JP4859588B2 - クラッチの制御方法及び制御装置 - Google Patents

クラッチの制御方法及び制御装置 Download PDF

Info

Publication number
JP4859588B2
JP4859588B2 JP2006219989A JP2006219989A JP4859588B2 JP 4859588 B2 JP4859588 B2 JP 4859588B2 JP 2006219989 A JP2006219989 A JP 2006219989A JP 2006219989 A JP2006219989 A JP 2006219989A JP 4859588 B2 JP4859588 B2 JP 4859588B2
Authority
JP
Japan
Prior art keywords
clutch
input shaft
torque
rotational speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006219989A
Other languages
English (en)
Other versions
JP2008045609A (ja
Inventor
大司 清宮
哲生 松村
義幸 吉田
欽也 藤本
健太郎 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2006219989A priority Critical patent/JP4859588B2/ja
Publication of JP2008045609A publication Critical patent/JP2008045609A/ja
Application granted granted Critical
Publication of JP4859588B2 publication Critical patent/JP4859588B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、クラッチの制御方法及び制御装置に係り、特に、自動車における発進クラッチの制御方法及び制御装置に関する。
従来、手動変速機の自動車は、トルクコンバータを用いた変速機を搭載するものに比べ燃費が優れている。しかし、発進時の発進クラッチとアクセルの連携操作が難しいものとなっている。この発進時の発進クラッチとアクセルの連携操作がうまくいかないと、発進クラッチ締結時にショックが発生したり、発進クラッチ圧が足りなければエンジン回転数が急激に上昇する、所謂吹き上がり現象が生じる。また、エンジン回転数が十分でない内に発進クラッチを急に締結しようとしたり、坂道で発進するときなどでエンジンが停止してしまう、所謂エンストを起こすことがある。
これらを解決すべく、手動変速機の機構を用いて発進クラッチとギアの切替を自動化したシステム,いわゆる、自動MT(自動化マニュアルトランスミッション)が開発されている。しかし、従来の自動MTにおける発進時の制御では、駆動力源の回転数と入力軸回転数の回転数差が収束する完全締結時にショックが発生し、乗員に違和感を与えることがある。
そこで、従来の発進クラッチの制御方法として、駆動力源の回転数と入力軸の回転数の差に基づいて発進クラッチを断続するときの接続速度を決定するものが知られている(例えば、特許文献1参照)。
特開昭60−11720号公報
しかしながら、特許文献1記載のものでは、駆動力源の回転数と入力軸の回転数の差に基づいて締結速度を決定しているため、駆動力源の回転数が大きく、入力軸の回転数の加速度が大きい場合と、駆動力源の回転数が小さく、入力軸の回転数の加速度が小さい場合において、同じ締結速度を決定することとなる。
しかし、駆動力源の回転数が大きく、入力軸の回転数の加速度が大きい場合と、駆動力源の回転数が小さく、入力軸の回転数の加速度が小さい場合では、発生する駆動力源の回転数と入力軸の回転数の回転数差は異なる。例えば、駆動力源の回転数が小さく、入力軸の回転数の加速度が小さい場合、発生する回転数差は小さいため、回転数差が小さい領域で発進クラッチの締結速度を変える必要がある。また、例えば、駆動力源の回転数が大きく、入力軸の回転数の加速度が大きい場合、発生する回転数差は大きくなるため、回転数差が大きい領域で発進クラッチの締結速度を変える必要がある。
そのため、駆動力源の回転数が大きく、入力軸の回転数の加速度が大きい場合において、駆動力源の回転数が小さく入力軸の回転数の加速度が小さい場合と同じ締結速度で、発進クラッチの締結を行うと、駆動力源の回転数と入力軸回転数の回転数差が収束する完全締結時にショックが発生し、乗員に違和感を与えることがある。
本発明の目的は、駆動力源の回転数と入力軸回転数の回転数差が収束する完全締結時のショック感を和らげることのできるクラッチの制御方法及び制御装置を提供することにある。
(1)上記目的を達成するため、本発明は、摩擦面を押し付ける押し付け部材の位置もしくは荷重を調整することで駆動力源の出力トルクを伝達する発進クラッチと、前記発進クラッチが伝達するトルクを受けて回転する入力軸と、駆動軸にトルクを出力する出力軸と、前記入力軸と前記出力軸を連結することで所定の変速段を実現する複数の連結機構と、から構成される自動変速機に用いられ、前記発進クラッチの締結を制御するクラッチの制御方法において、駆動力源と入力軸回転数の回転数差が収束する前記発進クラッチの完全締結前に、入力軸回転数の加速度に応じて、前記発進クラッチの目標トルクを減少させ、前記発進クラッチの位置を解放方向に動作させるようにしたものである。
かかる方法により、駆動力源の回転数と入力軸回転数の回転数差が収束する完全締結時のショック感を和らげることができるものとなる。
上記目的を達成するため、本発明は、摩擦面を押し付ける押し付け部材の位置もしくは荷重を調整することで駆動力源の出力トルクを伝達する発進クラッチと、前記発進クラッチが伝達するトルクを受けて回転する入力軸と、駆動軸にトルクを出力する出力軸と、前記入力軸と前記出力軸を連結することで所定の変速段を実現する複数の連結機構と、から構成される自動変速機に用いられ、前記発進クラッチの締結を制御するクラッチの制御方法において、駆動力源と入力軸回転数の回転数差が収束する前記発進クラッチの完全締結前に、入力軸回転数の加速度と、前記入力軸回転数と前記駆動源の回転数との回転数差に応じて、前記発進クラッチの目標トルクを減少させ、前記発進クラッチの位置を解放方向に動作させるものである。
かかる方法により、駆動力源の回転数と入力軸回転数の回転数差が収束する完全締結時のショック感を和らげることができるものとなる。
以下、図1〜図13を用いて、本発明の一実施形態によるクラッチの制御装置の構成及び動作について説明する。
最初に、図1を用いて、本実施形態によるクラッチの制御装置を搭載した自動車システムの構成について説明する。本実施形態では、自動変速機として自動化したマニュアル・トランスミッション(自動MT)を適用したものである。
図1は、本発明の一実施形態によるクラッチの制御装置を搭載した自動車システムの構成を示すスケルトン図である。
駆動力源であるエンジン7では、吸気管(図示しない)に設けられたスロットル10により吸入空気量が制御され、この空気量に見合う燃料量が燃料噴射装置(図示しない)から噴射される。また、空気量および燃料量から決定される空燃比,エンジン回転数などの信号から点火時期が決定され、点火装置(図示しない)により点火される。燃料噴射装置には燃料が吸気ポートに噴射される吸気ポート方式あるいはシリンダ内に直接噴射される筒内噴射方式があるが、エンジンに要求される運転域(エンジントルク、エンジン回転数で決定される領域)を比較して燃費が低減でき、かつ排気性能が良い方式のエンジンを選択することが望ましい。駆動力源としては、ガソリンエンジンのみならず、ディーゼルエンジンや天然ガスエンジンでもよい。
エンジン7と入力軸41の間には、発進クラッチ8が介装され、発進クラッチ8の位置を制御することにより発進クラッチ8の押付け力を調節することが可能であり、エンジン7から入力軸41へ動力を伝達することができる。また、発進クラッチ8を解放することにより、エンジン7から入力軸41への動力伝達を遮断することができる。一般に、発進クラッチ8には乾式単板方式の摩擦クラッチが用いられ、発進クラッチ8の押付け力を調整することによりエンジン7から入力軸41へ伝達するトルクを調節することが可能である。発進クラッチ8の発進アクチュエータ61は、モータ(図示せず)と、このモータの回転運動を直線運動に変換するメカ機構から構成されており、パワートレーン制御ユニット100によって、発進アクチュエータ61に設けられたモータ(図示しない)の電流を制御することで、発進クラッチ8の押付け力が制御される。また、発進クラッチ8には湿式多板方式の摩擦クラッチや電磁クラッチなど、伝達するトルクを調節可能なクラッチならば何れも適用可能である。発進クラッチ8は、通常のマニュアル・トランスミッションを搭載した車両において一般的に用いられており、発進クラッチ8を徐々に押し付けていくことにより車両を発進させることができる。
また、パワートレーン制御ユニット100によって、セレクトアクチュエータ63に設けられたモータ(図示しない)の電流を制御することで、シフト/セレクト機構24に設けられたコントロールアーム(図示しない)のストローク位置(セレクト位置)を制御し、スリーブ21,スリーブ22,スリーブ23のいずれを移動するか選択している。
また、パワートレーン制御ユニット100によって、シフトアクチュエータ62に設けられたモータ(図示しない)の電流を制御することで、シフト/セレクト機構24に設けられたコントロールアーム(図示しない)の回転力,回転位置を制御し、セレクトアクチュエータ63によって選択された、スリーブ21,スリーブ22,スリーブ23のいずれかを動作させる荷重またはストローク位置(シフト位置)を制御できる。
入力軸41にはギア1,ギア4が固定されており、出力軸42に対して回転自在に取り付けられたギア11,ギア14とそれぞれ噛合している。また、ギア2,ギア3,ギア5およびギア6が入力軸41に対して回転自在に取り付けられており、出力軸42に固定されたギア12,ギア13,ギア15およびギア16とそれぞれ噛合している。
入力軸41には入力軸回転数センサ31が取り付けられており、入力軸回転数の検出が可能である。出力軸42には出力軸回転数センサ32が取り付けられており、出力軸回転数の検出が可能である。
次に、スリーブ及び同期装置からなる同期噛み合い式クラッチについて説明する。同期噛み合い式クラッチは、通常のマニュアル・トランスミッションを搭載した車両において一般的に用いられており、この同期装置によってギア切換時における回転同期が可能であり、変速操作を容易にすることができる。
まず、スリーブ21および同期装置51,同期装置54からなる同期噛み合い式クラッチについて説明する。
出力軸42には、ギア11およびギア14と出力軸42と直結するスリーブ21が設けられており、ギア11およびギア14のトルクを出力軸42に伝達するためには、スリーブ21を出力軸42の軸方向へ移動させ、ギア11あるいはギア14とスリーブ21とを直結する必要がある。また、ギア11とスリーブ21の間には同期装置51が設けられており、スリーブ21を同期装置51に押付けることにより、ギア11と同期装置51との間に摩擦力が発生する。このとき、ギア11から同期装置51を介してスリーブ21へのトルク伝達が行われ、スリーブ21の回転数にギア11の回転数が同期される。回転数同期が終了すると、スリーブ21はギア11に直結する。同様に、ギア14とスリーブ21の間には同期装置54が設けられており、スリーブ21を同期装置54に押付けることにより、ギア14と同期装置54との間に摩擦力が発生する。このとき、ギア14から同期装置54を介してスリーブ21へトルク伝達が行われ、スリーブ21の回転数にギア14の回転数が同期される。回転数同期が終了すると、スリーブ21はギア14に直結する。
次に、スリーブ22および同期装置52,同期装置55からなる同期噛み合い式クラッチについて説明する。
入力軸41には、ギア2およびギア5と入力軸41と直結するスリーブ22が設けられており、入力軸41のトルクをギア2およびギア5に伝達するためには、スリーブ22を入力軸41の軸方向へ移動させ、ギア2あるいはギア5とスリーブ22とを直結する必要がある。また、ギア2とスリーブ22の間には同期装置52が設けられており、スリーブ22を同期装置52に押付けることにより、同期装置52とギア2との間に摩擦力が発生する。このとき、スリーブ22から同期装置52を介してギア2へトルク伝達が行われ、スリーブ22の回転数がギア2の回転数に同期される。回転数同期が終了すると、スリーブ22はギア2に直結する。同様に、ギア5とスリーブ22の間には同期装置55が設けられており、スリーブ22を同期装置55に押付けることにより、同期装置52とギア5との間に摩擦力が発生する。このとき、スリーブ22から同期装置52を介してギア5へトルク伝達が行われ、スリーブ22の回転数がギア5の回転数に同期される。回転数同期が終了すると、スリーブ22はギア5に直結する。
次に、スリーブ23および同期装置53,同期装置56からなる同期噛み合い式クラッチについて説明する。
入力軸41には、ギア3およびギア6と入力軸41と直結するスリーブ23が設けられており、入力軸41のトルクをギア3およびギア6に伝達するためには、スリーブ23を入力軸41の軸方向へ移動させ、ギア3あるいはギア6とスリーブ23とを直結する必要がある。また、ギア3とスリーブ23の間には同期装置53が設けられており、スリーブ23を同期装置53に押付けることにより、同期装置53とギア3との間に摩擦力が発生する。このとき、スリーブ23から同期装置53を介してギア3へのトルク伝達が行われ、スリーブ23の回転数がギア3の回転数に同期される。回転数同期が終了すると、スリーブ23はギア3に直結する。同様に、ギア6とスリーブ23の間には同期装置56が設けられており、スリーブ23を同期装置56に押付けることにより、同期装置56とギア6との間に摩擦力が発生する。このとき、スリーブ23から同期装置56を介してギア6へのトルク伝達が行われ、スリーブ23の回転数がギア6の回転数に同期される。回転数同期が終了すると、スリーブ23はギア6に直結する。
このように、入力軸41の回転トルクを出力軸42へ伝達するためには、スリーブ21、またはスリーブ22、またはスリーブ23のいずれかを選択し、シフト/セレクト機構24を動作させることによって、スリーブ21、またはスリーブ22、またはスリーブ23のいずれかをギア11、またはギア14、またはギア2、またはギア5、またはギア3、またはギア6に直結させ、入力軸41の回転トルクを出力軸42へ伝達することができる。
エンジン7はエンジン制御ユニット101によって制御される。
なお、本実施形態では、発進アクチュエータ61およびセレクトアクチュエータ62,シフトアクチュエータ63として、モータとメカ機構を組み合せたものを使用しているが、電磁弁等を用いた油圧アクチュエータを採用してもよいものである。
次に、図2を用いて、本実施形態によるクラッチの制御装置を搭載した自動車システムにおける制御ユニットの入出力信号について説明する。
図2は、本発明の一実施形態によるクラッチの制御装置を搭載した自動車システムにおける制御ユニットの入出力信号図である。
図2は、パワートレーン制御ユニット100とエンジン制御ユニット101との入出力関係を示している。パワートレーン制御ユニット100は、入力部100iと、出力部100oと、コンピュータ100cとを備えたコントロールユニットとして構成される。同様に、エンジン制御ユニット101も、入力部101iと、出力部101oと、コンピュータ101cとを備えたコントロールユニットとして構成される。パワートレーン制御ユニット100からエンジン制御ユニット101に、通信手段103を用いてエンジントルク指令値TTEが送信され、エンジン制御ユニット101はエンジントルク指令値TTEを実現するように、エンジン7の吸入空気量,燃料量,点火時期等を制御する。また、エンジン制御ユニット101内には、変速機への入力トルクとなるエンジントルクの検出手段(図示しない)が備えられ、エンジン制御ユニット101によってエンジン7の回転数NE,エンジン7が発生したエンジントルクTEを検出し、通信手段103を用いてパワートレーン制御ユニット100に送信する。エンジントルク検出手段には、トルクセンサを用いるか、またはインジェクタの噴射パルス幅や吸気管内の圧力とエンジン回転数等など、エンジンのパラメータによる推定手段としても良い。
パワートレーン制御ユニット100には、入力軸回転数センサ31,出力軸回転数センサ32から、入力軸回転数NI,出力軸回転数NOがそれぞれ入力され、アクセル開度センサ302からアクセルペダル踏み込み量APSが入力される。また、パワートレーン制御ユニット100には、発進クラッチの位置を示す発進クラッチ位置RPCLHが入力される。
パワートレーン制御ユニット100は、アクセルペダルを踏み込んだときは運転者に発進の意志があると判断し、運転者の意図を実現するように、エンジントルク指令値TTEを設定する。
パワートレーン制御ユニット100は、所望の発進クラッチ位置を実現するために、発進クラッチアクチュエータ61の発進クラッチモータ61bへ印加する電圧V1_sta、V2_staを調整することで、クラッチモータ61bの電流を制御し、発進クラッチ8を係合、解放する。
変速機制御ユニット100は、所望のセレクト位置を実現するために、セレクトアクチュエータ63のセレクトモータ63bへ印加する電圧V1_sel、V2_selを調整することで、セレクトモータ63bの電流を制御し、スリーブ21、スリーブ22、スリーブ23のいずれを噛合させるかを選択する。
また、変速機制御ユニット100は、所望のシフト荷重もしくはシフト位置を実現するために、シフトアクチュエータ62のシフトモータ62bへ印加する電圧V1_sft、V2_sftを調整することで、シフトモータ62bの電流を制御し、スリーブ21、スリーブ22、スリーブ23のいずれかの噛合、解放を行う。
なお、変速機制御ユニット100には、電流検出回路(図示しない)が設けられており、各モータの電流が目標電流に追従するよう電圧出力を変更して、各モータの回転トルクを制御している。
またここで、各アクチュエータに備えられるモータは、磁石が固定されて巻線が回転される、いわゆる直流モータによって構成されているが、巻線が固定して磁石が回転される、いわゆる永久磁石同期モータでも良く、種々のモータが適用可能である。
次に、図3〜図13を用いて、本実施形態によるクラッチの制御装置による発進クラッチ8の制御内容について説明する。
最初に、図3及び図4を用いて、本実施形態によるクラッチの制御装置による発進クラッチ8の全体の制御内容について説明する。
図3は、本発明の一実施形態によるクラッチの制御装置による発進クラッチの全体の制御内容を示すフローチャートである。
図3の内容は、パワートレーン制御ユニット100のコンピュータ100cにプログラミングされ、あらかじめ定められた周期で繰り返し実行される。すなわち、以下のステップ301〜306の処理は、パワートレーン制御ユニット100によって実行される。
ステップ301において、パワートレーン制御ユニット100は、発進開始か否かを判定する。パワートレーン制御ユニット100は、入力されるレンジ位置信号RngPos,出力軸回転数NO,アクセルペダル踏み込み量APSから、発進開始か否かを判定する。例えば、レンジレバーがドライブレンジであり、車両が停車し、アクセルペダルが踏まれたことを検知すると、発進指令が発生していることを確認できる。
次に、ステップ302において、パワートレーン制御ユニット100は、発進クラッチフィードバック(FB)演算を実行する。この工程の詳細については、図5を用いて後述するが、発進中におけるエンジン回転数を所定の回転数軌道で示される目標エンジン回転数とエンジン回転数の偏差に基づいて、フィードバック制御(FB制御)を行うため、エンジン回転数が目標エンジン回転数と一致するよう発進クラッチFBトルクTCFBを演算する。
次に、ステップ303において、パワートレーン制御ユニット100は、発進クラッチフィードフォワード(FF)演算を実行する。この工程の詳細については、図8を用いて後述するが、エンジントルクを基本値としたフィードフォワード制御(FF制御)を行うため、発進クラッチFFトルクTCFFを演算する。
次に、ステップ304において、パワートレーン制御ユニット100は、発進クラッチ目標トルクを演算する。この工程では、以下の式(1)により、発進クラッチ目標トルクTCを演算する。

TC=TCFF+TCFB …(1)

ここで、TCFFは、ステップ303にて演算される発進クラッチFFトルクTCFFであり、TCFBは、ステップ302にて演算される発進クラッチFBトルクTCFBである。
次に、ステップ305において、パワートレーン制御ユニット100は、発進クラッチ目標位置を演算する。この工程では、ステップ304にて演算される発進クラッチ目標トルクTCに基づいて、図4に示す制御マップ401から発進クラッチ位置の目標位置TCPを演算する。
図4は、本発明の一実施形態によるクラッチの制御装置に用いる制御マップの説明図である。制御マップ401は、発進クラッチ目標トルクTCと、発進クラッチ位置の目標位置TCPとの関係を、マップデータとして保持している。発進クラッチ目標トルクTCが大きくなると、発進クラッチ位置の目標位置TCPも曲線的に変化して大きくなり、発進クラッチの位置が接続位置に近づく。
次に、ステップ306において、パワートレーン制御ユニット100は、発進クラッチ位置が目標位置TCPと一致するように、図2の発進クラッチモータ61bへ印加する電圧V1_sta,V2_staを調節することで発進クラッチ8の位置を制御する。
次に、図5〜図7を用いて、本実施形態によるクラッチの制御装置による図3のステップ302(クラッチFB演算)の処理内容について説明する。
図5は、本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算の処理内容を示すフローチャートである。図6は、本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算処理にて用いる目標エンジン回転数変化率マップの説明図である。図7は、本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算処理にて用いる目標エンジン回転数基本値マップの説明図である。
図5のステップ501において、パワートレーン制御ユニット100は、目標エンジン回転数差GNEerrを演算する。この工程では、以下の(2)式に基づいて、目標エンジン回転数差GNEerrを演算する。

GNEerr=TNE−NI …(2)

ここで、TNEは目標エンジン回転数であり、NIは入力軸回転数である。なお、目標エンジン回転数差GNEerrは、以下の(3)式に基づいて、求めることもできる。

GNEerr=NE−NI …(3)

ここで、NEはエンジン回転数であり、NIは入力軸回転数である。
次に、ステップ502において、パワートレーン制御ユニット100は、目標エンジン回転数変化率Gneを演算する。この工程では、目標エンジン回転数差GNEerrに基づいて、図6に示す制御マップ601から目標エンジン回転数変化率Gneを演算する。ここで、制御マップ601は、目標エンジン回転数差GNEerrが小さくなるにつれて、増加する設定とすることが望ましく、目標エンジン回転数差GNEerrが0近傍では、1(100%)とすることが望ましい。また、目標エンジン回転数差GNEerrが所定値GNEerr−1において、その変化率が異なっている。すなわち、所定値GNEerr−1よりも小さい範囲では、目標エンジン回転数変化率Gneは、比較的急激に変化し、所定値GNEerr−1よりも大きい範囲では、目標エンジン回転数変化率Gneは、その前に比べて緩やかに変化する。
次に、ステップ503において、パワートレーン制御ユニット100は、目標エンジン回転数変化量DTNEを演算する。この工程では、以下の(4)式に基づいて、目標エンジン回転数変化量DTNEを演算する。

DTNE=Gne×ΔNI …(4)

ここで、Gneは、ステップ502で求められた目標エンジン回転数変化率であり、ΔNIは入力軸回転数の変化分である。
次に、ステップ504において、パワートレーン制御ユニット100は、目標エンジン回転数基本値TNE0を演算する。この工程では、アクセルペダル踏み込み量APSに基づいて、図7に示す制御マップ701から目標エンジン回転数基本値TNE0を演算する。ここで、目標エンジン回転数基本値TNE0は、入力軸回転数NI以下とならないことが望ましい。
次に、ステップ505において、パワートレーン制御ユニット100は、目標エンジン回転数TNEを演算する。この工程では、(5)式に基づいて、目標エンジン回転数TNEを演算する。

TNE=TNE0+DTNE …(5)

ここで、TNE0は目標エンジン回転数基本値であり、DTNEは目標エンジン回転数変化である。
最後に、ステップ506において、パワートレーン制御ユニット100は、発進クラッチFBトルクTCFBを演算する。この工程では、ステップ505で演算した目標エンジン回転数TNEとエンジン回転数NEの偏差を用いて、目標エンジン回転数TNEとエンジン回転数NEが一致するようクラッチFBトルクTCFBを演算する。
次に、図8及び図9を用いて、本実施形態によるクラッチの制御装置による図3のステップ303(発進クラッチFF演算)の処理内容について説明する。
図8は、本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算の処理内容を示すフローチャートである。図9は、本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算処理にて用いるエンジン慣性トルク変化ゲインマップの説明図である。
ステップ801において、パワートレーン制御ユニット100は、回転数微分値DNを演算する。この工程では、入力軸回転数センサ31により検出した入力軸回転数NIを微分し、入力軸回転数NIの時間的変化を示す回転数微分値DNを、以下の(6)式により演算する。

DN=dNI÷dt …(6)

ここで、入力軸回転数NIは、出力軸回転数センサ32より検出した出力軸回転数NOと、発進時にスリーブと直結しているギアのギア比Grを用いて、以下の(7)式で算出してもよいものである。

NI=Gr×NO …(7)

なお、回転数微分値DNは、入力軸回転数NIの代わりに目標エンジン回転数TNEを用いて、以下の(8)式により、

DN=dTNE÷dt …(8)

として算出してもよいものである。
次に、ステップ802において、パワートレーン制御ユニット100は、エンジン慣性トルクTIEを演算する。この工程では、エンジンから入力軸までの慣性係数Ieに、ステップ801で算出した回転数微分値DNを乗じて、エンジン慣性トルクTIEを演算する。
次に、ステップ803において、パワートレーン制御ユニット100は、エンジン慣性トルク変化ゲインGteを演算する。この工程では、入力軸回転数NIに基づいて、図9に示す制御マップ901からエンジン慣性トルク変化ゲインGteを演算する。ここで、制御マップ901は、入力軸回転数NIがNI−1まではゲインGteが0で、入力軸回転数NIがNI−1より大きくなると、増加する設定とすることが望ましいものである。
次に、ステップ804において、パワートレーン制御ユニット100は、発進クラッチFFトルクTCFFを演算する。この工程では、エンジン7のトルクTEを用いて、以下の式(9)により発進クラッチFFトルクTCFFを演算する。
TCFF=TE−Gte×TIE …(9)

ここで、TIEは、ステップ802で演算されたエンジン慣性トルクであり、Gteは、ステップ803で演算されたエンジン慣性トルク変化ゲインである。
ここで、図10及び図11を用いて、本実施形態によるクラッチの制御装置による図3のステップ303(発進クラッチFF演算)の他の処理内容について説明する。
図10は、本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算の他の処理内容を示すフローチャートである。図11は、本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算処理にて用いる他のエンジン慣性トルク変化ゲインマップの説明図である。
図10のステップ1001,ステップ1002は、図8のステップ801,ステップ802と同じであり、図10のステップ1004は、図8のステップ804と同じである。
図10のフローチャートが、図8のフローチャートと異なる点は、図10のフローチャートのステップ1003において、パワートレーン制御ユニット100は、エンジン回転数NEと入力軸回転数NIの差に基づいて、図11に示す制御マップ1101からエンジン慣性トルク変化ゲインGteを演算する点である。制御マップ1101では、エンジン回転数NEと入力軸回転数NIの差(NE−NI)が所定値(NE−NI)−1以下では、ゲインGteは1とし、所定値(NE−NI)−1より大きくなると、ゲインGteが徐々に1から減少するものとする。
なお、ここで、エンジン回転数NEの代わりに目標エンジン回転数TNEを用いて、目標エンジン回転数TNEと入力軸回転数NIの差に基づいて図11に示す制御マップ1101からエンジン慣性トルク変化ゲインGteを演算してもよいものである。
ここで、図12を用いて、本実施形態によるクラッチの制御装置の演算内容を、演算回路的に図示して説明する。
図12は、本発明の一実施形態によるクラッチの制御装置の演算内容を示す等価回路図である。
図12に示す等価回路図は、図3,図5,図8に示した演算処理に対応するものであり、以下、その対応関係について説明する。図12に示した回路図の右側の方から説明すると、図3のステップ304にて説明したように、発進クラッチ目標トルクTCは、発進クラッチFFトルクTCFFと、発進クラッチFBトルクTCFBの和として求められる。
発進クラッチFBトルクTCFBは、図5のステップ506で説明したように、目標エンジン回転数TNEとエンジン回転数NEの偏差に、制御ゲインGを掛けて求められる。
目標エンジン回転数TNEは、図5のステップ505で説明したように、目標エンジン回転数基本値TNE0と、目標エンジン回転数変化DTNEの和として求められる。
目標エンジン回転数変化DTNEは、図5のステップ503で説明したように、目標エンジン回転数変化率Gneと、入力軸回転数の変化分ΔNIを掛けて求められる。
目標エンジン回転数変化率Gneは、図6に示すように、目標エンジン回転数差GNErrによって変化する値である。したがって、図12から理解されるように、目標エンジン回転数差GNErrが小さくなると、目標エンジン回転数変化率Gneは1(100%)に近づくため、目標エンジン回転数TNEは、入力軸回転数の変化分ΔNIに基づいて増加する。結果として、目標エンジン回転数TNEにエンジン回転数NEを追従させるよう発進クラッチFBトルクTCFBが演算され、発進クラッチFBトルクTCFBが減少する。
一方、発進クラッチFFトルクTCFFは、図8のステップ804で説明したように、TCFF=エンジントルクTE−(エンジン慣性トルク変化ゲインGte×エンジン慣性トルクTIE)として求められる。ここで、エンジン慣性トルク変化ゲインGteは、図9にて説明したように、入力軸回転数NIによって変化し、入力軸回転数NIが所定値NI−1以上で、0以上の値となり、入力軸回転数NIの増加に従って、増加する。したがって、図12から理解されるように、エンジン慣性トルク変化ゲインGteが大きくなると、結果として、発進クラッチFFトルクTCFFが減少する。
次に、図13を用いて、本実施形態によるクラッチの制御装置による発進動作について説明する。
図13は、本発明の一実施形態によるクラッチの制御装置による発進動作を示すタイムチャートである。
図13の横軸は時間を示している。また、図13(A)の縦軸はスロットル開度TVOを、図13(B)は目標エンジン回転数TNEとエンジン回転数NEと入力軸回転数NIを、図13(C)はエンジントルクTEを、図13(D)は発進クラッチ目標トルクTEを、図13(E)は発進クラッチ位置を示している。ここで、発進クラッチ位置RPCLHは、エンジントルクを入力軸へ伝達する締結方向を正とし、エンジントルクを入力軸へ伝達しない完全解放位置を0としている。図12では、発進中のアクセル開度は一定の状態を示しており、簡単のため、発進中のエンジントルクTEは一定と仮定している。
時刻t1において、図13(A)に示すように、運転者の意思に基づいてアクセルペダルが踏まれ、スロットル開度TVOがある値で一定となっている。この時、図13(C)に示すエンジントルクTEが増加し、図13(B)示すエンジン回転数NEが増加を開始する。図3のステップ302の発進クラッチFB演算とステップ303の発進クラッチFF演算により、図13(B)に示す目標エンジン回転数TNEにエンジン回転数NEが一致するよう、図3のステップ304の処理により、図13(D)に示す発進クラッチ目標トルクTCが設定される。よって、設定された発進クラッチ目標トルクTCに従い、図13(E)に示す発進クラッチ位置RPCLHが締結方向へ動作を開始する。
時刻t2の少し前で、目標エンジン回転数TNEとエンジン回転数NEが一致すると、図12で説明したように、発進クラッチFBトルクTCFBは、目標エンジン回転数TNEとエンジン回転数NEの偏差から求められるため、目標エンジン回転数TNEとエンジン回転数NEが一致するということは、目標エンジン回転数TNEとエンジン回転数NEの偏差が0となるため、図3のステップ302にて演算される発進クラッチFBトルクTCFBは0となる。
ここで、時刻t2までは、目標エンジン回転数TNEは、図13(B)に示すように、一定値としている。時刻t2において、目標エンジン回転数変化率GNEerrが所定値GNEerr−1より小さくなると、図6の制御マップ601で説明したように、目標エンジン回転数変化率Gneの大きくなる割合が大きくなる。従って、目標エンジン回転数変化率Gneの大きくなる割合が大きくなるということは、図12で説明したように、目標エンジン回転数変化率Gneが大きくなるので、目標エンジン回転数TNEが増加する。すなわち、図13(B)の時刻t2以前では、目標エンジン回転数TNEは一定であったものが、時刻t2以降、徐々に増加する。目標エンジン回転数TNEが増加すれば、それに応じて、エンジン回転数NEも増加する。ここで、時刻t2以前と、時刻t2以降のエンジン回転数NEと入力軸回転数NIの差分について見ると、時刻t2以前でも、エンジン回転数NEと入力軸回転数NIの差分は徐々に小さくなっているが、時刻t2以降では、エンジン回転数NEが増加する分、エンジン回転数NEと入力軸回転数NIの差分が小さくなる割合は、時刻t2以前よりも小さくなっている。すなわち、エンジン回転数NEと入力軸回転数NIの差分が小さいということは、発進クラッチの完全締結時のショックの発生を低減できることになる。
ここで、前述のように、目標エンジン回転数TNEが増加すると、さきほど、目標エンジン回転数TNEとエンジン回転数NEが一致したと説明したにも拘わらず、再度、目標エンジン回転数TNEとエンジン回転数NEとに差が生じることになる。この差が生じた場合、フィードバック制御系は、この差が0となるような制御を開始するので、このようなフィードバック制御が動作しないように、ここでは、以下に説明する方法によって、発進クラッチFFトルクTCFFを減少させている。
すなわち、時刻t2付近において、入力軸回転数NIが所定値NI−1になると、図9の制御マップ901で説明したように、エンジン慣性トルク変化ゲインGteが0よりも大きくなる。従って、エンジン慣性トルク変化ゲインGteが大きくなるということは、図12で説明したように、発進クラッチFFトルクTCFFが減少し、発進クラッチ目標トルクTCが減少することなので、図13(D)に示す発進クラッチ目標トルクTCは減少を開始する。発進クラッチ目標トルクTCは減少すると、図13(E)に示す発進クラッチ位置RPCLHは解放方向へ動作を開始する。よって、発進クラッチ位置RPCLHは解放方向へ動作を開始するとともに、このとき、図13(B)に示すエンジン回転数NEは増加し始めており、入力軸回転数NIに滑らかに漸近している。
時刻t3で、図13(B)に示すエンジン回転数NEと入力軸回転数NIが一致すると、発進クラッチが完全締結したと判定し、図13(D)に示す発進クラッチ目標トルクを最大値TCMAXまで増加させ、図13(E)に示す発進クラッチ位置RPCLHを完全締結位置CLHONへ移動させ、発進制御は完了する。
このように、エンジン回転数NEと入力軸回転数NIの回転差が収束する完全締結時の直前(時刻t2〜t3)に、エンジン回転数NEを上昇させ、入力軸回転数NIに対して、それ以前よりも滑らかに漸近させることで、発進クラッチをスムーズに締結することができ、締結時のショックを低減することができる。
以上説明したように、本実施形態によれば、発進する際の発進クラッチの締結をスムーズに行い、発進クラッチ締結時のショック感を和らげることができる。
本発明の一実施形態によるクラッチの制御装置を搭載した自動車システムの構成を示すスケルトン図である。 本発明の一実施形態によるクラッチの制御装置を搭載した自動車システムにおける制御ユニットの入出力信号図である。 本発明の一実施形態によるクラッチの制御装置による発進クラッチの全体の制御内容を示すフローチャートである。 本発明の一実施形態によるクラッチの制御装置に用いる制御マップの説明図である 本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算の処理内容を示すフローチャートである。 本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算処理にて用いる目標エンジン回転数変化率マップの説明図である。 本発明の一実施形態によるクラッチの制御装置によるクラッチFB演算処理にて用いる目標エンジン回転数基本値マップの説明図である。 本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算の処理内容を示すフローチャートである。 本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算処理にて用いるエンジン慣性トルク変化ゲインマップの説明図である。 本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算の他の処理内容を示すフローチャートである。 本発明の一実施形態によるクラッチの制御装置による発進クラッチFF演算処理にて用いる他のエンジン慣性トルク変化ゲインマップの説明図である。 本発明の一実施形態によるクラッチの制御装置の演算内容を示す等価回路図である。 本発明の一実施形態によるクラッチの制御装置による発進動作を示すタイムチャートである。
符号の説明
1,11…ギア(1速)
2,12…ギア(3速)
3,13…ギア(5速)
4,14…ギア(2速)
5,15…ギア(4速)
6,16…ギア(6速)
7…エンジン
8…発進クラッチ
10…スロットル
21…スリーブ(1速−2速)
22…スリーブ(3速−4速)
23…スリーブ(5速−6速)
24…シフト/セレクト機構
31…入力軸回転数センサ
32…出力軸回転数センサ
41…入力軸
42…出力軸
50…変速機
51…同期装置(1速)
52…同期装置(3速)
53…同期装置(5速)
54…同期装置(2速)
55…同期装置(4速)
56…同期装置(6速)
61…発進アクチュエータ
62…シフトアクチュエータ
63…セレクトアクチュエータ
100…パワートレーン制御ユニット
101…エンジン制御ユニット
103…通信手段

Claims (2)

  1. 摩擦面を押し付ける押し付け部材の位置もしくは荷重を調整することで駆動力源の出力トルクを伝達する発進クラッチと、前記発進クラッチが伝達するトルクを受けて回転する入力軸と、駆動軸にトルクを出力する出力軸と、前記入力軸と前記出力軸を連結することで所定の変速段を実現する複数の連結機構と、から構成される自動変速機に用いられ、
    前記発進クラッチの締結を制御するクラッチの制御方法において、
    駆動力源と入力軸回転数の回転数差が収束する前記発進クラッチの完全締結前に、入力軸回転数の加速度に応じて、前記発進クラッチの目標トルクを減少させ、前記発進クラッチの位置を解放方向に動作させることを特徴とするクラッチの制御方法。
  2. 摩擦面を押し付ける押し付け部材の位置もしくは荷重を調整することで駆動力源の出力トルクを伝達する発進クラッチと、前記発進クラッチが伝達するトルクを受けて回転する入力軸と、駆動軸にトルクを出力する出力軸と、前記入力軸と前記出力軸を連結することで所定の変速段を実現する複数の連結機構と、から構成される自動変速機に用いられ、
    前記発進クラッチの締結を制御するクラッチの制御方法において、
    駆動力源と入力軸回転数の回転数差が収束する前記発進クラッチの完全締結前に、入力軸回転数の加速度と、前記入力軸回転数と前記駆動源の回転数との回転数差に応じて、前記発進クラッチの目標トルクを減少させ、前記発進クラッチの位置を解放方向に動作させることを特徴とするクラッチの制御方法。
JP2006219989A 2006-08-11 2006-08-11 クラッチの制御方法及び制御装置 Expired - Fee Related JP4859588B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219989A JP4859588B2 (ja) 2006-08-11 2006-08-11 クラッチの制御方法及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219989A JP4859588B2 (ja) 2006-08-11 2006-08-11 クラッチの制御方法及び制御装置

Publications (2)

Publication Number Publication Date
JP2008045609A JP2008045609A (ja) 2008-02-28
JP4859588B2 true JP4859588B2 (ja) 2012-01-25

Family

ID=39179545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219989A Expired - Fee Related JP4859588B2 (ja) 2006-08-11 2006-08-11 クラッチの制御方法及び制御装置

Country Status (1)

Country Link
JP (1) JP4859588B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030304A (ko) * 2016-09-12 2018-03-22 현대자동차주식회사 차량의 발진 제어방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694042B1 (ko) * 2015-07-29 2017-01-09 현대자동차주식회사 차량의 발진 제어방법
KR101866027B1 (ko) * 2016-06-28 2018-06-11 현대자동차주식회사 차량의 발진 제어방법
CN112648308B (zh) * 2020-12-30 2022-04-29 蜂巢传动科技河北有限公司 基于离合器调节同步器两端速差的控制方法、装置及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011720A (ja) * 1983-06-30 1985-01-22 Fujitsu Ltd クラツチ制御方法
FR2645805B1 (fr) * 1989-04-17 1995-07-13 Luk Lamellen & Kupplungsbau Procede de commande d'un embrayage a friction automatise agissant entre un moteur d'entrainement et une transmission, appareillage pour la mise en oeuvre du procede, et regulation associee d'un embrayage a friction
JP2002031224A (ja) * 2000-07-17 2002-01-31 Hitachi Ltd 自動変速機の制御方法、および自動変速機の制御装置
JP2005083465A (ja) * 2003-09-08 2005-03-31 Jatco Ltd 締結要素の締結制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030304A (ko) * 2016-09-12 2018-03-22 현대자동차주식회사 차량의 발진 제어방법

Also Published As

Publication number Publication date
JP2008045609A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
US6319168B1 (en) Apparatus and method for active transmission synchronization and shifting
US7534195B2 (en) Method of controlling a vehicle and system of controlling the same
JP4828929B2 (ja) 自動変速機の制御装置,制御方法及び自動変速装置
JP4015408B2 (ja) 自動車の制御方法および制御装置
EP1344965A2 (en) Method of controlling automobile, automobile control apparatus, transmission, method of controlling transmission and vehicle system
JP2001235023A (ja) 自動車用制御装置,自動車の制御方法,変速機
JP4941357B2 (ja) エンジン制御装置
US20020073792A1 (en) Device and method for automatic transmission control
JP4859588B2 (ja) クラッチの制御方法及び制御装置
JP5313938B2 (ja) 自動変速機の制御方法および制御装置
JP2007333129A (ja) 自動変速機の制御装置
JP5260227B2 (ja) 車両用自動変速機の変速制御方法
JP5275262B2 (ja) 自動変速機の制御装置および制御方法
JP4170122B2 (ja) 自動変速機の制御方法および制御装置
JP4986740B2 (ja) 自動車の変速制御方法
JP2008151194A (ja) 自動変速機の制御方法および制御装置
CN108340909B (zh) 用于运行机动车的动力系统的方法以及相应的动力系统
JP2009024646A (ja) 自動車の制御方法および制御装置
US7252622B2 (en) Transmission, and control system and control method for the transmission
JP5039680B2 (ja) 発進クラッチの制御方法
US7306544B2 (en) Automatic transmission, control apparatus and control system
JP2009204129A (ja) 自動変速機の変速制御装置および変速制御方法
JP5210926B2 (ja) 自動変速機の制御方法および制御装置
JP2002021998A (ja) 自動車の制御装置及びその制御方法
JP2007232046A (ja) 自動車の制御装置及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees