JP4877069B2 - 沸騰冷却装置 - Google Patents

沸騰冷却装置 Download PDF

Info

Publication number
JP4877069B2
JP4877069B2 JP2007137479A JP2007137479A JP4877069B2 JP 4877069 B2 JP4877069 B2 JP 4877069B2 JP 2007137479 A JP2007137479 A JP 2007137479A JP 2007137479 A JP2007137479 A JP 2007137479A JP 4877069 B2 JP4877069 B2 JP 4877069B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant vapor
tubes
tank
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007137479A
Other languages
English (en)
Other versions
JP2008292053A (ja
Inventor
公司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007137479A priority Critical patent/JP4877069B2/ja
Publication of JP2008292053A publication Critical patent/JP2008292053A/ja
Application granted granted Critical
Publication of JP4877069B2 publication Critical patent/JP4877069B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

本発明は、冷媒の沸騰と凝縮の繰り返しによって発熱体を冷却する沸騰冷却装置に関する。
沸騰冷却装置として、例えば特許文献1に開示されたものがある。この特許文献1の図12に示された沸騰冷却装置は、側面に発熱素子が取り付けられた冷媒槽と、この冷媒槽の上部に設けられた放熱部を備えている。また、この放熱部は、冷媒槽と連通する下部タンクを有している。
特開2000−260919号公報
上記特許文献1に記載の沸騰冷却装置は、冷媒槽の長手方向(長さ方向)が略垂直となるように設置することが想定されている。このため、沸騰冷却装置全体が重力方向に対して傾斜した場合、放熱部の下部タンク内に冷媒が滞留してしまう。これにより、放熱部内での冷媒循環が阻害され、放熱性能が低下するという問題がある。
本発明は、上記点に鑑み、傾斜時においても放熱性能を確保することができる沸騰冷却装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、発熱体(2)の熱を受けて沸騰する冷媒を貯留するとともに沸騰した冷媒蒸気が下方より上方へ向かって流れる冷媒槽(3)と、冷媒槽(3)で沸騰した冷媒蒸気が流れ込み、冷媒蒸気と外部流体との間で熱交換を行って冷媒蒸気を凝縮させる複数本のチューブ(41)を有する放熱コア部(4)とを備えた沸騰冷却装置であって、
冷媒槽(3)には冷媒蒸気の流れ方向に延びる面(3a、3b)が形成されており、
冷媒槽(3)の前記面(3a、3b)のうち上部に、複数本のチューブ(41)の個々にそれぞれ対応して複数の冷媒蒸気入口(31)が形成され、
冷媒槽(3)の前記面(3a、3b)のうち冷媒蒸気入口(31)よりも下部に、複数本のチューブ(41)の個々にそれぞれ対応して複数の液冷媒出口(32)が形成され、
冷媒槽(3)内における冷媒蒸気の流れ方向を冷媒蒸気流れ方向(X2)とし、チューブ(41)への冷媒蒸気の流入方向を冷媒蒸気流入方向(X3)としたとき、冷媒蒸気流れ方向(X2)と冷媒蒸気流入方向(X3)とは略直交しており、かつ、複数本のチューブ(41)は、冷媒蒸気流れ方向(X2)および冷媒蒸気流入方向(X3)に対してともに直交する方向(X1)に積層され、
複数本のチューブ(41)は、前記方向(X1)に積層された状態にて冷媒槽(3)の前記面(3a、3b)に直接組み付けられ、
複数本のチューブ(41)の内部通路の上部が複数の冷媒蒸気入口(31)に直接接続されて、冷媒槽(3)内の冷媒蒸気が複数の冷媒蒸気入口(31)から複数本のチューブ(41)の個々に直接流入するようになっており、
複数本のチューブ(41)の内部通路の下部が複数の液冷媒出口(32)に直接接続されて、複数本のチューブ(41)にて凝縮した液冷媒が複数の液冷媒出口(32)から冷媒槽(3)内に直接流入するようになっており、
複数本のチューブ(41)の下端部(41a)、冷媒蒸気流れ方向(X2)に対して冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜していることを特徴としている。
このように、複数本のチューブ(41)の下端部を、冷媒蒸気流れ方向(X2)に対して冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜させることで、沸騰冷却装置(1)全体が重力方向(X4)に対して冷媒蒸気流入方向(X3)に傾斜した場合に、チューブ(41)内に凝縮した冷媒が滞留することを抑制し、チューブ(41)から冷媒槽(3)に冷媒を還流させることができる。このため、傾斜時においても放熱性能を確保することが可能となる。
請求項2に記載の発明では、発熱体(2)の熱を受けて沸騰する冷媒を貯留するとともに沸騰した冷媒蒸気が下方より上方へ向かって流れる冷媒槽(3)と、冷媒槽(3)で沸騰した冷媒蒸気が流れ込み、冷媒蒸気と外部流体との間で熱交換を行って冷媒蒸気を凝縮させる複数本のチューブ(41)を有する放熱コア部(4)とを備えた沸騰冷却装置であって、
冷媒槽(3)には冷媒蒸気の流れ方向に延びる面(3a、3b)が形成されており、
冷媒槽(3)の前記面(3a、3b)のうち上部に、複数本のチューブ(41)の個々にそれぞれ対応して複数の冷媒蒸気入口(31)が形成され、
冷媒槽(3)の前記面(3a、3b)のうち冷媒蒸気入口(31)よりも下部に、複数本のチューブ(41)の個々にそれぞれ対応して複数の液冷媒出口(32)が形成され、
冷媒槽(3)内における冷媒蒸気の流れ方向を冷媒蒸気流れ方向(X2)とし、チューブ(41)への冷媒蒸気の流入方向を冷媒蒸気流入方向(X3)としたとき、冷媒蒸気流れ方向(X2)と冷媒蒸気流入方向(X3)とは略直交しており、かつ、複数本のチューブ(41)は、冷媒蒸気流れ方向(X2)および冷媒蒸気流入方向(X3)に対してともに直交する方向(X1)に積層され、
複数本のチューブ(41)は、前記方向(X1)に積層された状態にて冷媒槽(3)の前記面(3a、3b)に直接組み付けられ、
複数本のチューブ(41)の内部通路の上部が複数の冷媒蒸気入口(31)に直接接続されて、冷媒槽(3)内の冷媒蒸気が複数の冷媒蒸気入口(31)から複数本のチューブ(41)の個々に直接流入するようになっており、
一方、複数本のチューブ(41)の下端部と複数の液冷媒出口(32)との間に複数の還流通路(45)が接続され、複数本のチューブ(41)にて凝縮した液冷媒が複数の還流通路(45)および複数の液冷媒出口(32)を通して冷媒槽(3)へ流入するようになっており、
複数の還流通路(45)が、冷媒蒸気流れ方向(X2)に対して冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜していることを特徴としている。
このように、請求項2に記載の発明によれば、複数の還流通路(45)が、冷媒蒸気流れ方向(X2)に対して冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜しているから、沸騰冷却装置(1)全体が重力方向(X4)に対して冷媒蒸気流入方向(X3)に傾斜した傾斜時に、チューブ(41)内に凝縮した液冷媒が滞留することを抑制し、液冷媒をチューブ(41)から冷媒槽(3)に還流できるので、放熱性能を確保することが可能となる。
なお、請求項1、2に記載の発明における「予め定めた第1角度(θ1)」は、90°未満に設定される。
請求項1、2に記載の発明では、複数本のチューブ(41)は、冷媒蒸気流れ方向(X2)および冷媒蒸気流入方向(X3)に対してともに直交する方向(X1)に積層されている。
そして、沸騰冷却装置(1)全体が、重力方向(X4)に対して、上記チューブ積層方向(X1)に傾斜した場合にチューブ(41)の下端部(41a)あるいは還流通路(45)の傾斜によりチューブ(41)内に凝縮した冷媒が滞留することを抑制できるので、放熱性能を確保することが可能となる。
また、請求項3に記載の発明のように、請求項1または2に記載の沸騰冷却装置において、チューブ(41)の内部に、チューブ(41)内を複数の通路状に区画して、チューブ(41)内の凝縮面積を増大する凝縮面積増大部材(410)を設け、チューブ(41)の内部において冷媒蒸気を凝縮させる凝縮通路(412)を凝縮面積増大部材(410)によって区画される複数の通路状部分により形成するようにしてもよい。
また、請求項4に記載の発明のように、請求項3に記載の沸騰冷却装置において、チューブ(41)の内部において凝縮面積増大部材(410)の上部に冷媒槽(3)で沸騰した冷媒蒸気が冷媒蒸気入口(31)から流れ込む蒸気通路(411)を形成し、チューブ(41)の内部において凝縮面積増大部材(410)の下部に凝縮通路(412)にて凝縮した液冷媒を液冷媒出口(32)側へ向かって流す液冷媒通路(413)を形成するようにしてもよい。
また、請求項5に記載の発明のように、請求項3または4に記載の沸騰冷却装置において、冷媒蒸気流れ方向(X2)が重力方向(X4)に対して冷媒蒸気流入方向(X3)に第1角度(θ1)以上の第2角度(θ2)で傾斜するように設置された際に、凝縮面積増大部材(410)によって形成された凝縮通路(412)を流れる冷媒の流通方向が、重力方向(X4)と一致するようにしてもよい。
このように、凝縮面積増大部材(410)によって形成された通路状部分(412)を流れる冷媒の流通方向を重力方向(X4)と一致させることで、通路状部分(412)における冷媒の流通を促進することができるので、冷媒循環を促進することが可能となる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態について図1〜図6に基づいて説明する。図1は、本第1実施形態に係る沸騰冷却装置1を示す斜視図である。
図1に示すように、本実施形態の沸騰冷却装置1は、冷媒の沸騰と凝縮の繰り返しによって発熱体2を冷却するもので、内部に液状の冷媒を貯留する冷媒槽3と、この冷媒槽3の表面に組み付けられる放熱コア部4とを備え、一体ろう付けにより製造される。発熱体2は、例えば電気自動車のインバータ回路を構成するIGBTモジュールであり、ボルト(図示せず)等により冷媒槽3の表面に密着して固定される。
本実施形態では、冷媒槽3の一面3aに1つの放熱コア部4が配置されており、この放熱コア部4の下方側に4つの発熱体2が配置されている。また、冷媒槽3における一面3aとは反対側の面である他面3b(図3参照)にも、4つの発熱体2が配置されている。
放熱コア部4は、冷媒槽3の一面3a上に略直立して組み付けられる複数本のチューブ41と、各チューブ41の外表面に接合される波状の放熱フィン42とを有している。チューブ41は、内部を冷媒が流通する冷媒通路を形成するものである。
図2は、本第1実施形態におけるチューブ41を示す断面図である。図2に示すように、チューブ41の内部には、インナーフィン410が挿入されている。このインナーフィン410は、熱伝導性に優れる薄い金属板(例えば、アルミニウム板)を所定のピッチで交互に折り曲げて波状に成形したもので、チューブ41内の凝縮面積を増大させるとともに、チューブ41内に後述する冷媒循環路を形成する目的で用いられる。なお、インナーフィン410が、本発明の凝縮面積増大部材に相当している。
インナーフィン410は、折り曲げ部(山部と谷部)の延設方向をチューブ41の通路方向(図2の矢印方向)に向けてチューブ41内に挿入され、かつ、チューブ41内の下側に偏って配置され、各折り曲げ部がチューブ41の内壁面に当接して、ろう付けされている。
これにより、チューブ41内には、インナーフィン410の上側に確保される第1の通路(以下、蒸気通路411という)と、インナーフィン410のピッチ間に形成される複数の第2の通路(以下、凝縮通路412という)と、インナーフィン410の下側に確保される第3の通路(以下、液冷媒通路413という)が形成される。そして、蒸気通路411、凝縮通路412および液冷媒通路413で上記の冷媒循環路を構成している。なお、液冷媒通路413の通路断面積は、蒸気通路411の通路断面積より小さくなっている。また、本実施形態では、チューブ41内の蒸気通路411の通路断面積は、冷媒蒸気流入方向X3全域で一定になっている。
チューブ41は、放熱フィン42との接合面である両側面が、放熱コア部4に送風される冷却風(外部流体)の流れ方向に沿って配置されるが、このとき、凝縮通路412より蒸気通路411が冷却風流れ下流側に位置するようにチューブ41の向きを特定している。
図3は図1のA−A部分断面図で、図4は図1のB−B断面図である。図3中の矢印は冷媒の流れを示しており、図3および図4中の一点鎖線は液冷媒の液面位置を示している。
図3および図4に示すように、冷媒槽3の上端部近傍には、チューブ41の蒸気通路411と連通し、冷媒槽3で沸騰した冷媒(冷媒蒸気)をチューブ41内に流入させる冷媒蒸気入口31が形成されている。また、冷媒槽3における発熱体2が固定されている部位より上方側には、チューブ41の凝縮通路412と連通し、チューブ41で凝縮した冷媒(液冷媒)を冷媒槽3内に流入させる液冷媒出口32が形成されている。なお、設置時における液冷媒の液面位置が液冷媒出口32より上方側になるように、冷媒の封入量が調整されている。
冷媒槽3における液冷媒出口32の近傍には、略コの字形状の冷媒流制御部33が設けられている。冷媒流制御部33は、液冷媒出口32の下方側に配置され、チューブ41の積層方向(以下、チューブ積層方向X1という)に延びる第1部材33aと、第1部材33aのチューブ積層方向X1両端部から上方に向かって延びる第2部材33bとから構成されている。これにより、冷媒槽3内で沸騰した冷媒が液冷媒出口32に流入することを抑制している。
図3に示すように、本実施形態では、冷媒槽3内における冷媒蒸気の流れ方向(以下、冷媒蒸気流れ方向X2という)は、冷媒槽3の長手方向と一致している。また、チューブ41(すなわち放熱コア部4)への冷媒蒸気の流入方向(以下、冷媒蒸気流入方向X3という)は、冷媒槽3および放熱コア部4の配置方向と一致している。そして、冷媒蒸気流入方向X3は、冷媒蒸気流れ方向X2と直交している。なお、チューブ積層方向X1は、冷媒蒸気流れ方向X2および冷媒蒸気流入方向X3に対してともに直交している。
チューブ41の下端部41a、すなわち放熱コア部4の下端部は、冷媒蒸気流れ方向X2に対して冷媒蒸気流入方向X3に予め定めた角度(以下、下端部傾斜角度θという)で傾斜している。このため、チューブ41は断面台形状になっている。
図5は、本第1実施形態に係る沸騰冷却装置1の設置状態を示す模式図である。図5に示すように、本実施形態の沸騰冷却装置1は、冷媒蒸気流れ方向X2が重力方向(鉛直方向)X4に対して冷媒蒸気流入方向X3に予め定めた角度(以下、設置傾斜角度θという)で常に傾斜するように設置されている。なお、下端部傾斜角度θは、設置傾斜角度θ以下となるように設定されている。
そして、沸騰冷却装置1は、その冷媒流れ方向X2が重力方向X4に対して冷媒蒸気流入方向X3に設置傾斜角度θで傾斜するように設置された際に、チューブ41内の複数の凝縮通路412を流れる冷媒の流通方向(図5中の矢印方向)が重力方向X4と一致するように構成されている。
図1に戻り、放熱コア部4におけるチューブ積層方向X1両端部には、チューブ積層方向X1外側から放熱フィン42を押さえる第1のフィン押さえ板部43がそれぞれ配設されている。また、放熱コア部4における冷媒蒸気流入方向X3の端部には、冷媒蒸気流入方向X3外側から放熱フィン42を押さえる第2のフィン押さえ板部44が配設されている。
次に、本実施形態の沸騰冷却装置1の作動を説明する。
図3に示すように、冷媒槽3に貯留される液冷媒は、発熱体2の熱を受けて沸騰し、冷媒蒸気となって冷媒蒸気入口31を通ってチューブ41の蒸気通路411内へ流入する。蒸気通路411内へ流入した冷媒蒸気は、凝縮通路412へ流入し、インナーフィン410の表面およびチューブ41の内壁面に凝縮して液化する。凝縮通路412内で液化した冷媒は液冷媒通路413内へ落下し、液冷媒出口32を通って冷媒槽3へ還流する。
以上説明したように、チューブ41の下端部41a、すなわち放熱コア部4の下端部を、冷媒蒸気流れ方向X2に対して冷媒蒸気流入方向X3に傾斜させることで、沸騰冷却装置1全体が重力方向X4に対して冷媒蒸気流入方向X3に傾斜した場合に、放熱コア部4内に凝縮した冷媒が滞留することを抑制し、放熱コア部4から冷媒槽3に冷媒を還流させることができる。このため、傾斜時においても放熱性能を確保することが可能となる。
また、沸騰冷却装置1を設置した際に、凝縮通路412を流れる冷媒の流通方向を重力方向X4と一致させることで、凝縮通路412における冷媒の流通を促進することができるため、冷媒循環を促進することが可能となる。
図6(a)は図1のC矢視図で、図6(b)は図6(a)の沸騰冷却装置1が重力方向X4に対してチューブ積層方向X1に傾斜した状態を示す図である。図6(a)、(b)中の一点鎖線は、チューブ41内における凝縮した冷媒の液面位置を示している。
図6(a)、(b)に示すように、チューブ41を、冷媒蒸気流れ方向X2および冷媒蒸気流入方向X3に対してともに直交する方向(すなわちチューブ積層方向X1)に複数本積層することで、沸騰冷却装置1全体が、重力方向X4に対してチューブ積層方向X1に傾斜した場合に、チューブ41内に凝縮した冷媒が滞留することを抑制できる。
より詳細には、沸騰冷却装置1全体が重力方向X4に対してチューブ積層方向X1に傾斜した場合に、複数本のチューブ41のうち下方側に配置されるチューブ41には凝縮した冷媒が滞留してしまい、冷媒蒸気を凝縮させる機能を果たさない。一方、複数本のチューブ41のうち上方側に配置されるチューブ41には凝縮した冷媒が滞留しないため、冷媒蒸気を凝縮させることができる。このため、放熱コア部4全体として放熱性能を確保することが可能となる。
(第2実施形態)
次に、本発明の第2実施形態について図7および図8に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
図7は本第2実施形態に係る沸騰冷却装置1を示す斜視図で、図8は本第2実施形態における放熱コア部4を示す断面図である。
図7および図8に示すように、本実施形態のチューブ41は断面四角形状になっている。そして、放熱コア部4の下端部には、チューブ41の液冷媒通路413と冷媒槽3の液冷媒出口32とを接続する還流通路45が接続されている。本実施形態では、還流通路45の一端側は、チューブ41の下端部における冷媒槽3から最も離れた部位に接続されている。また、還流通路45は、冷媒蒸気流れ方向X2に対して冷媒蒸気流入方向X3に予め定めた角度(下端部傾斜角度θ)で傾斜している。なお、還流通路45は、チューブ41と別体に構成されている。これにより、上記実施形態1と同様の効果を得ることができる。
(第3実施形態)
次に、本発明の第3実施形態について図9に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
図9は、本第3実施形態に係る沸騰冷却装置1を示す斜視図である。図9に示すように、本実施形態では、冷媒槽3の一面3aだけでなく他面3bにも放熱コア部4が配置されている。すなわち、本実施形態の沸騰冷却装置1は2つの放熱コア部4を有している。
このように、1つの冷媒槽3に対して2つの放熱コア部4を設けることで、放熱性能を向上させることが可能となる。
(第4実施形態)
次に、本発明の第4実施形態について図10に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
図10は、本第4実施形態におけるチューブ41を示す断面図である。図10に示すように、インナーフィン410は、折り曲げ部(山部と谷部)の延設方向が冷媒蒸気流れ方向X2と一致するように配設されている。
ところで、本実施形態の沸騰冷却装置1は、通常、その冷媒蒸気流れ方向X2が重力方向X4と一致するように設置されており、一時的に、冷媒蒸気流れ方向が重力方向X4に対して冷媒蒸気流入方向X3に傾斜するようになっている。すなわち、本実施形態の沸騰冷却装置1は、その冷媒蒸気流れ方向X2が重力方向X4と一致している状態の発生頻度が、冷媒蒸気流れ方向X2が重力方向X4に対して傾斜している状態の発生頻度より高くなっている。
このため、インナーフィン410を、折り曲げ部の延設方向が冷媒蒸気流れ方向X2と一致するように配設することで、通常時において、チューブ41内の複数の凝縮通路412を流れる冷媒の流通方向(図10中の矢印方向)を重力方向X4と一致させることができる。これにより、沸騰冷却装置1を実際に設置した際に、凝縮通路412を流れる冷媒の流通方向と重力方向X4とが一致する頻度を高くすることができるので、冷媒循環をより促進することが可能となる。
(他の実施形態)
なお、上記第1〜第3実施形態では、沸騰冷却装置1を常に一定の設置傾斜角度θで傾斜するように設置した例について説明したが、これに限らず、沸騰冷却装置1をその傾斜角度が時々刻々変化するように設置してもよい。この場合、設置傾斜角度θは、最も頻繁に発生すると想定される傾斜時の角度とすることができる。
また、上記第4実施形態では、チューブ41の下端部41aが冷媒蒸気流れ方向X2に対して傾斜配置されている例について説明したが、これに限らず、図11に示すように、チューブ41の液冷媒通路413に還流通路45を接続するとともに、この還流通路45を冷媒蒸気流れ方向X2に対して傾斜配置してもよい。
また、上記各実施形態では、チューブ41内の蒸気通路411の通路断面積が、冷媒蒸気流入方向X3全域で一定になっている例について説明したが、これに限らず、図12(a)、(b)に示すように、冷媒槽3から離れるにつれて通路断面積が小さくなる、すなわちインナーフィン410の冷媒蒸気流れ方向X2の長さが長くなるようにしてもよい。
チューブ41内においては、冷媒槽3から離れるにつれて冷媒蒸気の量が少なくなるため、蒸気通路411の通路断面積を小さくしても特に問題はない。一方、蒸気通路411の通路断面積を小さくした分、インナーフィン410の長さを長くすることで、凝縮通路412での凝縮性能を向上させることができる。
また、上記各実施形態は、上記した範囲以外にも、可能な範囲で適宜組み合わせてもよい。
第1実施形態に係る沸騰冷却装置1を示す斜視図である。 第1実施形態におけるチューブ41を示す断面図である。 図1のA−A部分断面図である。 図1のB−B断面図である。 第1実施形態に係る沸騰冷却装置1の設置状態を示す模式図である。 (a)は図1のC矢視図で、(b)は図6(a)の沸騰冷却装置1が重力方向X4に対してチューブ積層方向X1に傾斜した状態を示す図である。 第2実施形態に係る沸騰冷却装置1を示す斜視図である。 第2実施形態における放熱コア部4を示す断面図である。 第3実施形態に係る沸騰冷却装置1を示す斜視図である。 第4実施形態におけるチューブ41を示す断面図である。 他の実施形態としての放熱コア部4を示す断面図である。 他の実施形態としてのチューブ41を示す断面図である。
符号の説明
2…発熱体、3…冷媒槽、4…放熱コア部、41…チューブ、45…還流通路、410…インナーフィン(凝縮面積増大部材)、411…蒸気通路(第1の通路)、412…凝縮通路(第2の通路)、X1…チューブ積層方向、X2…冷媒蒸気流れ方向、X3…冷媒蒸気流入方向。

Claims (5)

  1. 発熱体(2)の熱を受けて沸騰する冷媒を貯留するとともに沸騰した冷媒蒸気が下方より上方へ向かって流れる冷媒槽(3)と、
    前記冷媒槽(3)で沸騰した冷媒蒸気が流れ込み、前記冷媒蒸気と外部流体との間で熱交換を行って前記冷媒蒸気を凝縮させる複数本のチューブ(41)を有する放熱コア部(4)とを備える沸騰冷却装置であって、
    前記冷媒槽(3)には前記冷媒蒸気の流れ方向に延びる面(3a、3b)が形成されており、
    前記冷媒槽(3)の前記面(3a、3b)のうち上部に、前記複数本のチューブ(41)の個々にそれぞれ対応して複数の冷媒蒸気入口(31)が形成され、
    前記冷媒槽(3)の前記面(3a、3b)のうち前記冷媒蒸気入口(31)よりも下部に、前記複数本のチューブ(41)の個々にそれぞれ対応して複数の液冷媒出口(32)が形成され、
    前記冷媒槽(3)内における前記冷媒蒸気の流れ方向を冷媒蒸気流れ方向(X2)とし、前記チューブ(41)への前記冷媒蒸気の流入方向を冷媒蒸気流入方向(X3)としたとき、前記冷媒蒸気流れ方向(X2)と前記冷媒蒸気流入方向(X3)とは略直交しており、かつ、前記複数本のチューブ(41)は、前記冷媒蒸気流れ方向(X2)および前記冷媒蒸気流入方向(X3)に対してともに直交する方向(X1)に積層され、
    前記複数本のチューブ(41)は、前記方向(X1)に積層された状態にて前記冷媒槽(3)の前記面(3a、3b)に直接組み付けられ、
    前記複数本のチューブ(41)の内部通路の上部が前記複数の冷媒蒸気入口(31)に直接接続されて、前記冷媒槽(3)内の前記冷媒蒸気が前記複数の冷媒蒸気入口(31)から前記複数本のチューブ(41)の個々に直接流入するようになっており、
    前記複数本のチューブ(41)の内部通路の下部が前記複数の液冷媒出口(32)に直接接続されて、前記複数本のチューブ(41)にて凝縮した液冷媒が前記複数の液冷媒出口(32)から前記冷媒槽(3)内に直接流入するようになっており、
    前記複数本のチューブ(41)の下端部(41a)、前記冷媒蒸気流れ方向(X2)に対して前記冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜していることを特徴とする沸騰冷却装置。
  2. 発熱体(2)の熱を受けて沸騰する冷媒を貯留するとともに沸騰した冷媒蒸気が下方より上方へ向かって流れる冷媒槽(3)と、
    前記冷媒槽(3)で沸騰した冷媒蒸気が流れ込み、前記冷媒蒸気と外部流体との間で熱交換を行って前記冷媒蒸気を凝縮させる複数本のチューブ(41)を有する放熱コア部(4)とを備える沸騰冷却装置であって、
    前記冷媒槽(3)には前記冷媒蒸気の流れ方向に延びる面(3a、3b)が形成されており、
    前記冷媒槽(3)の前記面(3a、3b)のうち上部に、前記複数本のチューブ(41)の個々にそれぞれ対応して複数の冷媒蒸気入口(31)が形成され、
    前記冷媒槽(3)の前記面(3a、3b)のうち前記冷媒蒸気入口(31)よりも下部に、前記複数本のチューブ(41)の個々にそれぞれ対応して複数の液冷媒出口(32)が形成され、
    前記冷媒槽(3)内における前記冷媒蒸気の流れ方向を冷媒蒸気流れ方向(X2)とし、前記チューブ(41)への前記冷媒蒸気の流入方向を冷媒蒸気流入方向(X3)としたとき、前記冷媒蒸気流れ方向(X2)と前記冷媒蒸気流入方向(X3)とは略直交しており、かつ、前記複数本のチューブ(41)は、前記冷媒蒸気流れ方向(X2)および前記冷媒蒸気流入方向(X3)に対してともに直交する方向(X1)に積層され、
    前記複数本のチューブ(41)は、前記方向(X1)に積層された状態にて前記冷媒槽(3)の前記面(3a、3b)に直接組み付けられ、
    前記複数本のチューブ(41)の内部通路の上部が前記複数の冷媒蒸気入口(31)に直接接続されて、前記冷媒槽(3)内の前記冷媒蒸気が前記複数の冷媒蒸気入口(31)から前記複数本のチューブ(41)の個々に直接流入するようになっており、
    一方、前記複数本のチューブ(41)の下端部と前記複数の液冷媒出口(32)との間に複数の還流通路(45)が接続され、前記複数本のチューブ(41)にて凝縮した液冷媒が前記複数の還流通路(45)および前記複数の液冷媒出口(32)を通して前記冷媒槽(3)へ流入するようになっており、
    前記複数の還流通路(45)が、前記冷媒蒸気流れ方向(X2)に対して前記冷媒蒸気流入方向(X3)に予め定めた第1角度(θ1)で傾斜していることを特徴とする沸騰冷却装置。
  3. 前記チューブ(41)の内部には、前記チューブ(41)内を複数の通路状に区画して、前記チューブ(41)内の凝縮面積を増大する凝縮面積増大部材(410)が設けられており、
    前記チューブ(41)の内部において前記冷媒蒸気を凝縮させる凝縮通路(412)が前記凝縮面積増大部材(410)によって区画される複数の通路状部分により形成されることを特徴とする請求項1または2に記載の沸騰冷却装置。
  4. 前記チューブ(41)の内部において前記凝縮面積増大部材(410)の上部に前記冷媒槽(3)で沸騰した前記冷媒蒸気が前記冷媒蒸気入口(31)から流れ込む蒸気通路(411)が形成され、
    前記チューブ(41)の内部において前記凝縮面積増大部材(410)の下部に前記凝縮通路(412)にて凝縮した液冷媒を前記液冷媒出口(32)側へ向かって流す液冷媒通路(413)が形成されていることを特徴とする請求項3に記載の沸騰冷却装置。
  5. 前記冷媒蒸気流れ方向(X2)が重力方向(X4)に対して前記冷媒蒸気流入方向(X3)に前記第1角度(θ1)以上の第2角度(θ2)で傾斜するように設置された際に、前記凝縮面積増大部材(410)によって形成された前記凝縮通路(412)を流れる前記冷媒の流通方向が、重力方向(X4)と一致していることを特徴とする請求項3または4に記載の沸騰冷却装置。
JP2007137479A 2007-05-24 2007-05-24 沸騰冷却装置 Expired - Fee Related JP4877069B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137479A JP4877069B2 (ja) 2007-05-24 2007-05-24 沸騰冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137479A JP4877069B2 (ja) 2007-05-24 2007-05-24 沸騰冷却装置

Publications (2)

Publication Number Publication Date
JP2008292053A JP2008292053A (ja) 2008-12-04
JP4877069B2 true JP4877069B2 (ja) 2012-02-15

Family

ID=40166961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137479A Expired - Fee Related JP4877069B2 (ja) 2007-05-24 2007-05-24 沸騰冷却装置

Country Status (1)

Country Link
JP (1) JP4877069B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463659B2 (ja) 2008-12-04 2014-04-09 日産自動車株式会社 車両用シートのシートクッション構造
AT523079B1 (de) * 2020-01-02 2021-05-15 Saaeed A Neama Aljazaari Temperiervorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157608A (ja) * 1985-12-29 1987-07-13 株式会社村田製作所 高周波用誘電体磁器組成物
JP3451737B2 (ja) * 1994-09-06 2003-09-29 株式会社デンソー 沸騰冷却装置
JPH08227954A (ja) * 1995-02-20 1996-09-03 Toshiba Corp 半導体冷却装置
JP3646474B2 (ja) * 1997-05-30 2005-05-11 株式会社デンソー 沸騰冷却装置
JP4026038B2 (ja) * 1998-11-20 2007-12-26 株式会社デンソー 沸騰冷却装置

Also Published As

Publication number Publication date
JP2008292053A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
US6843307B2 (en) Heat pipe unit and heat pipe type heat exchanger
JP6267079B2 (ja) 沸騰冷却装置
US9618244B2 (en) Power electronics cooling
JP3451737B2 (ja) 沸騰冷却装置
WO2019151291A1 (ja) ヒートシンク
JPWO2016104729A1 (ja) 冷却器
JP6534686B2 (ja) 冷却器
JP4877069B2 (ja) 沸騰冷却装置
US11754344B2 (en) Boiling cooler
JP2013033807A (ja) 冷却装置およびそれを用いた電子機器
JP3924674B2 (ja) 発熱素子用沸騰冷却器
JP2009275945A (ja) 沸騰冷却装置
JP4941100B2 (ja) 沸騰冷却装置
JP2006229102A (ja) 沸騰冷却装置
JP3975252B2 (ja) 電気自動車用の沸騰冷却装置
WO2013102974A1 (ja) 冷却装置
JPH10335551A (ja) 沸騰冷却装置
JP3810119B2 (ja) 沸騰冷却装置
JP5961948B2 (ja) 冷却装置およびそれを用いた電子機器
JP3804185B2 (ja) 沸騰冷却装置
JP2003243867A (ja) 沸騰冷却装置
WO2013073696A1 (ja) 冷却装置およびそれを用いた電子機器
KR20100136127A (ko) 차량용 열교환기
JP2000065455A (ja) 沸騰冷却装置
JP2020173051A (ja) 沸騰冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4877069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees