JP4856430B2 - 電磁石装置 - Google Patents

電磁石装置 Download PDF

Info

Publication number
JP4856430B2
JP4856430B2 JP2006013575A JP2006013575A JP4856430B2 JP 4856430 B2 JP4856430 B2 JP 4856430B2 JP 2006013575 A JP2006013575 A JP 2006013575A JP 2006013575 A JP2006013575 A JP 2006013575A JP 4856430 B2 JP4856430 B2 JP 4856430B2
Authority
JP
Japan
Prior art keywords
ring
magnetic field
central axis
annular ring
electromagnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006013575A
Other languages
English (en)
Other versions
JP2007190316A (ja
JP2007190316A5 (ja
Inventor
学 青木
充志 阿部
武 中山
正典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006013575A priority Critical patent/JP4856430B2/ja
Priority to EP07250183A priority patent/EP1811314A1/en
Priority to US11/624,543 priority patent/US7928730B2/en
Priority to CN2007100042945A priority patent/CN101030471B/zh
Publication of JP2007190316A publication Critical patent/JP2007190316A/ja
Publication of JP2007190316A5 publication Critical patent/JP2007190316A5/ja
Application granted granted Critical
Publication of JP4856430B2 publication Critical patent/JP4856430B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Description

本発明は、電磁石装置、および、この電磁石装置を用いた磁気共鳴イメージング装置(以下、MRI装置という)に関する。
MRI装置は、核磁気共鳴(Nuclear Magnetic Resonance、以下NMRという)現象により水素原子核スピンが放出する電磁波を計測し、その電磁波を信号として演算処理することで、被検者体内を水素原子核密度によって断層像化するものである。水素原子核スピンが放出する電磁波の計測には、計測領域として、高強度(0.2T以上)で、高い静磁場均一度を有する均一磁場領域を生成する必要がある。
水素原子核スピンが放出する電磁波による電磁場の強度は、均一磁場領域の静磁場の強度に比例するため、断層像の分解能を向上させるには静磁場の強度を上げる必要がある。また、断層像を高画質・高解像度で歪みを無くすには、均一磁場領域の磁場均一度を高める必要もある。そして、均一磁場領域の静磁場の強度を上げ、磁場均一度を高める方法として強磁性体を利用する例が開示されている(例えば、特許文献1参照)。
特表2003−513436号公報(段落0018〜0019、図3)
電磁石装置の超電導コイルが生成する静磁場の磁場強度は超電導コイルからの距離が長くなるほど小さくなり、不均一であるが、強磁性体を静磁場に配置し、磁場均一度を高めることができる。
しかし、磁気回路を考えると強磁性体は磁気抵抗を下げるため、設置前から磁路が短く磁束線が集まりやすい超電導コイルの近傍に設置された強磁性体には磁束線がさらに集まり易くなり磁気飽和するが、超電導コイルから離れて設置された強磁性体には磁束線が集まりにくくなり磁気未飽和となることが考えられる。
そこで、本発明では、超電導コイルから離れて設置された強磁性体をも磁気飽和させることが可能であり、磁気未飽和による強磁性体の磁化のばらつきを小さくし、均一磁場調整の作業時間を短縮できる電磁石装置等を提供することを目的とする。
本発明では、均一磁場領域を挟んで対向し、かつ、主中心軸を共通にする円環状の1対の超電導主コイルと、均一磁場領域を挟んで対向し前記超電導主コイルと逆向きの電流を流す1対の超電導シールドコイルと、均一磁場領域を挟んで対向し、外周が円形である1対の第1強磁性体とにより、均一磁場領域に均一磁場を生成する電磁石装置において、均一磁場領域を挟んで対向し、第1強磁性体の均一磁場領域側の反対側に接しまたは近接するように配置され、外周が第1強磁性体の円形の直径より大きい円形である1対の第2強磁性体をさらに有し、前記第1強磁性体は、前記主中心軸を中心軸とする第1円環と、前記第1円環の内側に配置され前記主中心軸を中心軸とする第2円環とを有し、前記第2強磁性体は、前記第1円環に接しまたは近接し前記主中心軸を中心軸とする第3円環と、前記第3円環の内側に配置され前記第2円環に接しまたは近接し前記主中心軸を中心軸とする円環または円盤である第4円環とを有し、前記第4円環の外周面は、前記第3円環の内周面の中の前記均一磁場領域の反対寄りの面に近接して対向し、前記第2円環の外周面は、前記第3円環の内周面の中の前記均一磁場領域寄りの面と、前記第1円環の内周面とに対向すること特徴とする。
このような電磁石装置によれば、超電導コイルから離れて設置された第1強磁性体をも磁気飽和させることが可能であり、磁気未飽和による磁化のばらつきを小さくして、均一磁場調整の作業時間を短縮できる電磁石装置等を提供することができる。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
(第1の実施形態)
図1に示すように、第1の実施形態に係るMRI装置は、電磁石装置1と、電磁石装置1の間を支える柱15と、電磁石装置1の間に配置されたベッド2を有している。電磁石装置1は、中心軸10に対して概ね軸回転対称の形状をしている。電磁石装置1の間には、静磁場の強度が0.2T以上の高強度であり、高い静磁場均一度を有し、磁束線の方向が中心軸10と平行である均一磁場領域4を生成することができる。被検者体内を水素原子核密度によって断層像化する際においては、被検者が、ベッド2上を搬送され、均一磁場領域4まで検査部位を移動させることにより、被検者の体内から水素原子核スピンが放出する電磁波を計測し、その電磁波を信号として演算処理することで、被検者体内を水素原子核密度によって断層像化する。
図2と図3に示すように、MRI装置では、電磁石装置1と1対の傾斜磁場コイル11と1対の高周波照射コイル12を用いている。1対の傾斜磁場コイル11は、真空容器3の均一磁場領域4側に、均一磁場領域4を挟んで対向するように設置されている。また、1対の高周波照射コイル12も、真空容器3の均一磁場領域4側に、均一磁場領域4を挟んで対向するように設置されている。
被検者体内を水素原子核密度によって断層像化する際においては、電磁石装置1により均一磁場領域4が生成され、生成された均一磁場領域4の位置情報を得る目的で、傾斜磁場コイル11を用いて、磁場を空間的に変化させた傾斜磁場を均一磁場領域4に印加する。さらに、高周波照射コイル12を用いて、NMR現象を引起すための共鳴周波数の電磁波を均一磁場領域4に印加する。これらにより、均一磁場領域4内の微小領域ごとに水素原子核スピンが放出する電磁波を計測し、その電磁波を信号として演算処理することで、被検者体内を水素原子核密度によって断層像化する。
電磁石装置1は、中心軸10に対して概ね軸回転対称に、かつ均一磁場領域4を挟んで線16を含む対称面に対して概ね面対称に配置されている。電磁石装置1は、1対の超電導主コイル6と、1対の超電導シールドコイル7と、複数の第1強磁性体23と、複数の第2強磁性体34と、1対の第3強磁性体18と、1対の第4強磁性体19と、冷却容器8と、真空容器3とを有している。電磁石装置1は、均一磁場領域4を挟んで対向する1対の超電導主コイル6と、均一磁場領域4を挟んで対向し超電導主コイル6と逆向きの電流を流す1対の超電導シールドコイル7と、均一磁場領域4を挟んで対向し外周が円形である1対の第1強磁性体23とにより、均一磁場領域4に均一磁場を生成しているが、さらに、均一性を向上させるために、均一磁場領域4を挟んで対向し、第1強磁性体23の均一磁場領域4側の反対側に接しまたは近接するように配置され、外周が第1強磁性体23の円形の直径より大きい円形である1対の第2強磁性体34をさらに有している。この第2強磁性体34によれば、第1強磁性体23から漏洩する磁束線を捕らえて径方向に導くことができるので、径方向のどこにおかれた第1強磁性体23においても、その第1強磁性体23を経由する磁気回路の磁気抵抗を低減して一定にすることができ、磁束密度を均一にすることができる。
均一磁場領域4を挟んで対称に1対の真空容器3が配置される。1対の真空容器3間は図1の柱15内に収められた連結構造で支持され連結されている。1対の真空容器3は、1対の冷却容器8を1つずつ内包し外界から断熱している。1対の冷却容器8は、1対の超電導主コイル6と1対の超電導シールドコイル7とを1つずつ内包し、冷媒として例えば液体ヘリウムが貯留されている。このことにより、超電導主コイル6と超電導シールドコイル7とは、超電導状態を維持するために必要な極低温まで冷却できる。冷却容器8は、真空容器3との間に設けられた熱抵抗の大きい断熱支持材9を介して真空容器3に対して支持されている。
1対の超電導主コイル6は、静磁場発生源であり、均一磁場領域4に磁束線が矢印5の方向の静磁場を発生させる。1対の超電導主コイル6は、均一磁場領域4を挟んで対向している。
1対の超電導シールドコイル7も、均一磁場領域4を挟んで対向している。1対の超電導シールドコイル7には、漏洩磁場を抑制する目的で超電導主コイル6とは逆向きの電流が流される。1対の超電導主コイル6それぞれと1対の超電導シールドコイル7それぞれとは中心軸10を共通にする円環である。
真空容器3と冷却容器8とは、第1強磁性体23と第2強磁性体34と、第3強磁性体18と、第4強磁性体19とを内包する。複数の第2強磁性体34の間は冷媒で満たされるが、非磁性体で満たしてもよい。
複数の第1強磁性体23は、均一磁場領域4を挟んで対向し対となっている。複数の第2強磁性体34も、均一磁場領域4を挟んで対向し対となっている。
複数の第2強磁性体34は、複数の第1強磁性体23のそれぞれの均一磁場領域4側の反対側に接しまたは近接するように配置される。第2強磁性体34は、中心軸10を法線とする1対の平面71のどちらか一方をそれぞれが含むように配置されている。第2強磁性体34は、超電導主コイル6と超電導シールドコイル7との間の高さに配置されている。
1対の第3強磁性体18は、第1強磁性体23の外側で、超電導主コイル6の内側に配置されている。1対の第3強磁性体18は、均一磁場領域4を挟んで対向する円環である。
1対の第4強磁性体19は、超電導主コイル6と超電導シールドコイル7との近傍に設置されている。第4強磁性体19は超電導シールドコイル7の作る磁束線を捕捉することで、超電導主コイル6が均一磁場領域4に生成する磁場を超電導シールドコイル7の生成する磁場で減じることを避けることができる。1対の第4強磁性体19は、第2強磁性体34の外側で、超電導主コイル6と超電導シールドコイル7との間の高さに配置されている。1対の第4強磁性体19は、均一磁場領域4を挟んで対向する円環である。1対の第4強磁性体19は、平面71のどちらか一方を含むように配置されている。
図4(a)と図4(b)に示すように、複数の第1強磁性体23では、中央に円環20が配置され、周辺に円環21、22が配置されている。円環22の内側には、円環21が配置され、円環21の内側には円環20が配置されている。中心軸10が、第1強磁性体23の円環20、21、22の共通の中心軸である。
複数の第2強磁性体34は、中央に配置される円環32と、周辺に配置される円環33とを有する。中心軸10が、第2強磁性体34の円環32、33との共通の中心軸である。円環33は、第1強磁性体23の円環22に接しまたは近接する。円環32は、円環21と円環20とに接しまたは近接する。円環33の外径d1は接しまたは近接している第1強磁性体23の円環22の外径d2より大きい。円環32の外径d3は接しまたは近接している第1強磁性体23の円環21の外径d4より大きい。第2強磁性体34の円環33の外径d1は、超電導主コイル6の円環の外径d0より小さい。円環33の内径は接しまたは近接している第1強磁性体23の円環22の内径と等しい。円環32の内径は接しまたは近接している第1強磁性体23の円環20の内径と等しい。
円環32は、円環33の内側に近接して配置され、円環33の内周面と、円環32の外周面とは近接している。円環33の内周面と、円環32の外周面との間を非磁性体で満たしてもよい。第1強磁性体23と第2強磁性体34とが、接している場合は、接合されて一体化されていてもよい。近接している場合は、間を非磁性体で満たしてもよい。また、円環32の内周面と中心軸10との間を非磁性体で満たしてもよい。なお、近接については、磁気的に結合可能な程度に離れていてもよい。
図3の第1強磁性体23の円環20、21、22と、第2強磁性体34の円環32、33と、第3強磁性体18と、第4強磁性体19とは、超電導主コイル6および超電導シールドコイル7が生成する静磁場により磁化される。このことにより、第1強磁性体23の円環20、21、22と、第2強磁性体34の円環32、33と、第3強磁性体18と、第4強磁性体19との表面には、表面磁化電流が流れる。特に、図4(a)と図4(b)に示すように、均一磁場領域4近傍に設けた第1強磁性体23の円環20、21、22は、概ね中心軸10と平行するような矢印51、52、54の曲がる前の方向に磁化され、表面磁化電流が流れる。円環20、21、22の外周面には隣接する超電導主コイル6に流れる電流方向40と同方向47、45、42の表面磁化電流が流れる。円環20、21、22の内周面には外周面に流れる表面磁化電流の方向47、45、42とは反対方向48、46、43の表面磁化電流が流れる。これらのことは円環20、21、22の外周面と内周面にコイルを新たに配置したことと等価となる。一方、第2強磁性体34の円環32、33は、概ね中心軸10と直行するような矢印51、52、54の曲がった後の方向に磁化されるので、方向41、44に電流は流れない。
第2強磁性体34の円環32、33の厚さt5、t6に対する、第2強磁性体34の円環32、33の径方向長さl1、l2の比(l1/t5、l2/t6)が1以上であることが好ましい。円環32、33の厚さ方向を短軸とし、径方向を長軸とした場合、短軸に対する長軸の長さの比を10倍以上すると、反磁界係数は約0.01〜0.02倍と小さくなる傾向がある。この傾向は、比を1倍以上にすれば得られる。この傾向が得られれば、径方向の磁化を打ち消すように作用する反磁界が弱くなり、径方向に磁化しやすく、磁束線を反磁界で大幅に減ずることなく透過させることができる。すなわち、矢印51、52、54から入った磁束線を漏洩させること無く、矢印55まで導くことができる。そして、円環32、33を磁気飽和させることができる。
図4(b)に示すように、第1強磁性体23と第2強磁性体34とは、接し、または近接しているので、磁気的に結合された状態にあり、第1強磁性体23と第2強磁性体34との間に矢印51、52、54で示す磁路が形成される。また、第2強磁性体34の円環32と円環33との間隔は、第1強磁性体23の円環22と円環21との間隔より狭く近接しているので、円環32と円環33との間にも矢印53で示す磁路が形成される。したがって、円環20に入った矢印51の磁束線は、漏れることなく、円環32を介して円環33に入り、矢印55の方向に抜ける。同様に、円環21に入った矢印52の磁束線も、漏れることなく、円環32を介して円環33に入り、矢印55の方向に抜ける。円環22に入った矢印54の磁束線も、漏れることなく円環33に入り、矢印55の方向に抜ける。このように、第2強磁性体34の円環32と33が配置されることで、磁束線の漏洩を減少させ、漏洩磁場を抑制することができる。
一般に超電導主コイル6が生成する磁場強度は超電導主コイル6からの距離が長くなるほど小さくなる。したがって、超電導主コイル6のみにより生成する静磁場によれば、中心軸10の近くの円環20では、磁場強度が弱くなり、超電導主コイル6に近くの円環22では、磁場強度は強くなっている。これは、超電導主コイル6からの距離により、磁気抵抗に差が生じているからである。第2強磁性体34の円環32と33が配置されることで、中心軸10の近くの円環20を通る磁気回路の磁気抵抗も、超電導主コイル6に近くの円環22を通る磁気回路の磁気抵抗も同程度まで低下し、約等しくなっていると考えられる。すなわち、第1強磁性体の円環20を経由する磁路(矢印51から、矢印53を介して、矢印55にいたる磁路)の磁気抵抗が低減され、第1強磁性体の円環22を経由する磁路(矢印54から、矢印55にいたる磁路)の磁気抵抗と同程度になっていると考えられる。同様に、第1強磁性体の円環21を経由する磁路(矢印52から、矢印53を介して、矢印55にいたる磁路)の磁気抵抗が低減され、第1強磁性体の円環22を経由する磁路の磁気抵抗と同程度になっていると考えられる。このことにより、第1強磁性体の円環20を経由する磁路と、円環21を経由する磁路と、円環22を経由する磁路とでは、磁気抵抗が同程度になり、磁束線も同程度の磁束密度で分配されると考えられる。そして、磁場強度を超電導主コイル6からの距離によらず均一にすることができる。超電導主コイル6の電流40を増加させることにより、磁場強度を均一に上昇できるので、円環20、21、22をすべて磁気飽和させることができ、第1強磁性体の磁化のばらつきを小さくすることができる。
図5に本発明による磁束線の様子を示す。図5は図2における超伝導主コイル6と超電導シールドコイル7と第1強磁性体23と第2強磁性体34と第3強磁性体18と第4強磁性体19のみを示してある。矢印5から、分岐された矢印51、52、54を経て、収束された矢印55と、矢印56と、矢印57とを経て、最後に、分岐された矢印58、59、60を経て、矢印5に戻る磁気回路が電磁石装置に構成されていると考えられる。上部の円環33から放射される矢印55の磁束線は、第4強磁性体19の方向に向かい、矢印56方向の磁束線は1対の第4強磁性体19の間に生成され、矢印57方向の磁束線は下部の円環32へ入射するように下部の第4強磁性体19の方向から進入する。下部の円環32に入射した矢印57の磁束線は、円環32と33により磁気抵抗が同程度に低下していることから、同程度の磁束密度で、矢印58、59、60の磁束線に分配されると考えられる。
このように、第2強磁性体34を用いることにより、電磁石装置に構成された磁気回路において、径方向への磁気抵抗を下げることが可能となり、磁束線は第2強磁性体34に透過させて電磁石装置の中心軸10方向へ導かれている。このためには、軽量な強磁性体を第2強磁性体34として増やすだけでよい。
また、一般に、電磁石装置1で磁場強度を上げるには超電導主コイル6と超電導シールドコイル7の電流値を増加させる必要があるが、電流値を増加させると漏洩磁場もその電流値に比例して増加してしまう。第1の実施形態では、漏洩磁場を低減しているので、磁束密度が漏洩磁場の基準値とされる5ガウス以下を維持したまま、電流値を増加させることができ、均一磁場領域4の磁場強度を大きくすることができる。
(第2の実施形態)
図6と図7(a)と図7(b)に示すように、第2の実施形態に係るMRI装置は、図3と図4(a)と図4(b)の第1の実施形態のMRI装置と比較して、第2強磁性体34が円盤になっている点が異なっている。これに伴い、第1強磁性体23の円環20が円盤になっている点が異なっている。
このことによれば、第1の実施形態で得られた効果が得られるだけでなく、第2強磁性体34が一体になっているので、第2強磁性体34の円盤の径方向長さl1を大きくできるので、円盤の厚さt5に対する、円盤の径方向長さl1の比(l1/t5)を大きくすることができる。すなわち、矢印51、52、54から入った磁束線をより漏洩させること無く、矢印55まで導くことができる。そして、円環32、33を磁気飽和させることができる。また、第2強磁性体34が一体になっているので、磁気的な結合をさらに強めることができ、磁束線の漏洩を減少させ、漏洩磁場を抑制することができる。また、第1強磁性体の円盤20を経由する磁路(矢印51から、矢印55にいたる磁路)の磁気抵抗がさらに低減され、第1強磁性体の円環22を経由する磁路(矢印54から、矢印55にいたる磁路)の磁気抵抗と同程度になっていると考えられる。同様に、第1強磁性体の円環21を経由する磁路(矢印52から、矢印55にいたる磁路)の磁気抵抗が低減され、第1強磁性体の円環22を経由する磁路の磁気抵抗と同程度になっていると考えられる。このことにより、第1強磁性体の円環20を経由する磁路と、円環21を経由する磁路と、円環22を経由する磁路とでは、磁気抵抗が同程度になり、磁束線も同程度の磁束密度で分配されると考えられる。そして、磁場強度を超電導主コイル6からの距離によらず均一にすることができる。超電導主コイル6の電流40を増加させることにより、磁場強度を均一に上昇できるので、円環20、21、22をすべて磁気飽和させることができ、磁気未飽和による強磁性体の磁化のばらつきを小さくして均一磁場調整の作業時間を短縮できる。
このように、第2強磁性体34を用いることにより、電磁石装置に構成された磁気回路において、径方向への磁気抵抗をさらに下げることが可能となり、磁束線は第2強磁性体34に透過させて電磁石装置の中心軸10方向へ導かれている。
(第3の実施形態)
図8と図9(a)と図9(b)に示すように、第3の実施形態に係るMRI装置は、図3と図4(a)と図4(b)の第1の実施形態のMRI装置と比較して、第1強磁性体23と第2強磁性体34との少なくとも一方の表面に凹部62、64と凸部65とテーパー63、66、67、68が施されている点が異なっている。また、第2強磁性体34の円環32が円盤になっている点が異なっている。このことによっても、第1の実施形態で得られた効果が得られるだけでなく、磁場の局所的な不均一を修正して、さらに磁場均一度を向上させることが可能となる。
(第4の実施形態)
図10に示すように、第4の実施形態に係るMRI装置は、図3の第1の実施形態のMRI装置と比較して、第1強磁性体23と第2強磁性体34と第3強磁性体18とが冷却容器8の外に配置されている点が異なっている。このことにより、冷却容器8が、超電導主コイル6と超電導シールドコイル7と第4強磁性体19だけを収納できればよいので、冷却容器8の容積が小さくなっている。そして、冷媒の量が減らせるので冷却機の冷却能力を小さくすることができ、MRI装置を軽量化することができる。なお、第4の実施形態によっても、第1の実施形態で得られた効果が得ることができる。
第1の実施形態に係る磁気共鳴イメージング装置の鳥瞰図である。 第1の実施形態に係る磁気共鳴イメージング装置の図1のII−II方向の切断図である。 第1の実施形態に係る磁気共鳴イメージング装置に用いられる電磁石装置の上半分で、図1のII−II方向の断面図である。 (a)は第1の実施形態に係る上半分の電磁石装置の第1強磁性体と第2強磁性体の上面図であり、(b)は(a)のIV−IV方向の断面図である。 電磁石装置に生じる磁束線の方向を示す図である。 第2の実施形態に係る磁気共鳴イメージング装置に用いられる電磁石装置の上半分で、図1のII−II方向の断面図である。 (a)は第2の実施形態に係る上半分の電磁石装置の第1強磁性体と第2強磁性体の上面図であり、(b)は(a)のVII−VII方向の断面図である。 第3の実施形態に係る磁気共鳴イメージング装置に用いられる電磁石装置の上半分で、図1のII−II方向の断面図である。 (a)は第3の実施形態に係る上半分の電磁石装置の第1強磁性体と第2強磁性体の上面図であり、(b)は(a)のIX−IX方向の断面図である。 第4の実施形態に係る磁気共鳴イメージング装置に用いられる電磁石装置の上半分で、図1のII−II方向の断面図である。
符号の説明
1 電磁石装置
2 ベッド
3 真空容器
4 均一磁場領域
5 均一磁場領域での磁束線の方向を示す矢印
6 超電導主コイル
7 超電導シールドコイル
8 冷却容器
9 断熱支持部
10 中心軸
11 傾斜磁場コイル
12 高周波照射コイル
15 柱
16 対称面
18 第3強磁性体
19 第4強磁性体
20、21、22 円環
23 第1強磁性体
32、33 円環
34 第2強磁性体
40 超電導主コイルの電流の方向を示す矢印
41、42、43、44、45、46、47、48 表面磁化電流の方向を示す矢印
51、52、53、54、55、56、57、58、59、60 磁束線の方向を示す矢印
62、64 凹部
65 凸部
63、66、67、68 テーパー部

Claims (16)

  1. 均一磁場領域を挟んで対向し、かつ、主中心軸を共通にする円環状の1対の超電導主コイルと、
    前記均一磁場領域を挟んで対向し前記超電導主コイルと逆向きの電流を流す1対の超電導シールドコイルと、
    前記均一磁場領域を挟んで対向し、外周が円形である1対の第1強磁性体とにより、前記均一磁場領域に均一磁場を生成する電磁石装置において、
    前記均一磁場領域を挟んで対向し、前記第1強磁性体の前記均一磁場領域側の反対側に接しまたは近接するように配置され、外周が前記第1強磁性体の円形の直径より大きい円形である1対の第2強磁性体をさらに有し、
    前記第1強磁性体は、前記主中心軸を中心軸とする第1円環と、前記第1円環の内側に配置され前記主中心軸を中心軸とする第2円環とを有し、
    前記第2強磁性体は、前記第1円環に接しまたは近接し前記主中心軸を中心軸とする第3円環と、前記第3円環の内側に配置され前記第2円環に接しまたは近接し前記主中心軸を中心軸とする円環または円盤である第4円環とを有し、
    前記第4円環の外周面は、前記第3円環の内周面の中の前記均一磁場領域の反対寄りの面に近接して対向し、
    前記第2円環の外周面は、前記第3円環の内周面の中の前記均一磁場領域寄りの面と、前記第1円環の内周面とに対向すること特徴とする電磁石装置。
  2. 1対の前記超電導主コイルそれぞれと1対の前記超電導シールドコイルそれぞれとが前記主中心軸を共通にする円環であり、
    前記第2強磁性体は、前記中心軸を法線とする1対の平面のどちらか一方をそれぞれが含むように、中央に円環または円盤が配置され、周辺に円環が配置されることを特徴とする請求項1に記載の電磁石装置。
  3. 前記第2強磁性体の円環または円盤の厚さに対する、前記第2強磁性体の円環または円盤の径方向長さの比が1以上であることを特徴とする請求項1または請求項2に記載の電磁石装置。
  4. 前記第1強磁性体と前記第2強磁性体とが接合されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の電磁石装置。
  5. 前記超電導主コイルと前記超電導シールドコイルとを内包し冷却する冷却容器と、
    前記冷却容器を内包し外界から断熱する真空容器とをさらに有し、
    前記真空容器が前記第1強磁性体と前記第2強磁性体とを内包することを特徴とする請求項1乃至請求項4のいずれか1項に記載の電磁石装置。
  6. 前記第1強磁性体と前記第2強磁性体との少なくとも一方の表面に凹凸とテーパーが施されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の電磁石装置。
  7. 複数の前記第2強磁性体の間が、真空であるか、または、非磁性体で満たされていることを特徴とする請求項2乃至請求項5のいずれか1項に記載の電磁石装置。
  8. 前記中心軸が、前記第2強磁性体の円環および円盤との共通の中心軸であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の電磁石装置。
  9. 前記第2強磁性体は、前記超電導主コイルと前記超電導シールドコイルとの間の高さに配置されることを特徴とする請求項1乃至請求項8のいずれか1項に記載の電磁石装置。
  10. 前記第2強磁性体の円環の外径または円盤の直径は、前記超電導主コイルの円環の外径より小さいことを特徴とする請求項2乃至請求項8のいずれか1項に記載の電磁石装置。
  11. 前記第1強磁性体の外側で、前記超電導主コイルの内側に配置され、前記均一磁場領域を挟んで対向する1対で円環の第3強磁性体をさらに有することを特徴とする請求項1乃至請求項8のいずれか1項に記載の電磁石装置。
  12. 前記第2強磁性体の外側で、前記超電導主コイルと前記超電導シールドコイルとの間の高さに配置され、前記均一磁場領域を挟んで対向する1対で円環の第4強磁性体をさらに有することを特徴とする請求項1乃至請求項11のいずれか1項に記載の電磁石装置。
  13. 前記第1強磁性体は、第1円環と、前記第1円環の内側に配置され中心軸方向の長さが前記第1円環より長い第2円環と、前記第2円環の内側に配置され中心軸方向の長さが前記第1円環より長い第5円環または第1円盤を有することを特徴とする請求項1乃至請求項12のいずれか1項に記載の電磁石装置。
  14. 前記第3円環の前記均一磁場領域側の反対側の面と、
    前記第4円環の前記均一磁場領域側の反対側の面とは、
    前記主中心軸を垂線とする同一平面上に配置されることを特徴とする請求項13に記載の電磁石装置。
  15. 前記第2強磁性体が有する円環または円盤は、
    前記第1円環に接しまたは近接する第4強磁性体と、
    前記第4強磁性体の内側に近接して配置され、前記第2円環に接しまたは近接し、前記第5円環または前記第1円盤に接しまたは近接する円環または円盤とを含むことを特徴とする請求項13に記載の電磁石装置。
  16. 請求項1乃至15のいずれか1項に記載の電磁石装置を用いた磁気共鳴イメージング装置。
JP2006013575A 2006-01-23 2006-01-23 電磁石装置 Expired - Fee Related JP4856430B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006013575A JP4856430B2 (ja) 2006-01-23 2006-01-23 電磁石装置
EP07250183A EP1811314A1 (en) 2006-01-23 2007-01-18 Electromagnet apparatus
US11/624,543 US7928730B2 (en) 2006-01-23 2007-01-18 Electromagnet apparatus generating a homogeneous magnetic field with ferromagnetic members arranged inside cryogenic vessels
CN2007100042945A CN101030471B (zh) 2006-01-23 2007-01-22 电磁铁装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013575A JP4856430B2 (ja) 2006-01-23 2006-01-23 電磁石装置

Publications (3)

Publication Number Publication Date
JP2007190316A JP2007190316A (ja) 2007-08-02
JP2007190316A5 JP2007190316A5 (ja) 2009-01-29
JP4856430B2 true JP4856430B2 (ja) 2012-01-18

Family

ID=37969666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013575A Expired - Fee Related JP4856430B2 (ja) 2006-01-23 2006-01-23 電磁石装置

Country Status (4)

Country Link
US (1) US7928730B2 (ja)
EP (1) EP1811314A1 (ja)
JP (1) JP4856430B2 (ja)
CN (1) CN101030471B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220046827A (ko) * 2020-10-08 2022-04-15 재단법인대구경북과학기술원 세포 온도 측정 장치 및 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856430B2 (ja) * 2006-01-23 2012-01-18 株式会社日立製作所 電磁石装置
JP4921935B2 (ja) * 2006-11-22 2012-04-25 株式会社日立製作所 電磁石装置及び磁気共鳴撮像装置
US20100219833A1 (en) 2007-07-26 2010-09-02 Emscan Limited Magnet assembly
DE102008020107B4 (de) * 2008-04-22 2011-08-25 Bruker BioSpin GmbH, 76287 Kompakte supraleitende Magnetanordnung mit aktiver Abschirmung, wobei die Abschirmspule zur Feldformung eingesetzt wird
AU2009261901B2 (en) 2008-06-24 2014-07-31 Alberta Health Services Magnetic assembly and method for defining a magnetic field for an imaging volume
JP5155807B2 (ja) * 2008-10-07 2013-03-06 株式会社日立製作所 磁気共鳴イメージング装置
US8604793B2 (en) * 2010-10-21 2013-12-10 General Electric Company Superconducting magnet having cold iron shimming capability
CN103065757B (zh) * 2013-01-25 2015-04-22 中国科学院电工研究所 一种用于乳房成像的磁共振成像超导磁体系统
US10416253B2 (en) 2016-11-22 2019-09-17 Quantum Design International, Inc. Conical access split magnet system
CN110873855B (zh) * 2020-01-20 2020-04-21 华中科技大学 一种基于磁通压缩的脉冲磁体装置及高通量测量方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA657653A (en) * 1959-02-09 1963-02-12 A. Buchhold Theodor Gyroscope
US4058746A (en) * 1973-01-29 1977-11-15 Westinghouse Electric Corporation Dynamoelectric machinery utilizing superconductive windings
US4766378A (en) * 1986-11-28 1988-08-23 Fonar Corporation Nuclear magnetic resonance scanners
US5134374A (en) * 1989-06-01 1992-07-28 Applied Superconetics Magnetic field control apparatus
US5463364A (en) * 1994-04-13 1995-10-31 Bruker Analytische Messtechnik Gmbh Magnet system for NMR tomography
EP0770883B1 (en) * 1995-10-23 2004-04-07 General Electric Company Cryogenic-fluid-cooled open MRI magnet with uniform magnetic field
JP3585141B2 (ja) * 1996-04-05 2004-11-04 株式会社日立メディコ 超電導磁石装置
US6169404B1 (en) * 1998-12-18 2001-01-02 General Electric Company Vibration cancellation for C-shaped superconducting magnet
GB2355800B (en) 1999-10-29 2004-10-27 Oxford Magnet Tech Improved magnet
JP4179578B2 (ja) * 2000-02-15 2008-11-12 株式会社日立メディコ 開放型超電導磁石とそれを用いた磁気共鳴イメージング装置
US6335670B1 (en) 2000-04-14 2002-01-01 Marconi Medical Systems Finland, Inc. Mri system with split rose ring with high homogeneity
JP3971093B2 (ja) * 2000-08-28 2007-09-05 株式会社日立製作所 均一磁場発生用マグネット及びそれを用いた磁気共鳴イメージング装置
US6570475B1 (en) * 2000-11-20 2003-05-27 Intermagnetics General Corp. Split type magnetic resonance imaging magnet
US6861933B1 (en) * 2001-05-17 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
JP2003061931A (ja) * 2001-08-24 2003-03-04 Hitachi Medical Corp 静磁場発生装置及びそれを用いた磁気共鳴イメージング装置
US7242191B2 (en) * 2002-11-25 2007-07-10 General Electric Company Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
JP2005118098A (ja) 2003-10-14 2005-05-12 Hitachi Medical Corp 磁気共鳴イメージング装置
JP4541092B2 (ja) * 2004-10-04 2010-09-08 株式会社日立製作所 磁気共鳴イメージング装置の超伝導磁石装置
US7274192B2 (en) * 2005-05-31 2007-09-25 General Electric Company Combined open and closed magnet configuration for MRI
JP4856430B2 (ja) * 2006-01-23 2012-01-18 株式会社日立製作所 電磁石装置
US7560929B2 (en) * 2006-08-14 2009-07-14 Fonar Corporation Ferromagnetic frame magnet with superconducting coils

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220046827A (ko) * 2020-10-08 2022-04-15 재단법인대구경북과학기술원 세포 온도 측정 장치 및 방법
KR102479327B1 (ko) 2020-10-08 2022-12-19 재단법인대구경북과학기술원 세포 온도 측정 장치 및 방법

Also Published As

Publication number Publication date
CN101030471B (zh) 2012-08-08
JP2007190316A (ja) 2007-08-02
US7928730B2 (en) 2011-04-19
CN101030471A (zh) 2007-09-05
US20070170921A1 (en) 2007-07-26
EP1811314A1 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP4856430B2 (ja) 電磁石装置
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
JP4247948B2 (ja) 磁石装置及びmri装置
JPS6247349A (ja) 磁気共鳴イメ−ジング装置
WO1997025726A1 (fr) Dispositif magnetique supraconducteur et dispositif d'imagerie rmn l'utilisant
JPWO2006057395A1 (ja) 磁気共鳴イメージング装置
JP4179578B2 (ja) 開放型超電導磁石とそれを用いた磁気共鳴イメージング装置
US6856223B1 (en) Open-type magnet device for MRI
JP6266225B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング装置用の磁石
JP4648722B2 (ja) 磁気共鳴イメージング装置
JP4866213B2 (ja) 超電導磁石装置および磁気共鳴イメージング装置
JP4886482B2 (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2008130947A (ja) 超電導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP2002102205A (ja) 磁気共鳴イメージング装置
JP7410790B2 (ja) オープン型磁気共鳴イメージング装置
JP5198805B2 (ja) 能動磁気遮蔽型磁石装置および磁気共鳴イメージング装置
JPWO2012086644A1 (ja) 静磁場コイル装置、核磁気共鳴撮像装置および静磁場コイル装置のコイル配置方法
JP5901561B2 (ja) 磁気共鳴イメージング装置
JP3624255B1 (ja) 超伝導磁石装置
JP7076339B2 (ja) 磁気共鳴イメージング装置
JP2011062360A (ja) 開放型電磁石装置及び磁気共鳴イメージング装置
JP2005185318A (ja) 磁石装置及び磁気共鳴イメ−ジング装置
JP2005111253A (ja) 超伝導磁石装置
JP2011072433A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4856430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees