JP2005060772A - Flexible printed circuit board manufacturing method, and base material for circuit used therefor - Google Patents

Flexible printed circuit board manufacturing method, and base material for circuit used therefor Download PDF

Info

Publication number
JP2005060772A
JP2005060772A JP2003292415A JP2003292415A JP2005060772A JP 2005060772 A JP2005060772 A JP 2005060772A JP 2003292415 A JP2003292415 A JP 2003292415A JP 2003292415 A JP2003292415 A JP 2003292415A JP 2005060772 A JP2005060772 A JP 2005060772A
Authority
JP
Japan
Prior art keywords
plating layer
copper plating
electroless nickel
nickel plating
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292415A
Other languages
Japanese (ja)
Inventor
Naoki Katayama
直樹 片山
Koji Uchino
広治 内野
Toshio Fujita
寿雄 藤田
Toshiyuki Kyo
俊行 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Okuno Chemical Industries Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Okuno Chemical Industries Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003292415A priority Critical patent/JP2005060772A/en
Publication of JP2005060772A publication Critical patent/JP2005060772A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible printed circuit board manufacturing method with which activation of a surface can be omitted when electroless nickel plating is applied to a polyimide resin film, and the adhesion reliability of an electroless nickel plating layer to a copper plating layer deposited on a surface thereof can be enhanced, and a base material for a circuit to be used therefor. <P>SOLUTION: Electroless nickel plating is applied to the surface of a polyimide resin film 1. Electrolytic copper plating or electroless copper plating is applied to the surface of an electroless nickel plating layer 2 while maintaining wetness of the surface of the electroless nickel plating layer 2, and a thin copper plating layer 3 of 0.1-1.0μm thick is deposited thereby to manufacture the base material A for the circuit. Thereafter, a thick electrolytic copper plating layer 4 for forming the circuit is deposited on the surface of the thin copper plating layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フレキシブルプリント基板の製法およびそれに用いられる回路用基材に関するものである。   The present invention relates to a method for producing a flexible printed board and a circuit substrate used therefor.

従来は、フレキシブルプリント基板は、ポリイミド樹脂フィルムの表面に接着剤を介して回路形成用の銅箔を積層した3層基材のものが用いられていた。しかしながら、近年、電子工業の進歩に伴い、高温に耐えるものに対する需要が高まってきているのに対し、上記3層基材のものは、接着剤の耐熱性が低い。そこで、接着剤の使用を取り止め、ポリイミド樹脂フィルムに無電解めっきを施すことにより導電化した後、回路形成用の電解銅めっきを施したものが用いられている。そして、その無電解めっきとしては、ポリイミド(ポリイミド樹脂フィルム)との接着性や回路を形成する銅(電解銅めっき)の熱による拡散移動に対するバリア性の観点から無電解ニッケルめっきが採用されている。   Conventionally, the flexible printed circuit board used the thing of the 3 layer base material which laminated | stacked the copper foil for circuit formation on the surface of the polyimide resin film via the adhesive agent. However, in recent years, with the advancement of the electronics industry, demand for materials that can withstand high temperatures has increased, whereas those of the three-layer base material have low heat resistance of the adhesive. Therefore, after the use of the adhesive is stopped and the polyimide resin film is made electroconductive by electroless plating, an electrolytic copper plating for forming a circuit is applied. And as the electroless plating, electroless nickel plating is adopted from the viewpoints of adhesion to polyimide (polyimide resin film) and barrier property against diffusion movement due to heat of copper (electrolytic copper plating) forming a circuit. .

しかしながら、ニッケル(無電解ニッケルめっき)は、空気中で、比較的短期間に強固な酸化皮膜を表面に形成する。このような、上記無電解ニッケルめっき層の表面に酸化皮膜が形成された状態で、上記電解銅めっきを施すと、酸化皮膜が無電解ニッケルめっき層と電解銅めっき層との接着力を弱め、無電解ニッケルめっき層と電解銅めっき層とが剥離し易くなる。このため、無電解ニッケルめっきを施す場合には、通常、電解銅めっきに先立って、上記酸化皮膜を除去する活性化処理が行われる。この活性化処理としては、例えば、10%の塩酸による処理(特許文献1参照)、次亜塩素酸イオン,亜塩素酸イオン,過塩素酸イオンのうちの少なくとも1種を含む溶液による洗浄(特許文献2参照)、過マンガン酸塩,次亜塩素酸塩,ペルオキソ硫酸塩のうちのいずれか1種を含む水溶液による表面処理(特許文献3参照)等が提案されている。そして、その活性化処理後、例えば、サブトラクティブ工法によりフレキシブルプリント基板が作製される場合には、図11に示すように、まず、無電解ニッケルめっき層2の表面全体に、回路形成用の厚い電解銅めっき層4が形成され、ついで、回路が形成される。なお、図11において、1はポリイミド樹脂フィルムである。
特開昭62−115894号公報(第3頁左下欄第7行目) 特開平5−327207号公報(請求項1) 特開平6−200396号公報(請求項1)
However, nickel (electroless nickel plating) forms a strong oxide film on the surface in a relatively short time in air. When the electrolytic copper plating is performed in such a state that the oxide film is formed on the surface of the electroless nickel plating layer, the oxide film weakens the adhesive force between the electroless nickel plating layer and the electrolytic copper plating layer, The electroless nickel plating layer and the electrolytic copper plating layer are easily peeled off. For this reason, when performing electroless nickel plating, the activation process which removes the said oxide film is normally performed prior to electrolytic copper plating. As this activation treatment, for example, treatment with 10% hydrochloric acid (see Patent Document 1), washing with a solution containing at least one of hypochlorite ion, chlorite ion and perchlorate ion (patent) Reference 2), surface treatment with an aqueous solution containing any one of permanganate, hypochlorite, and peroxosulfate (see Patent Document 3) has been proposed. Then, after the activation treatment, for example, when a flexible printed circuit board is manufactured by a subtractive construction method, as shown in FIG. 11, first, the entire surface of the electroless nickel plating layer 2 is thick for circuit formation. An electrolytic copper plating layer 4 is formed, and then a circuit is formed. In FIG. 11, 1 is a polyimide resin film.
Japanese Patent Application Laid-Open No. Sho 62-115894 (page 3, lower left column, line 7) JP-A-5-327207 (Claim 1) Japanese Patent Laid-Open No. 6-200396 (Claim 1)

このように、ポリイミド樹脂フィルム1に無電解ニッケルめっきを施す場合には、通常、その後の回路形成のための電解銅めっきに先立って、前記酸化皮膜を除去する活性化処理工程が必要となる。しかしながら、この活性化処理工程は、腐食性の高い酸を使用するため、作業性や廃液処理において難点がある。   Thus, when electroless nickel plating is performed on the polyimide resin film 1, an activation treatment step for removing the oxide film is usually required prior to subsequent electrolytic copper plating for circuit formation. However, since this activation treatment process uses a highly corrosive acid, there are difficulties in workability and waste liquid treatment.

また、無電解ニッケルめっきの表面の酸化皮膜が強固であったり一様でなかったりする状態では、上記活性化処理では酸化皮膜が充分に除去されないことがあり、無電解ニッケルめっき層2と電解銅めっき層4との剥離を完全に防止できないことがある。   Further, when the oxide film on the surface of the electroless nickel plating is strong or uneven, the activation treatment may not sufficiently remove the oxide film, and the electroless nickel plating layer 2 and the electrolytic copper may not be removed. In some cases, peeling from the plating layer 4 cannot be completely prevented.

本発明は、このような事情に鑑みなされたもので、ポリイミド樹脂フィルムに無電解ニッケルめっきを施す場合において、その表面に対する活性化処理を不要にし、さらに無電解ニッケルめっき層とその表面に形成される銅めっき層との接着信頼性を高めることができるフレキシブルプリント基板の製法およびそれに用いられる回路用基材の提供をその目的とする。   The present invention has been made in view of such circumstances. In the case where electroless nickel plating is applied to a polyimide resin film, the activation treatment for the surface is unnecessary, and the electroless nickel plating layer and the surface thereof are formed. It is an object of the present invention to provide a method for producing a flexible printed board capable of enhancing the reliability of adhesion to a copper plating layer and a circuit substrate used therefor.

上記の目的を達成するため、本発明は、ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施し、その無電解ニッケルめっき層の表面に回路形成用の電解銅めっきを施す工程を備えたフレキシブルプリント基板の製法において、上記ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施した後、その無電解ニッケルめっき層の表面の湿潤を保持した状態で、上記無電解ニッケルめっき層の表面に電解銅めっきを施すことにより厚み0.1〜1.0μmの薄い銅めっき層を形成し、その後、この薄い銅めっき層の表面に回路形成用の電解銅めっきを施すフレキシブルプリント基板の製法を第1の要旨とし、その製法に用いられ、ポリイミド樹脂フィルムと、このポリイミド樹脂フィルムの表面に形成されたニッケルめっき層と、このニッケルめっき層の表面に形成された厚み0.1〜1.0μmの薄い銅めっき層とを備えている回路用基材を第2の要旨とする。   In order to achieve the above object, the present invention provides a flexible printed circuit board comprising the steps of applying electroless nickel plating to the surface of a polyimide resin film and applying electrolytic copper plating for circuit formation to the surface of the electroless nickel plating layer In this manufacturing method, after electroless nickel plating is applied to the surface of the polyimide resin film, electrolytic copper plating is applied to the surface of the electroless nickel plating layer while keeping the surface wet of the electroless nickel plating layer. By forming a thin copper plating layer having a thickness of 0.1 to 1.0 μm by the above process, and then, as a first gist, a method for producing a flexible printed board in which electrolytic copper plating for circuit formation is applied to the surface of the thin copper plating layer, A polyimide resin film, a nickel plating layer formed on the surface of the polyimide resin film, The circuit substrate and a thin copper-plated layer of 0.1~1.0μm thickness formed on the surface of the nickel plating layer and a second gist.

すなわち、本発明のフレキシブルプリント基板の製法では、ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施した後、その無電解ニッケルめっき層の表面の湿潤を保持した状態で、上記無電解ニッケルめっき層の表面に薄い銅めっき層を形成するための電解銅めっきを施すため、無電解ニッケルめっき層の表面に上記薄い銅めっき層が形成されるまで、その無電解ニッケルめっき層の表面は、殆ど空気に触れることがなく、その表面に、殆ど酸化皮膜が形成されない。このため、その酸化皮膜を除去する活性化処理が不要になる。また、上記酸化皮膜が殆ど形成されないことから、上記薄い銅めっき層は、無電解ニッケルめっき層と強固に接着し、実用上剥離することがない。さらに、上記薄い銅めっき層とその表面に形成される回路形成用の厚い銅めっき層とは、強固に接着し、実用上剥離することがない。したがって、上記無電解ニッケルめっき層と薄い銅めっき層との接着信頼性も、薄い銅めっき層と回路形成用の厚い銅めっき層との接着信頼性も、高いものとなる。また、上記薄い銅めっき層は、厚みが0.1〜1.0μmであるため、その薄い銅めっきの完了後の乾燥工程等において、ポリイミド樹脂フィルム内に含まれた水分が蒸発し易くなっている。さらに、その薄い銅めっき層の形成により、通電性も向上するため、後の回路形成用の厚い銅めっき層の形成が容易になるとともに短時間化できる。   That is, in the method for producing a flexible printed board of the present invention, after electroless nickel plating is performed on the surface of the polyimide resin film, the surface of the electroless nickel plating layer is maintained in a state where the surface of the electroless nickel plating layer is kept wet. In order to apply electrolytic copper plating to form a thin copper plating layer on the surface, until the thin copper plating layer is formed on the surface of the electroless nickel plating layer, the surface of the electroless nickel plating layer is hardly exposed to air. There is no touch, and almost no oxide film is formed on the surface. For this reason, the activation process which removes the oxide film becomes unnecessary. Moreover, since the said oxide film is hardly formed, the said thin copper plating layer adheres firmly with an electroless nickel plating layer, and does not peel practically. Further, the thin copper plating layer and the thick copper plating layer for circuit formation formed on the surface thereof are firmly bonded and practically do not peel off. Therefore, the adhesion reliability between the electroless nickel plating layer and the thin copper plating layer and the adhesion reliability between the thin copper plating layer and the thick copper plating layer for circuit formation are also high. In addition, since the thin copper plating layer has a thickness of 0.1 to 1.0 μm, moisture contained in the polyimide resin film easily evaporates in a drying process after the completion of the thin copper plating. Yes. Furthermore, since the electric conductivity is improved by forming the thin copper plating layer, it is easy to form a thick copper plating layer for forming a circuit later, and the time can be shortened.

本発明のフレキシブルプリント基板の製法によれば、ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施した後、その無電解ニッケルめっき層の表面の湿潤を保持した状態で、上記無電解ニッケルめっき層の表面に薄い銅めっき層を形成するための電解銅めっきを施すため、無電解ニッケルめっき層の表面に酸化皮膜が殆ど形成されないようにすることができる。このため、その酸化皮膜を除去する活性化処理を不要にすることができ、フレキシブルプリント基板の製造工程を簡略化することができる。また、上記酸化皮膜が殆ど形成されないことから、上記無電解ニッケルめっき層と薄い銅めっき層とを、実用上剥離することがないように、強固に接着することができる。さらに、上記薄い銅めっき層とその表面に形成される回路形成用の厚い銅めっき層とも、実用上剥離することがないように、強固に接着することができる。したがって、上記無電解ニッケルめっき層と薄い銅めっき層との接着信頼性も、薄い銅めっき層と回路形成用の厚い銅めっき層との接着信頼性も、高いものとすることができる。また、上記銅めっき層の厚みを0.1〜1.0μmの範囲で薄くすることにより、ポリイミド樹脂フィルム内に含まれた水分を蒸発させ易くすることができる。そして、その薄い銅めっき層の形成により、通電性も向上するため、後の回路形成用の厚い銅めっき層の形成が容易になるとともに短時間化できる。   According to the method for producing a flexible printed board of the present invention, after electroless nickel plating is performed on the surface of the polyimide resin film, the surface of the electroless nickel plating layer is maintained in a state where the surface of the electroless nickel plating layer is kept wet. Since electrolytic copper plating for forming a thin copper plating layer on the surface is performed, an oxide film can be hardly formed on the surface of the electroless nickel plating layer. For this reason, the activation process which removes the oxide film can be made unnecessary, and the manufacturing process of a flexible printed circuit board can be simplified. Moreover, since the said oxide film is hardly formed, the said electroless nickel plating layer and a thin copper plating layer can be firmly adhere | attached so that it may not peel practically. Furthermore, the thin copper plating layer and the thick copper plating layer for circuit formation formed on the surface of the thin copper plating layer can be firmly bonded so that they are not practically peeled off. Therefore, the adhesion reliability between the electroless nickel plating layer and the thin copper plating layer and the adhesion reliability between the thin copper plating layer and the thick copper plating layer for circuit formation can be improved. Moreover, the water | moisture content contained in the polyimide resin film can be made easy to evaporate by making the thickness of the said copper plating layer thin in the range of 0.1-1.0 micrometer. And since the electroconductivity is improved by the formation of the thin copper plating layer, it is easy to form a thick copper plating layer for forming a circuit later, and the time can be shortened.

特に、上記薄い銅めっき層を形成するための電解銅めっきが、pH7.0〜10.0の範囲の電解銅めっき浴を用いて行われる場合には、ポリイミド樹脂フィルムと無電解ニッケルめっき層との間の熱負荷後の剥離強度をより高めることができる。   In particular, when the electrolytic copper plating for forming the thin copper plating layer is performed using an electrolytic copper plating bath having a pH in the range of 7.0 to 10.0, a polyimide resin film, an electroless nickel plating layer, It is possible to further increase the peel strength after the heat load between.

また、上記薄い銅めっき層を形成した後、回路形成用の電解銅めっきに先立って、80〜100℃の範囲内で熱処理する場合には、ポリイミド樹脂フィルム内に含まれた水分を短時間で蒸発させることができる。さらに、上記熱処理により、ポリイミド樹脂フィルムと無電解ニッケルめっき層との界面をより安定化させることができるとともに、無電解ニッケルめっき層および薄い銅めっき層をもより安定化させ、両めっき層間の接着力をより強固にすることができる。   In addition, after forming the thin copper plating layer, prior to electrolytic copper plating for circuit formation, when heat treatment is performed within the range of 80 to 100 ° C., moisture contained in the polyimide resin film can be quickly removed. Can be evaporated. Furthermore, the heat treatment can further stabilize the interface between the polyimide resin film and the electroless nickel plating layer, and also stabilize the electroless nickel plating layer and the thin copper plating layer, thereby allowing adhesion between the two plating layers. Power can be strengthened.

また、本発明の回路用基材によれば、ポリイミド樹脂フィルムと、このポリイミド樹脂フィルムの表面に形成されたニッケルめっき層と、このニッケルめっき層の表面に形成された厚み0.1〜1.0μmの薄い銅めっき層とを備えているため、フレキシブルプリント基板の製法において、本発明の回路用基材を用いれば、回路形成用の厚い電解銅めっきに先立つ活性化処理を不要にすることができ、フレキシブルプリント基板の製造工程を簡略化することができる。さらに、上記薄い銅めっき層の表面に、回路形成用の厚い銅めっき層を強固に接着させることができる。   Moreover, according to the base material for circuits of this invention, the polyimide resin film, the nickel plating layer formed in the surface of this polyimide resin film, and the thickness 0.1-1. Since a 0 μm thin copper plating layer is provided, if a substrate for a circuit of the present invention is used in a method for producing a flexible printed circuit board, an activation process prior to thick electrolytic copper plating for circuit formation may be eliminated. It is possible to simplify the manufacturing process of the flexible printed circuit board. Furthermore, a thick copper plating layer for circuit formation can be firmly adhered to the surface of the thin copper plating layer.

つぎに、本発明を図面にもとづいて詳しく説明する。   Next, the present invention will be described in detail with reference to the drawings.

図1〜図6は、本発明のフレキシブルプリント基板の製法の一実施の形態を示している。このフレキシブルプリント基板の製法は、ポリイミド樹脂フィルム1の表面に無電解ニッケルめっきを施し、その無電解ニッケルめっき層2の表面に回路形成用の電解銅めっきを施す工程を備えたフレキシブルプリント基板の製法において、無電解ニッケルめっき層2の表面に酸化皮膜が形成されるのを防止することにより、酸化皮膜を除去する活性化処理を不要にし、回路形成用の厚い銅めっき層4の接着信頼性を高める製法である。以下、この製法を説明する。   1-6 has shown one Embodiment of the manufacturing method of the flexible printed circuit board of this invention. The manufacturing method of this flexible printed circuit board includes the steps of applying electroless nickel plating to the surface of the polyimide resin film 1 and applying electrolytic copper plating for circuit formation to the surface of the electroless nickel plating layer 2. In FIG. 2, the formation of an oxide film on the surface of the electroless nickel plating layer 2 is prevented, thereby eliminating the need for an activation process for removing the oxide film, and improving the adhesion reliability of the thick copper plating layer 4 for circuit formation. It is a manufacturing method that enhances. Hereinafter, this production method will be described.

まず、ポリイミド樹脂フィルム1の表面を表面処理する。この表面処理は、通常、アルカリ金属水酸化物を用いて行われ、そのアルカリ金属水酸化物としては、特に限定されるものではなく、水酸化ナトリウム,水酸化カリウム等があげられる。また、上記表面処理に先立って、ポリイミド樹脂フィルム1の表面をプラズマ処理または短波長紫外線処理してもよい。このようにプラズマ処理等すると、アルカリ金属水酸化物による表面処理が効率的かつ均一に行われ、その表面処理を軽度(低いアルカリ濃度,低い処理温度,短い処理時間)にすることができる。これにより、アルカリに弱いポリイミド樹脂フィルム1に対する影響を少なくすることができる。   First, the surface of the polyimide resin film 1 is surface-treated. This surface treatment is usually performed using an alkali metal hydroxide, and the alkali metal hydroxide is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide. Further, prior to the surface treatment, the surface of the polyimide resin film 1 may be subjected to plasma treatment or short wavelength ultraviolet treatment. When plasma treatment or the like is performed in this manner, surface treatment with an alkali metal hydroxide is performed efficiently and uniformly, and the surface treatment can be light (low alkali concentration, low treatment temperature, short treatment time). Thereby, the influence with respect to the polyimide resin film 1 weak to an alkali can be decreased.

ついで、そのポリイミド樹脂フィルム1の表面に金属触媒を付与した後、還元剤を用いて還元処理する。上記金属触媒としては、特に限定されるものではなく、通常用いられるパラジウム,白金があげられる。また、上記還元剤としては、特に限定されるものではなく、次亜リン酸ナトリウム,水素化ホウ素ナトリウム,ジメチルアミンボラン等があげられる。   Next, after applying a metal catalyst to the surface of the polyimide resin film 1, reduction treatment is performed using a reducing agent. The metal catalyst is not particularly limited, and commonly used palladium and platinum are exemplified. The reducing agent is not particularly limited, and examples thereof include sodium hypophosphite, sodium borohydride, dimethylamine borane and the like.

つぎに、図1に示すように、そのポリイミド樹脂フィルム1の表面に無電解ニッケルめっきを施す。この無電解ニッケルめっきは、例えばアルカリニッケル液を用いて行われ、形成される無電解ニッケルめっき層2の厚みは、通常0.05〜0.3μm程度の範囲になるように設定される。無電解ニッケルめっき層2の厚みが0.05μmよりも薄いと熱負荷後の接着力低下が大きくなり、0.3μmよりも厚いと、生産性が低下するとともに、後で詳しく説明するように、ポリイミド樹脂フィルム1内に含まれた水分の蒸発が困難となる。   Next, as shown in FIG. 1, the surface of the polyimide resin film 1 is subjected to electroless nickel plating. This electroless nickel plating is performed using, for example, an alkaline nickel solution, and the thickness of the formed electroless nickel plating layer 2 is usually set to be in the range of about 0.05 to 0.3 μm. When the thickness of the electroless nickel plating layer 2 is less than 0.05 μm, the decrease in adhesive strength after heat load increases, and when it is greater than 0.3 μm, the productivity decreases, and as described in detail later, Evaporation of moisture contained in the polyimide resin film 1 becomes difficult.

そして、上記無電解ニッケルめっきを終えると、アルカリニッケル液から取り出し、形成された無電解ニッケルめっき層2の表面がアルカリニッケル液で湿潤した状態のまま水洗する。そして、その水洗を終えると、上記無電解ニッケルめっき層2の表面が水で湿潤した状態のまま、電解銅めっき浴に浸ける。そして、図2に示すように、電解銅めっきを施し、厚み0.1〜1.0μmの薄い銅めっき層3を形成する。その薄い銅めっき層3の厚みが0.1μmよりも薄いと無電解ニッケルめっき層2が銅によって均一に被覆されず、1.0μmよりも厚いとポリイミド樹脂フィルム1内に含まれた水分の蒸発が困難となり、ポリイミド樹脂フィルム1と無電解ニッケルめっき層2との接着性が低下する。このように、無電解ニッケルめっき層2が形成された後は、その表面は、湿潤を保持したまま薄い銅めっき層3が形成されるため、無電解ニッケルめっき層2の表面には、酸化皮膜が形成されない。   When the electroless nickel plating is finished, the electroless nickel solution is taken out from the alkaline nickel solution and washed with water while the surface of the formed electroless nickel plating layer 2 is wet with the alkaline nickel solution. Then, when the washing with water is finished, the surface of the electroless nickel plating layer 2 is immersed in an electrolytic copper plating bath while being wet with water. Then, as shown in FIG. 2, electrolytic copper plating is performed to form a thin copper plating layer 3 having a thickness of 0.1 to 1.0 μm. When the thickness of the thin copper plating layer 3 is less than 0.1 μm, the electroless nickel plating layer 2 is not uniformly coated with copper, and when the thickness is more than 1.0 μm, the moisture contained in the polyimide resin film 1 is evaporated. It becomes difficult, and the adhesiveness of the polyimide resin film 1 and the electroless nickel plating layer 2 falls. Thus, after the electroless nickel plating layer 2 is formed, the surface of the electroless nickel plating layer 2 is formed with a thin copper plating layer 3 while maintaining its wetness. Is not formed.

上記電解銅めっき浴としては、特に限定されないが、無電解ニッケルめっき層2が形成された直後に薄い銅めっき層3を形成する場合に、ポリイミド樹脂フィルム1と無電解ニッケルめっき層2との間の熱負荷後の剥離強度(耐熱接着強度)がより高くなる観点から、pH7.0〜10.0の範囲の電解銅めっき浴であることが好ましい。このpH7.0〜10.0の範囲の電解銅めっき浴としては、ピロリン酸銅浴,シアン化銅浴,硫酸銅EDTA錯体浴等があげられる。pHが7.0を下回る酸性領域のめっき浴(硫酸銅浴,ホウフッ化銅浴等)では、無電解ニッケルめっき層2が析出直後で不安定なため溶解し易く、pHが10.0を上回る領域のめっき浴(無電解銅めっき浴等)では、無電解ニッケルめっき層2界面近傍のポリイミド樹脂フィルム1からのポリイミドが溶解し易く、いずれの場合もより高い耐熱接着強度が得られなくなる傾向にあるからである。   Although it does not specifically limit as said electrolytic copper plating bath, When forming thin copper plating layer 3 immediately after electroless nickel plating layer 2 is formed, it is between polyimide resin film 1 and electroless nickel plating layer 2. From the viewpoint of increasing the peel strength (heat resistant adhesive strength) after the thermal load, it is preferable that the electrolytic copper plating bath has a pH in the range of 7.0 to 10.0. Examples of the electrolytic copper plating bath having a pH in the range of 7.0 to 10.0 include a copper pyrophosphate bath, a copper cyanide bath, a copper sulfate EDTA complex bath, and the like. In acidic baths where the pH is lower than 7.0 (copper sulfate bath, copper borofluoride bath, etc.), the electroless nickel plating layer 2 is unstable immediately after deposition and is easily dissolved, and the pH exceeds 10.0. In a plating bath (such as an electroless copper plating bath) in the region, the polyimide from the polyimide resin film 1 in the vicinity of the interface of the electroless nickel plating layer 2 is easily dissolved, and in either case, a higher heat-resistant adhesive strength tends not to be obtained. Because there is.

つぎに、上記電解銅めっき浴から取り出し、乾燥させる。この乾燥により、ポリイミド樹脂フィルム1内に含まれた水分を蒸発させる。この蒸発が可能となる理由は、ポリイミド樹脂フィルム1表面の無電解ニッケルめっき層2および薄い銅めっき層3の厚みが薄く、各めっき層では多数の微細孔が貫通した状態になっているから、ポリイミド樹脂フィルム1内に含まれた水分は、無電解ニッケルめっき層2の微細孔および薄い銅めっき層3の微細孔を通り外部に放散されるのである。また、上記蒸発を短時間で完了させるために、上記乾燥の際に、熱処理してもよい。この熱処理は、80〜100℃の範囲内で行われることが好ましい。熱処理の温度が80℃を下回ると、熱処理の効率が悪化する傾向にあり、100℃を上回ると、薄い銅めっき層3の酸化が大きく進行するからである。この80〜100℃の熱処理により、薄い銅めっき層3の表面には、酸化皮膜が形成されるが、その酸化皮膜は、強固なものではなく、次工程の回路形成用の電解銅めっき浴中で簡単に除去される。また、熱処理の時間は、特に限定されないが、通常、1〜3時間程度である。そして、上記熱処理により、ポリイミド樹脂フィルム1と無電解ニッケルめっき層2との界面をより安定化させることができるとともに、無電解ニッケルめっき層2および薄い銅めっき層3をもより安定化させ、両めっき層間の接着力をより強固にすることができる。   Next, it is taken out from the electrolytic copper plating bath and dried. The moisture contained in the polyimide resin film 1 is evaporated by this drying. The reason that this evaporation is possible is because the thickness of the electroless nickel plating layer 2 and the thin copper plating layer 3 on the surface of the polyimide resin film 1 is thin, and in each plating layer, a large number of fine holes are penetrated. The moisture contained in the polyimide resin film 1 is diffused to the outside through the micropores of the electroless nickel plating layer 2 and the micropores of the thin copper plating layer 3. Moreover, in order to complete the said evaporation in a short time, you may heat-process in the case of the said drying. This heat treatment is preferably performed within a range of 80 to 100 ° C. This is because if the temperature of the heat treatment is less than 80 ° C., the efficiency of the heat treatment tends to deteriorate, and if it exceeds 100 ° C., the oxidation of the thin copper plating layer 3 proceeds greatly. By this heat treatment at 80 to 100 ° C., an oxide film is formed on the surface of the thin copper plating layer 3, but the oxide film is not strong and is in an electrolytic copper plating bath for circuit formation in the next step. Easy to remove. Moreover, although the time of heat processing is not specifically limited, Usually, it is about 1-3 hours. The heat treatment can further stabilize the interface between the polyimide resin film 1 and the electroless nickel plating layer 2, and can further stabilize the electroless nickel plating layer 2 and the thin copper plating layer 3. The adhesive force between the plating layers can be further strengthened.

このようにして、図2に示すような、ポリイミド樹脂フィルム1と、無電解ニッケルめっき層2と、薄い銅めっき層3とからなる回路用基材Aが作製される。   In this way, a circuit substrate A composed of the polyimide resin film 1, the electroless nickel plating layer 2, and the thin copper plating layer 3 as shown in FIG.

そして、この回路用基材Aが用いられ、フレキシブルプリント基板が作製される。例えば、サブトラクティブ工法によりフレキシブルプリント基板が作製される場合には、まず、図3に示すように、上記回路用基材Aの薄い銅めっき層3の表面全体に、回路形成用の厚い(厚み5〜20μm程度)電解銅めっきを施す。ついで、図4に示すように、その厚い銅めっき層4の表面において、レジスト5を用いて回路のパターニングを行った後、図5に示すように、レジスト5で覆われていない部分の厚い銅めっき層4,薄い銅めっき層3および無電解ニッケルめっき層2をエッチングにより削除する。そして、図6に示すように、レジスト5を除去し、回路を現す。このようにして、上記回路用基材Aを用い、フレキシブルプリント基板を作製することができる。   And this base material A for circuits is used, and a flexible printed circuit board is produced. For example, when a flexible printed circuit board is manufactured by a subtractive construction method, first, as shown in FIG. 3, a thick (thickness for circuit formation) is formed on the entire surface of the thin copper plating layer 3 of the circuit substrate A. Electrolytic copper plating is applied. Next, as shown in FIG. 4, after patterning the circuit using the resist 5 on the surface of the thick copper plating layer 4, as shown in FIG. The plating layer 4, the thin copper plating layer 3 and the electroless nickel plating layer 2 are removed by etching. Then, as shown in FIG. 6, the resist 5 is removed to reveal a circuit. In this way, a flexible printed circuit board can be produced using the circuit substrate A.

他の方法として、セミアディティブ工法による場合には、まず、図7に示すように、上記回路用基材Aの薄い銅めっき層3の表面において、レジスト5を用いて回路のパターニングを行った後、図8に示すように、レジスト5で覆われていない部分に回路形成用の厚い電解銅めっきを施し、厚い銅めっき層4を形成する。ついで、図9に示すように、レジスト5を除去した後、図10に示すように、レジスト5で覆われていた部分の薄い銅めっき層3および無電解ニッケルめっき層2をソフトエッチングにより削除し、回路を現す。このようにしても、上記回路用基材Aを用い、フレキシブルプリント基板を作製することができる。   As another method, in the case of the semi-additive method, first, as shown in FIG. 7, after patterning the circuit using the resist 5 on the surface of the thin copper plating layer 3 of the circuit substrate A, As shown in FIG. 8, thick electrolytic copper plating for circuit formation is applied to a portion not covered with the resist 5 to form a thick copper plating layer 4. Next, as shown in FIG. 9, after removing the resist 5, as shown in FIG. 10, the thin copper plating layer 3 and the electroless nickel plating layer 2 covered with the resist 5 are removed by soft etching. , Reveal the circuit. Even if it does in this way, a flexible printed circuit board can be produced using the above-mentioned substrate A for circuits.

このようなフレキシブルプリント基板の製法によれば、上記回路用基材Aの作製の際に、無電解ニッケルめっき層2の表面に酸化皮膜が形成されないため、酸化皮膜を除去する活性化処理が不要になる。このため、無電解ニッケルめっき工程と銅めっき工程との連続性が容易となる。その結果、生産性が向上し、生産コストを低減することができる。さらに、無電解ニッケルめっき層2の表面の薄い銅めっき層3は、乾燥させても、その表面に強固な酸化皮膜が形成されなく、また、厚みが薄い(0.1〜1.0μm)ため、その乾燥において、ポリイミド樹脂フィルム1内に含まれた水分を蒸発させ易い。   According to such a method for producing a flexible printed circuit board, an oxide film is not formed on the surface of the electroless nickel plating layer 2 when the substrate A for circuit is produced, so that an activation process for removing the oxide film is unnecessary. become. For this reason, the continuity with an electroless nickel plating process and a copper plating process becomes easy. As a result, productivity can be improved and production cost can be reduced. Furthermore, the thin copper plating layer 3 on the surface of the electroless nickel plating layer 2 does not form a strong oxide film on the surface even when dried, and is thin (0.1 to 1.0 μm). In the drying, moisture contained in the polyimide resin film 1 is easily evaporated.

そして、回路形成用の電解銅めっきを施す際には、無電解ニッケルめっき層2の表面に薄い銅めっき層3が形成されているため、通電性もよく、その表面に回路形成用の厚い銅めっき層4を形成し易い。しかも、ニッケルは電気抵抗が大きいため、無電解ニッケルめっき層2のみでは電流密度が高められず、生産性は高くないが、その表面に薄い銅めっき層3が形成されていると、その銅は電気抵抗が低いため、電流密度を高めることができ、短時間で厚い銅めっき層4を形成することができるようになる。このため、生産性が向上し、生産コストを低減することができる。また、無電解ニッケルめっき層2と薄い銅めっき層3とは強固に接着しており、厚い銅めっき層4を形成する際には、薄い銅めっき層3の表面の酸化皮膜は、その電解銅めっき浴中で除去される。このため、厚い銅めっき層4を形成した後でも、無電解ニッケルめっき層2と薄い銅めっき層3との間の剥離および薄い銅めっき層3と厚い銅めっき層4との間の剥離は発生せず、安定した回路形成が可能となる。   And when performing electrolytic copper plating for circuit formation, since the thin copper plating layer 3 is formed on the surface of the electroless nickel plating layer 2, the electroconductivity is good, and thick copper for circuit formation is formed on the surface. It is easy to form the plating layer 4. Moreover, since nickel has a large electric resistance, the current density cannot be increased only by the electroless nickel plating layer 2 and the productivity is not high. However, when the thin copper plating layer 3 is formed on the surface, the copper is Since the electric resistance is low, the current density can be increased and the thick copper plating layer 4 can be formed in a short time. For this reason, productivity can be improved and production cost can be reduced. In addition, the electroless nickel plating layer 2 and the thin copper plating layer 3 are firmly bonded, and when the thick copper plating layer 4 is formed, the oxide film on the surface of the thin copper plating layer 3 is the electrolytic copper. It is removed in the plating bath. Therefore, even after the thick copper plating layer 4 is formed, peeling between the electroless nickel plating layer 2 and the thin copper plating layer 3 and peeling between the thin copper plating layer 3 and the thick copper plating layer 4 occur. Thus, a stable circuit can be formed.

つぎに、実施例について比較例と併せて説明する。   Next, examples will be described together with comparative examples.

〔実施例1〕
下記に示すようにして、回路用基材を作製し、その回路用基材に回路形成用の厚い電解銅めっきを施すことにより、銅めっき基板を得た。
[Example 1]
As shown below, a circuit board was prepared, and a thick electrolytic copper plating for circuit formation was applied to the circuit board to obtain a copper plated substrate.

〔表面処理〕
まず、20cm×20cmのポリイミド樹脂フィルム(東レ・デュポン社製、カプトン100EN)を、200g/リットルの水酸化ナトリウム水溶液を用いて25℃で5分間表面処理した。
〔surface treatment〕
First, a 20 cm × 20 cm polyimide resin film (manufactured by Toray DuPont, Kapton 100EN) was surface-treated at 25 ° C. for 5 minutes using a 200 g / liter sodium hydroxide aqueous solution.

〔触媒付与および還元処理〕
つづいて、OPC−50インデューサー(奥野製薬工業社製)にて40℃で5分間処理することにより、触媒付与を行った後、OPC−150クリスター(奥野製薬工業社製)にて25℃で5分間処理することにより、還元処理を行った。
[Catalyst application and reduction treatment]
Subsequently, the catalyst was applied by treating with an OPC-50 inducer (Okuno Pharmaceutical Co., Ltd.) for 5 minutes at 40 ° C., and then at 25 ° C. with an OPC-150 crystalr (Okuno Pharmaceutical Co., Ltd.). Reduction treatment was performed by treating for 5 minutes.

〔無電解ニッケルめっきおよび薄い銅めっき〕
つづいて、アルカリニッケル液(奥野製薬工業社製、TMP−化学ニッケル)にて40℃で5分間無電解ニッケルめっきを行い、厚み0.2μmの無電解ニッケルめっき層を形成した。つづいて、その無電解ニッケルめっき層の表面がアルカリニッケル液で湿潤した状態のまま水洗し、その後、その表面が水で湿潤した状態のまま、pH8.8のピロリン酸銅浴(組成は、ピロリン酸銅:94g/リットル,ピロリン酸カリウム:340g/リットル,28%アンモニア水:3mリットル/リットル)に浸ける。そして、電流密度1A/dm2 で電解銅めっき(55℃×2分間)を行い、厚み0.2μmの薄い銅めっき層を形成した。
[Electroless nickel plating and thin copper plating]
Subsequently, electroless nickel plating was performed at 40 ° C. for 5 minutes with an alkaline nickel solution (TMP-chemical nickel, manufactured by Okuno Pharmaceutical Co., Ltd.) to form an electroless nickel plating layer having a thickness of 0.2 μm. Subsequently, the surface of the electroless nickel plating layer was washed with water while the surface was wet with an alkaline nickel solution, and then the copper pyrophosphate bath having a pH of 8.8 (the composition was pyrroline) while the surface was wet with water. Acid copper: 94 g / liter, potassium pyrophosphate: 340 g / liter, 28% aqueous ammonia: 3 ml / liter). Then, electrolytic copper plating (55 ° C. × 2 minutes) was performed at a current density of 1 A / dm 2 to form a thin copper plating layer having a thickness of 0.2 μm.

〔熱処理〕
つづいて、乾燥オーブンにて100℃で2時間熱処理を行った。このようにして、回路用基材を作製した。
〔Heat treatment〕
Subsequently, heat treatment was performed in a drying oven at 100 ° C. for 2 hours. In this way, a circuit substrate was produced.

〔回路形成用の厚い電解銅めっき〕
つづいて、その回路用基材に対して、活性化処理を行うことなく、硫酸銅めっき浴にて電流密度2A/dm2 で50分間電解銅めっきを行い、上記薄い銅めっき層の表面に厚み20μmの回路形成用の厚い銅めっき層を形成した。
[Thick electrolytic copper plating for circuit formation]
Subsequently, electrolytic copper plating was performed for 50 minutes at a current density of 2 A / dm 2 in a copper sulfate plating bath on the surface of the thin copper plating layer without performing activation treatment on the circuit substrate. A thick copper plating layer for circuit formation of 20 μm was formed.

〔実施例2〕
上記実施例1と同様にして薄い銅めっき層を形成した後は、熱処理を行わずに、常温(25℃)にて1日放置した。そして、その後、上記実施例1と同様にして、硫酸銅めっき浴にて回路形成用の厚い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
[Example 2]
After forming a thin copper plating layer in the same manner as in Example 1, the film was left at room temperature (25 ° C.) for 1 day without performing heat treatment. Thereafter, a thick copper plating layer for circuit formation was formed in a copper sulfate plating bath in the same manner as in Example 1. Other than that, it was the same as in Example 1 above.

〔実施例3〕
上記実施例1の薄い銅めっき層の形成において、ピロリン酸銅浴に代えて、pH1.0の硫酸銅めっき浴を用い、電流密度1A/dm2 で電解銅めっき(25℃×2分間)を行った。そして、厚み0.2μmの薄い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
Example 3
In the formation of the thin copper plating layer of Example 1 above, instead of the copper pyrophosphate bath, electrolytic copper plating (25 ° C. × 2 minutes) was performed at a current density of 1 A / dm 2 using a copper sulfate plating bath having a pH of 1.0. went. Then, a thin copper plating layer having a thickness of 0.2 μm was formed. Other than that, it was the same as in Example 1 above.

〔実施例4〕
上記実施例1の薄い銅めっき層の形成において、ピロリン酸銅浴をpH6.0に調製し、電流密度1A/dm2 で電解銅めっき(55℃×2分間)を行った。そして、厚み0.2μmの薄い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
Example 4
In the formation of the thin copper plating layer in Example 1, the copper pyrophosphate bath was adjusted to pH 6.0, and electrolytic copper plating (55 ° C. × 2 minutes) was performed at a current density of 1 A / dm 2 . Then, a thin copper plating layer having a thickness of 0.2 μm was formed. Other than that, it was the same as in Example 1 above.

〔実施例5〕
上記実施例1の薄い銅めっき層の形成において、ピロリン酸銅浴をpH7.0に調製し、電流密度1A/dm2 で電解銅めっき(55℃×2分間)を行った。そして、厚み0.2μmの薄い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
Example 5
In the formation of the thin copper plating layer in Example 1, the copper pyrophosphate bath was adjusted to pH 7.0, and electrolytic copper plating (55 ° C. × 2 minutes) was performed at a current density of 1 A / dm 2 . Then, a thin copper plating layer having a thickness of 0.2 μm was formed. Other than that, it was the same as in Example 1 above.

〔実施例6〕
上記実施例1の薄い銅めっき層の形成において、ピロリン酸銅浴をpH10.0に調製し、電流密度1A/dm2 で電解銅めっき(55℃×2分間)を行った。そして、厚み0.2μmの薄い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
Example 6
In the formation of the thin copper plating layer in Example 1, the copper pyrophosphate bath was adjusted to pH 10.0, and electrolytic copper plating (55 ° C. × 2 minutes) was performed at a current density of 1 A / dm 2 . Then, a thin copper plating layer having a thickness of 0.2 μm was formed. Other than that, it was the same as in Example 1 above.

〔実施例7〕
上記実施例1の薄い銅めっき層の形成において、ピロリン酸銅浴を用いた電解銅めっきに代えて、pH12.5のホルムアルデヒド浴(無電解銅めっき浴)を用い、無電解銅めっき(40℃×6分間)を行った。そして、厚み0.1μmの薄い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
Example 7
In the formation of the thin copper plating layer of Example 1 above, instead of electrolytic copper plating using a copper pyrophosphate bath, a formaldehyde bath (electroless copper plating bath) having a pH of 12.5 was used, and electroless copper plating (40 ° C. X 6 minutes). And the thin copper plating layer of thickness 0.1 micrometer was formed. Other than that, it was the same as in Example 1 above.

〔比較例1〕
上記実施例1の無電解ニッケルめっき後に熱処理を行い、その後、活性化処理を行うことなく、上記実施例1と同様のピロリン酸銅浴にて薄い銅めっき層を形成し、水洗後、上記実施例1と同様にして、硫酸銅めっき浴にて回路形成用の厚い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
[Comparative Example 1]
A heat treatment is performed after the electroless nickel plating in Example 1 above, and then a thin copper plating layer is formed in the same copper pyrophosphate bath as in Example 1 without performing an activation treatment. In the same manner as in Example 1, a thick copper plating layer for circuit formation was formed in a copper sulfate plating bath. Other than that, it was the same as in Example 1 above.

〔比較例2〕
上記実施例1の無電解ニッケルめっき後に熱処理を行い、その後、活性化処理および薄い銅めっき層の形成を行うことなく、上記実施例1と同様にして、硫酸銅めっき浴にて回路形成用の厚い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
[Comparative Example 2]
A heat treatment is performed after the electroless nickel plating of Example 1, and thereafter, the circuit is formed in a copper sulfate plating bath in the same manner as in Example 1 without performing the activation process and forming a thin copper plating layer. A thick copper plating layer was formed. Other than that, it was the same as in Example 1 above.

〔比較例3〕
上記実施例1の無電解ニッケルめっき後に熱処理を行い、その後、10%の塩酸にて25℃で1分間活性化処理を行い、その後、硫酸銅めっき浴にて回路形成用の厚い銅めっき層を形成した。それ以外は、上記実施例1と同様にした。
[Comparative Example 3]
After the electroless nickel plating of Example 1 above, heat treatment is performed, and then activation treatment is performed with 10% hydrochloric acid at 25 ° C. for 1 minute, and then a thick copper plating layer for circuit formation is formed in a copper sulfate plating bath. Formed. Other than that, it was the same as in Example 1 above.

このようにして得られた実施例1〜7および比較例1〜3の各銅めっき基板から1cm幅の帯状に切り取ったものに対して、引張試験機(オリエンテック社製)を用い、180°ピール強度測定を初期と熱負荷後とで行った。ここで、初期とは、熱負荷をかける前の状態であり、熱負荷後とは、熱負荷(150℃×3日間)をかけた後の状態である。そして、これらの結果を下記の表1に表記した。   For each of the copper plated substrates of Examples 1 to 7 and Comparative Examples 1 to 3 thus obtained, cut into a 1 cm wide strip, 180 ° was used using a tensile tester (Orientec Co., Ltd.). Peel strength measurement was performed at the initial stage and after heat load. Here, the initial state is a state before the heat load is applied, and the after heat load is a state after the heat load (150 ° C. × 3 days) is applied. These results are shown in Table 1 below.

Figure 2005060772
Figure 2005060772

上記表1の結果より、実施例1〜7の銅めっき基板では、比較例1〜3と比較すると、剥離がポリイミド樹脂フィルムと無電解ニッケルめっき層との間で100%発生していることから、接着信頼性が高いことがわかる。また、その剥離についても、実施例1〜7の銅めっき基板では、活性化処理を施さなくても、活性化処理を施した比較例3と同等もしくはそれ以上の剥離強度を得ることができることがわかる。ここで、比較例3では、剥離が無電解ニッケルめっき層と銅めっき層との間でも発生していることから、活性化処理を施しても無電解ニッケルめっき層の表面の酸化皮膜が充分に除去されていないことがわかる。また、実施例1と実施例2とを比較すると、薄い銅めっき層を形成した後に熱処理をした実施例1の方が剥離強度が大きいことから、その熱処理が接着力をより強固にしていることがわかる。さらに、実施例1,2,5,6と実施例3,4,7とを比較すると、薄い銅めっき層を形成するための電解銅めっき浴のpHが7.0〜10.0の範囲であれば、熱負荷後の剥離強度をより大きくすることができることがわかる。また、比較例1,2では、剥離面が無電解ニッケルめっき層と銅めっき層との間となることから、無電解ニッケルめっき層の表面に酸化皮膜が形成され、それが除去されていないことがわかる。   From the result of the said Table 1, in the copper plating board | substrate of Examples 1-7, compared with Comparative Examples 1-3, peeling has generate | occur | produced 100% between a polyimide resin film and an electroless nickel plating layer. It can be seen that the adhesion reliability is high. Moreover, also about the peeling, in the copper plating board | substrate of Examples 1-7, even if it does not perform an activation process, it can obtain the peeling strength equivalent to or higher than the comparative example 3 which performed the activation process. Understand. Here, in Comparative Example 3, since peeling occurs between the electroless nickel plating layer and the copper plating layer, the oxide film on the surface of the electroless nickel plating layer is sufficiently obtained even when the activation treatment is performed. It can be seen that it has not been removed. Moreover, when Example 1 and Example 2 are compared, since the peel strength is higher in Example 1 in which heat treatment is performed after forming a thin copper plating layer, the heat treatment further strengthens the adhesive strength. I understand. Further, when Examples 1, 2, 5, 6 and Examples 3, 4, 7 are compared, the pH of the electrolytic copper plating bath for forming a thin copper plating layer is in the range of 7.0 to 10.0. If it exists, it turns out that the peeling strength after a heat load can be enlarged more. Moreover, in Comparative Examples 1 and 2, since the peeling surface is between the electroless nickel plating layer and the copper plating layer, an oxide film is formed on the surface of the electroless nickel plating layer, and it is not removed I understand.

本発明のフレキシブルプリント基板の製法の一実施の形態における回路用基材の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the base material for circuits in one Embodiment of the manufacturing method of the flexible printed circuit board of this invention. 上記回路用基材の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the said base material for circuits. 上記回路用基材を用いたサブトラクティブ工法によるフレキシブルプリント基板の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the flexible printed circuit board by the subtractive construction method using the said base material for circuits. 上記サブトラクティブ工法を示す説明図である。It is explanatory drawing which shows the said subtractive construction method. 上記サブトラクティブ工法を示す説明図である。It is explanatory drawing which shows the said subtractive construction method. 上記サブトラクティブ工法を示す説明図である。It is explanatory drawing which shows the said subtractive construction method. 上記回路用基材を用いたセミアディティブ工法によるフレキシブルプリント基板の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the flexible printed circuit board by the semi-additive construction method using the said base material for circuits. 上記セミアディティブ工法を示す説明図である。It is explanatory drawing which shows the said semi-additive construction method. 上記セミアディティブ工法を示す説明図である。It is explanatory drawing which shows the said semi-additive construction method. 上記セミアディティブ工法を示す説明図である。It is explanatory drawing which shows the said semi-additive construction method. 従来のフレキシブルプリント基板の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the conventional flexible printed circuit board.

符号の説明Explanation of symbols

A 回路用基材
1 ポリイミド樹脂フィルム
2 無電解ニッケルめっき層
3 薄い銅めっき層
4 厚い銅めっき層
A Circuit substrate 1 Polyimide resin film 2 Electroless nickel plating layer 3 Thin copper plating layer 4 Thick copper plating layer

Claims (4)

ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施し、その無電解ニッケルめっき層の表面に回路形成用の電解銅めっきを施す工程を備えたフレキシブルプリント基板の製法において、上記ポリイミド樹脂フィルムの表面に無電解ニッケルめっきを施した後、その無電解ニッケルめっき層の表面の湿潤を保持した状態で、上記無電解ニッケルめっき層の表面に電解銅めっきを施すことにより厚み0.1〜1.0μmの薄い銅めっき層を形成し、その後、この薄い銅めっき層の表面に回路形成用の電解銅めっきを施すことを特徴とするフレキシブルプリント基板の製法。   In a method for producing a flexible printed circuit board comprising the steps of applying electroless nickel plating to the surface of a polyimide resin film and applying electrolytic copper plating for circuit formation to the surface of the electroless nickel plating layer, After the electrolytic nickel plating is performed, the surface of the electroless nickel plating layer is kept wet, and the surface of the electroless nickel plating layer is subjected to electrolytic copper plating so that the thickness is 0.1 to 1.0 μm. A method for producing a flexible printed circuit board, comprising: forming a copper plating layer, and then performing electrolytic copper plating for circuit formation on the surface of the thin copper plating layer. 上記薄い銅めっき層を形成するための電解銅めっきが、pH7.0〜10.0の範囲の電解銅めっき浴を用いて行われる請求項1記載のフレキシブルプリント基板の製法。   The method for producing a flexible printed board according to claim 1, wherein the electrolytic copper plating for forming the thin copper plating layer is performed using an electrolytic copper plating bath having a pH in the range of 7.0 to 10.0. 上記薄い銅めっき層を形成した後、回路形成用の電解銅めっきに先立って、80〜100℃の範囲内で熱処理する請求項1または2記載のフレキシブルプリント基板の製法。   The method for producing a flexible printed circuit board according to claim 1 or 2, wherein after the thin copper plating layer is formed, heat treatment is performed within a range of 80 to 100 ° C prior to electrolytic copper plating for circuit formation. 請求項1〜3のいずれか一項に記載のフレキシブルプリント基板の製法に用いられる回路用基材であって、ポリイミド樹脂フィルムと、このポリイミド樹脂フィルムの表面に形成されたニッケルめっき層と、このニッケルめっき層の表面に形成された厚み0.1〜1.0μmの薄い銅めっき層とを備えていることを特徴とする回路用基材。   It is the base material for circuits used for the manufacturing method of the flexible printed circuit board as described in any one of Claims 1-3, Comprising: A nickel plating layer formed in the surface of this polyimide resin film, and this, A circuit base material comprising: a thin copper plating layer having a thickness of 0.1 to 1.0 μm formed on a surface of a nickel plating layer.
JP2003292415A 2003-08-12 2003-08-12 Flexible printed circuit board manufacturing method, and base material for circuit used therefor Pending JP2005060772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292415A JP2005060772A (en) 2003-08-12 2003-08-12 Flexible printed circuit board manufacturing method, and base material for circuit used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292415A JP2005060772A (en) 2003-08-12 2003-08-12 Flexible printed circuit board manufacturing method, and base material for circuit used therefor

Publications (1)

Publication Number Publication Date
JP2005060772A true JP2005060772A (en) 2005-03-10

Family

ID=34369774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292415A Pending JP2005060772A (en) 2003-08-12 2003-08-12 Flexible printed circuit board manufacturing method, and base material for circuit used therefor

Country Status (1)

Country Link
JP (1) JP2005060772A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339219A (en) * 2005-05-31 2006-12-14 Toppan Printing Co Ltd Wiring board
JP2007084886A (en) * 2005-09-22 2007-04-05 Fujifilm Corp Plating treatment method, electrically conductive film, translucent electromagnetic wave shielding film, and optical filter
JP2007262563A (en) * 2006-03-30 2007-10-11 Furukawa Electric Co Ltd:The Film metal laminate, its manufacturing method, circuit board using the film metal laminate, and manufacturing method of the circuit board
WO2010137549A1 (en) * 2009-05-26 2010-12-02 荒川化学工業株式会社 Flexible circuit board and method for manufacturing same
JP2012069939A (en) * 2010-08-25 2012-04-05 Ube Ind Ltd Method of manufacturing flexible printed circuit board
CN105228357A (en) * 2015-09-24 2016-01-06 广州杰赛科技股份有限公司 A kind of manufacture method of ladder wiring board
WO2020222430A1 (en) * 2019-04-30 2020-11-05 도레이첨단소재 주식회사 Flexible metal clad laminate, article comprising same, and method for manufacturing same flexible metal clad laminate
JP2021042442A (en) * 2019-09-12 2021-03-18 住友金属鉱山株式会社 Copper-clad laminate and method for manufacturing the same
CN113151811A (en) * 2021-04-13 2021-07-23 赤壁市聚茂新材料科技有限公司 Non-palladium activated nickel plating solution and nickel plating method
JP2022517051A (en) * 2019-12-20 2022-03-04 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド A flexible copper foil laminated film, an electronic element containing the same, and a method for manufacturing the flexible copper foil laminated film.
CN113348266B (en) * 2019-04-30 2024-05-03 东丽尖端素材株式会社 Flexible metal-clad sheet, article comprising same, and method for preparing flexible metal-clad sheet

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639964B2 (en) * 2005-05-31 2011-02-23 凸版印刷株式会社 Wiring board manufacturing method
JP2006339219A (en) * 2005-05-31 2006-12-14 Toppan Printing Co Ltd Wiring board
JP2007084886A (en) * 2005-09-22 2007-04-05 Fujifilm Corp Plating treatment method, electrically conductive film, translucent electromagnetic wave shielding film, and optical filter
JP2007262563A (en) * 2006-03-30 2007-10-11 Furukawa Electric Co Ltd:The Film metal laminate, its manufacturing method, circuit board using the film metal laminate, and manufacturing method of the circuit board
CN102450110B (en) * 2009-05-26 2016-01-13 荒川化学工业株式会社 Flexible PCB and manufacture method thereof
WO2010137549A1 (en) * 2009-05-26 2010-12-02 荒川化学工業株式会社 Flexible circuit board and method for manufacturing same
CN102450110A (en) * 2009-05-26 2012-05-09 荒川化学工业株式会社 Flexible circuit board and method for manufacturing same
JPWO2010137549A1 (en) * 2009-05-26 2012-11-15 荒川化学工業株式会社 Flexible circuit board and manufacturing method thereof
JP2014179638A (en) * 2009-05-26 2014-09-25 Arakawa Chem Ind Co Ltd Flexible circuit board and method for manufacturing the same
JP2012069939A (en) * 2010-08-25 2012-04-05 Ube Ind Ltd Method of manufacturing flexible printed circuit board
CN105228357A (en) * 2015-09-24 2016-01-06 广州杰赛科技股份有限公司 A kind of manufacture method of ladder wiring board
WO2020222430A1 (en) * 2019-04-30 2020-11-05 도레이첨단소재 주식회사 Flexible metal clad laminate, article comprising same, and method for manufacturing same flexible metal clad laminate
CN113348266A (en) * 2019-04-30 2021-09-03 东丽尖端素材株式会社 Flexible metal-clad plate, article comprising same, and method for preparing flexible metal-clad plate
JP2022507287A (en) * 2019-04-30 2022-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド A flexible metal leaf laminated film, an article containing the same, and a method for manufacturing the flexible metal foil laminated film.
JP7203969B2 (en) 2019-04-30 2023-01-13 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド Flexible metal foil laminated film, article containing the same, and method for producing the flexible metal foil laminated film
CN113348266B (en) * 2019-04-30 2024-05-03 东丽尖端素材株式会社 Flexible metal-clad sheet, article comprising same, and method for preparing flexible metal-clad sheet
JP2021042442A (en) * 2019-09-12 2021-03-18 住友金属鉱山株式会社 Copper-clad laminate and method for manufacturing the same
JP7311838B2 (en) 2019-09-12 2023-07-20 住友金属鉱山株式会社 Method for manufacturing copper-clad laminate
JP2022517051A (en) * 2019-12-20 2022-03-04 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド A flexible copper foil laminated film, an electronic element containing the same, and a method for manufacturing the flexible copper foil laminated film.
JP7208352B2 (en) 2019-12-20 2023-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド FLEXIBLE COPPER FILM LAMINATED, ELECTRONIC DEVICE CONTAINING THE SAME, AND METHOD FOR MANUFACTURING SAME FLEXIBLE COPPER FILM LAMINATED FILM
CN113151811A (en) * 2021-04-13 2021-07-23 赤壁市聚茂新材料科技有限公司 Non-palladium activated nickel plating solution and nickel plating method

Similar Documents

Publication Publication Date Title
JP5461988B2 (en) Metal laminated polyimide substrate and manufacturing method thereof
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
TWI439364B (en) A conductive layer and a base layer using the same, and a method of manufacturing the same
JP4283882B2 (en) Method for producing metal-coated polyimide resin substrate with excellent heat aging characteristics
JPWO2009050971A1 (en) Metal-coated polyimide composite, method for producing the same, and method for producing electronic circuit board
JP3641632B1 (en) Conductive sheet, product using the same, and manufacturing method thereof
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JP3615033B2 (en) Manufacturing method of two-layer flexible substrate
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP3825790B2 (en) Manufacturing method of flexible printed circuit board
JP2012526200A (en) Method for improving adhesion of polymer material to metal surface
JP4751796B2 (en) Circuit forming substrate and manufacturing method thereof
JPWO2010140638A1 (en) Metal-clad laminate and method for producing metal-clad laminate
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2004349693A (en) Resin adhesive layer on surface of copper
JPH1187910A (en) Printed wiring board and manufacture therefor
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2007262481A (en) Surface metallizing method of polyimide resin material
JP2005023301A (en) Adhered layer-forming liquid, method for producing bonded layer of copper with resin by using the liquid and laminated material of them
JPH08181402A (en) Method of manufacturing two-layer flexible board
TW201016096A (en) Method for manufacturing multilayer laminated circuit board
JP2007194778A (en) Film-shape antenna wiring base, manufacturing method therefor, and film shape antenna using film-shape antenna wiring base
JPH10154863A (en) Production of two layer flexible wiring board
JP2006165476A (en) Manufacturing method of flexible printed circuit board
JPH11121926A (en) Multilayer printed wiring board and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Effective date: 20061212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410