JP2009251082A - Method for manufacturing electroforming mold and hologram - Google Patents

Method for manufacturing electroforming mold and hologram Download PDF

Info

Publication number
JP2009251082A
JP2009251082A JP2008095839A JP2008095839A JP2009251082A JP 2009251082 A JP2009251082 A JP 2009251082A JP 2008095839 A JP2008095839 A JP 2008095839A JP 2008095839 A JP2008095839 A JP 2008095839A JP 2009251082 A JP2009251082 A JP 2009251082A
Authority
JP
Japan
Prior art keywords
plate
hologram
mold
seed layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095839A
Other languages
Japanese (ja)
Inventor
Hideo Abe
秀夫 阿部
Akira Nagano
彰 永野
Jo Shibata
城 柴田
Toshitaka Toda
敏貴 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008095839A priority Critical patent/JP2009251082A/en
Publication of JP2009251082A publication Critical patent/JP2009251082A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a mold facilitating duplicating a relief pattern in a high aspect ratio without deformation, and particularly, a method for manufacturing an embossing mold for a relief hologram and a hologram. <P>SOLUTION: The method for manufacturing a mold includes steps of: forming a seed layer on an original where a pattern is formed, under the conditions of film formation that an internal stress σ satisfies -3.0 N/m<SP>2</SP><σ<3.0 N/m<SP>2</SP>; and electroforming by using the seed layer as an electrode. The method for manufacturing a hologram includes duplicating the original to obtain a master plate, further duplicating the master plate to obtain a mother plate, duplicating the mother plate to obtain a stamper and embossing a hologram pattern by using the stamper, wherein the original is a relief hologram original and the master plate is manufactured by the above method for manufacturing a mold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,エンボスホログラム用金型等の微細で高アスペクト比のレリーフ形状を持つ金型の製造方法に関し,特にアスペクト比1.0以上の原版からレリーフ断面形状の転写率を低減させることなく電鋳複版による金型の製造方法に関する。   The present invention relates to a method of manufacturing a mold having a fine and high aspect ratio relief shape such as a mold for an embossed hologram, and in particular, without reducing the transfer rate of a relief cross-sectional shape from an original plate having an aspect ratio of 1.0 or more. The present invention relates to a method for producing a mold by casting duplication.

レジストの表面乃至樹脂の表面に凹凸干渉縞模様を形成したホログラムは,レリーフホログラムとして広く知られている。ホログラム製品の一般的な作製方法では,原版からマスター版を電鋳で複版し,さらにマスター版からマザー版を複版し,またマザー版からスタンパーを複版し,該スタンパーを用いて基材フィルムにコーティング層に熱またはUV光等を用いてレリーフを転写している。その後,アルミニウムなどをレリーフ表面に蒸着して反射タイプのホログラム製品を作製する。   A hologram in which an uneven interference fringe pattern is formed on the surface of a resist or the surface of a resin is widely known as a relief hologram. In a general method for producing a hologram product, a master plate is duplicated by electroforming from an original plate, a mother plate is duplicated from a master plate, a stamper is duplicated from the mother plate, and a substrate is formed using the stamper. The relief is transferred to the film using heat or UV light on the coating layer. After that, aluminum or the like is deposited on the relief surface to produce a reflection type hologram product.

このホログラム原版からスタンパーの作製方法は図を用いて説明する。図1のホログラム原版7を作製する場合,良く研磨された平坦性の良いガラス板2にレジストを塗布し乾燥し,レーザー光によってホログラムの撮影,さらに現像によって干渉縞に相当する凹凸1を作製したり,EB描画装置を用いて電子線で作画し,現像し干渉縞に相当する凹凸1を作製している。このホログラム原版7から形状を反転したマスター版4をめっきによって複版する場合,シード層3として銀鏡反応,無電解めっき,金属蒸着,またはスパッタリングを利用して作製している。マスター版4からマザー版5を複版する場合には,マスター版4表面に剥離処理を行い,電鋳によってマザー版5を複版している。さらにスタンパー6は,マザー版5に剥離処理を行い,電鋳によって複版している。   A method for producing a stamper from this hologram master will be described with reference to the drawings. When producing the hologram original plate 7 of FIG. 1, a resist is applied to a well-polished glass plate 2 with good flatness and dried, and the hologram 1 is photographed with laser light, and further, the unevenness 1 corresponding to interference fringes is produced by development. Or, an EB drawing apparatus is used to draw an electron beam and develop it to produce the irregularities 1 corresponding to interference fringes. When the master plate 4 whose shape is inverted from the hologram original plate 7 is duplicated by plating, the seed layer 3 is produced by using silver mirror reaction, electroless plating, metal vapor deposition, or sputtering. When the mother plate 5 is duplicated from the master plate 4, the surface of the master plate 4 is peeled off, and the mother plate 5 is duplicated by electroforming. Further, the stamper 6 is peeled off from the mother plate 5 and is duplicated by electroforming.

マザー版5から複版したスタンパー6を用いて多面付けした樹脂版25からのマスター版19の複版は,ホログラム原版7からマスター版4を複版するのと同様に,シード層17として銀鏡反応,無電解めっき,金属蒸着,またはスパッタリングを用いている。マスター版19からマザー版21を複版するには,マスター版19表面に剥離処理を行い,電鋳によってマザー版21を複版している。さらにスタンパー23は,マザー版21表面に剥離処理を行い,電鋳によって複版している。   The master plate 19 from the resin plate 25 that is multi-faced by using the stamper 6 that has been duplicated from the mother plate 5 is subjected to a silver mirror reaction as a seed layer 17 in the same manner as the master plate 4 is duplicated from the hologram master plate 7. Electroless plating, metal vapor deposition, or sputtering is used. In order to duplicate the mother plate 21 from the master plate 19, the surface of the master plate 19 is peeled and the mother plate 21 is duplicated by electroforming. Further, the stamper 23 performs a peeling process on the surface of the mother plate 21, and is duplicated by electroforming.

ところで,特許文献1では,めっきによってレリーフの凹凸形状が崩れ忠実な複版が得られないことと一枚のマスター版しか複版でないため,凹凸模様を有するフォトレジスト上に硬化後剥離性の良い紫外線硬化樹脂の未硬化液を塗布し,紫外線を照射することによって硬化させ,その後フォトレジストから剥離し,樹脂マスター版を作製し,この樹脂版から複版工程を1回以上繰り返すことによってレリーフホログラムエンボス用の金型の作製方法を考案している。   By the way, in patent document 1, since the uneven | corrugated shape of a relief collapse | crumbles by plating and a faithful duplicate cannot be obtained, and since only one master version is duplicate, it has good peelability after curing on a photoresist having an uneven pattern. Relief hologram by applying uncured liquid of ultraviolet curable resin, curing by irradiating with ultraviolet light, then peeling from photoresist, producing resin master plate, and repeating the duplication process one or more times from this resin plate A method for producing an embossing mold has been devised.

このように,従来の金型の複版方法において,特にホログラム用の金型のようにレリーフが深くアスペクト比の高いものでは,めっき後のマスター版4,乃至これを用いて複版した多面付けマスター版25のレリーフの深さが浅くなり転写率((マスター版レリーフ部の深さ/原版レリーフ部の深さ)×100)が低下する場合が多く,回折光強度も低下するという問題点があった。   As described above, in the conventional method of reprinting a mold, especially for a hologram having a deep relief and a high aspect ratio, the master plate 4 after plating or the multi-surface imprinting using the master plate 4 is performed. The relief depth of the master plate 25 becomes shallow and the transfer rate ((depth of the master plate relief portion / depth of the original plate relief portion) × 100) often decreases, and the diffracted light intensity also decreases. there were.

特開平5−35173公報Japanese Patent Laid-Open No. 5-35173

本発明は,上述のような問題に対してなされたものである。従って,本発明の目的は,高アスペクト比のレリーフ形状を変形させることなく複版することができる金型の製造方法,特にレリーフホログラム用エンボス金型の製造方法を提供することにある。   The present invention has been made for the above-described problems. Accordingly, an object of the present invention is to provide a method for manufacturing a mold, particularly a method for manufacturing an embossing mold for a relief hologram, which can be duplicated without deforming a relief shape having a high aspect ratio.

上記課題を解決するために,本発明者らは種々の条件を替えて実験を繰返し,レリーフホログラム原版や多面付け樹脂原版等の原版にシード層として金属薄膜を所定の値以内の応力値となるように膜形成することで,レリーフ断面形状の変形をせずに電鋳で複版して金属金型を作製できることを発見するに到った。   In order to solve the above-mentioned problems, the present inventors have repeated experiments under various conditions, and the metal thin film has a stress value within a predetermined value as a seed layer on an original plate such as a relief hologram original plate or a multi-sided resin original plate. By forming the film in this way, it was discovered that a metal mold can be produced by electroforming without duplication of the relief cross-sectional shape.

すなわち本発明は,原版からマスター版を複版する場合の原版上にシード層内部に極力応力を蓄積させないで成膜し,電鋳によって金属金型を複版するレリーフホログラム用エンボス金型の製造方法である。   That is, the present invention manufactures an embossing die for a relief hologram, in which a master plate is duplicated from an original plate while forming a film on the original plate with minimal stress accumulation inside the seed layer, and a metal die is duplicated by electroforming. Is the method.

本発明は原版表面上にシード層の成膜を行い,この成膜条件設定のみで高アスペクト比原版の複版における断面形状の変化を起こさずに電鋳ができ,本発明の製造方法で作製した金型によるホログラムは,種々のセキュリティ関連製品やその他の分野に応用ができる。また本発明の金型の製造方法は,アスペクト比(レリーフの深さ/レリーフの直径)1.0以上の高アスペクトな原版であっても、レリーフ断面形状の転写率を低減させることなくマスター版を複版することができる。   In the present invention, a seed layer is formed on the surface of the original plate, and only by setting the film forming conditions, electroforming can be performed without causing a change in the cross-sectional shape of the high-aspect-ratio original plate, and the production method of the present invention is used. The mold hologram can be applied to various security-related products and other fields. Further, the mold manufacturing method of the present invention can be applied to the master plate without reducing the transfer rate of the relief cross-sectional shape, even for a high-aspect original plate having an aspect ratio (relief depth / relief diameter) of 1.0 or more. Can be duplicated.

まず,レリーフホログラム原版および多面付け樹脂原版へのシード層3乃至17の付与方法について説明する。付与方法には乾式めっきであるスパッタリングおよび蒸着法があり,湿式では無電解めっき法がある。シード層3乃至17に最も望まれる特質は,めっき中に剥落しないおよび断面形状を原版通りに変形無しで複版できることである。   First, a method for applying the seed layers 3 to 17 to the relief hologram master and the multi-faced resin master will be described. The application method includes sputtering and vapor deposition, which are dry plating, and wet electroless plating. The most desired properties of the seed layers 3 to 17 are that they do not peel off during plating and can be duplicated without deformation as the original plate.

図1に示すように,レリーフが形成された原版7上に,シード層3を形成し,このシード層を電極として電鋳を行うことで,マスター版を複版することができる。シード層は,後述のように乾式または湿式めっきによる金属めっき皮膜である。   As shown in FIG. 1, the master plate can be duplicated by forming the seed layer 3 on the original plate 7 on which the relief is formed, and performing electroforming using this seed layer as an electrode. The seed layer is a metal plating film by dry or wet plating as will be described later.

通常乾式または湿式で成形された金属めっき皮膜は皮膜中に応力(内部応力)を内在させている。この内部応力(以下,単に応力と記載)の大小によって,原版の形状を変形し,電鋳初期においてレジスト乃至樹脂表面からの剥離が発生し,電鋳の良否にも大きく影響する。しかしながら,電鋳の後ではシード層成膜時の定量的な応力値は検出することが困難である。   Usually, a metal plating film formed by a dry method or a wet method has stress (internal stress) in the film. Due to the magnitude of this internal stress (hereinafter simply referred to as stress), the shape of the original plate is deformed, and peeling from the resist or resin surface occurs in the early stage of electroforming, which greatly affects the quality of electroforming. However, after electroforming, it is difficult to detect a quantitative stress value when the seed layer is formed.

そこで,本発明者らはシード層になる金属薄膜の応力を出来る限り小さくし,原版表面の変形を最も少なくする手法を検討した。その結果,成膜条件をコントロールすることによって,シード層の内部応力σを−3.0N/m<σ<3.0N/mとし,その結果転写率の優れた金型が製造できることを発見した。 Therefore, the present inventors examined a method for minimizing the stress of the metal thin film that becomes the seed layer and minimizing the deformation of the original surface. As a result, by controlling the deposition conditions, that the internal stress sigma of the seed layer and -3.0N / m 2 <σ <3.0N / m 2, can be excellent mold production resulting transfer rate discovered.

上記応力の負の範囲は圧縮応力,正の範囲は引張応力にそれぞれ相当する。膜の応力の測定方法は,下記の実施例に記載したように,ニュートンリング法を用いることができる。また,簡易的には,一定の大きさにカットされたPETフィルム等の基板上にシード層と同じ成膜条件で金属めっき皮膜を形成し,相対的なカールの程度を調べても良い。   The negative range of the stress corresponds to compressive stress, and the positive range corresponds to tensile stress. As a method for measuring the stress of the film, the Newton ring method can be used as described in the following examples. For simplicity, a metal plating film may be formed on a substrate such as a PET film cut to a certain size under the same film formation conditions as the seed layer, and the degree of relative curl may be examined.

具体的には,乾式めっきでシード層を形成する場合には,スパッタリングまたは蒸着する時のベルジャー内部の圧力,成膜速度,および膜厚の制御,さらにはシード層を形成する金属の原子量に比例してスパッタ時のベルジャー内ガス圧を増大させる必要がある。また,無電解めっきにおいては成膜速度と膜厚をコントロールすることによって,また銀鏡反応を利用する場合においては膜厚をコントロールすることによって皮膜内部の応力を低減させることができる。   Specifically, when the seed layer is formed by dry plating, the pressure inside the bell jar during sputtering or vapor deposition, the deposition rate, and the control of the film thickness are proportional to the atomic weight of the metal forming the seed layer. Therefore, it is necessary to increase the gas pressure in the bell jar during sputtering. In electroless plating, the stress inside the film can be reduced by controlling the film formation rate and film thickness, and when using the silver mirror reaction, by controlling the film thickness.

原版上にシード層をスパッタリングで応力を低減して形成させるには,スパッタ時のベルジャー内圧力と成膜速度を一定の条件で行うと皮膜の応力を低減できる。また,蒸着でシード層を形成させる場合は,やはり蒸着時のベルジャー内圧力をある一定圧力にすれば皮膜の応力を低減することが可能である。スパッタまたは蒸着法によってシード層を形成する金属は,クロム,銀,銅,ニッケル,鉄,白金の何れでも可能である。表1に銀,クロム,銅の成膜条件の具体例を記載した。   In order to form a seed layer on the original plate by reducing the stress by sputtering, the stress of the film can be reduced if the pressure in the bell jar and the film formation speed during sputtering are kept constant. Also, when the seed layer is formed by vapor deposition, the stress of the film can be reduced if the pressure in the bell jar during vapor deposition is set to a certain pressure. The metal for forming the seed layer by sputtering or vapor deposition can be any of chromium, silver, copper, nickel, iron, and platinum. Table 1 shows specific examples of film forming conditions for silver, chromium, and copper.

Figure 2009251082
Figure 2009251082

さらに,原版上にシード層として無電解めっきを形成する場合は,めっきの析出速度が重要であり,0.3〜0.4nm/秒の析出速度を保つと良く,そのためには還元剤濃度と液温度の管理を行う必要がある。無電解めっきの種類は,銅,ニッケル,銀など何れでも採用することができる。   Furthermore, when forming electroless plating as a seed layer on an original plate, the deposition rate is important, and it is good to maintain a deposition rate of 0.3 to 0.4 nm / second. It is necessary to manage the liquid temperature. Any type of electroless plating can be used, such as copper, nickel, and silver.

以上のように,シード層を形成した原版を電鋳専用治具にセットして,厚み100〜300μmのマスター版を複製する。めっき液組成は,スルファミン酸ニッケル400〜650g/L,塩化ニッケル5g/L,ホウ酸30〜45g/L,ピット防止剤適量に添加したものである。めっき液温度は35〜55℃の範囲であり,電流密度は3〜6A/dmで行うことができる。 As described above, the original plate on which the seed layer is formed is set on an electroforming jig, and a master plate having a thickness of 100 to 300 μm is duplicated. The plating solution composition is nickel sulfamate 400 to 650 g / L, nickel chloride 5 g / L, boric acid 30 to 45 g / L, and an appropriate amount of pit inhibitor. The plating solution temperature is in the range of 35 to 55 ° C., and the current density can be 3 to 6 A / dm 2 .

以下に本発明の実施例を詳しく説明する。ただし本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described in detail below. However, the present invention is not limited to the following examples.

<実施例1>
レリーフホログラム原版7上にスパッタリングでシード層を形成する場合,スパッタリングターゲットとして銀を用い,レリーフホログラム原版7をベルジャー内にセットし,予め脱気し1×10−3Pa以下として,Arガスを導入してベルジャー内圧力を1.0Pa,成膜速度を0.5nm/秒,膜厚が約70nmとなるようにして形成した。同じ条件で一定の大きさにカットされたPETフィルムに銀膜を着けてもカールのほとんどない物が得られた。さらに,後述するニュートンリング法により同じ成膜条件で作製した膜の応力σを10サンプル測定し,いずれも−3.0N/m<σ<3.0N/mとなっていることを確認した。
<Example 1>
When a seed layer is formed on the relief hologram master 7 by sputtering, silver is used as a sputtering target, the relief hologram precursor 7 is set in a bell jar, deaerated in advance, and Ar gas is introduced at 1 × 10 −3 Pa or less. The film was formed so that the internal pressure of the bell jar was 1.0 Pa, the film formation rate was 0.5 nm / second, and the film thickness was about 70 nm. Even when a silver film was applied to a PET film cut to a certain size under the same conditions, a curl-free product was obtained. Furthermore, verify that the same stress of the film produced in the film formation conditions sigma and 10 samples measured, which is both -3.0N / m 2 <σ <and 3.0 N / m 2 by a Newton ring method described below did.

その後,スパッタリング装置からレリーフホログラム原版7を取り出し専用の電鋳治
具にセットし,上記のスルファミン酸ニッケル電鋳浴に入れて,約300μmになるよう
に電鋳を行った。
Thereafter, the relief hologram original plate 7 was taken out from the sputtering apparatus, set in a dedicated electroforming jig, placed in the above-described nickel sulfamate electroforming bath, and electrocasted to about 300 μm.

電鋳完了後,めっき液から電鋳治具を取り出し,レリーフホログラム原版7とマスター版4を剥離し,マスター版4表面についたレジストを除去し,レリーフ部の凹凸をAFM(Atomic Force Microscope,原子間力顕微鏡)によって高さを測定すると,原版7に比較してレリーフの変形も無いマスター版4が複版されていた。   After the electroforming is completed, the electroforming jig is taken out from the plating solution, the relief hologram master 7 and the master plate 4 are peeled off, the resist on the surface of the master plate 4 is removed, and the unevenness of the relief portion is removed by AFM (Atomic Force Microscope, atoms). When the height was measured using an atomic force microscope, the master plate 4 with no relief deformation compared to the original plate 7 was duplicated.

<実施例2>
レリーフホログラム原版7上にスパッタリングでシード層を形成する場合,スパッタリングターゲットとしてクロムを用い,原版7をベルジャー内にセットし,予め脱気し1×10−3Pa以下にし,Arガスを導入してベルジャー内圧力を0.3Pa,成膜速度を0.35nm/秒,膜厚が約25nmとなるようにして形成した。同じ成膜条件で作製した膜の応力σを10サンプル測定し,いずれも−3.0N/m<σ<3.0N/mとなっていることを確認した。
その後,スパッタリング装置からレリーフホログラム原版7を取り出し専用の電鋳治具にセットし,上記のスルファミン酸ニッケル電鋳浴に入れて,約300μmになるように電鋳を行った。
<Example 2>
When a seed layer is formed on the relief hologram master 7 by sputtering, chromium is used as a sputtering target, the master 7 is set in a bell jar, degassed in advance to 1 × 10 −3 Pa or less, and Ar gas is introduced. The film was formed so that the internal pressure of the bell jar was 0.3 Pa, the film formation rate was 0.35 nm / second, and the film thickness was about 25 nm. The stress sigma of film produced in the same film forming conditions was 10 samples measured, it was confirmed that both has a -3.0N / m 2 <σ <3.0N / m 2.
Thereafter, the relief hologram original plate 7 was taken out from the sputtering apparatus, set in a dedicated electroforming jig, placed in the above-described nickel sulfamate electroforming bath, and electroformed to about 300 μm.

電鋳完了後,めっき液から電鋳治具を取り出し,レリーフホログラム原版7とマスター版4を剥離し,マスター版表面についたレジストを除去し,レリーフ部の凹凸をAFM(Atomic Force Microscope,原子間力顕微鏡)によって高さを原版4と比較すると,原版通りの凹凸が転写されていた。   After the electroforming is completed, the electroforming jig is taken out from the plating solution, the relief hologram master 7 and the master plate 4 are peeled off, the resist on the surface of the master plate is removed, and the unevenness of the relief portion is removed by AFM (Atomic Force Microscope, interatomic When the height was compared with that of the original plate 4 by a force microscope, the irregularities as in the original plate were transferred.

<実施例3>
レリーフホログラム原版7上にスパッタリングでシード層を形成する場合,スパッタリングターゲットとして銅を用い,レリーフホログラム原版7をベルジャー内にセットし,予め脱気し1×10−3Pa以下にし,Arガスを導入してベルジャー内圧力を0.3Pa,成膜速度を0.35nm/秒,膜厚が約55nmとなるようにして形成した。同じ成膜条件で作製した膜の応力σを10サンプル測定し,いずれも−3.0N/m<σ<3.0N/mとなっていることを確認した。
<Example 3>
When a seed layer is formed on the relief hologram master 7 by sputtering, copper is used as a sputtering target, the relief hologram precursor 7 is set in a bell jar, deaerated in advance to 1 × 10 −3 Pa or less, and Ar gas is introduced. The film was formed so that the internal pressure of the bell jar was 0.3 Pa, the film formation rate was 0.35 nm / second, and the film thickness was about 55 nm. The stress sigma of film produced in the same film forming conditions was 10 samples measured, it was confirmed that both has a -3.0N / m 2 <σ <3.0N / m 2.

その後,スパッタリング装置からレリーフホログラム原版7を取り出し専用の電鋳治具にセットし,上記のスルファミン酸ニッケル電鋳浴に入れて,約300μmになるように電鋳を行った。   Thereafter, the relief hologram original plate 7 was taken out from the sputtering apparatus, set in a dedicated electroforming jig, placed in the above-described nickel sulfamate electroforming bath, and electrocasted to about 300 μm.

電鋳完了後,めっき液から電鋳治具を取り出し,レリーフホログラム原版7とマスター版4を剥離し,マスター版表面についたレジストを除去し,レリーフ部の凹凸をAFM(Atomic Force Microscope,原子間力顕微鏡)によって高さを原版と比較すると原版通りの凹凸が転写されていた。   After the electroforming is completed, the electroforming jig is taken out from the plating solution, the relief hologram master 7 and the master plate 4 are peeled off, the resist on the surface of the master plate is removed, and the unevenness of the relief portion is removed by AFM (Atomic Force Microscope, interatomic When the height was compared with that of the original plate using a force microscope), the irregularities as in the original plate were transferred.

<実施例4>
レリーフホログラム原版7上に無電解ニッケルめっきでシード層を形成する場合,レリーフホログラム原版7上にパラジウムの核を形成させた後,還元剤を亜燐酸ナトリウムとする無電解ニッケル浴中で成膜速度を0.3〜0.4nm/秒,望ましくは0.35nm/秒にして,膜厚が約25nmになるようにして形成した。同じ成膜条件で作製した膜の応力σを10サンプル測定し,いずれも−3.0N/m<σ<3.0N/mとなっていることを確認した。
<Example 4>
When the seed layer is formed on the relief hologram master 7 by electroless nickel plating, after forming a palladium nucleus on the relief hologram master 7, the film formation speed in an electroless nickel bath using sodium phosphite as the reducing agent The film thickness was set to 0.3 to 0.4 nm / second, preferably 0.35 nm / second, and the film thickness was about 25 nm. The stress sigma of film produced in the same film forming conditions was 10 samples measured, it was confirmed that both has a -3.0N / m 2 <σ <3.0N / m 2.

その後,無電解ニッケルめっき浴からレリーフホログラム原版7を取り出し専用の電鋳治具にセットし,上記のスルファミン酸ニッケル電鋳浴に入れて,約300μmになるように電鋳を行った。   Thereafter, the relief hologram master 7 was taken out of the electroless nickel plating bath, set in a dedicated electroforming jig, and placed in the above-described nickel sulfamate electroforming bath, and electrocasted to about 300 μm.

電鋳完了後,めっき液から取り出し,レリーフホログラム原版7とマスター版4を剥離し,マスター版4表面についたレジストを除去し,レリーフ部の凹凸をAFM(Atomic Force Microscope,原子間力顕微鏡)によって高さを原版と比較すると,原版通りの凹凸が転写されていた。   After electroforming is completed, the plate is removed from the plating solution, the relief hologram master 7 and the master plate 4 are peeled off, the resist on the surface of the master plate 4 is removed, and the unevenness of the relief is removed by an AFM (Atomic Force Microscope). Comparing the height with the original, the unevenness as the original was transferred.

<実施例5>
スタンパー6を用いて作製した多面付け樹脂原版25上にスパッタリングでシード層を形成する場合,スパッタリングターゲットとしてクロムを用い,多面付け樹脂原版25をベルジャー内にセットし,予め脱気し1×10−3Paにし,Arガスを導入してベルジャー内圧力を0.3Pa,成膜速度を0.35nm/秒,膜厚が約25nmなるようにして形成した。同じ成膜条件で作製した膜の応力σを10サンプル測定し,いずれも−3.0N/m<σ<3.0N/mとなっていることを確認した。
<Example 5>
When a seed layer is formed on the multi-sided resin original plate 25 produced using the stamper 6 by sputtering, chromium is used as a sputtering target, the multi-sided resin original plate 25 is set in a bell jar, deaerated beforehand, and 1 × 10 − The pressure was 3 Pa, Ar gas was introduced, the bell jar internal pressure was 0.3 Pa, the film formation rate was 0.35 nm / second, and the film thickness was about 25 nm. The stress sigma of film produced in the same film forming conditions was 10 samples measured, it was confirmed that both has a -3.0N / m 2 <σ <3.0N / m 2.

その後,スパッタリング装置から多面付け樹脂原版25を取り出し専用の電鋳治具にセットし,上記のスルファミン酸ニッケル電鋳浴に入れて,約300μmになるように電鋳を行った。   Thereafter, the multi-sided resin original plate 25 was taken out from the sputtering apparatus, set in a dedicated electroforming jig, placed in the above-described nickel sulfamate electroforming bath, and electroformed to about 300 μm.

電鋳完了後,めっき液から電鋳治具を取り出し,多面付け樹脂原版25とマスター版19を剥離し,マスター版19表面についたレジストを除去し,レリーフ部の凹凸をAFM(Atomic Force Microscope,原子間力顕微鏡)によって高さを原版と比較すると,原版通りの凹凸が転写されていた。   After the electroforming is completed, the electroforming jig is taken out from the plating solution, the multi-sided resin original plate 25 and the master plate 19 are peeled off, the resist on the surface of the master plate 19 is removed, and the unevenness of the relief portion is removed by AFM (Atomic Force Microscope, When the height was compared with that of the original plate using an atomic force microscope), the unevenness as in the original plate was transferred.

<ニュートンリング法による応力の測定方法>
薄い円板形の石英基板(直径30mm,板厚0.1mm)上にスパッタ膜を成膜し,波長632.8nmの光を半透明鏡に当て,反射光を半透明鏡の後ろにあるカメラで測定し,ゆがみの変形量から以下の式を用いて応力を測定した。
σ=Eb/6(1―ν)rd
ここで,E:基板のヤング率(Pa),b:基板の厚み(m),ν:基板のポアソン比,d:薄膜の厚み(m),r:極率半径(基板の反り)(m)である。測定には,既存の薄膜応力測定装置を用いた。
<Measurement method of stress by Newton ring method>
A sputtered film is formed on a thin disc-shaped quartz substrate (diameter 30 mm, plate thickness 0.1 mm), light with a wavelength of 632.8 nm is applied to the semitransparent mirror, and the reflected light is behind the semitransparent mirror. The stress was measured using the following formula from the amount of deformation of the distortion.
σ = Eb 2/6 (1 -ν) rd
Where E: Young's modulus (Pa) of substrate, b: thickness of substrate (m), ν: Poisson's ratio of substrate, d: thickness of thin film (m), r: radius of curvature (warp of substrate) (m ). An existing thin film stress measuring device was used for the measurement.

本発明のレリーフホログラム原版にシード層を付けて複版を示す図である。FIG. 3 is a diagram showing a duplicate plate with a seed layer attached to the relief hologram master of the present invention. 本発明のスタンパー6を用いて作製した多面付け原版から多面付けマスター版を複版することを示す図である。It is a figure which shows duplicating a multi-sided master plate from the multi-sided original plate produced using the stamper 6 of the present invention.

符号の説明Explanation of symbols

1・・・レジストレリーフ,2・・・ガラス板,3・・・シード層,4・・・マスター版,5・・・マザー版,6・・・スタンパー,7・・・レリーフホログラム原版,10・・・他面付けレリーフ樹脂,13・・・プライマー層,15・・・ガラス板,17・・・シード層,19・・・多面付けマスター版,21・・・他面付けマザー版,23・・・多面付けスタンパー,25・・・他面付け樹脂原版   DESCRIPTION OF SYMBOLS 1 ... Resist relief, 2 ... Glass plate, 3 ... Seed layer, 4 ... Master plate, 5 ... Mother plate, 6 ... Stamper, 7 ... Relief hologram original plate, 10 ... Residential relief resin, 13 ... Primer layer, 15 ... Glass plate, 17 ... Seed layer, 19 ... Multi-imposition master plate, 21 ... Other imprint mother plate, 23 ... Multi-sided stamper, 25 ... Other sided resin master

Claims (6)

パターンが形成された原版上に内部応力σが−3.0N/m<σ<3.0N/mとなる成膜条件でシード層を形成する工程と,該シード層を電極として電鋳を行う工程と,を有する金型製造方法。 A step of on original plate pattern is formed internal stress sigma forming a seed layer at a deposition condition becomes -3.0N / m 2 <σ <3.0N / m 2, electroforming the seed layer as an electrode And a mold manufacturing method. 前記シード層を形成する工程は,スパッタリング,蒸着,または湿式めっきによる成膜であることを特徴とする請求項1に記載の金型製造方法。   2. The mold manufacturing method according to claim 1, wherein the step of forming the seed layer is film formation by sputtering, vapor deposition, or wet plating. シード層は,銀,金,クロム,ニッケル,鉄,白金のいずれかからなることを特徴とする請求項1又は2記載の金型製造方法。   3. The mold manufacturing method according to claim 1, wherein the seed layer is made of any one of silver, gold, chromium, nickel, iron, and platinum. アスペクト比1.0以上の原版からマスター版を複版することを特徴とする請求項1〜3記載の金型製造方法。   4. The mold manufacturing method according to claim 1, wherein a master plate is duplicated from an original plate having an aspect ratio of 1.0 or more. 前記金型がホログラム用金型であることを特徴とする請求項1〜4記載の金型の製造方法。   The method for producing a mold according to claim 1, wherein the mold is a hologram mold. マスター版からマザー版を複版し,該マザー版からスタンパーを複版し,該スタンパーによりホログラムパターンをエンボス形成するホログラムの製造方法において,
前記原版がレリーフホログラム原版であって,請求項1〜5記載の金型の製造方法を用いてマスター版を製造することを特徴とするホログラム製造方法。
In a method of manufacturing a hologram, a mother plate is duplicated from a master plate, a stamper is duplicated from the mother plate, and a hologram pattern is embossed by the stamper.
6. A hologram manufacturing method, wherein the original plate is a relief hologram original plate, and a master plate is manufactured using the mold manufacturing method according to claim 1.
JP2008095839A 2008-04-02 2008-04-02 Method for manufacturing electroforming mold and hologram Pending JP2009251082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095839A JP2009251082A (en) 2008-04-02 2008-04-02 Method for manufacturing electroforming mold and hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095839A JP2009251082A (en) 2008-04-02 2008-04-02 Method for manufacturing electroforming mold and hologram

Publications (1)

Publication Number Publication Date
JP2009251082A true JP2009251082A (en) 2009-10-29

Family

ID=41311902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095839A Pending JP2009251082A (en) 2008-04-02 2008-04-02 Method for manufacturing electroforming mold and hologram

Country Status (1)

Country Link
JP (1) JP2009251082A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192078A (en) * 1987-02-04 1988-08-09 Fujitsu Ltd Production of surface relief type hologram
JPS6476086A (en) * 1987-09-17 1989-03-22 Fujitsu Ltd Resist film eliminating method
JPH06282216A (en) * 1993-03-29 1994-10-07 Toppan Printing Co Ltd Monochromatic light regenerative hologram and regenerative method and device therefore
JPH08305264A (en) * 1995-04-28 1996-11-22 Toppan Printing Co Ltd Fabrication of relief-pattern duplicating plate
JP2000144384A (en) * 1998-11-04 2000-05-26 Ulvac Japan Ltd Production of low stress molybdenum vapor deposition film
JP2000251551A (en) * 1999-02-24 2000-09-14 Furukawa Electric Co Ltd:The Manufacture of sealed contact material, and sealed contact using the sealed contact material
JP2002200900A (en) * 2000-12-28 2002-07-16 Toyo Seikan Kaisha Ltd Can with three-dimensional hologram
JP2002371355A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent thin film
JP2002371350A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent laminate
JP2006054334A (en) * 2004-08-12 2006-02-23 Seiko Epson Corp Semiconductor manufacturing apparatus, sputtering apparatus, dry etching apparatus, and semiconductor device manufacturing method
JP2006091555A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Method for forming rugged pattern and method for manufacturing optical element
JP2006093357A (en) * 2004-09-22 2006-04-06 Ebara Corp Semiconductor device and manufacturing method thereof, and processing solution
JP2006310737A (en) * 2005-03-29 2006-11-09 Seiko Epson Corp Light emitting element, manufacturing method thereof and image display device
JP2007262563A (en) * 2006-03-30 2007-10-11 Furukawa Electric Co Ltd:The Film metal laminate, its manufacturing method, circuit board using the film metal laminate, and manufacturing method of the circuit board

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192078A (en) * 1987-02-04 1988-08-09 Fujitsu Ltd Production of surface relief type hologram
JPS6476086A (en) * 1987-09-17 1989-03-22 Fujitsu Ltd Resist film eliminating method
JPH06282216A (en) * 1993-03-29 1994-10-07 Toppan Printing Co Ltd Monochromatic light regenerative hologram and regenerative method and device therefore
JPH08305264A (en) * 1995-04-28 1996-11-22 Toppan Printing Co Ltd Fabrication of relief-pattern duplicating plate
JP2000144384A (en) * 1998-11-04 2000-05-26 Ulvac Japan Ltd Production of low stress molybdenum vapor deposition film
JP2000251551A (en) * 1999-02-24 2000-09-14 Furukawa Electric Co Ltd:The Manufacture of sealed contact material, and sealed contact using the sealed contact material
JP2002200900A (en) * 2000-12-28 2002-07-16 Toyo Seikan Kaisha Ltd Can with three-dimensional hologram
JP2002371355A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent thin film
JP2002371350A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent laminate
JP2006054334A (en) * 2004-08-12 2006-02-23 Seiko Epson Corp Semiconductor manufacturing apparatus, sputtering apparatus, dry etching apparatus, and semiconductor device manufacturing method
JP2006093357A (en) * 2004-09-22 2006-04-06 Ebara Corp Semiconductor device and manufacturing method thereof, and processing solution
JP2006091555A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Method for forming rugged pattern and method for manufacturing optical element
JP2006310737A (en) * 2005-03-29 2006-11-09 Seiko Epson Corp Light emitting element, manufacturing method thereof and image display device
JP2007262563A (en) * 2006-03-30 2007-10-11 Furukawa Electric Co Ltd:The Film metal laminate, its manufacturing method, circuit board using the film metal laminate, and manufacturing method of the circuit board

Similar Documents

Publication Publication Date Title
JP5876059B2 (en) Method for fabricating highly ordered nanopillars or nanohole structures on large areas
CN101135842B (en) Method for copying nano autogram formwork
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
TW525159B (en) Formation method for metallic stamper and metallic stamper and, manufacture method for optical disk substrate with the use of the stamper and optical disk fabricated by the manufacture method
TWI447781B (en) A method of making a microstructure embossing die
JP2009149097A (en) Stamper for imprint working, and method for producing the same
EP1225477A1 (en) Process for fabricating and marking micromechanical components using photolithography and electrodeposition
JP2006032423A (en) Stamper for imprint processing and manufacturing method thereof
JP2002182403A (en) Photo definable polyimide film used as embossing surface
JP2009251082A (en) Method for manufacturing electroforming mold and hologram
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
KR101635138B1 (en) Method of fabricating a multi-layered complex stamp and method of fabricating an anti-counterfeiting film using the multi-layered complex stamp
TWI226059B (en) Method for manufacturing master disk for optical recording medium having pits and projections, stamper, and optical recording medium
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
JP5027182B2 (en) Method for producing imprint mold material and imprint mold material
JP6668714B2 (en) Injection mold release test method
JP2008230083A (en) Stamper manufacturing method
JP5579605B2 (en) Mold and mold manufacturing method
KR102180106B1 (en) Sleeve type roll mold manufacturing method for nano and micro patterning applied to roll to roll imprint lithography
Sato et al. Development of film mold for roll to roll nanoimprintg process and its application
KR100927481B1 (en) Method of manufacturing micro-nano metal structures
JP2010077476A (en) Method of manufacturing stamper
US20230176475A1 (en) Conformal micro- or nanopatterned nanoimprint lithography master and methods of making and using the same
TW201217151A (en) Nano-imprinting mold and producing method thereof and method for nano-imprinting using the mold and method
JP2009023132A (en) Nano-imprinting stamper, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507