JP4865381B2 - Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board - Google Patents

Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board Download PDF

Info

Publication number
JP4865381B2
JP4865381B2 JP2006093222A JP2006093222A JP4865381B2 JP 4865381 B2 JP4865381 B2 JP 4865381B2 JP 2006093222 A JP2006093222 A JP 2006093222A JP 2006093222 A JP2006093222 A JP 2006093222A JP 4865381 B2 JP4865381 B2 JP 4865381B2
Authority
JP
Japan
Prior art keywords
metal layer
film
layer
base metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006093222A
Other languages
Japanese (ja)
Other versions
JP2007262563A (en
Inventor
悟 座間
吉章 荻原
賢一 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006093222A priority Critical patent/JP4865381B2/en
Publication of JP2007262563A publication Critical patent/JP2007262563A/en
Application granted granted Critical
Publication of JP4865381B2 publication Critical patent/JP4865381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フィルムと金属層との密着性に優れ、かつ良好な耐屈曲性を有するフィルム金属積層体、その製造方法、前記フィルム金属積層体を用いた回路基板、および前記回路基板の製造方法に関する。   The present invention relates to a film metal laminate having excellent adhesion between the film and the metal layer and having good bending resistance, a method for producing the same, a circuit board using the film metal laminate, and a method for producing the circuit board. About.

フレキシブル回路基板には、耐熱性に優れたポリイミド樹脂フィルム上に金属層(下地金属(Niなど)層/上部金属(Cuなど)導電層)を形成したフィルム金属積層体が用いられていたが、このフィルムは高吸水性のため多湿雰囲気下では寸法精度が低下するという問題があった。   The flexible circuit board used a film metal laminate in which a metal layer (underlying metal (Ni etc.) layer / upper metal (Cu etc.) conductive layer) was formed on a polyimide resin film having excellent heat resistance. Since this film has high water absorption, there is a problem that the dimensional accuracy is lowered in a humid atmosphere.

そこで、前記フィルムに代わるものとして、耐熱性に優れ、かつ低吸水性の液晶ポリエステルフィルムが注目されたが、このフィルムは金属層(例えば、Ni層/Cu層)との密着性が劣り、密着性向上のための熱処理を施す(特許文献1)と、Ni下地層の硬度が増加してフィルム金属積層体の耐屈曲性が低下するという問題があった。   Therefore, as an alternative to the film, a liquid crystal polyester film having excellent heat resistance and low water absorption has been attracting attention. However, this film has poor adhesion to a metal layer (for example, Ni layer / Cu layer), and adhesion. When heat treatment for improving the properties was performed (Patent Document 1), there was a problem that the hardness of the Ni underlayer increased and the flex resistance of the film metal laminate decreased.

特開2004−307980号JP 2004-307980 A

このような状況に鑑み、本発明者らは、先ず、液晶ポリエステルフィルムと金属層の密着性について検討し、下地金属層はCuよりNiの方がフィルムとの密着性に優れることを知見した。次に、密着性向上のための熱処理後におけるNi下地層の硬度の増加防止について検討し、下地層のNiにPを所定量含有させることにより、Ni下地層は熱処理後において硬度が増加しなくなり、得られるフィルム金属積層体は良好な密着性と耐屈曲性を有することを見出し、さらに検討を重ねて本発明を完成させるに至った。   In view of such a situation, the present inventors first examined the adhesiveness between the liquid crystal polyester film and the metal layer, and found that Ni is superior in adhesiveness to the film than Cu as the base metal layer. Next, we examined the prevention of the increase in hardness of the Ni underlayer after heat treatment for improving adhesion, and by adding a predetermined amount of P to Ni in the underlayer, the Ni underlayer does not increase in hardness after the heat treatment. The obtained film metal laminate was found to have good adhesion and bending resistance, and further studies were made to complete the present invention.

本発明は、フィルムと金属層との密着性に優れ、かつ良好な耐屈曲性を有するフィルム金属積層体、その製造方法、前記フィルム金属積層体を用いた回路基板、および前記回路基板の製造方法の提供を目的とする。   The present invention relates to a film metal laminate having excellent adhesion between the film and the metal layer and having good bending resistance, a method for producing the same, a circuit board using the film metal laminate, and a method for producing the circuit board. The purpose is to provide.

請求項1記載発明は、可とう性を有する高分子フィルム上に下地金属層を形成し、その上に上部金属導電層を形成したフィルム金属積層体において、前記下地金属層がリンを10質量%以上含有するニッケル合金を備え、
前記下地金属層の平均厚みが0.03μm以上、0.3μm以下であり、
前記下地金属層の面積抵抗率が10Ω/□以上、1KΩ/□以下であり、前記可とう性を有する高分子フィルムが、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーからなることを特徴とするフィルム金属積層体である。
The invention according to claim 1 is a film metal laminate in which a base metal layer is formed on a flexible polymer film and an upper metal conductive layer is formed on the base metal layer, and the base metal layer contains 10% by mass of phosphorus. comprises a nickel alloy containing more,
The average thickness of the base metal layer is 0.03 μm or more and 0.3 μm or less,
The sheet metal layer has a sheet resistivity of 10 Ω / □ or more and 1 KΩ / □ or less, and the flexible polymer film is made of a thermoplastic polymer capable of forming an optically anisotropic melt phase. The film metal laminate is characterized by the above.

請求項2に記載発明は、可とう性を有する高分子フィルム上に下地金属層を形成し、その上に上部金属導電層を形成するフィルム金属積層体の製造方法において、前記下地金属層がリンを10質量%以上含有するニッケル合金からなり、前記上部金属導電層が銅からなり、下地金属層形成後または上部金属導電層を形成後に、150℃〜310℃の温度で熱処理を行うことを特徴とするフィルム金属積層体の製造方法である。 According to a second aspect of the present invention, there is provided a film metal laminate manufacturing method in which a base metal layer is formed on a flexible polymer film, and an upper metal conductive layer is formed on the base metal layer. The upper metal conductive layer is made of copper, and heat treatment is performed at a temperature of 150 ° C. to 310 ° C. after forming the base metal layer or after forming the upper metal conductive layer. The method for producing a film metal laminate.

請求項3に記載発明は、請求項1または2に記載の方法により製造されたフィルム金属積層体の上部導電金属層が選択除去されて回路が形成され、下地金属層が抵抗として用いられていることを特徴とする回路基板である。 According to a third aspect of the present invention, the upper conductive metal layer of the film metal laminate manufactured by the method of the first or second aspect is selectively removed to form a circuit, and the underlying metal layer is used as a resistor. A circuit board characterized by the above.

本発明のフィルム金属積層体は、可とう性を有する高分子フィルム上にPを10質量%以上含有するNi合金の下地金属層を形成し、その上にCuなどの上部金属導電層を形成したもので、前記Ni−P合金は前記フィルムとの密着性に優れ、かつ下地金属層は密着性向上のための熱処理時に硬度が増加しないため、良好な密着性と耐屈曲性を有する。   In the film metal laminate of the present invention, a base metal layer of Ni alloy containing 10 mass% or more of P is formed on a flexible polymer film, and an upper metal conductive layer such as Cu is formed thereon. However, since the Ni-P alloy has excellent adhesion to the film, and the base metal layer does not increase in hardness during heat treatment for improving adhesion, the Ni-P alloy has good adhesion and bending resistance.

前記下地金属層の厚みを0.03μm〜0.3μmに規定することにより、高分子フィルムと金属層との間の密着性、および耐屈曲性が向上する。   By regulating the thickness of the base metal layer to 0.03 μm to 0.3 μm, the adhesion between the polymer film and the metal layer and the bending resistance are improved.

前記下地金属層の面積抵抗率を10Ω/□以上、1KΩ/□以下に規定することにより、特に優れた密着性と耐屈曲性が得られる。   By specifying the area resistivity of the base metal layer to be 10 Ω / □ or more and 1 KΩ / □ or less, particularly excellent adhesion and bending resistance can be obtained.

高分子フィルムに、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーを用いると、前記熱可塑性ポリマーは高耐熱性のため、密着性向上のための熱処理時にフィルムが劣化することがなく、高品質のフィルム金属積層体が得られる。   If a thermoplastic polymer capable of forming an optically anisotropic melt phase is used for the polymer film, the thermoplastic polymer has high heat resistance, so that the film may deteriorate during heat treatment for improving adhesion. And a high-quality film metal laminate can be obtained.

請求項5記載発明のフィルム金属積層体の製造方法は、下地金属層形成後または上部金属導電層形成後に150℃〜310℃の温度で熱処理を行うので、得られるフィルム金属積層体は、フィルムと金属層との密着性に優れる。   Since the manufacturing method of the film metal laminated body of Claim 5 performs heat processing at the temperature of 150 to 310 degreeC after base metal layer formation or upper metal conductive layer formation, the film metal laminated body obtained is a film, Excellent adhesion to the metal layer.

請求項6記載発明のフィルム金属積層体の製造方法は、最初に熱処理を行うときの金属層の厚みを2ミクロン以下と薄くするため、金属層の残留応力を小さくできるため、ロール状態で製造する際にも、めっきのフクレ、およびフィルムと金属の剥がれを防止できる。   The film metal laminate manufacturing method according to claim 6 is manufactured in a roll state since the residual stress of the metal layer can be reduced because the thickness of the metal layer when the heat treatment is first performed is reduced to 2 microns or less. In particular, the swelling of the plating and the peeling of the film and the metal can be prevented.

請求項7記載発明のフィルム金属積層体の製造方法は、熱処理後に電気めっきによって上部導電層を厚くして、再度150〜310℃で熱処理を行うので、電気めっき層の残留応力を低減できるため、エッチング後のフィルムの反りを小さくできる。   Since the manufacturing method of the film metal laminate of the invention according to claim 7 increases the thickness of the upper conductive layer by electroplating after the heat treatment and again performs the heat treatment at 150 to 310 ° C., the residual stress of the electroplated layer can be reduced. The warpage of the film after etching can be reduced.

請求項8記載発明の回路基板は、フィルム金属積層体の上部導電金属層が選択除去されて回路が形成され、下地金属層が抵抗として用いられているので、抵抗器を別途設ける必要がなく、低コストでコンパクトである。   In the circuit board according to claim 8, the upper conductive metal layer of the film metal laminate is selectively removed to form a circuit, and the base metal layer is used as a resistor. Low cost and compact.

請求項9記載発明の回路基板の製造方法は、上部金属導電層(銅)をアンモニアおよび銅を含むアルカリ溶液によりエッチング除去し、前記下地金属層を塩化銅を含む溶液を用いてエッチング除去するので、回路基板を高精度に、かつ容易に製造できる。   In the circuit board manufacturing method according to the ninth aspect of the invention, the upper metal conductive layer (copper) is removed by etching with an alkaline solution containing ammonia and copper, and the underlying metal layer is removed by etching using a solution containing copper chloride. The circuit board can be easily manufactured with high accuracy.

請求項1記載発明のフィルム金属積層体は、可とう性を有する高分子フィルム上に下地金属層としてPを10質量%以上含むNi合金層を形成することにより、密着性向上のための熱処理後におけるNi下地層の硬度の増加を抑制したものなので、密着性と耐屈曲性に優れる。   The film metal laminate according to claim 1 is a post-heat treatment for improving adhesion by forming a Ni alloy layer containing 10% by mass or more of P as a base metal layer on a flexible polymer film. Since the increase in the hardness of the Ni underlayer is suppressed, the adhesion and bending resistance are excellent.

本発明において、NiにPを含有させる理由は、NiにPを含有させると析出相の一部にアモルファス相が出現して、下地金属層の残留応力が低減し、それにより上部金属層との応力バランスが改善され、その結果、密着性向上のための熱処理時における下地金属層の硬度増加が防止されるためである。   In the present invention, the reason why P is added to Ni is that when P is added to Ni, an amorphous phase appears in a part of the precipitated phase, and the residual stress of the base metal layer is reduced. This is because the stress balance is improved, and as a result, an increase in the hardness of the underlying metal layer during heat treatment for improving adhesion is prevented.

本発明において、Pの含有量を10質量%以上に規定する理由は、10質量%未満では前記アモルファス相が十分に出現せず、その効果が得られないためである。特に望ましいP含有量は11質量%以上である。またPの含有量を多くしてもその効果が飽和するので、上限は17質量%とするのが望ましい。   In the present invention, the reason why the content of P is specified to be 10% by mass or more is that when the content is less than 10% by mass, the amorphous phase does not sufficiently appear and the effect cannot be obtained. A particularly desirable P content is 11% by mass or more. Further, since the effect is saturated even if the content of P is increased, the upper limit is preferably set to 17% by mass.

下地金属層の厚み(平均厚み)は、あまり薄いと下地金属層に穴があいてフィルムとの密着性が低下する。また厚すぎるとフィルム金属積層体の可撓性が低下する。従って下地金属層の平均厚みは0.03〜0.3μmが望ましい。下地金属層の厚みが、面積抵抗率で10Ω/□〜1000Ω/□のとき、フィルム金属積層体の密着性および耐屈曲性が最も向上する。   If the thickness (average thickness) of the base metal layer is too thin, there will be holes in the base metal layer and the adhesion to the film will decrease. If it is too thick, the flexibility of the film metal laminate is lowered. Therefore, the average thickness of the base metal layer is preferably 0.03 to 0.3 μm. When the thickness of the base metal layer is 10 Ω / □ to 1000 Ω / □ in terms of sheet resistivity, the adhesion and bending resistance of the film metal laminate are most improved.

下地金属層上に、銅などの上部金属導電層を直接電気めっきするのは、電流密度を上げることができないため密着性の良いめっき層が得られない。従って、銅を薄く(2μm以下)無電解めっきした後、銅を厚く電気めっきする方法が推奨される。   If the upper metal conductive layer such as copper is directly electroplated on the base metal layer, the current density cannot be increased, and thus a plating layer with good adhesion cannot be obtained. Therefore, a method of electroplating copper thickly after thinly (less than 2 μm) electroless plating of copper is recommended.

高分子フィルムと下地金属層の密着強度は熱処理により向上できる。
めっき後のフィルム金属積層体をロール状に巻き取る場合は、下地金属層または上部金属導電層の無電解めっき後に熱処理を施してから巻き取るようにすると、巻き取り時の金属層の剥がれが防止できる。この場合の下地金属層と上部金属導電層(銅など)を合わせた厚みは生産性を考慮して2μm以下が望ましい。さらに好ましくは、1μm以下が好適である。金属層が薄ければ、熱処理工程に至るまでのめっきのフクレ、および金属層とフィルムとの剥離を防止できる。上部金属導電層は、熱処理後、必要に応じ、電気めっきして所定厚みにするのが良い。なお、めっきによる残留応力を開放するため、電気めっき後に再度熱処理を行うと、回路形成時のエッチングにおいてフィルムの反りを低減できる。
The adhesion strength between the polymer film and the underlying metal layer can be improved by heat treatment.
When winding the film metal laminate after plating into a roll, it is possible to prevent the metal layer from peeling off during winding by applying a heat treatment after electroless plating of the underlying metal layer or upper metal conductive layer. it can. In this case, the total thickness of the base metal layer and the upper metal conductive layer (such as copper) is preferably 2 μm or less in consideration of productivity. More preferably, 1 μm or less is suitable. If the metal layer is thin, it is possible to prevent plating swelling until the heat treatment step and peeling of the metal layer and the film. The upper metal conductive layer may be electroplated to a predetermined thickness as necessary after the heat treatment. Note that if the heat treatment is performed again after the electroplating in order to release the residual stress due to the plating, the warpage of the film can be reduced in the etching during circuit formation.

密着性向上のための熱処理温度は、150℃未満では密着性が十分向上せず、310℃を超えるとアモルファス相が結晶化してフィルム金属積層体の耐屈曲性が低下する虞がある。従って、150℃〜310℃、特には200℃〜250℃が望ましい。   If the heat treatment temperature for improving the adhesion is less than 150 ° C., the adhesion is not sufficiently improved, and if it exceeds 310 ° C., the amorphous phase may crystallize and the flex resistance of the film metal laminate may be lowered. Therefore, 150 ° C. to 310 ° C., particularly 200 ° C. to 250 ° C. is desirable.

本発明において、可とう性を有する高分子フィルムには、ポリイミドフィルム、ポリエステルフィルムなどが適用できる。中でも、ポリエステルナフタレート(PEN)はポリエステルテレフタラート(PET)よりも耐熱性が高く好適である。   In the present invention, a polyimide film, a polyester film, or the like can be applied to the flexible polymer film. Among them, polyester naphthalate (PEN) is preferable because it has higher heat resistance than polyester terephthalate (PET).

特に光学的異方性の溶融相を形成し得る熱可塑性ポリマー、いわゆる熱可塑性液晶ポリマーは、耐熱性が300℃前後と高く、熱処理温度に十分耐えるので最適である。耐熱性は若干劣るが、ポリエーテルエーテルケトン(PEEK)ポリマーも熱可塑性樹脂として好適である。前記高分子フィルムは、いずれも低吸水性なので湿式めっきに対応できる。   In particular, a thermoplastic polymer capable of forming an optically anisotropic melt phase, that is, a so-called thermoplastic liquid crystal polymer is optimal because it has a high heat resistance of around 300 ° C. and sufficiently withstands the heat treatment temperature. Although the heat resistance is slightly inferior, polyether ether ketone (PEEK) polymer is also suitable as the thermoplastic resin. All of the polymer films have low water absorption and can be used for wet plating.

本発明において、フィルム表面を粗化しておくと下地金属層とフィルムとの密着性が向上する。粗化の程度は、最大粗さRzが0.3以上、2.0以下、平均粗さRaが0.1以上、0.7以下が望ましい。   In the present invention, if the film surface is roughened, the adhesion between the base metal layer and the film is improved. The degree of roughening is desirably such that the maximum roughness Rz is 0.3 or more and 2.0 or less, and the average roughness Ra is 0.1 or more and 0.7 or less.

フィルム表面を粗化する方法はフィルムをエッチング液に浸す方法が簡便で望ましい。エッチング液には強アルカリ溶液、過マンガン酸塩溶液、クロム酸塩溶液などが用いられる。熱可塑性液晶ポリマーフィルムの場合は強アルカリ溶液を用いるのが有効である。エッチングが困難なフィルムにはサンドブラストなどの機械的研磨法が有効である。   As a method of roughening the film surface, a method of immersing the film in an etching solution is simple and desirable. As the etching solution, a strong alkaline solution, a permanganate solution, a chromate solution, or the like is used. In the case of a thermoplastic liquid crystal polymer film, it is effective to use a strong alkaline solution. A mechanical polishing method such as sandblasting is effective for a film that is difficult to etch.

本発明のフィルム金属積層体を回路基板として用いる場合、導電回路はフォトレジストを用いてエッチング(除去)したい領域の金属層を露出させ、エッチング液をスプレー噴射するなどして、不要な領域の金属層をエッチングで除去して形成する。フォトレジストにはアルカリ溶液に溶解しないゴム系のフォトレジストを用いるのが望ましい。   When the film metal laminate of the present invention is used as a circuit board, the conductive circuit exposes a metal layer in an area to be etched (removed) using a photoresist, and sprays an etching solution to remove metal in an unnecessary area. The layer is formed by etching away. As the photoresist, it is desirable to use a rubber-based photoresist that does not dissolve in an alkaline solution.

本発明のフィルム金属積層体の金属層は、下地金属層と上部金属導電層から構成されるので、導電回路は、通常その両方をエッチング除去して形成する。その場合のエッチング液は塩化第二銅溶液が好適である。特にP濃度の高いNi−P合金をエッチングする場合はリードフレーム等で使用する塩化鉄溶液では十分にエッチングされない。塩化第二銅溶液に塩酸を適宜加えることでエッチング速度が増し、サイドエッチングが減り所定寸法の回路幅を高精度に形成できる。   Since the metal layer of the film metal laminate of the present invention is composed of a base metal layer and an upper metal conductive layer, the conductive circuit is usually formed by removing both of them by etching. In this case, the etching solution is preferably a cupric chloride solution. In particular, when etching a Ni-P alloy having a high P concentration, the iron chloride solution used in a lead frame or the like is not sufficiently etched. By appropriately adding hydrochloric acid to the cupric chloride solution, the etching rate is increased, side etching is reduced, and a circuit width of a predetermined dimension can be formed with high accuracy.

金属層は、先に上部金属導電層(銅)を塩化第二鉄溶液を用いて選択除去し、その後、下地金属層(Ni−P合金層)を塩化第二銅を用いて除去することもできる。   For the metal layer, the upper metal conductive layer (copper) is first selectively removed using a ferric chloride solution, and then the underlying metal layer (Ni-P alloy layer) is removed using cupric chloride. it can.

本発明のフィルム金属積層体はNi−P合金の下地金属層が高抵抗値なので、抵抗器として使用できる。その場合、上部金属導電層のみをエッチングにより選択除去し、次いで下地金属層を、抵抗とする部分を残してエッチングにより選択除去する。この方法によれば回路基板中に抵抗器を内蔵した(埋め込んだ)フィルム金属積層体が得られる。この場合チップ抵抗器などが不要になり基板サイズを小型化できる。   The film metal laminate of the present invention can be used as a resistor because the base metal layer of the Ni-P alloy has a high resistance value. In that case, only the upper metal conductive layer is selectively removed by etching, and then the underlying metal layer is selectively removed by etching, leaving a portion serving as a resistance. According to this method, a film metal laminate in which a resistor is embedded (embedded) in a circuit board can be obtained. In this case, a chip resistor or the like is not necessary, and the substrate size can be reduced.

上部金属導電層のみのエッチングには、塩化第二鉄溶液を用いても良いが、アンモニアと銅を含むアルカリ溶液が比較的下地金属層を溶解しないため、良好な抵抗値が得られ、しかもサイドエッチングが少なく極めて寸法精度の良いエッチングが可能である。前記アルカリ溶液としては、アンモニア銅錯塩(銅濃度として)135〜145g/L、塩化アンモニウム100〜250g/L、アンモニア10〜150g/L、pH8.5(アンモニアでpH調整)の溶液が挙げられる。   For etching only the upper metal conductive layer, a ferric chloride solution may be used. However, since an alkaline solution containing ammonia and copper does not dissolve the underlying metal layer relatively, a good resistance value can be obtained, and the side Etching with very little dimensional accuracy and high dimensional accuracy is possible. Examples of the alkali solution include ammonia copper complex salts (as copper concentration) of 135 to 145 g / L, ammonium chloride 100 to 250 g / L, ammonia 10 to 150 g / L, and pH 8.5 (pH adjustment with ammonia).

本発明のフィルム金属積層体は、片面のみに金属層を形成して片面フレキシブル基板としても、両面に金属層を形成して両面フレキシブル基板としても使用できる。また、片面のみに金属層を形成した積層体を複数枚重ね合わせ、多層基板として使用することもできる。   The film metal laminate of the present invention can be used as a single-sided flexible substrate by forming a metal layer only on one side, or as a double-sided flexible substrate by forming a metal layer on both sides. Further, a plurality of laminated bodies in which a metal layer is formed only on one side can be overlapped and used as a multilayer substrate.

高分子フィルムにクラレ社製のVecstar(厚み50μm)を用い、このフィルムをアルカリ溶液に浸して表面に凹凸(表面粗さRz=0.8、Ra=0.2)を形成し、次いでコンディショナー処理、Ni−P合金の無電解めっき、Cuの無電解めっき、熱処理、Cuの電気めっきの各工程をこの順に施してフィルム金属積層体を製造した。工程ごとに水洗、乾燥を行った。金属層(下地金属層+上部金属導電層)はフィルムの両面に形成した。   Using a Vecstar (thickness 50 μm) manufactured by Kuraray Co., Ltd. as a polymer film, this film was immersed in an alkaline solution to form irregularities (surface roughness Rz = 0.8, Ra = 0.2) on the surface, and then conditioner treatment The film metal laminate was manufactured by applying each step of Ni-P alloy electroless plating, Cu electroless plating, heat treatment, and Cu electroplating in this order. Washing and drying were performed for each step. Metal layers (underlying metal layer + upper metal conductive layer) were formed on both sides of the film.

コンディショナー処理は奥野製薬社製のOPC−350コンディショナーで表面を清浄化し、パラジウムを含む触媒付与液として奥野製薬社製のOPC−80キャタリスト、活性化剤としてOPC−500アクセラレーターを用いた。   Conditioner treatment was performed using an OPC-350 conditioner manufactured by Okuno Seiyaku Co., Ltd., and an OPC-80 catalyst manufactured by Okuno Seiyaku Co., Ltd. was used as a catalyst-providing solution containing palladium, and an OPC-500 accelerator was used as an activator.

Ni−10質量%〜14質量%P合金の無電解めっきには、奥野製薬社製のトップニコロンNAC浴を用いた。めっき浴のpHは硫酸またはアンモニア水を用いて3.5〜5.5に調整し、浴温は70℃〜85℃に調整した。めっき厚みはめっき浴中への浸せき時間により0.02μm〜0.65μmの範囲で種々に変化させた。Ni−P合金のP濃度はめっき浴のpHおよび温度を調節して10質量%〜18質量%の範囲で変化させた。   A top Nicolon NAC bath manufactured by Okuno Pharmaceutical Co., Ltd. was used for electroless plating of Ni-10 mass% to 14 mass% P alloy. The pH of the plating bath was adjusted to 3.5 to 5.5 using sulfuric acid or aqueous ammonia, and the bath temperature was adjusted to 70 ° C to 85 ° C. The plating thickness was variously changed in the range of 0.02 μm to 0.65 μm depending on the immersion time in the plating bath. The P concentration of the Ni—P alloy was varied in the range of 10% by mass to 18% by mass by adjusting the pH and temperature of the plating bath.

P濃度が14%超20%以下の無電解めっきには下記の自家浴を用いた。P濃度はめっき浴のpH、温度、Niと次亜リン酸の濃度比、鉛イオン濃度を調節して変化させた。
自家浴:硫酸ニッケル20〜30g/L、次亜リン酸ナトリウム10〜80g/L、クエン酸ナトリウム15g/L、グリシン20g/L、硝酸鉛2ppm〜20ppm、pH3.0〜5.5(希硫酸およびアンモニア水で調整)、浴温50℃〜85℃。
The following in-house bath was used for electroless plating with P concentration exceeding 14% and not exceeding 20%. The P concentration was varied by adjusting the pH and temperature of the plating bath, the concentration ratio of Ni and hypophosphorous acid, and the lead ion concentration.
In-house bath: nickel sulfate 20-30 g / L, sodium hypophosphite 10-80 g / L, sodium citrate 15 g / L, glycine 20 g / L, lead nitrate 2 ppm-20 ppm, pH 3.0-5.5 (dilute sulfuric acid And adjusted with aqueous ammonia), bath temperature 50 ° C. to 85 ° C.

ここで、下地金属層の電気的特性として面積抵抗率を、低抵抗率計を用いてプローブを当て測定した。 Here, the sheet resistivity was measured by applying a probe using a low resistivity meter as the electrical characteristics of the underlying metal layer.

Cuの無電解めっきは、下地金属層(Ni−P合金層)の表面を塩化パラジウム0.1g/Lと塩酸10mL/Lを含む触媒に浸漬して活性化した後、ローム・アンド・ハース社製の銅めっき浴キューポシット880を用いて行った。めっき厚みは0.5μmとして下地金属層全体を覆った。   The electroless plating of Cu is activated by immersing the surface of the base metal layer (Ni-P alloy layer) in a catalyst containing 0.1 g / L of palladium chloride and 10 mL / L of hydrochloric acid, followed by Rohm and Haas. This was carried out using a copper plating bath Cuposit 880 made by the manufacturer. The entire thickness of the base metal layer was covered with a plating thickness of 0.5 μm.

フィルムと下地金属層の密着性向上のための熱処理は、サンプルを窒素雰囲気中で、220℃1時間加熱して行った。   The heat treatment for improving the adhesion between the film and the base metal layer was performed by heating the sample in a nitrogen atmosphere at 220 ° C. for 1 hour.

その後、Cuを金属層(下地金属層+上部金属導電層)の厚みが18μmになるように硫酸銅浴を用いて電気めっきした。   Thereafter, Cu was electroplated using a copper sulfate bath so that the thickness of the metal layer (underlying metal layer + upper metal conductive layer) was 18 μm.

得られた各々のフィルム金属積層体について、密着性および耐屈曲性を調べた。   About each obtained film metal laminated body, adhesiveness and bending resistance were investigated.

密着性は、JIS C5016記載の機械的性能試験(90°方向引き剥がし方法)に基づいて金属層の引き剥がし強さ(ピール強度)を測定して評価した。   The adhesion was evaluated by measuring the peeling strength (peel strength) of the metal layer based on a mechanical performance test (90 ° direction peeling method) described in JIS C5016.

耐屈曲性は、フィルム両面の金属層にライン/スペース=1mm/1mmとなるように回路をエッチングにより形成してサンプルとし、カバー材は用いずに、MIT耐折試験法に基づき、JIS C6471記載の試験方法に準拠して、気温25℃、湿度50%の環境下で、荷重500gf、折り曲げ速度175rpm、折り曲げ角度±135°、折り曲げ半径0.8mmとし、破断するまでの折り曲げ回数を求めて評価した。   The bending resistance is described in JIS C6471, based on the MIT folding resistance test method without using a cover material, by forming a circuit by etching on the metal layers on both sides of the film so that line / space = 1 mm / 1 mm. In accordance with the test method, the load is 500 gf, the bending speed is 175 rpm, the bending angle is ± 135 °, the bending radius is 0.8 mm, and the number of times of bending until breakage is obtained and evaluated in an environment of an air temperature of 25 ° C. and a humidity of 50%. did.

下地金属層(Ni−P合金)のP濃度はケイ光X線分析装置(セイコープレシジョン社製のSEA5120A)を用いてNiとPの質量を測定して求めた。下地金属層の厚みは前記質量測定値を厚みに換算して求めた。すなわち、計測した単位面積あたりの付着重量(PとNiの合計)を密度(近似的にNiの密度8.90として)で割った値を下地金属層の膜厚とした。
上部金属導電層(Cu)の厚みはケイ光X線膜厚計SFT−3200を用いて測定した。
The P concentration of the base metal layer (Ni—P alloy) was determined by measuring the mass of Ni and P using a fluorescent X-ray analyzer (SEA5120A manufactured by Seiko Precision Co., Ltd.). The thickness of the base metal layer was obtained by converting the mass measurement value into a thickness. That is, the value obtained by dividing the measured adhesion weight per unit area (total of P and Ni) by the density (approximately Ni density 8.90) was taken as the film thickness of the underlying metal layer.
The thickness of the upper metal conductive layer (Cu) was measured using a fluorescent X-ray film thickness meter SFT-3200.

下地金属層(Ni−P合金)の電気的特性(面積抵抗率)は低抵抗率計(三菱化学社製のロレスターGP)を用い四短針プローブにより測定した。面積抵抗率は下地金属層のパターンをエッチングにより切出して四端子法で測定することもできる。   The electrical characteristics (area resistivity) of the base metal layer (Ni-P alloy) were measured with a four-short probe using a low resistivity meter (Lorestar GP manufactured by Mitsubishi Chemical Corporation). The sheet resistivity can also be measured by a four-terminal method by cutting out the pattern of the underlying metal layer by etching.

[比較例1]
下地金属層のNi−P合金のP濃度を10質量%(以下適宜%と略記する。)未満とした他は、実施例1と同じ方法によりフィルム金属積層体を製造し、実施例1と同じ調査を行った。
なお、P濃度2%〜4%の下地金属層は奥野製薬社製の化学ニッケルEXCを用いて、P濃度4%〜6%の下地金属層はメルテックス社製のメルプレートNI−2250を用いて、P濃度6%〜8%の下地金属層はメルテックス社のメルプレートNI−871を用いて、P濃度8%以上10%以下の下地金属層はメルテックス社製のメルプレートNI−6575を用いて、それぞれ無電解めっきした。
実施例1および比較例1の試験結果を表1に示す。表1には面積抵抗率を併記した。
[Comparative Example 1]
A film metal laminate was produced in the same manner as in Example 1 except that the P concentration of the Ni—P alloy of the base metal layer was less than 10% by mass (hereinafter abbreviated as “%” where appropriate). We conducted a survey.
The base metal layer having a P concentration of 2% to 4% uses Chemical Nickel EXC manufactured by Okuno Pharmaceutical Co., Ltd., and the base metal layer having a P concentration of 4% to 6% uses Melplate NI-2250 manufactured by Meltex. In addition, the base metal layer having a P concentration of 6% to 8% is Melplate NI-871 manufactured by Meltex, and the base metal layer having a P concentration of 8% to 10% is Melplate NI-6575 manufactured by Meltex. Were used for electroless plating.
The test results of Example 1 and Comparative Example 1 are shown in Table 1. Table 1 also shows the sheet resistivity.

Figure 0004865381
Figure 0004865381

表1から明らかなように、本発明例(実施例1)は、いずれもピール強度が0.6kN/m以上で密着性に優れ、また破断までの折り曲げ回数が150回以上で耐屈曲性にも優れた。特に下地金属層のめっき厚が0.03μm以上のもの(No.1〜15、17、19)はピール強度が0.8kN/mと高かった。さらにP濃度が11〜17%、下地金属層の厚みが0.03〜0.30μmのもの(No.3〜12)は破断までの折り曲げ回数が200回以上となり良好な耐屈曲性を示した。その時の面積抵抗率は10Ω/□以上、1kΩ/□の範囲にあった。
一方、比較例21〜31はP濃度が10%未満のため破断までの折り曲げ回数が120回以下で耐屈曲性が劣った。
As is apparent from Table 1, all of the present invention examples (Example 1) have excellent peelability when the peel strength is 0.6 kN / m or more, and have high bending resistance when the number of folding times to break is 150 times or more. Also excellent. Especially when the plating thickness of the base metal layer was 0.03 μm or more (No. 1 to 15, 17, 19), the peel strength was as high as 0.8 kN / m. Furthermore, when the P concentration was 11 to 17% and the thickness of the base metal layer was 0.03 to 0.30 μm (Nos. 3 to 12), the number of times of bending until breakage was 200 times or more, indicating good bending resistance. . The sheet resistivity at that time was in the range of 10 Ω / □ or more and 1 kΩ / □.
On the other hand, since Comparative Examples 21-31 had a P concentration of less than 10%, the number of bending until breakage was 120 times or less, and the bending resistance was poor.

高分子フィルムにジャパンゴアテックス社製のBIAC BC 50μm厚を用い、下地金属層のP濃度を11.3%、めっき厚みを0.20μmとし、熱処理温度を150℃〜310℃とした他は、実施例1と同じ方法によりフィルム金属積層体を製造し、実施例1と同じ調査を行った。   A BIAC BC 50 μm thickness made by Japan Gore-Tex Co., Ltd. was used for the polymer film, the P concentration of the base metal layer was 11.3%, the plating thickness was 0.20 μm, and the heat treatment temperature was 150 ° C. to 310 ° C. A film metal laminate was produced in the same manner as in Example 1, and the same investigation as in Example 1 was performed.

[比較例2]
熱処理温度を150℃未満または310℃超とした他は、実施例2と同じ方法によりフィルム金属積層体を製造し、実施例2と同じ調査を行った。
実施例2および比較例2の試験結果を表2に示す。
[Comparative Example 2]
A film metal laminate was produced by the same method as in Example 2 except that the heat treatment temperature was less than 150 ° C. or more than 310 ° C., and the same investigation as in Example 2 was performed.
The test results of Example 2 and Comparative Example 2 are shown in Table 2.

Figure 0004865381
Figure 0004865381

表2から明らかなように、本発明例(実施例2)はいずれもピール強度が0.6kN/m以上、破断までの折り曲げ回数が100回以上で、良好な密着性および耐屈曲性を示した。中でもNo.34〜36はピール強度が0.8kN/m以上、破断までの折り曲げ回数が180回以上であり、200〜250℃の熱処理温度が特に好ましいことが判る。   As is clear from Table 2, all of the inventive examples (Example 2) have a peel strength of 0.6 kN / m or more, and the number of times of bending until breakage is 100 times or more, showing good adhesion and bending resistance. It was. Among these, No. It can be seen that Nos. 34 to 36 have a peel strength of 0.8 kN / m or more, the number of bendings until breakage is 180 or more, and a heat treatment temperature of 200 to 250 ° C. is particularly preferable.

一方、比較例2のNo.41〜45は熱処理温度が低いため十分なピール強度が得られず、比較例46、47は熱処理温度が高いためアモルファス相が消失して十分な耐屈曲性が得られなかった。   On the other hand, no. Since the heat treatment temperature was low for Nos. 41 to 45, sufficient peel strength could not be obtained. In Comparative Examples 46 and 47, the amorphous phase disappeared due to the high heat treatment temperature, and sufficient bending resistance could not be obtained.

なお、めっき液は実施例1、2で使用したものに限定されることはなく、適宜市販のめっき浴を用いても、或いは試薬を混合した自家浴を用いても良い。また高分子フィルムも熱可塑性液晶ポリマーに限定されることはなく、PET、PEN、PEEKなどの樹脂を用いても良い。   The plating solution is not limited to that used in Examples 1 and 2, and a commercially available plating bath may be used as appropriate, or an in-house bath mixed with a reagent may be used. Further, the polymer film is not limited to the thermoplastic liquid crystal polymer, and resins such as PET, PEN, and PEEK may be used.

高分子フィルムにクラレ社製のVecstar(厚み50μm)のロール品(幅625mm)を用い、実施例と同様に、このフィルムをアルカリ溶液に浸して表面に凹凸を形成し、ニッケルめっきを行った。下地金属層のP濃度を11.3%とし、ニッケルめっき後ただちに、上部金属層の一部として、銅を無電解めっきにより所定厚形成した。本実施例では、ロールフィルムを順にめっき液に浸していき、無電解銅めっき後、温風で水分を飛ばしたのち、フィルムをロールに巻き取った。ニッケルめっきに浸す時間と無電解銅めっきに浸す時間を変化させ、下地金属層と上部金属導電層の一部である無電解銅めっき層を合わせた金属層の厚みを変化させた。
その後、ロールフィルムの表面を観察し、めっきのフクレの数、金属層とフィルムとの剥がれがないかを観察した。表3に、熱処理前の金属層厚とフクレ、および剥がれの有無を示す。
As a polymer film, a roll product (width: 625 mm) manufactured by Kuraray Co., Ltd. (width: 625 mm) was used, and in the same manner as in the example, this film was immersed in an alkaline solution to form irregularities on the surface, and nickel plating was performed. The P concentration of the base metal layer was 11.3%, and immediately after nickel plating, copper was formed as a part of the upper metal layer by electroless plating to a predetermined thickness. In this example, the roll film was immersed in a plating solution in order, and after the electroless copper plating, the water was blown off with warm air, and then the film was wound on a roll. The time of immersion in nickel plating and the time of immersion in electroless copper plating were changed, and the thickness of the metal layer including the base metal layer and the electroless copper plating layer as a part of the upper metal conductive layer was changed.
Thereafter, the surface of the roll film was observed, and the number of plating blisters and whether the metal layer was peeled off were observed. Table 3 shows the thickness and swelling of the metal layer before heat treatment and the presence or absence of peeling.

Figure 0004865381
Figure 0004865381

表3から明らかなように、金属層厚が0.1μm以上2.0μm以下(実施例3のNo.48〜59)であれば、フクレは少なく、剥がれも生じない。好ましくは、0.1μm以上1.0μmであればフクレは全く発生しなかった。一方、比較例3では、金属層厚が0.1μm以下(No.60〜62)であったため、フクレ、剥がれは生じないが、抵抗値が大きくその後の工程で電気めっきが行えず、上部金属導電層の残部を形成できなかった。金属層厚が2.0μm以上と厚かった(No.63〜68)場合、めっきのフクレ、または、剥がれが発生した。
熱処理を行うまではフィルムと金属層の密着性が弱いため、金属層厚が厚いとめっき応力によりフクレが発生し、ロールの搬送時の応力で剥がれが生じやすい。熱処理前の金属層厚は0.1〜2.0μm厚が適切である。
As is apparent from Table 3, if the metal layer thickness is 0.1 μm or more and 2.0 μm or less (No. 48 to 59 in Example 3), there is little swelling and no peeling occurs. Preferably, no blistering occurred at 0.1 μm or more and 1.0 μm. On the other hand, in Comparative Example 3, since the metal layer thickness was 0.1 μm or less (No. 60 to 62), swelling and peeling did not occur, but the resistance value was large and electroplating could not be performed in the subsequent process, and the upper metal The remainder of the conductive layer could not be formed. When the metal layer thickness was as thick as 2.0 μm or more (No. 63 to 68), swelling or peeling of the plating occurred.
Until the heat treatment is performed, the adhesion between the film and the metal layer is weak. Therefore, if the metal layer is thick, blisters are generated due to plating stress, and peeling is likely to occur due to the stress during the conveyance of the roll. The thickness of the metal layer before the heat treatment is suitably 0.1 to 2.0 μm.

高分子フィルムにジャパンゴアテックス社製のBIAC BC 50μm厚を用い、下地金属層のP濃度を11.3%、めっき厚みを0.20μmとし、上部金属導電層の一部として無電解銅めっきとして0.50μmを行った。その後、窒素雰囲気中において150〜310℃の各温度で熱処理(熱処理1)を行ったのち、電気銅めっきを行い、上部金属導電層の残部を形成した。上部金属導電層を形成した後、再度、窒素雰囲気中において150〜310℃の各温度で熱処理(熱処理2)を行った。各条件において、フィルムの両面において金属層を形成した。   As the polymer film, BIAC BC 50μm thickness made by Japan Gore-Tex is used, the P concentration of the base metal layer is 11.3%, the plating thickness is 0.20μm, and electroless copper plating as part of the upper metal conductive layer 0.50 μm was performed. Then, after performing heat processing (heat processing 1) at each temperature of 150-310 degreeC in nitrogen atmosphere, electrolytic copper plating was performed and the remainder of the upper metal conductive layer was formed. After forming the upper metal conductive layer, heat treatment (heat treatment 2) was performed again at each temperature of 150 to 310 ° C. in a nitrogen atmosphere. Under each condition, metal layers were formed on both sides of the film.

次に、200mm×200mmサイズを切りだし、両面に形成されている金属層の片面のみを、エッチングで除去した。片面のみをエッチングした状態で、平坦面に置き、四隅におけるフィルムの反り量を測定した。表4に片面エッチング後の反り量を示す。   Next, a 200 mm × 200 mm size was cut out, and only one side of the metal layer formed on both sides was removed by etching. Only one side was etched and placed on a flat surface, and the amount of warpage of the film at the four corners was measured. Table 4 shows the amount of warpage after single-sided etching.

Figure 0004865381
Figure 0004865381

表4から明らかなように、上部電極導電層の残部を形成したのち、熱処理を行ったもの(No.69〜75)は、電気メッキ時の金属の残留応力が開放されて、いずれも、反り量が10mm以下と小さかった。   As is apparent from Table 4, in the case where the remaining part of the upper electrode conductive layer was formed and then heat-treated (No. 69 to 75), the residual stress of the metal at the time of electroplating was released, and both were warped. The amount was as small as 10 mm or less.

一方、比較例として、上部電極導電層の残部を形成したのち、熱処理を行わないもの(No.76〜82)は、片面エッチング量が20mm以上と大きかった。   On the other hand, as a comparative example, after the remaining portion of the upper electrode conductive layer was formed, heat treatment was not performed (No. 76 to 82), and the one-side etching amount was as large as 20 mm or more.

実施例1、2で製造したフィルム金属積層体を用いて回路基板を製造し、実施例1と同じ調査を行った。導電回路はフォトレジストを用いて不必要な領域の金属層を露出させ、エッチング液をスプレー噴射して除去して形成した。エッチング液には塩化第二銅溶液50g〜400g/Lに対し、36%濃度塩酸50〜300mL/Lを加えた溶液(40℃〜60℃)を用いた。フォトレジストにはゴム系のフォトレジスト(東京応化社製のソルベントフォトレジスト EPPRA)を用いた。
得られた各々の回路基板はいずれもフィルムと金属層の密着性に優れ、また耐屈曲性にも優れるものであった。
A circuit board was produced using the film metal laminate produced in Examples 1 and 2, and the same investigation as in Example 1 was performed. The conductive circuit was formed by exposing a metal layer in an unnecessary region using a photoresist and removing the etching solution by spraying. As an etching solution, a solution (40 ° C. to 60 ° C.) obtained by adding 36% hydrochloric acid 50 to 300 mL / L to 50 g to 400 g / L of cupric chloride solution was used. As the photoresist, a rubber-based photoresist (solvent photoresist EPPRA manufactured by Tokyo Ohka Co., Ltd.) was used.
Each of the obtained circuit boards was excellent in adhesion between the film and the metal layer, and also excellent in bending resistance.

Claims (3)

可とう性を有する高分子フィルム上に下地金属層を形成し、その上に上部金属導電層を形成したフィルム金属積層体において、前記下地金属層がリンを10質量%以上含有するニッケル合金を備え、
前記下地金属層の平均厚みが0.03μm以上、0.3μm以下であり、
前記下地金属層と上部金属層を合わせた金属層の厚みが0.1μm以上2.0μ以下であり、
前記下地金属層の面積抵抗率が10Ω/□以上、1KΩ/□以下であり、
前記可とう性を有する高分子フィルムが、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーからなることを特徴とするフィルム金属積層体。
In a film metal laminate in which a base metal layer is formed on a flexible polymer film and an upper metal conductive layer is formed thereon, the base metal layer includes a nickel alloy containing 10 mass% or more of phosphorus. ,
The average thickness of the base metal layer is 0.03 μm or more and 0.3 μm or less,
The thickness of the metal layer combining the base metal layer and the upper metal layer is 0.1 μm or more and 2.0 μm or less,
The area resistivity of the base metal layer is 10Ω / □ or more and 1KΩ / □ or less,
The film metal laminate, wherein the flexible polymer film is made of a thermoplastic polymer capable of forming an optically anisotropic melt phase .
可とう性を有する高分子フィルム上に下地金属層を形成し、その上に上部金属導電層を形成するフィルム金属積層体の製造方法において、前記下地金属層がリンを10質量%以上含有するニッケル合金であり、前記上部金属導電層が銅からなり、下地金属層形成後または上部金属導電層の少なくとも一部を形成後に、150℃〜310℃の温度で熱処理を行うことを特徴とするフィルム金属積層体の製造方法。In the method for producing a film metal laminate in which a base metal layer is formed on a flexible polymer film and an upper metal conductive layer is formed thereon, the base metal layer contains 10 mass% or more of phosphorus. A film metal, which is an alloy, wherein the upper metal conductive layer is made of copper, and heat treatment is performed at a temperature of 150 ° C. to 310 ° C. after the formation of the base metal layer or at least part of the upper metal conductive layer. A manufacturing method of a layered product. 請求項1または2に記載の方法により製造されたフィルム金属積層体の上部導電金属層が選択除去されて回路が形成され、下地金属層が抵抗として用いられていることを特徴とする回路基板。A circuit board, wherein a circuit is formed by selectively removing an upper conductive metal layer of a film metal laminate produced by the method according to claim 1 or 2, and a base metal layer is used as a resistor.
JP2006093222A 2006-03-30 2006-03-30 Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board Active JP4865381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093222A JP4865381B2 (en) 2006-03-30 2006-03-30 Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093222A JP4865381B2 (en) 2006-03-30 2006-03-30 Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board

Publications (2)

Publication Number Publication Date
JP2007262563A JP2007262563A (en) 2007-10-11
JP4865381B2 true JP4865381B2 (en) 2012-02-01

Family

ID=38635819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093222A Active JP4865381B2 (en) 2006-03-30 2006-03-30 Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board

Country Status (1)

Country Link
JP (1) JP4865381B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251082A (en) * 2008-04-02 2009-10-29 Toppan Printing Co Ltd Method for manufacturing electroforming mold and hologram
WO2010140638A1 (en) * 2009-06-05 2010-12-09 古河電気工業株式会社 Metal-clad laminate and method for producing metal-clad laminate
JP5916404B2 (en) * 2012-02-01 2016-05-11 古河電気工業株式会社 Metal-clad laminate, circuit board and manufacturing method thereof
JP6389484B2 (en) * 2016-02-24 2018-09-12 株式会社クラレ Adhesive thermoplastic liquid crystal polymer film, multilayer circuit board, and manufacturing method thereof
US10103095B2 (en) * 2016-10-06 2018-10-16 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
US10923449B2 (en) 2016-10-06 2021-02-16 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
US11069606B2 (en) 2016-10-06 2021-07-20 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect
JP7311838B2 (en) * 2019-09-12 2023-07-20 住友金属鉱山株式会社 Method for manufacturing copper-clad laminate
CN114973952A (en) * 2022-05-26 2022-08-30 华为技术有限公司 Support assembly, preparation method thereof, display screen assembly and electronic equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119607A (en) * 1982-01-08 1983-07-16 株式会社日立製作所 Method of forming resistor
JP3890542B2 (en) * 1997-02-17 2007-03-07 奥野製薬工業株式会社 Method for manufacturing printed wiring board
JP3402238B2 (en) * 1999-01-21 2003-05-06 日立電線株式会社 Tape carrier for semiconductor devices
JP2002374055A (en) * 2001-06-14 2002-12-26 Toray Eng Co Ltd Method of forming metal circuit pattern
JP2003183857A (en) * 2001-12-19 2003-07-03 Hitachi Ltd Etchant and method for manufacturing circuit board therewith
US6767445B2 (en) * 2002-10-16 2004-07-27 Peter Kukanskis Method for the manufacture of printed circuit boards with integral plated resistors
JP4332701B2 (en) * 2003-01-20 2009-09-16 上村工業株式会社 Surface treatment method for printed wiring board
JP3929925B2 (en) * 2003-04-10 2007-06-13 東レエンジニアリング株式会社 Method for producing metal-clad liquid crystal polyester substrate
JP2005060772A (en) * 2003-08-12 2005-03-10 Tokai Rubber Ind Ltd Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP3825790B2 (en) * 2003-10-30 2006-09-27 東海ゴム工業株式会社 Manufacturing method of flexible printed circuit board
JP2005248225A (en) * 2004-03-02 2005-09-15 Meltex Inc Thin high resistance nickel-phosphorus film

Also Published As

Publication number Publication date
JP2007262563A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4865381B2 (en) Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board
JP4283882B2 (en) Method for producing metal-coated polyimide resin substrate with excellent heat aging characteristics
JPS63286580A (en) Metal coated laminate product formed from polyimide film having surface pattern
JP5514897B2 (en) Laminate for flexible wiring
JP2012094918A (en) To-resin adhesive layer on surface of copper, wiring board, and method for forming adhesive layer
TWI664323B (en) Method of forming a metal layer and method of manufacturing a substrate having such metal layer
JP2011014801A (en) Flexible copper-clad laminate, flexible printed wiring board for cof, and method of manufacturing them
EP0281312A2 (en) Textured polyimide film
JP2008078276A (en) Copper-coated polyimide substrate with high heatproof adhesion strength
JP5266925B2 (en) Metallized polyimide film and method for producing the same
JP2012115989A (en) Composite metal foil and method for producing the same, and printed wiring board
JP3933128B2 (en) Resin film with metal foil, resin sheet with metal foil, metal-clad laminate
TW200428920A (en) Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby
JP3265027B2 (en) Polyimide film with metal film
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP4572363B2 (en) Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
JP2004349693A (en) Resin adhesive layer on surface of copper
JP5628106B2 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2007313738A (en) Metal clad plate
JP2006175634A (en) Metal-polyimide substrate
JP2009004588A (en) Copper clad polyimide substrate
JP5255496B2 (en) Metal-clad laminate and method for producing metal-clad laminate
JP2003318532A (en) Flexible printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4865381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350