifically, the method (1) includes a step of attaching the die bonding material for a semiconductor device of the present invention to an external connection member with wiring so that the adhesive layer is in contact with the wiring surface, and the external connection member with wiring. The step of peeling the protective film from the bonded die bonding material for a semiconductor device, so that the external connection member with wiring and the semiconductor chip are in contact with the adhesive layer attached to the external connection member with wiring and one surface of the semiconductor chip Laminating, heating and pressing to connect the external connection member with wiring and the semiconductor chip, electrically connecting the semiconductor chip and the wiring of the external connection member with wiring with a bonding wire, and the external connection member with wiring A wiring chip, a semiconductor chip connected to the external connection member with wiring, and a bonding wire electrically connecting the semiconductor chip and the wiring of the external connection member with wiring. And comprising the step of sealing with the sealing resin.

上記(2)の方法は、具体的には、本発明のダイボンディング材付半導体ウェハをダイシングして保護フィルムを剥離し、あるいは保護フィルムを剥離した後にダイシングして、接着剤層付半導体チップに分割する工程、接着剤層付半導体チップと配線付外部接続部材とを、半導体チップに貼り付けた接着剤層と配線付外部接続部材の配線面とが接するように積層し、加熱加圧して半導体チップと配線付外部接続部材とを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む。   Specifically, the above method (2) is obtained by dicing the semiconductor wafer with a die bonding material of the present invention to peel off the protective film, or peeling off the protective film and then dicing to form a semiconductor chip with an adhesive layer. In the step of dividing, the semiconductor chip with an adhesive layer and the external connection member with wiring are laminated so that the adhesive layer attached to the semiconductor chip and the wiring surface of the external connection member with wiring are in contact with each other, and heated and pressed to form a semiconductor The step of connecting the chip and the external connection member with wiring, the step of electrically connecting the semiconductor chip and the wiring of the external connection member with wiring with a bonding wire, and the wiring surface of the external connection member with wiring and the external connection with wiring Seal the semiconductor chip connected to the member and the bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring with sealing resin. Including that process.

図4に、本発明の半導体装置の一態様の断面図を示す。配線付外部接続部材6の配線面7(配線は図示せず)上に、半導体チップ5が、接着剤層1によって接着され、接続されている。配線付外部接続部材6は、通常、絶縁樹脂等からなる絶縁材料層8の少なくとも片面(配線面7)に配線を有し、絶縁材料層8を貫通する層間接続導体9が設けられてなるものである。配線面の表面凹凸が18μm以下であることが好ましい。半導体チップ5上には、更に他の半導体チップ5′が、接着剤層1によって接着されている。半導体チップ5及び半導体チップ5′と配線付外部接続部材6の配線とは、ボンディングワイヤ10によって電気的に接続されている。配線付外部接続部材6の配線面7、半導体チップ5、5′及びボンディングワイヤ10は、封止用樹脂11によって封止されている。配線付外部接続部材6の外面には、層間接続用導体9と接続するはんだボール等の外部接続端子12が設けられている。半導体装置内の接着剤層1は、半導体チップ5、5′の加熱圧着時やその後の加熱による後硬化、又は樹脂封止時の加熱や後硬化により、硬化している。   FIG. 4 shows a cross-sectional view of one embodiment of the semiconductor device of the present invention. The semiconductor chip 5 is bonded and connected by the adhesive layer 1 on the wiring surface 7 (wiring is not shown) of the external connection member 6 with wiring. The external connection member with wiring 6 is generally formed by having an wiring on at least one surface (wiring surface 7) of an insulating material layer 8 made of an insulating resin or the like and provided with an interlayer connection conductor 9 penetrating the insulating material layer 8. It is. The surface roughness of the wiring surface is preferably 18 μm or less. On the semiconductor chip 5, another semiconductor chip 5 ′ is bonded by the adhesive layer 1. The semiconductor chip 5 and the semiconductor chip 5 ′ and the wiring of the external connection member 6 with wiring are electrically connected by a bonding wire 10. The wiring surface 7, the semiconductor chips 5, 5 ′ and the bonding wire 10 of the external connection member 6 with wiring are sealed with a sealing resin 11. External connection terminals 12 such as solder balls connected to the interlayer connection conductor 9 are provided on the outer surface of the external connection member 6 with wiring. The adhesive layer 1 in the semiconductor device is hardened by the post-curing by heating and press-bonding of the semiconductor chips 5 and 5 ′ and the subsequent heating, or by the heating and post-curing at the time of resin sealing.

次に、実験例について説明する。
実施例1、2、比較例1〜5に用いた半導体装置用ダイボンディング材の接着剤層は表1に示す原材料及び配合で作製し、比較例6、7は表2に示す原材料及び配合で作製した。接着剤層としては、12.5、25、30、40、50、60、75μm厚の異なる数種類のサンプルを準備した。保護フィルム層は20、50μmの離型処理を施したポリエチレンテレフタレートフィルムを準備した。シリコンウェハは5インチのものを用いて140μm、280μm、50μm厚を準備した。
Next, experimental examples will be described.
The adhesive layers of the die bonding materials for semiconductor devices used in Examples 1 and 2 and Comparative Examples 1 to 5 were prepared with the raw materials and blends shown in Table 1, and Comparative Examples 6 and 7 were made with the raw materials and blends shown in Table 2. Produced. Several types of samples having different thicknesses of 12.5, 25, 30, 40, 50, 60, and 75 μm were prepared as the adhesive layer. As the protective film layer, a polyethylene terephthalate film subjected to a release treatment of 20, 50 μm was prepared. A silicon wafer having a thickness of 140 μm, 280 μm, and 50 μm was prepared using a 5-inch wafer.

Figure 0004888479
Figure 0004888479

Figure 0004888479
Figure 0004888479

半導体装置用ダイボンディング材は以下の手順で作製した。
実施例1、2、比較例1〜5においては、まず、表1の接着剤組成物を溶剤としてのシクロヘキサノン(接着剤組成物100重量部に対して1300重量部)に溶解したワニスを、離型性を有するポリエチレンテレフタレートフィルム上に塗布、乾燥して、半導体装置用ダイボンディング材を作製した。乾燥条件は100〜200℃/1〜5分とし、160℃/2.0MPa/18秒圧着後の接着剤はみ出し量が150〜500μmの範囲となるように設定した。比較例6、7においては、表2に示すように、溶剤としてN−メチル−2−ピロリドンを用いてワニスを作製した。このワニスを離型性を有するポリエチレンテレフタレートフィルム上に、乾燥後の厚みが40μmとなるように塗布し、オーブン中で80℃30分、続いて150℃30分加熱し、半導体装置用ダイボンディング材を作製した。
各半導体装置用ダイボンディング材について、接着剤層とSUS304との25℃におけるタック強度、180℃での溶融粘度、接着剤層硬化物及び保護フィルム層の25℃での引張り弾性率、25〜150℃での平均線膨張係数を測定し、表3に示した。また、各半導体装置用ダイボンチング材をウェハに120℃/線圧1.0kgfで貼り付けたあとの25℃でのウェハ反りを測定した。結果を表3に示す。
なお、比較例6、7で用いたポリイミドA、ポリイミドBは、下記のようにして合成した。
<ポリイミドA>
温度計、撹拌機及び塩化カルシウム管を備えた300mlフラスコに、2,2−ビス(4−アミノフェノキシフェニル)プロパン6.83g(0.05モル)、4,9−ジオキサデカン−1,12−ジアミン3.40g(0.05モル)及びN−メチル−2−ピロリドン110.5gを仕込み、撹拌した。4,9−ジオキサデカン−1,12−ジアミンの溶解後、フラスコを氷浴中で冷却しながら、デカメチレンビストリメリテート二無水物17.40g(0.10モル)を少量ずつ添加した。室温で8時間反応させたのち、キシレン74gを加え、窒素ガスを吹き込みながら180℃で加熱し、水と共にキシレンを共沸除去し、ポリイミド溶液を得た(Tg:73℃、重量平均分子量:84300)。
<ポリイミドB>
温度計、撹拌機及び塩化カルシウム管を備えた300mlフラスコに、1,12−ジアミノドデカン5.41g(0.045モル)、エーテルジアミン(BASF社製、エーテルジアミン2000(分子量:1923))11.54g(0.01モル)、ポリシロキサンジアミン(信越シリコーン社製、KF−8010(分子量:900))24.3g(0.045モル)及びN−メチル−2−ピロリドン169gを仕込み、撹拌した。各ジアミンの溶解後、フラスコを氷浴中で冷却しながら、4,4′−(4,4′−イソプロピリデンジフェノキシ)ビス(フタル酸二無水物)31.23g(0.1モル)を少量ずつ添加した。室温で8時間反応させたのち、キシレン112.7gを加え、窒素ガスを吹き込みながら180℃で加熱し、水と共にキシレンを共沸除去し、ポリイミド溶液を得た(Tg:25℃、重量平均分子量:35000)。
表2において、種々の記号は下記のものを意味する。
ESCN−195: 住友化学工業(株)製、クレゾールノボラック型固体状エポキシ樹脂(エポキシ当量200、分子量:778)
BEO−60E: 新日本理化学(株)製、エチレンオキシド6モル付加体ビスフェノールA型液状エポキシ樹脂(エポキシ当量:373、分子量:746)
N−730: 大日本インキ化学(株)製、フェノールノボラック型液状エポキシ樹脂(エポキシ当量:175、分子量600〜800)
TrisP−PA: 本州化学(株)製、トリスフェノールノボラック(OH当量:141、分子量:424)
XL−225: 三井東圧化学(株)製、キシリレン変性フェノールノボラック(OH当量:175、分子量:976)
TPPK: 東京化成(株)製、テトラフェニルホスホニウムテトラフェニルボラート
2PZ−CN: 四国化成工業(株)製、1−シアノエチル−2−フェニルイミダゾール
HP−P1: 水島合金鉄(株)製、窒化ホウ素(平均粒子径:1.0μm、最大粒子径:5.1μm)
SE−1: トクヤマ(株)製、シリカ(平均粒子径:0.8μm、最大粒子径:3.1μm)
A die bonding material for a semiconductor device was produced by the following procedure.
In Examples 1 and 2 and Comparative Examples 1 to 5, first, a varnish obtained by dissolving the adhesive composition of Table 1 in cyclohexanone as a solvent (1300 parts by weight with respect to 100 parts by weight of the adhesive composition) was separated. It was applied on a polyethylene terephthalate film having moldability and dried to prepare a die bonding material for a semiconductor device. Drying conditions were set to 100 to 200 ° C./1 to 5 minutes, and the adhesive protrusion amount after pressing at 160 ° C./2.0 MPa / 18 seconds was set to be in the range of 150 to 500 μm. In Comparative Examples 6 and 7, as shown in Table 2, varnishes were prepared using N-methyl-2-pyrrolidone as a solvent. This varnish was applied onto a polyethylene terephthalate film having releasability so that the thickness after drying was 40 μm, and heated in an oven at 80 ° C. for 30 minutes, then at 150 ° C. for 30 minutes, to obtain a die bonding material for a semiconductor device Was made.
About each die bonding material for semiconductor devices, tack strength at 25 ° C. between adhesive layer and SUS304, melt viscosity at 180 ° C., tensile elastic modulus at 25 ° C. of cured adhesive layer and protective film layer, 25 to 150 The average linear expansion coefficient at 0 ° C. was measured and shown in Table 3. Further, the wafer warpage at 25 ° C. after each die bonding material for a semiconductor device was attached to the wafer at 120 ° C./linear pressure of 1.0 kgf was measured. The results are shown in Table 3.
The polyimide A and polyimide B used in Comparative Examples 6 and 7 were synthesized as follows.
<Polyimide A>
In a 300 ml flask equipped with a thermometer, stirrer and calcium chloride tube, 6.83 g (0.05 mol) of 2,2-bis (4-aminophenoxyphenyl) propane, 4,9-dioxadecane-1,12-diamine 3.40 g (0.05 mol) and 110.5 g of N-methyl-2-pyrrolidone were charged and stirred. After dissolution of 4,9-dioxadecane-1,12-diamine, 17.40 g (0.10 mol) of decamethylene bistrimellitate dianhydride was added in small portions while the flask was cooled in an ice bath. After reacting at room temperature for 8 hours, 74 g of xylene was added and heated at 180 ° C. while blowing nitrogen gas, and xylene was removed azeotropically with water to obtain a polyimide solution (Tg: 73 ° C., weight average molecular weight: 84300). ).
<Polyimide B>
In a 300 ml flask equipped with a thermometer, stirrer and calcium chloride tube, 5.41 g (0.045 mol) of 1,12-diaminododecane, ether diamine (manufactured by BASF, ether diamine 2000 (molecular weight: 1923)) 54 g (0.01 mol), 24.3 g (0.045 mol) of polysiloxane diamine (manufactured by Shin-Etsu Silicone, KF-8010 (molecular weight: 900)) and 169 g of N-methyl-2-pyrrolidone were charged and stirred. After dissolution of each diamine, 31.23 g (0.1 mol) of 4,4 ′-(4,4′-isopropylidenediphenoxy) bis (phthalic dianhydride) was added while cooling the flask in an ice bath. Small portions were added. After reacting at room temperature for 8 hours, 112.7 g of xylene was added, heated at 180 ° C. while blowing nitrogen gas, and azeotropically removed with water to obtain a polyimide solution (Tg: 25 ° C., weight average molecular weight). : 35000).
In Table 2, the various symbols mean the following:
ESCN-195: manufactured by Sumitomo Chemical Co., Ltd., cresol novolac type solid epoxy resin (epoxy equivalent 200, molecular weight: 778)
BEO-60E: New Nippon Riken Co., Ltd., Ethylene oxide 6 mol adduct bisphenol A type liquid epoxy resin (epoxy equivalent: 373, molecular weight: 746)
N-730: Dainippon Ink Chemical Co., Ltd., phenol novolac type liquid epoxy resin (epoxy equivalent: 175, molecular weight 600-800)
TrisP-PA: manufactured by Honshu Chemical Co., Ltd., trisphenol novolak (OH equivalent: 141, molecular weight: 424)
XL-225: manufactured by Mitsui Toatsu Chemical Co., Ltd., xylylene-modified phenol novolak (OH equivalent: 175, molecular weight: 976)
TPPK: manufactured by Tokyo Chemical Industry Co., Ltd., tetraphenylphosphonium tetraphenylborate 2PZ-CN: manufactured by Shikoku Chemical Industry Co., Ltd., 1-cyanoethyl-2-phenylimidazole HP-P1: manufactured by Mizushima Alloy Iron Co., boron nitride (Average particle size: 1.0 μm, maximum particle size: 5.1 μm)
SE-1: manufactured by Tokuyama Corporation, silica (average particle size: 0.8 μm, maximum particle size: 3.1 μm)

Figure 0004888479
Figure 0004888479

比較例1は接着材層膜厚みが12.5μmと薄いが、保護フィルム層膜厚が50μmと厚いため、140μm、280μm厚のウェハにラミネート後の反りが大きく、また、50μm厚のウェハではラミネート後に反りが大きく、割れてしまい、好ましくない。比較例2は接着材層膜厚が厚く、また接着層と保護フィルム層の厚みの和が45μmと厚いため、140μm、280μm厚のウェハにラミネート後の反りが大きく、また、50μm厚のウェハではラミネート後に反りが大きく、割れてしまい、好ましくない。比較例3〜6は接着材層、保護フィルム層膜厚のいずれも厚いため、140μm、280μm厚のウェハにラミネート後の反りが大きく、また、50μm厚のウェハではラミネート後に反りが大きく、割れてしまい、好ましくない。比較例7は接着材層と保護フィルム層の厚みの和が厚く、また接着剤層硬化物の平均線膨張係数が30.0×10-5/℃より高いため、140μm、280μm厚のウェハにラミネート後の反りが大きく、また、50μm厚のウェハではラミネート後に反りが大きく、割れてしまい、反りが大きく好ましくない。さらに比較例7は室温におけるタック強度が高く、薄ウェハ(140μm)にラミネート後保護フィルム層をはく離する際にウェハ割れが生じ好ましくない。 In Comparative Example 1, the adhesive layer film thickness is as thin as 12.5 μm, but the protective film layer thickness is as thick as 50 μm, so warping after lamination is large on a 140 μm or 280 μm thickness wafer, and in the case of a 50 μm thickness wafer, it is laminated. Later, the warp is large and cracks, which is not preferable. In Comparative Example 2, the thickness of the adhesive layer is large, and the sum of the thickness of the adhesive layer and the protective film layer is as large as 45 μm. Therefore, warpage after lamination is large on a 140 μm or 280 μm thick wafer. It is not preferable because the warpage is large after lamination and cracks. In Comparative Examples 3 to 6, since both the adhesive layer and the protective film layer are thick, warpage after lamination is large on a 140 μm or 280 μm thickness wafer, and warpage after lamination is large and cracked on a 50 μm thickness wafer. This is not preferable. In Comparative Example 7, since the sum of the thicknesses of the adhesive layer and the protective film layer is large, and the average linear expansion coefficient of the cured adhesive layer is higher than 30.0 × 10 −5 / ° C., a wafer having a thickness of 140 μm or 280 μm is obtained. The warpage after lamination is large, and a wafer having a thickness of 50 μm is not preferable because the warpage is large and cracks after lamination and the warpage is large. Further, Comparative Example 7 has a high tack strength at room temperature, and is not preferable because a wafer crack occurs when the protective film layer is peeled off after lamination to a thin wafer (140 μm).

以上の結果から、接着剤層のタック強度(25℃)が50gf以下、溶融粘度(180℃)が50〜1×10Pa・sの範囲、接着剤層厚みが1〜20μm、保護フィルム層厚みが1〜30μmの半導体装置用ダイボンディング材、好ましくは、接着剤層と保護フィルム層の和が40μm以下、接着剤層硬化物及び保護フィルム層の引張り弾性率(25℃)が3.0GPa以下、接着剤層硬化物及び保護フィルム層の平均線膨張係数(25〜150℃)が30.0×10-5/℃以下の半導体装置ダイボンディング材を用いることによって、ウェハ貼り付け後のウェハ反りを抑えることができ、優れた半導体装置を得ることができることがわかる。 From the above results, the tack strength (25 ° C.) of the adhesive layer is 50 gf or less, the melt viscosity (180 ° C.) is in the range of 50 to 1 × 10 7 Pa · s, the adhesive layer thickness is 1 to 20 μm, and the protective film layer A die bonding material for a semiconductor device having a thickness of 1 to 30 μm, preferably the sum of the adhesive layer and the protective film layer is 40 μm or less, and the tensile elastic modulus (25 ° C.) of the cured adhesive layer and the protective film layer is 3.0 GPa Hereinafter, by using a semiconductor device die bonding material having an average linear expansion coefficient (25 to 150 ° C.) of the cured adhesive layer and the protective film layer of 30.0 × 10 −5 / ° C. or less, the wafer after wafer bonding It can be seen that warpage can be suppressed and an excellent semiconductor device can be obtained.

表4に、実施例1、比較例2、4、5、6、7のダイボンディング材の接着剤層のSUS304へのタック強度(25℃)、溶融粘度(180℃)、サンプル形状20mmφ×2.0mmの円盤形にした接着剤層硬化物の85℃/85%RH/168時間吸湿後における吸湿率、接着剤層硬化物の85℃/85%RH/168時間吸湿後のダイシェア強度(265℃)、接着剤層硬化物の265℃における引張り弾性率を示す。これらダイボンディング材を、半導体ウェハの裏面にダイボンディング材を120℃/線圧1.0kgfにてラミネートした。得られたダイボンチング材付半導体ウェハを公知の条件にてダイシングして6.5×6.5mmのダイボンディング材付半導体チップを得た。保護フィルムを剥離した後に、10×10mm、厚さ1.5mmの両面配線付外部接続部材に150℃/400g/3秒の条件にて熱圧着した。直径30μmの金ワイヤにて半導体チップ表面と配線付外部接続部材を接続した後、トランスファーモールドにてCEL−410HF(日立化成工業(株)製)を180℃/2.0MPa/90秒の条件で半導体装置上面を封止し、175℃/5時間の熱硬化を行ない、半導体装置を作製した。各半導体装置をJEDEC規格(J−STD−020B)に基づきレベル1(85℃/85%RH/168時間)の吸湿後に最大温度265℃のリフロー試験を行った。表4に試験後に接着剤部のはく離発生頻度を示す。   Table 4 shows the tack strength (25 ° C.), melt viscosity (180 ° C.), sample shape 20 mmφ × 2 of the adhesive layers of the die bonding materials of Example 1 and Comparative Examples 2, 4, 5, 6, and 7 to SUS304. Moisture absorption rate of 85 mm / 85% RH / 168 hours moisture absorption of cured adhesive layer in a disk shape of 0.0 mm, die shear strength after moisture absorption of cured adhesive layer 85 ° C./85% RH / 168 hours (265 ° C), and the tensile modulus at 265 ° C of the cured adhesive layer. These die bonding materials were laminated on the back surface of the semiconductor wafer at 120 ° C./linear pressure 1.0 kgf. The obtained semiconductor wafer with a die bonding material was diced under known conditions to obtain a semiconductor chip with a die bonding material of 6.5 × 6.5 mm. After peeling off the protective film, it was thermocompression bonded to an external connection member with double-sided wiring having a size of 10 × 10 mm and a thickness of 1.5 mm under the conditions of 150 ° C./400 g / 3 seconds. After connecting the semiconductor chip surface and the external connection member with wiring with a gold wire with a diameter of 30 μm, CEL-410HF (manufactured by Hitachi Chemical Co., Ltd.) is transferred at 180 ° C./2.0 MPa / 90 seconds using a transfer mold. The upper surface of the semiconductor device was sealed and heat-cured at 175 ° C./5 hours to produce a semiconductor device. Each semiconductor device was subjected to a reflow test at a maximum temperature of 265 ° C. after moisture absorption at level 1 (85 ° C./85% RH / 168 hours) based on the JEDEC standard (J-STD-020B). Table 4 shows the frequency of occurrence of peeling of the adhesive part after the test.

Figure 0004888479
Figure 0004888479

比較例2、4、5は接着剤層膜厚が25μm以上と厚いためダイボンディング材部に吸湿される水分量が多くなりリフロー処理によるはく離が生じ好ましくない。比較例6は接着剤層膜厚が厚く、またダイシェア強度が0.6MPaと低いためリフロー処理によるはく離が生じ好ましくない。比較例7は、接着剤層膜厚が厚く、ダイシェア強度が0.5MPaと低く、さらに265℃の接着剤層の引張り弾性率が1.0MPa未満と低いためリフロー処理によるはく離が生じ好ましくない。   Comparative Examples 2, 4, and 5 are not preferable because the adhesive layer thickness is as thick as 25 μm or more, and the amount of moisture absorbed by the die bonding material portion is increased, causing peeling due to the reflow treatment. In Comparative Example 6, the adhesive layer thickness is large and the die shear strength is as low as 0.6 MPa. In Comparative Example 7, the adhesive layer thickness is large, the die shear strength is as low as 0.5 MPa, and the tensile elastic modulus of the adhesive layer at 265 ° C. is as low as less than 1.0 MPa.

以上の結果から、厚みが1〜20μm、吸湿率が0.02以下、ダイシェア強度が1.0MPa以上、265℃の引張り弾性率が1〜20MPaの半導体装置用ダイボンディング材を用いることで吸湿リフロー処理によるはく離を抑制することができ、優れた半導体装置を得ることができることがわかる。 These results, thickness 1 to 20 [mu] m, moisture absorption 0.02 g / c m 3 or less, die shear strength above 1.0 MPa, tensile modulus of 265 ° C. is a semiconductor device for die bonding material 1~20MPa It can be seen that peeling by moisture absorption reflow treatment can be suppressed, and an excellent semiconductor device can be obtained.

本発明による半導体装置用ダイボンディング材の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the die bonding material for semiconductor devices by this invention. 本発明によるダイボンディング材付半導体ウェハの一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the semiconductor wafer with a die-bonding material by this invention. 本発明によるダイボンディング材付半導体ウェハから保護フィルム層をはく離し、接着剤層側にダイシングテープを貼り合わせて、ダイシングにより個片化した接着剤層付半導体チップを示す断面図である。It is sectional drawing which shows the semiconductor chip with an adhesive layer which peeled off the protective film layer from the semiconductor wafer with a die bonding material by this invention, bonded a dicing tape on the adhesive layer side, and was separated into pieces by dicing. 本発明による半導体装置の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the semiconductor device by this invention.

符号の説明Explanation of symbols

1 接着剤層
2 保護フィルム
3 半導体ウェハ
4 ダイシングテープ
5、5′ 半導体チップ
6 配線付外部接続部材
7 配線面
8 絶縁材料層
9 層間接続用導体
10 ボンディングワイヤ
11 封止用樹脂
12 外部接続端子
DESCRIPTION OF SYMBOLS 1 Adhesive layer 2 Protective film 3 Semiconductor wafer 4 Dicing tape 5, 5 'Semiconductor chip 6 External connection member with wiring 7 Wiring surface 8 Insulating material layer 9 Interlayer connection conductor 10 Bonding wire 11 Sealing resin 12 External connection terminal

Claims (4)

配線付外部接続部材と、接着剤層によって配線付外部接続部材に接続された半導体チップとを有する半導体装置であって、
接着剤層が、接着剤層と少なくとも1層の保護フィルム層からなる半導体装置用ダイボンディング材から保護フィルムを剥離して得られる接着剤層であり、
半導体装置用ダイボンディング材が、
(株)レスカ社製タッキング試験器を用い、押し込み速度:2mm/sec、引き上げ速度10mm/sec、停止加重:100gf/cm2、停止時間:1秒の条件にて5.1mmφのSUS304に対して測定した、接着剤層とSUS304の25℃におけるタック強度が50gf以下、
接着剤層の180℃における溶融粘度が50〜1×107Pa・sの範囲であり、
接着剤層の厚みが1〜20μm、かつ保護フィルム層の厚みが1〜30μmの範囲であり、
サンプル形状20mmφ×2.0mmの円盤形にした接着剤層硬化物の85℃/85%RH/168時間吸湿後における吸湿率が0.02g/以下である半導体装置用ダイボンディング材であることを特徴とする半導体装置。
A semiconductor device having an external connection member with wiring and a semiconductor chip connected to the external connection member with wiring by an adhesive layer,
The adhesive layer is an adhesive layer obtained by peeling a protective film from a die bonding material for a semiconductor device comprising an adhesive layer and at least one protective film layer,
Die bonding material for semiconductor devices
SUS304 with 5.1 mmφ under the conditions of pushing speed: 2 mm / sec, pulling speed: 10 mm / sec, stop load: 100 gf / cm 2 , stop time: 1 second , using Reska Inc. tacking tester The tack strength at 25 ° C. of the measured adhesive layer and SUS304 is 50 gf or less,
The melt viscosity at 180 ° C. of the adhesive layer is in the range of 50 to 1 × 10 7 Pa · s,
The adhesive layer has a thickness of 1 to 20 μm, and the protective film layer has a thickness of 1 to 30 μm,
Sample shape 20 mm.phi × 2.0 mm semiconductor device for die bonding material moisture of not more than 0.02 g / c m 3 at 85 ℃ / 85% RH / 168 hours after moisture absorption of the adhesive layer cured product was a disc-shaped There is a semiconductor device.
更に、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤ、並びに、配線付外部接続部材の配線面、半導体チップ及びボンディングワイヤを封止している封止用樹脂を有する請求項記載の半導体装置。 Furthermore, a bonding wire for electrically connecting the semiconductor chip and the wiring of the external connection member with wiring, and a sealing resin for sealing the wiring surface of the external connection member with wiring, the semiconductor chip and the bonding wire The semiconductor device according to claim 1, comprising: 請求項1記載の半導体装置用ダイボンディング材と半導体ウェハとを、接着剤層と半導体ウェハの片面とが接するように貼り付けたダイボンディング材付半導体ウェハを接着剤層付半導体チップに分割する工程、接着剤層付半導体チップと配線付外部接続部材とを、接着剤層と配線付外部接続部材の配線面とが接するように積層し、加熱加圧して半導体チップと配線付外部接続部材とを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む請求項記載の半導体装置の製造方法。 A step of dividing a semiconductor wafer with a die bonding material, wherein the die bonding material for a semiconductor device and the semiconductor wafer according to claim 1 are bonded so that the adhesive layer and one side of the semiconductor wafer are in contact with each other , into semiconductor chips with an adhesive layer The semiconductor chip with the adhesive layer and the external connection member with wiring are stacked so that the adhesive layer and the wiring surface of the external connection member with wiring are in contact with each other, and the semiconductor chip and the external connection member with wiring are heated and pressed. A step of connecting, a step of electrically connecting the semiconductor chip and the wiring of the external connection member with wiring by a bonding wire, a wiring surface of the external connection member with wiring, a semiconductor chip connected to the external connection member with wiring, and , a bonding wire which electrically connects the wiring of the semiconductor chip and the wiring with the external connection members, semiconductor according to claim 2, further comprising the step of sealing with the sealing resin Manufacturing method of the device. 配線付外部接続部材に請求項1記載の半導体装置用ダイボンディング材を、接着剤層が配線面に接するように貼り付ける工程、配線付外部接続部材に貼り付けた半導体装置用ダイボンディング材から保護フィルムを剥離する工程、配線付外部接続部材と半導体チップとを、配線付外部接続部材に貼り付けた接着剤層と半導体チップの片面とが接するように積層し、加熱加圧して配線付外部接続部材と半導体チップとを接続する工程、半導体チップと配線付外部接続部材の配線とをボンディングワイヤにより電気的に接続する工程、並びに、配線付外部接続部材の配線面、配線付外部接続部材に接続された半導体チップ、及び、半導体チップと配線付外部接続部材の配線とを電気的に接続しているボンディングワイヤを、封止用樹脂で封止する工程を含む請求項記載の半導体装置の製造方法。 The step of affixing the die bonding material for a semiconductor device according to claim 1 to the external connection member with wiring so that the adhesive layer is in contact with the wiring surface, protection from the die bonding material for the semiconductor device affixed to the external connection member with wiring The process of peeling the film, the external connection member with wiring and the semiconductor chip are laminated so that the adhesive layer attached to the external connection member with wiring and one side of the semiconductor chip are in contact, and external connection with wiring by heating and pressing A step of connecting the member and the semiconductor chip, a step of electrically connecting the semiconductor chip and the wiring of the external connection member with wiring by a bonding wire, and a connection to the wiring surface of the external connection member with wiring and the external connection member with wiring The bonded semiconductor chip and the bonding wire that electrically connects the semiconductor chip and the wiring of the external connection member with wiring are sealed with a sealing resin. The method according to claim 2, further comprising a degree.
JP2008306032A 2008-12-01 2008-12-01 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4888479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306032A JP4888479B2 (en) 2008-12-01 2008-12-01 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306032A JP4888479B2 (en) 2008-12-01 2008-12-01 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003055703A Division JP4714406B2 (en) 2003-03-03 2003-03-03 Die bonding material for semiconductor device and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2009100000A JP2009100000A (en) 2009-05-07
JP4888479B2 true JP4888479B2 (en) 2012-02-29

Family

ID=40702633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306032A Expired - Fee Related JP4888479B2 (en) 2008-12-01 2008-12-01 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4888479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632695B2 (en) * 2009-11-26 2014-11-26 日東電工株式会社 Adhesive film with dicing film and method for manufacturing semiconductor device using adhesive film with dicing film
JP6013709B2 (en) * 2010-06-08 2016-10-25 日東電工株式会社 Thermosetting die bond film, dicing die bond film, and semiconductor device manufacturing method
CN113594051B (en) * 2021-07-09 2024-02-20 苏州汉天下电子有限公司 Semiconductor packaging method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216338A (en) * 1994-02-04 1995-08-15 Toyo Ink Mfg Co Ltd Hardenable pressure-sensitive composition and sheet or tape coated therewith
JP2000256628A (en) * 1999-03-08 2000-09-19 Hitachi Chem Co Ltd Adhesive material film, semiconductor mounting external connecting member, semiconductor device and their production
JP2001019920A (en) * 1999-07-08 2001-01-23 Tomoegawa Paper Co Ltd Adhesive and adhesive tape for electronic part
JP4258984B2 (en) * 2001-03-15 2009-04-30 日立化成工業株式会社 Manufacturing method of semiconductor device
JP2003055632A (en) * 2001-08-21 2003-02-26 Lintec Corp Pressure-sensitive adhesive tape

Also Published As

Publication number Publication date
JP2009100000A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
KR100417776B1 (en) Adhesive Sheet for Semiconductor Connecting Substrate, Adhesive-Backed Tape for TAB, Adhesive-Backed Tape for Wire-Bonding Connection, Semiconductor Connecting Substrate, and Semiconductor Device
US8071465B2 (en) Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JP4961761B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
US8436479B2 (en) Semiconductor device having a chip bonding using a resin adhesive film and method of manufacturing the same
JP4258984B2 (en) Manufacturing method of semiconductor device
JP4714406B2 (en) Die bonding material for semiconductor device and semiconductor device using the same
TW200401020A (en) Adhesive compositions, adhesive films and semiconductor devices using the same
JP4466397B2 (en) Adhesive film for semiconductor and semiconductor device using the same
JP2008095014A (en) Thermosetting resin composition for qfn(quad flat non-lead) and adhesive sheet
JP4888479B2 (en) Semiconductor device and manufacturing method thereof
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP6960276B2 (en) How to use resin sheets, semiconductor devices, and resin sheets
JP4534100B2 (en) Double-sided adhesive film for electronic parts, organic substrate for semiconductor mounting, and semiconductor device
JP2009091566A (en) Adhesive composition and adhesive sheet using it
JP5564782B2 (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP5585542B2 (en) Adhesive film, use thereof, and method for manufacturing semiconductor device
KR100302212B1 (en) Method for the preparation of the adhesive tape for the electronic parts
WO2020129996A1 (en) Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
JP2012044193A (en) Adhesive sheet for semiconductor device, component for semiconductor device and semiconductor device using the same
JP4483270B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, semiconductor device
JP2008222815A (en) Adhesive composition and adhesive sheet using it
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
KR100708956B1 (en) Adhesive composition for semiconductor and adhesive film using the same
TW201504345A (en) Sheet-form resin composition, tape-integrated-sheet-form resin composition for back-surface polishing, dicing-tape-integrated-sheet-form resin composition, method for manufacturing semiconductor device, and semiconductor device
JP2001267462A (en) Chip supporting substrate for semiconductor package, semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4888479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees