JP2004349693A - Resin adhesive layer on surface of copper - Google Patents

Resin adhesive layer on surface of copper Download PDF

Info

Publication number
JP2004349693A
JP2004349693A JP2004134256A JP2004134256A JP2004349693A JP 2004349693 A JP2004349693 A JP 2004349693A JP 2004134256 A JP2004134256 A JP 2004134256A JP 2004134256 A JP2004134256 A JP 2004134256A JP 2004349693 A JP2004349693 A JP 2004349693A
Authority
JP
Japan
Prior art keywords
copper
resin
adhesive layer
resin adhesive
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004134256A
Other languages
Japanese (ja)
Inventor
Mutsuyuki Kawaguchi
睦行 河口
Tomoshi Saito
知志 斉藤
Jun Hisada
純 久田
Toshiko Nakagawa
登志子 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP2004134256A priority Critical patent/JP2004349693A/en
Publication of JP2004349693A publication Critical patent/JP2004349693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve adhesion between copper and resin by forming a resin adhesive layer consisting of an alloy of copper, tin and a third metal on the surface of the copper. <P>SOLUTION: The resin adhesive layer (2) formed on the surface of the copper (1) contains the alloy consisting of (a) copper, (b) tin, and (c) one species of metal (a third metal) selected from the group consisting of silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold and platinum. The concentration of the copper is 1-50 atomic %, the tin is 20-98 atomic %, and the third metal is 1-50 atomic %. The thickness of the resin adhesive layer (2) is not less than 0.001 μm and not more than 1 μm. Thus, the adhesive strength between the copper and the resin can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、銅表面の対樹脂接着層に関する。さらに詳しくは、プリント配線基板、半導体実装品、液晶デバイス、エレクトロルミネッセンスなどの各種電子部品に使用される銅表面の対樹脂接着層に関する。   The present invention relates to a resin surface adhesive layer on a copper surface. More specifically, the present invention relates to a resin adhesive layer on a copper surface used for various electronic components such as printed wiring boards, semiconductor mounted products, liquid crystal devices, and electroluminescence.

一般的な多層配線板は、表面に銅からなる導電層を有する内層基板が、プリプレグを挟んで他の内層基板や銅箔と積層プレスされて製造されている。導電層間は、孔壁が銅めっきされたスルーホールとよばれる貫通孔により、電気的に接続されている。前記内層基板の銅表面には、プリプレグとの接着性を向上させるために、ブラックオキサイドやブラウンオキサイドとよばれる針状の酸化銅が形成されている。この方法では、針状の酸化銅がプリプレグにくい込み、アンカー効果が生じて接着性が向上する。   A general multilayer wiring board is manufactured by laminating and pressing an inner layer substrate having a conductive layer made of copper on the surface with another inner layer substrate or a copper foil with a prepreg interposed therebetween. The conductive layers are electrically connected to each other by a through hole called a through hole in which a hole wall is plated with copper. Needle-like copper oxide called black oxide or brown oxide is formed on the copper surface of the inner layer substrate in order to improve the adhesion to the prepreg. In this method, the acicular copper oxide is hardly included in the prepreg, and an anchor effect is generated to improve the adhesiveness.

前記酸化銅はプリプレグとの接着性に優れているが、スルーホールめっきの工程において酸性液と接触した場合、溶解して変色し、ハローイングと呼ばれる欠陥を生じやすいという問題がある。   The copper oxide has excellent adhesiveness to the prepreg, but has a problem that when it comes into contact with an acidic solution in a through-hole plating process, it dissolves and discolors, and easily causes a defect called haloing.

そこで、ブラックオキサイドやブラウンオキサイドに代わる方法として、下記特許文献1及び下記特許文献2に提案されているように、内層基板の銅表面にスズ層を形成する方法が提案されている。また、下記特許文献3には、銅と樹脂との接着性を向上させるため、銅表面にスズめっきしたのち、さらにシランカップリング剤で処理することが提案されている。また、下記特許文献4には、銅と樹脂との接着性を向上させるために、銅表面に銅スズ合金層を形成することが提案されている。また、エッチングにより銅表面を粗化し、アンカー効果を発現させることも提案されている。
EPC公開0 216 531 A1号明細書 特開平4−233793号公報 特開平1−109796号公報 特開2000−340948号公報
Then, as a method replacing black oxide or brown oxide, a method of forming a tin layer on a copper surface of an inner substrate has been proposed as proposed in Patent Documents 1 and 2 below. Further, Patent Document 3 listed below proposes that, in order to improve the adhesiveness between copper and a resin, the surface of copper is tin-plated and further treated with a silane coupling agent. Patent Document 4 listed below proposes forming a copper-tin alloy layer on a copper surface in order to improve the adhesiveness between copper and a resin. It has also been proposed to roughen the copper surface by etching to exhibit an anchor effect.
EPC publication 0 216 531 A1 specification JP-A-4-233793 JP-A-1-109796 JP 2000-340948 A

しかし、前記のごとき銅表面にスズ層や銅スズ合金層を形成する方法では、樹脂の種類がガラス転移温度の高い、いわゆる硬い樹脂の場合、接着性向上効果が不充分な場合があった。また、前記特許文献3に記載の方法では、スズめっきすることにより、銅がメッキ液中に溶出し、配線が細くなる。さらに、シランカップリング剤は使用の際の取扱いが困難であるという問題がある。樹脂との接着性も不充分である。   However, in the method of forming a tin layer or a copper-tin alloy layer on the copper surface as described above, when the type of the resin is a so-called hard resin having a high glass transition temperature, the effect of improving the adhesion may be insufficient. In the method described in Patent Document 3, copper is eluted in the plating solution by tin plating, and the wiring becomes thin. Further, there is a problem that the silane coupling agent is difficult to handle during use. Adhesion with resin is also insufficient.

本発明は、前記従来の問題を解決するため、銅表面に形成する、銅と樹脂の接着力を向上する対樹脂接着層を提供する。   The present invention provides a resin adhesive layer formed on a copper surface for improving the adhesive force between copper and a resin in order to solve the conventional problem.

本発明の対樹脂接着層は、銅表面に形成された対樹脂接着層であって、(a)銅、(b)スズ、および(c)銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金および白金から選ばれる少なくとも1種の金属(第3の金属)、からなる合金を含み、前記銅が1〜50原子%、前記スズが20〜98原子%、前記第3の金属が1〜50原子%であり、厚さが0.001μm以上1μm以下の対樹脂接着層である。   The resin adhesive layer according to the present invention is a resin adhesive layer formed on a copper surface, and includes (a) copper, (b) tin, and (c) silver, zinc, aluminum, titanium, bismuth, chromium, and iron. , An alloy of at least one metal (third metal) selected from cobalt, nickel, palladium, gold and platinum, wherein the copper is 1 to 50 atomic%, the tin is 20 to 98 atomic%, The third metal is 1 to 50 atomic% and has a thickness of 0.001 μm or more and 1 μm or less.

本発明は、銅表面に、銅とスズと第3の金属の合金からなる樹脂接着層を形成することにより、銅と樹脂の接着力をさらに向上できる。   ADVANTAGE OF THE INVENTION This invention can further improve the adhesive force of copper and resin by forming the resin adhesive layer which consists of an alloy of copper, tin, and a 3rd metal on copper surface.

本発明は、銅の表面に、銅、スズおよび第3の金属の合金からなる対樹脂接着層を形成する。この対樹脂接着層により、銅と樹脂の接着性を改良する。   According to the present invention, a resin adhesive layer made of an alloy of copper, tin and a third metal is formed on the surface of copper. The adhesiveness between the copper and the resin is improved by the adhesive layer to the resin.

銅表面については、樹脂と接着させる銅表面である限り特に制限はない。例えば電子基板、リードフレームなどの電子部品、装飾品、建材などに使用される、箔(電解銅箔、圧延銅箔)、めっき膜(無電解銅めっき膜、電解銅めっき膜)、線、棒、管、板など種々の用途の銅表面に適用できる。前記銅は、黄銅、青銅、白銅、ヒ素銅、ケイ素銅、チタン銅、クロム銅など、その目的に応じて他の元素を含有したものであってもよい。   The copper surface is not particularly limited as long as it is a copper surface to be bonded to a resin. For example, foil (electrolytic copper foil, rolled copper foil), plating film (electroless copper plating film, electrolytic copper plating film), wire, rod used for electronic components such as electronic boards and lead frames, decorative products, building materials, etc. It can be applied to copper surfaces for various uses such as pipes, plates, and the like. The copper may contain other elements depending on the purpose, such as brass, bronze, white copper, arsenic copper, silicon copper, titanium copper, and chromium copper.

前記銅表面の形状は、平滑であってもよく、エッチングなどにより粗化された表面であってもよい。例えば樹脂と積層した際のアンカー効果を得るためには粗化された表面であるのが好ましい。また、近年の高周波の電気信号が流れる銅配線の場合は、中心線平均粗さRaが0.1μm以下程度の平滑であることが好ましい。特に微細な銅配線の場合は、本発明においては表面粗化によるアンカー効果にたよらず、平滑な表面であっても充分な接着性が得られるので、粗化のためのエッチングによる断線などのおそれがない。   The shape of the copper surface may be smooth or may be a surface roughened by etching or the like. For example, in order to obtain an anchor effect when laminated with a resin, the surface is preferably roughened. In the case of a copper wiring through which a high-frequency electric signal flows in recent years, it is preferable that the center line average roughness Ra is as smooth as about 0.1 μm or less. In particular, in the case of fine copper wiring, the present invention does not rely on the anchor effect due to surface roughening, and sufficient adhesiveness can be obtained even with a smooth surface. There is no.

対樹脂接着層は、銅、スズおよび第3の金属(銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金および白金から選ばれる少なくとも1種の金属)の合金からなる層であり、銅表面にこの層が存在すると、樹脂と接着した場合に銅と樹脂との接着性が著しく向上する。対樹脂接着層の組成は、銅が1〜50原子%、好ましくは5〜45原子%、さらに好ましくは10〜40原子%である。銅が50原子%を超えたり、1原子%未満では、樹脂との接着性が不充分になる。   The resin bonding layer is made of an alloy of copper, tin and a third metal (at least one metal selected from silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold and platinum). When this layer is present on the copper surface, the adhesion between the copper and the resin is significantly improved when the layer is bonded to the resin. The composition of the resin adhesive layer is such that copper is 1 to 50 atomic%, preferably 5 to 45 atomic%, and more preferably 10 to 40 atomic%. If the content of copper exceeds 50 atomic% or less than 1 atomic%, the adhesiveness to the resin becomes insufficient.

対樹脂接着層のスズは20〜98原子%であり、好ましく30〜90原子%、さらに好ましくは40〜80原子%である。スズが98原子%を超えたり、20原子%未満では、樹脂との接着性が不充分になる。   Tin in the resin-adhesive layer is 20 to 98 atomic%, preferably 30 to 90 atomic%, and more preferably 40 to 80 atomic%. If tin exceeds 98 at% or less than 20 at%, the adhesion to the resin becomes insufficient.

対樹脂接着層の第3の金属は1〜50原子%であり、好ましくは2〜45原子%、さらに好ましくは3〜40原子%である。第3の金属が50原子%を超えたり、1原子%未満では、樹脂との接着性が不充分になる。   The third metal of the resin-adhesion layer is 1 to 50 atomic%, preferably 2 to 45 atomic%, and more preferably 3 to 40 atomic%. If the amount of the third metal exceeds 50 atomic% or is less than 1 atomic%, the adhesion to the resin becomes insufficient.

なお、対樹脂接着層は下地が銅であるため、表面から深くなるに従い、原子の拡散によって銅の比率が増加する。本明細書にいう対樹脂接着層とは、組成が前記範囲の合金の層をいう。   In addition, since the base layer of the resin adhesive layer is made of copper, as the depth increases from the surface, the ratio of copper increases due to diffusion of atoms. The term “resin adhesive layer” as used herein refers to a layer of an alloy having a composition within the above range.

この表面の金属の比率は、オージェ電子分光分析、ESCA(X線光電子分光法)、EPMA(電子プローブX線マイクロアナライザ)などにより測定することができる。   The ratio of the metal on the surface can be measured by Auger electron spectroscopy, ESCA (X-ray photoelectron spectroscopy), EPMA (Electron probe X-ray microanalyzer), or the like.

また、銅−スズ−第三金属合金中には、空気との接触等により酸素原子が含まれているが、酸素原子が存在しても樹脂との接着性に悪影響を及ぼさない。したがって、本発明の効果は、接着層の酸化が促進されるような加熱等の処理を経た後であっても維持される。また、接着層中には、通常種々の汚染源からの他種の原子も含まれている。   The copper-tin-third metal alloy contains oxygen atoms due to contact with air or the like, but the presence of oxygen atoms does not adversely affect the adhesiveness to the resin. Therefore, the effects of the present invention can be maintained even after a treatment such as heating that promotes oxidation of the adhesive layer. Also, the adhesive layer usually contains other types of atoms from various sources.

対樹脂接着層の厚さは0.001〜1μmであり、好ましくは0.001〜0.5μm、さらに好ましくは0.001〜0.1μmである。1μmを超える場合や0.001μm未満では樹脂との接着性が不十分になる。   The thickness of the resin adhesive layer is 0.001 to 1 μm, preferably 0.001 to 0.5 μm, and more preferably 0.001 to 0.1 μm. If it exceeds 1 μm or if it is less than 0.001 μm, the adhesion to the resin will be insufficient.

対樹脂接着層形成法については、特に限定はないが、例えば銅表面にスズおよび第3の金属の合金層を形成したのち、銅表面に銅、スズおよび第3の金属の合金層を残してスズおよび第3の金属の合金を除去する方法があげられる。   The method for forming the resin adhesive layer is not particularly limited. For example, after forming an alloy layer of tin and a third metal on the copper surface, leaving an alloy layer of copper, tin and the third metal on the copper surface. A method of removing an alloy of tin and a third metal is given.

銅表面にスズおよび第3の金属の合金層を形成すると、拡散により銅とスズおよび第3の金属との界面に、銅、スズおよび第3の金属の合金層(接着層)が形成される。   When an alloy layer of tin and the third metal is formed on the copper surface, an alloy layer (adhesion layer) of copper, tin, and the third metal is formed at the interface between copper, tin, and the third metal by diffusion. .

前記スズおよび第3の金属の合金層の形成法としては、例えば、
a.硫酸などの無機酸や酢酸などの有機酸1〜50質量%、
b.硫酸第一スズなどの第一スズ塩0.05〜10質量%(スズ濃度として)、
c.酢酸銀などの金属の塩0.1〜20質量%、
d.チオ尿素などの反応促進剤1〜50質量%および
e.ジエチレングリコールなどの拡散系保持溶媒1〜80質量%
を含有する水溶液と接触させる方法があげられる。
As a method of forming the alloy layer of tin and the third metal, for example,
a. 1 to 50% by mass of an inorganic acid such as sulfuric acid or an organic acid such as acetic acid;
b. Stannous salts such as stannous sulfate 0.05 to 10% by mass (as tin concentration);
c. 0.1-20% by mass of a salt of a metal such as silver acetate;
d. 1 to 50% by mass of a reaction accelerator such as thiourea and
e. 1 to 80% by mass of a diffusion system holding solvent such as diethylene glycol
Contact with an aqueous solution containing

前記反応促進剤は、下地の銅に配位してキレートを形成し、銅表面に対樹脂接着層を形成しやすくするものである。例えば、チオ尿素、1,3-ジメチルチオ尿素、1,3-ジエチル-2-チオ尿素、チオグリコール酸などのチオ尿素誘導体などである。反応促進剤の好ましい濃度は、1〜50%の範囲、好ましくは5〜40%、特に好ましくは10〜30%の範囲である。反応促進剤の濃度が50%を超えると樹脂に対する接着性が低下する傾向となる。また、1%未満では樹脂接着層の形成速度が遅い傾向となる。   The reaction accelerator coordinates with the underlying copper to form a chelate, thereby facilitating the formation of the resin adhesive layer on the copper surface. For example, thiourea derivatives such as thiourea, 1,3-dimethylthiourea, 1,3-diethyl-2-thiourea, and thioglycolic acid are given. The preferred concentration of the reaction accelerator is in the range of 1 to 50%, preferably 5 to 40%, particularly preferably 10 to 30%. When the concentration of the reaction accelerator exceeds 50%, the adhesiveness to the resin tends to decrease. If it is less than 1%, the forming speed of the resin adhesive layer tends to be slow.

前記拡散系保持溶媒とは、銅表面に必要な反応成分濃度を銅表面近傍に維持しやすくする溶媒である。拡散系保持溶媒の例としては、エチレングリコール、ジエチレングリコール、プロピレングリコールなどのグリコール類、セロソルブ、カルビトール、ブチルカルビトールなどのグリコールエステル類である。拡散系保持溶媒の好ましい濃度は、1〜80%の範囲であり、より好ましくは5〜60%、特に好ましくは10〜50%である。80%を超えると樹脂に対する接着性が低下する傾向となる。また1%未満では樹脂接着層が形成しにくい傾向となる。   The diffusion system-holding solvent is a solvent that facilitates maintaining the concentration of a reaction component required on the copper surface near the copper surface. Examples of the solvent for holding the diffusion system include glycols such as ethylene glycol, diethylene glycol and propylene glycol, and glycol esters such as cellosolve, carbitol and butyl carbitol. The preferred concentration of the diffusion system holding solvent is in the range of 1 to 80%, more preferably 5 to 60%, particularly preferably 10 to 50%. If it exceeds 80%, the adhesiveness to the resin tends to decrease. If it is less than 1%, the resin adhesive layer tends to be difficult to form.

銅の表面に、前記対樹脂接着層形成液を接触させ際の条件に特に限定はないが、たとえば浸漬法などにより、10〜70℃で5秒〜5分間接触させればよい。   There is no particular limitation on the conditions for bringing the liquid for forming a resin-adhesive layer into contact with the surface of copper.

これにより、銅の表面にスズおよび第3の金属の合金層を形成すると、拡散により銅とスズおよび第3の金属との界面に、銅、スズおよび第3の金属の合金層(接着層)が形成される。   Thus, when an alloy layer of tin and the third metal is formed on the surface of copper, an alloy layer of copper, tin and the third metal (adhesion layer) is formed at the interface between copper, tin, and the third metal by diffusion. Is formed.

前記拡散を促進させるために、熱処理などを行なってもよい。   A heat treatment or the like may be performed to promote the diffusion.

前記スズおよび第3の金属の合金層を選択的に除去する方法としては、エッチング液によりスズおよび第3の金属の合金層を選択的にエッチングする方法があげられる。   As a method of selectively removing the alloy layer of tin and the third metal, there is a method of selectively etching the alloy layer of tin and the third metal with an etchant.

前記選択的エッチング液としては、例えばメック社製の商品名“メックリムーバーS−651A”等を使用することができる。別な例としては、硝酸などの無機酸を含む水溶液も使用できる。   As the selective etching solution, for example, a trade name of “Mech Remover S-651A” manufactured by Mec Co. can be used. As another example, an aqueous solution containing an inorganic acid such as nitric acid can be used.

また、前記水溶液の組成やそれを接触させる条件を選択することにより、銅の表面に直接、銅、スズおよび第3の金属からなる接着層を形成してもよい。   Further, by selecting the composition of the aqueous solution and the conditions for contacting the aqueous solution, an adhesive layer made of copper, tin and a third metal may be formed directly on the surface of copper.

以上のように銅表面に形成された対樹脂接着層は、銅と種々の樹脂との接着性を著しく向上させる。   As described above, the resin adhesive layer formed on the copper surface significantly improves the adhesiveness between copper and various resins.

接着の対象となる樹脂は、AS樹脂、ABS樹脂、フッ素樹脂、ポリアミド、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリサルホン、ポリプロピレン、液晶ポリマー等の熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル、シアネートエステル等の熱硬化性樹脂等を挙げることができる。これらの樹脂は官能基によって変性されていてもよく、ガラス繊維、アラミド繊維などで強化されていてもよい。   Resins to be bonded include thermoplastic resins such as AS resin, ABS resin, fluororesin, polyamide, polyethylene, polyethylene terephthalate, polyvinylidene chloride, polyvinyl chloride, polycarbonate, polystyrene, polysulfone, polypropylene, liquid crystal polymer, and epoxy. Resin, phenol resin, polyimide, polyurethane, bismaleimide / triazine resin, modified polyphenylene ether, thermosetting resin such as cyanate ester, and the like can be given. These resins may be modified with a functional group, or may be reinforced with glass fibers, aramid fibers, or the like.

本発明の対樹脂接着層が、銅と樹脂との界面を有する配線基板の銅表面に形成された場合には、導電層である銅と、層間絶縁樹脂(プリプレグ、無電解めっき用接着剤、フィルム状樹脂、液状樹脂、感光性樹脂、熱硬化性樹脂、熱可塑性樹脂、)、ソルダーレジスト、エッチングレジスト、導電性樹脂、導電性ペースト、導電性接着剤、誘電体用樹脂、穴埋め用樹脂、フレキシブルカバーレイフィルム等との接着性に優れているため、信頼性の高い配線基板となる。   When the resin adhesive layer of the present invention is formed on the copper surface of a wiring board having an interface between copper and resin, copper as a conductive layer and an interlayer insulating resin (prepreg, adhesive for electroless plating, Film-like resin, liquid resin, photosensitive resin, thermosetting resin, thermoplastic resin,), solder resist, etching resist, conductive resin, conductive paste, conductive adhesive, dielectric resin, resin for filling holes, Since the adhesiveness with a flexible coverlay film or the like is excellent, a highly reliable wiring board can be obtained.

とくに微細な銅配線とビアホールを形成するビルドアップ基板として有用である。前記ビルドアップ基板には一括ラミネーション方式のビルドアップ基板と、シーケンシャルビルドアップ方式のビルドアップ基板がある。   It is particularly useful as a build-up substrate for forming fine copper wiring and via holes. The build-up board includes a batch lamination type build-up board and a sequential build-up type build-up board.

また、いわゆるメタルコア基板とよばれる心材に銅板を用いた基板において、銅板の表面が前記対樹脂接着層となっている場合には、銅板とそれに積層された絶縁樹脂との接着性に優れたメタルコア基板である。   Further, in a substrate using a copper plate as a core material, which is a so-called metal core substrate, when the surface of the copper plate serves as the resin-adhesive layer, a metal core having excellent adhesion between the copper plate and the insulating resin laminated thereon is provided. It is a substrate.

図1は本発明の一実施例の銅表面に形成された対樹脂接着層の断面図である。すなわち、銅基材1の表面に厚さが0.001μm以上1μm以下の対樹脂接着層2が形成されている。   FIG. 1 is a cross-sectional view of a resin adhesive layer formed on a copper surface according to one embodiment of the present invention. That is, the resin adhesive layer 2 having a thickness of 0.001 μm or more and 1 μm or less is formed on the surface of the copper base 1.

以下実施例を用いてさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
厚さ35μmの電解銅箔に、5%の塩酸を10秒間室温でスプレーして洗浄したのち、水洗、乾燥させた。次いで酢酸20%(質量%、以下同様)、酢酸第一スズ2%(Sn2+として)、酢酸銀3%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させた。
(Example 1)
The electrolytic copper foil having a thickness of 35 μm was washed by spraying 5% hydrochloric acid at room temperature for 10 seconds, and then washed with water and dried. Subsequently, it is composed of acetic acid 20% (mass%, the same applies hereinafter), stannous acetate 2% (as Sn 2+ ), silver acetate 3% (as Ag + ), thiourea 15%, diethylene glycol 30% and the balance ion-exchanged water. After being immersed in an aqueous solution at 30 ° C. for 30 seconds, it was washed with water and dried.

次にメック社製の商品名“メックリムーバーS−651A”(硝酸を主成分とする水溶液)に30秒間室温で浸漬したのち、水洗、乾燥させ、銅箔表面に対樹脂接着層を形成した。得られた表面の原子組成をオージェ分光分析により調べた結果を表1に示す。また、対樹脂接着層の厚さを表1に示す。   Next, after immersing in “Meccli Mover S-651A” (trade name, manufactured by Mec Corporation) (aqueous solution containing nitric acid as a main component) at room temperature for 30 seconds, it was washed with water and dried to form a resin adhesive layer on the copper foil surface. Table 1 shows the result of examining the atomic composition of the obtained surface by Auger spectroscopy. Table 1 shows the thickness of the resin adhesive layer.

次に、得られた銅箔の片面に銅箔付きビルドアップ配線板用樹脂(味の素(株)製のABF−SHC銅箔付き樹脂)を重ね加熱しながらプレスした。得られた積層体の電解銅箔の引き剥がし強さを、JIS C 6481に準拠して調べた。その結果を表1に示す。   Next, on one side of the obtained copper foil, a resin for a build-up wiring board with a copper foil (ABF-SHC resin with a copper foil manufactured by Ajinomoto Co., Ltd.) was overlapped and pressed while heating. The peel strength of the electrolytic copper foil of the obtained laminate was examined in accordance with JIS C6481. Table 1 shows the results.

(実施例2)
実施例1と同様に洗浄した電解銅箔を酢酸17%、酢酸第一スズ2%(Sn2+として)、ヨウ化ビスマス1.5%(Bi2+として)、チオ尿素21%、セロソルブ32%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させたほかは実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
(Example 2)
17% of acetic acid, 2% of stannous acetate (as Sn 2+ ), 1.5% of bismuth iodide (as Bi 2+ ), 21% of thiourea, and cellosolve 32 were washed in the same manner as in Example 1. % And the balance of ion-exchanged water were immersed at 30 ° C. for 30 seconds, washed with water and dried to form a resin-adhesive layer in the same manner as in Example 1. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.

次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。   Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例3)
実施例1と同様に洗浄した電解銅箔を、硫酸15%、硫酸第一スズ1.5%(Sn2+として)、硫酸ニッケル3.5%(Ni+として)、チオ尿素21%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させたほかは実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。
(Example 3)
An electrolytic copper foil washed in the same manner as in Example 1 was subjected to sulfuric acid 15%, stannous sulfate 1.5% (as Sn 2+ ), nickel sulfate 3.5% (as Ni + ), thiourea 21%, diethylene glycol A resin-adhesive layer was formed in the same manner as in Example 1 except that it was immersed in an aqueous solution containing 30% and the balance of ion-exchanged water at 30 ° C. for 30 seconds, washed and dried. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.
Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例4)
実施例1と同様に洗浄した電解銅箔を酢酸20%、酢酸第一スズ2%(Sn2+として)、酢酸銀0.1%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させたほかは実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。
(Example 4)
20% acetic acid, 2% stannous acetate (as Sn 2+ ), 0.1% silver acetate (as Ag + ), 15% thiourea, 30% diethylene glycol and 30% acetic acid were washed in the same manner as in Example 1. A resin adhesive layer was formed in the same manner as in Example 1 except that the resin was immersed in an aqueous solution containing the remaining ion-exchanged water at 30 ° C. for 30 seconds, washed and dried. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.
Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例5)
実施例1と同様に洗浄した電解銅箔を酢酸20%、酢酸第一スズ2%(Sn2+として)、酢酸銀10.0%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させたほかは実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。
(Example 5)
20% acetic acid, 2% stannous acetate (as Sn 2+ ), 10.0% silver acetate (as Ag + ), 15% thiourea, 30% diethylene glycol and 30% acetic acid were washed in the same manner as in Example 1. A resin adhesive layer was formed in the same manner as in Example 1 except that the resin was immersed in an aqueous solution containing the remaining ion-exchanged water at 30 ° C. for 30 seconds, washed and dried. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.
Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例6)
実施例1において、酢酸20%、酢酸第一スズ2%(Sn2+として)、酢酸銀3%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に浸漬する時間を5秒間に変えた他は、実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。
(Example 6)
In Example 1, immersion in an aqueous solution composed of 20% acetic acid, 2% stannous acetate (as Sn 2+ ), 3% silver acetate (as Ag + ), 15% thiourea, 30% diethylene glycol, and the balance ion-exchanged water An adhesive layer for resin was formed in the same manner as in Example 1 except that the time for performing was changed to 5 seconds. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer. Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例7)
実施例1において、酢酸20%、酢酸第一スズ2%(Sn2+として)、酢酸銀3%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に浸漬する時間を5分間、温度を45℃に変えた他は、実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
(Example 7)
In Example 1, immersion in an aqueous solution composed of 20% acetic acid, 2% stannous acetate (as Sn 2+ ), 3% silver acetate (as Ag + ), 15% thiourea, 30% diethylene glycol, and the balance ion-exchanged water A resin-bonding layer was formed in the same manner as in Example 1 except that the time for performing was 5 minutes and the temperature was changed to 45 ° C. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.

次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。   Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(実施例8)
実施例1と同様に洗浄した電解銅箔を酢酸20%、酢酸第一スズ2%(Sn2+として)、酢酸銀20.0%(Ag+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させたほかは実施例1と同様にして対樹脂接着層を形成した。得られた表面の原子組成、対樹脂接着層の厚さを表1に示す。
(Example 8)
20% acetic acid, 2% stannous acetate (as Sn 2+ ), 20.0% silver acetate (as Ag + ), 15% thiourea, 30% diethylene glycol and 30% acetic acid were washed in the same manner as in Example 1. A resin adhesive layer was formed in the same manner as in Example 1 except that the resin was immersed in an aqueous solution containing the remaining ion-exchanged water at 30 ° C. for 30 seconds, washed and dried. Table 1 shows the atomic composition of the obtained surface and the thickness of the resin adhesive layer.

次に、実施例1と同様にして銅箔の引き剥がし強さを調べた。その結果を表1に示す。   Next, the peel strength of the copper foil was examined in the same manner as in Example 1. Table 1 shows the results.

(比較例1)
厚さ35μmの電解銅箔に、5%の塩酸を10秒間室温でスプレーして洗浄したのち、水洗、乾燥させた。次いで酢酸20%、酢酸第一スズ2%(Sn2+として)、チオ尿素15%、ジエチレングリコール30%および残部イオン交換水からなる水溶液に30℃、30秒間の条件で浸漬したのち水洗、乾燥させ、銅箔表面にスズ層を形成した。
(Comparative Example 1)
The electrolytic copper foil having a thickness of 35 μm was washed by spraying 5% hydrochloric acid at room temperature for 10 seconds, and then washed with water and dried. Then, it is immersed in an aqueous solution consisting of 20% acetic acid, 2% stannous acetate (as Sn 2+ ), 15% thiourea, 30% diethylene glycol and the balance of ion-exchanged water at 30 ° C. for 30 seconds, washed with water and dried. Then, a tin layer was formed on the surface of the copper foil.

次に、実施例1と同様にビルドアップ配線板用樹脂と積層して電解銅箔との引き剥がし強さを評価した。その結果を表1に示す。   Next, in the same manner as in Example 1, the resin was laminated with the resin for a build-up wiring board, and the peel strength from the electrolytic copper foil was evaluated. Table 1 shows the results.

(比較例2)
比較例1と同様に銅箔表面にスズ層を形成した。
(Comparative Example 2)
A tin layer was formed on the copper foil surface in the same manner as in Comparative Example 1.

次にメック社製のメックリムーバーS−651Aに30秒間室温で浸漬したのち、水洗、乾燥させ、銅箔表面に対樹脂接着層を形成した。   Next, after immersing in Mech Remover S-651A manufactured by Mec Co. at room temperature for 30 seconds, washing and drying were performed to form a resin adhesive layer on the surface of the copper foil.

次に、実施例1と同様にビルドアップ配線板用樹脂と積層して電解銅箔との引き剥がし強さを評価した。その結果を表1に示す。   Next, in the same manner as in Example 1, the resin was laminated with the resin for a build-up wiring board, and the peel strength from the electrolytic copper foil was evaluated. Table 1 shows the results.

Figure 2004349693
Figure 2004349693

表1から明らかなとおり、本実施例の対樹脂接着層は、銅箔と樹脂の引き剥がし強力(接着力)が高いことが確認できた。   As is clear from Table 1, it was confirmed that the resin adhesive layer of this example had a high peeling strength (adhesive force) between the copper foil and the resin.

本発明の一実施例の銅表面に形成された対樹脂接着層の断面図である。It is sectional drawing of the resin adhesive layer formed in the copper surface of one Example of this invention.

符号の説明Explanation of reference numerals

1 銅
2 対樹脂接着層

1 Copper 2 Resin adhesive layer

Claims (11)

銅表面に形成された対樹脂接着層であって、
(a)銅、
(b)スズ、および
(c)銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金および白金から選ばれる少なくとも1種の金属(第3の金属)、
からなる合金を含み、
前記銅が1〜50原子%、前記スズが20〜98原子%、前記第3の金属が1〜50原子%であり、
厚さが0.001μm以上1μm以下であることを特徴とする対樹脂接着層。
A resin adhesive layer formed on the copper surface,
(A) copper,
(B) tin, and (c) at least one metal (third metal) selected from silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold and platinum;
Including an alloy consisting of
The copper is 1 to 50 atomic%, the tin is 20 to 98 atomic%, the third metal is 1 to 50 atomic%,
A resin adhesive layer having a thickness of 0.001 μm or more and 1 μm or less.
前記銅表面の形状は、平滑である請求項1に記載の対樹脂接着層。   The resin adhesive layer according to claim 1, wherein the shape of the copper surface is smooth. 前記銅表面の形状は、粗面である請求項1に記載の対樹脂接着層。   The resin adhesive layer according to claim 1, wherein the shape of the copper surface is a rough surface. 前記対樹脂接着層の銅が5〜45原子%の範囲である請求項1に記載の対樹脂接着層。   The resin-to-resin adhesive layer according to claim 1, wherein the copper in the resin-to-resin adhesive layer is in a range of 5 to 45 atomic%. 前記対樹脂接着層の銅が10〜40原子%の範囲である請求項4に記載の対樹脂接着層。   The resin bonding layer according to claim 4, wherein the copper content of the resin bonding layer is in the range of 10 to 40 atomic%. 前記対樹脂接着層のスズが30〜90原子%の範囲である請求項1に記載の対樹脂接着層。   The resin-to-resin adhesive layer according to claim 1, wherein the tin of the resin-to-resin adhesive layer is in the range of 30 to 90 atomic%. 前記対樹脂接着層のスズが40〜80原子%の範囲である請求項6に記載の対樹脂接着層。   The resin adhesive layer according to claim 6, wherein the tin of the resin adhesive layer is in a range of 40 to 80 atomic%. 前記対樹脂接着層の第3の金属が2〜45原子%の範囲である請求項1に記載の対樹脂接着層。   The resin bonding layer according to claim 1, wherein the third metal of the resin bonding layer is in a range of 2 to 45 atomic%. 前記対樹脂接着層の第3の金属が3〜40原子%の範囲である請求項8に記載の対樹脂接着層。   The resin bonding layer according to claim 8, wherein the third metal of the resin bonding layer is in a range of 3 to 40 atomic%. 前記対樹脂接着層の厚さが0.001〜0.5μmの範囲である請求項1に記載の対樹脂接着層。   The resin adhesive layer according to claim 1, wherein the thickness of the resin adhesive layer is in a range of 0.001 to 0.5 μm. 前記対樹脂接着層の厚さが0.001〜0.1μmの範囲である請求項10に記載の対樹脂接着層。

The resin adhesive layer according to claim 10, wherein the thickness of the resin adhesive layer is in a range of 0.001 to 0.1 m.

JP2004134256A 2003-04-30 2004-04-28 Resin adhesive layer on surface of copper Pending JP2004349693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134256A JP2004349693A (en) 2003-04-30 2004-04-28 Resin adhesive layer on surface of copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003125632 2003-04-30
JP2004134256A JP2004349693A (en) 2003-04-30 2004-04-28 Resin adhesive layer on surface of copper

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012027913A Division JP5392732B2 (en) 2003-04-30 2012-02-13 Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method

Publications (1)

Publication Number Publication Date
JP2004349693A true JP2004349693A (en) 2004-12-09

Family

ID=33543407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134256A Pending JP2004349693A (en) 2003-04-30 2004-04-28 Resin adhesive layer on surface of copper

Country Status (1)

Country Link
JP (1) JP2004349693A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023301A (en) * 2003-04-30 2005-01-27 Mec Kk Adhered layer-forming liquid, method for producing bonded layer of copper with resin by using the liquid and laminated material of them
DE102009005691A1 (en) 2008-02-01 2009-08-06 MEC COMPANY LTD., Amagasaki Electrically conductive layer, laminate using same and manufacturing method therefor
DE102009031015A1 (en) 2008-07-02 2010-01-07 MEC COMPANY LTD., Amagasaki-shi Adhesive layer forming liquid
JP2012111980A (en) * 2010-11-19 2012-06-14 Hitachi Cable Ltd Copper foil for printed circuit board, and printed circuit board
JP5307117B2 (en) * 2008-03-04 2013-10-02 日本ペイント株式会社 Copper surface treatment agent and surface treatment method
JP2015030917A (en) * 2013-08-01 2015-02-16 長春石油化學股▲分▼有限公司 Cleaning liquid composition and method for cleaning electrolytic copper foil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284690A (en) * 1991-03-13 1992-10-09 Furukawa Saakitsuto Foil Kk Copper foil for inner layer circuit of multilayer printed circuit board and manufacture thereof
JPH04318997A (en) * 1991-03-11 1992-11-10 Duk San Metal Co Ltd Copper foil for printed circuit and manufacture thereof
JPH07314603A (en) * 1993-12-28 1995-12-05 Nippon Denkai Kk Copper clad laminate, multilayered printed circuit board and treatment of them
JPH1046359A (en) * 1996-04-23 1998-02-17 Mcgean Rohco Inc Multilayer circuit board and its production
JP2000031643A (en) * 1998-07-08 2000-01-28 Ibiden Co Ltd Multilayer printed wiring board and manufacture thereof
JP2000165037A (en) * 1998-11-30 2000-06-16 Mitsui Mining & Smelting Co Ltd Copper foil superior in chemical resistance and heat resistance for printed wiring board and its manufacture
JP2001164396A (en) * 1999-09-27 2001-06-19 Ishihara Chem Co Ltd Tin-copper-containing alloy plating bath, tin-copper- containing alloy plating method and article formed with tin-copper-containing alloy plating film
JP2002069667A (en) * 2000-08-28 2002-03-08 Sony Corp Tin-based multi-element alloy plated coating film and forming method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318997A (en) * 1991-03-11 1992-11-10 Duk San Metal Co Ltd Copper foil for printed circuit and manufacture thereof
JPH04284690A (en) * 1991-03-13 1992-10-09 Furukawa Saakitsuto Foil Kk Copper foil for inner layer circuit of multilayer printed circuit board and manufacture thereof
JPH07314603A (en) * 1993-12-28 1995-12-05 Nippon Denkai Kk Copper clad laminate, multilayered printed circuit board and treatment of them
JPH1046359A (en) * 1996-04-23 1998-02-17 Mcgean Rohco Inc Multilayer circuit board and its production
JP2000031643A (en) * 1998-07-08 2000-01-28 Ibiden Co Ltd Multilayer printed wiring board and manufacture thereof
JP2000165037A (en) * 1998-11-30 2000-06-16 Mitsui Mining & Smelting Co Ltd Copper foil superior in chemical resistance and heat resistance for printed wiring board and its manufacture
JP2001164396A (en) * 1999-09-27 2001-06-19 Ishihara Chem Co Ltd Tin-copper-containing alloy plating bath, tin-copper- containing alloy plating method and article formed with tin-copper-containing alloy plating film
JP2002069667A (en) * 2000-08-28 2002-03-08 Sony Corp Tin-based multi-element alloy plated coating film and forming method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023301A (en) * 2003-04-30 2005-01-27 Mec Kk Adhered layer-forming liquid, method for producing bonded layer of copper with resin by using the liquid and laminated material of them
JP4572363B2 (en) * 2003-04-30 2010-11-04 メック株式会社 Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
DE102009005691A1 (en) 2008-02-01 2009-08-06 MEC COMPANY LTD., Amagasaki Electrically conductive layer, laminate using same and manufacturing method therefor
US8828554B2 (en) 2008-02-01 2014-09-09 Mec Company Ltd. Electroconductive layer, laminate using the same, and producing processes thereof
JP5307117B2 (en) * 2008-03-04 2013-10-02 日本ペイント株式会社 Copper surface treatment agent and surface treatment method
DE102009031015A1 (en) 2008-07-02 2010-01-07 MEC COMPANY LTD., Amagasaki-shi Adhesive layer forming liquid
JP2012111980A (en) * 2010-11-19 2012-06-14 Hitachi Cable Ltd Copper foil for printed circuit board, and printed circuit board
JP2015030917A (en) * 2013-08-01 2015-02-16 長春石油化學股▲分▼有限公司 Cleaning liquid composition and method for cleaning electrolytic copper foil

Similar Documents

Publication Publication Date Title
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
TWI439364B (en) A conductive layer and a base layer using the same, and a method of manufacturing the same
JP4283882B2 (en) Method for producing metal-coated polyimide resin substrate with excellent heat aging characteristics
TWI808183B (en) Coarse treatment of copper foil, copper-clad laminates and printed wiring boards
JP4865381B2 (en) Film metal laminate, method for producing the same, circuit board using the film metal laminate, and method for producing the circuit board
JP3655915B2 (en) Conductive sheet and product containing the same
JP2008109111A (en) To-resin adhesive layer and manufacturing method of laminate using it
KR100958994B1 (en) Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby
JP3933128B2 (en) Resin film with metal foil, resin sheet with metal foil, metal-clad laminate
JP2004349693A (en) Resin adhesive layer on surface of copper
JP5522617B2 (en) Adhesive layer forming liquid and adhesive layer forming method
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP4572363B2 (en) Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
JP2000151096A (en) Manufacture of printed wiring board
JP2001203464A (en) Buildup multilayer printed wiring board and its manufacturing method
JP2000309887A (en) Method for removing chromate rust preventive film and production of wiring substrate
JP4776217B2 (en) Copper metallized laminate and method for producing the same
JP3367189B2 (en) Processing method of copper circuit of wiring board for inner layer
JP2007035658A (en) Polyimide resin base material and wiring board employing the polyimide resin base material
JPH05191045A (en) Manufacture of multilayer printed wiring board
JPH0637447A (en) Manufacture of multilayered printed-circuit board
JP2006028484A (en) Resin surface treatment agent and resin surface treatment method
JPH0715141A (en) Preppeg and manufacture of multilayer lamination plate using prepreg
JPS61241329A (en) Method of bonding copper and resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Effective date: 20081022

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100913

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101112