JP4854421B2 - 反応装置および反応装置の製造方法 - Google Patents

反応装置および反応装置の製造方法 Download PDF

Info

Publication number
JP4854421B2
JP4854421B2 JP2006206571A JP2006206571A JP4854421B2 JP 4854421 B2 JP4854421 B2 JP 4854421B2 JP 2006206571 A JP2006206571 A JP 2006206571A JP 2006206571 A JP2006206571 A JP 2006206571A JP 4854421 B2 JP4854421 B2 JP 4854421B2
Authority
JP
Japan
Prior art keywords
reactor
substrate
joining
discharge pipe
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006206571A
Other languages
English (en)
Other versions
JP2008029960A (ja
Inventor
将章 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006206571A priority Critical patent/JP4854421B2/ja
Publication of JP2008029960A publication Critical patent/JP2008029960A/ja
Application granted granted Critical
Publication of JP4854421B2 publication Critical patent/JP4854421B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、各種燃料を反応器で反応させて、反応生成物を取り出すための反応装置、およびその反応装置の製造方法に関するものである。
近年、電気エネルギーを効率的に、かつクリーンに生産する次世代の電源システムとして燃料電池システムが脚光を浴びており、既に自動車市場や家庭用燃料電池発電システムに代表されるコージェネレーション発電システム市場においては、低コストを目指した実用化のためのフィールドテストが盛んに行なわれている。
さらに最近では、燃料電池システムの小型化を図り、携帯電話やPDA(Personal Digital Assistants),ノートパソコン,デジタルビデオカメラまたはデジタルスチルカメラ等の携帯機器の電源として使用することが検討されている。
一般に燃料電池は、例えばメタンや天然ガス(CNG)等の炭化水素ガスあるいはメタノールやエタノール等のアルコール類を燃料とし、反応器を用いた反応装置で水蒸気改質反応により水素ガスおよびその他のガスに改質した後、この水素ガスを発電セルと呼ばれる発電装置に供給することにより発電が行なわれる。
ここでの反応器による燃料の改質とは、改質可能な燃料を水蒸気と結合させて触媒反応により水素ガスを発生させるプロセスをいう。
例えば、燃料としてメタノールを用いた場合は、次の化学反応式(1)に示すような水蒸気改質反応(式(1)中では、メタノールに水蒸気を結合させることにより、水素と二酸化炭素とに改質する反応)により、水素ガス(H)を生成するプロセスをいう。なお、この改質反応により生成される水素以外の微量の生成ガス(主にCO)は、通常は大気中に排出される。
CHOH+HO → 3H+CO・・・(1)
また、このような水蒸気改質反応は吸熱反応であることから、外部よりヒーター等で加熱して反応温度を維持する必要がある。従って、反応器内で燃料を改質させるには、触媒の水蒸気改質活性が低下するのを防止するとともに、生成される水素ガス濃度を高く維持するため、例えば燃料としてメタノールを用いた場合には約200〜500℃の温度が、またメタンガスを用いた場合には300〜800℃程度の高い温度が必要になる。
そこで、携帯機器用の燃料電池システムでは、反応器内の反応温度を維持するために反応器とその反応器を収容する収容容器とができるだけ断熱されるように構成されており、反応器を、複数の支持部材を用いて、収容容器の内側に浮かせて載置する構成が採用されている(例えば、特許文献1参照)。
特開2005−259354号公報
しかしながら、支持部材を用いて収容容器の内側に反応器を浮かせて載置する構成では、支持部材としていくら熱伝導率の小さい材料を用いたとしても、反応器で発生した熱が収容容器に伝わってしまうという問題があった。また、収容容器内にわざわざ支持部材を設ける必要があり、製造工程が複雑になるという問題があった。
そこで、反応器内に流体を導入する導入管および反応器から反応後の流体を排出する排出管によって、反応器を支持することが考えられる。このとき、導入管等と反応器、および導入管等と収容容器の接合は、それぞれ高い信頼性が求められる。特に反応器は、反応によって高温になるため、そのような高温状態で反応器と導入管等との接合信頼性を保持することは非常に重要な問題になる。
また、反応器と導入管等の接合信頼性が低下すると、反応器と導入管等の接合不良によって導入管や排出管を流れる流体が外部に漏れるといった問題が生じる。
さらに、場合によっては、接合破壊が生じて気密破壊に至り、収容容器による断熱性が失われて反応器の温度が低下するという問題が生じる。そのような場合には、反応温度を維持するために、例えば反応器の内部に設けられたヒーターの発熱量を増加させる必要が生じるため、燃料電池の発電セルで発電した総電気容量に占めるヒーター加熱に使用する電気容量が増えることになり、その結果、燃料電池システム全体の発電損失が増加してしまうという問題が生じる。
本発明は上記問題に鑑みてなされたものであり、導入管および排出管と反応器との接合信頼性が保持された反応装置およびそのような反応装置の製造方法を提供することを目的とする。
本発明に係る反応装置は、反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記の反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記の反応器の内部から前記の収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備える。前記の収容容器は、前記の導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と該基板によって塞がれる貫通孔を備えた基体とを有し、前記の導入管および排出管は、第1の接合部材によって前記の反応器にそれぞれ接合されるとともに、前記の基板の対応する挿通孔にそれぞれ挿通され、該挿通孔に第2の接合部材によってそれぞれ接合され、前記の基板は、第3の接合部材によって前記の基体の貫通孔に接合される。前記の第の接合部材は、前記の第1の接合部材の融点以下、かつ前記の第の接合部材の融点以上の融点を有することを特徴とする
本発明に係る反応装置において、好ましくは、前記の基板は、前記の基体の内表面に接合されていることを特徴とする。
本発明に係る反応装置において、好ましくは、前記の基板は、前記の基体の前記の貫通孔の前記の内部側に勘合されていることを特徴とする。
本発明に係る反応装置のの製造方法は、反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記の反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記の反応器の内部から前記の収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、前記の収容容器は、前記の導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記の導入管および排出管を、前記の反応器に第1の接合部材を用いてそれぞれ接合するとともに、前記の基板の対応する挿通孔にそれぞれ挿通し、かつ該挿通孔に第2の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記の導入管および排出管が挿通された基板を、前記の基体の貫通孔を塞ぐように第3の接合部材を用いて該基体の前記の内部側に接合する第2の接合ステップとを備える。前記の第1の接合部材は、前記の第3の接合部材よりも融点が高く、前記の第2の接合部材は、前記の第1の接合部材と融点が等しいことを特徴とする
本発明に係る反応装置のの製造方法は、反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記の反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記の反応器の内部から前記の収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、前記の収容容器は、前記の導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記の導入管および排出管を、前記の反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記の反応器に接合された導入管および排出管を、前記の基板の対応する挿通孔に第2の接合部材を用いてそれぞれ接合する第2の接合ステップと、前記の導入管および排出管が挿通された前記の基板を、前記の基体の貫通孔を塞ぐように該基体の前記の内部側に第3の接合部材を用いて接合する第3の接合ステップとを備える。前記の第2の接合部材は、前記の第1の接合部材よりも融点が低く、前記の第3の接合部材よりも融点が高いことを特徴とする
本発明に係る反応装置のの製造方法は、反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記の反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記の反応器の内部から前記の収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、前記の収容容器は、前記の導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記の導入管および排出管を、前記の反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記の反応器に接合された導入管および排出管を、前記の基板の対応する挿通孔に挿通して、該挿通孔に第2の接合部材を用いてそれぞれ接合するとともに、前記の基板を、前記の基体の貫通孔を塞ぐように第3の接合部材を用いて該基体の前記の内部側に接合する第2の接合ステップとを備える。前記の第1の接合部材は、前記の第3の接合部材よりも融点が高く、前記の第2の接合部材は、前記の第3の接合部材と融点が等しいことを特徴とする
本発明の反応装置によれば、反応器と、応器を収容する収容容器と、容容器の外部から反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、反応器の内部から収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備える反応装置であって、収容容器は、導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、板によって塞がれる貫通孔を備えた基体とを有し、導入管および排出管は、第1の接合部材によって反応器にそれぞれ接合されるとともに、基板の対応する挿通孔にそれぞれ挿通され、通孔に第2の接合部材によってそれぞれ接合され、基板は、第3の接合部材によって基体の貫通孔を塞ぐように基体の内部側に接合され、第2の接合部材は、第1の接合部材の融点以下、かつ第3の接合部材の融点以上の融点を有することから、高温になる反応器に対する導入管および排出管の接合箇所にはできるだけ高融点の接合部材を用い、それほど高温にならない収容容器に対する導入管および排出管の接合箇所には比較的低融点の接合部材を用いることができ、高温動作する反応器と導入管及び排出管との接合信頼性を良好なものにできる。その結果、反応器及び収容容器の動作信頼性が高くなり、導入管及び排出管と反応器との接合不良による流体の漏れや、この反応装置を用いた燃料電池システム全体の発電損失の増加等を有効に防止できる。さらに、反応器に接合された導入管及び排出管がそれぞれ基板と一体化していることから、導入管及び排出管の収容容器への実装が非常に容易なものとなる。
本発明の反応装置のの製造方法によれば、反応器と、応器を収容する収容容器と、容容器の外部から反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、反応器の内部から収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、収容容器は、導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、板によって塞がれる貫通孔を備えた基体とを有し、導入管および排出管を、反応器に第1の接合部材を用いてそれぞれ接合するとともに、基板の対応する挿通孔にそれぞれ挿通し、かつ通孔に第2の接合部材を用いてそれぞれ接合する第1の接合ステップと、導入管および排出管が挿通された基板を、基体の貫通孔を塞ぐように第3の接合部材を用いての内部側に接合する第2の接合ステップとを備え、第1の接合部材は、第3の接合部材よりも融点が高く、第2の接合部材は、第1の接合部材と融点が等しいことから、第1の接合ステップで、導入管および排出管と高温になる反応器との接合をできるだけ高融点の第1と第2の接合部材を用いて行い、第2の接合ステップにおいて、導入管および排出管とそれほど高温にならない収容部分との接合を比較的低融点の第3の接合部材を用いて行うことができるため、高温動作する反応器と導入管及び排出管との接合信頼性を良好なものにできる。また、導入管及び排出管と反応器との接合を、それらと収容容器との接合の前に行うことから、収容容器に対して不必要な熱履歴を与えることがなく、導入管及び排出管と収容容器との良好な接合を得ることが可能となり、組立の際の収容容器への熱応力を最小限にすることができる。また、導入管及び排出管を同一基板に接合し、その基板を基体の貫通孔を塞ぐように基体に接合するため、反応器から収容容器における接合部材を用いた接合箇所までの距離が長くなり、高温の反応器からの伝熱距離を稼ぐことができることから、第3の接合部材を用いた接合箇所の温度が温度分布的に下がり、第3の接合部材に与える熱の影響を最小限に抑えることができる。よって、これにより、反応装置の信頼性を高めることができる。更に、第1の接合ステップで、導入管及び排出管を同一基板に接合していることから、第2の接合ステップにおける導入管および排出管と収容容器との実装が非常に容易なものとなり、また、複数の挿通孔をそれぞれ気密封止するよりも、少数の貫通孔を気密封止するプロセスで済むため、導入管および排出管と収容容器との接合信頼性がより高くなる。その結果、反応器及び収容容器の動作信頼性が高くなり、導入管及び排出管と反応器との接合不良による流体の漏れや、導入管及び排出管と収容容器との接合不良による反応器の断熱不良を有効に抑制し、その結果、反応器が携帯機器内の他の部品を破壊するといったことを有効に防止できる。
本発明の反応装置のの製造方法によれば、反応器と、応器を収容する収容容器と、容容器の外部から反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、反応器の内部から収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、収容容器は、導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、板によって塞がれる貫通孔を備えた基体とを有し、導入管および排出管を、反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、反応器に接合された導入管および排出管を、基板の対応する挿通孔
に第2の接合部材を用いてそれぞれ接合する第2の接合ステップと、導入管および排出管が挿通された基板を、基体の貫通孔を塞ぐようにの内部側に第3の接合部材を用いて接合する第3の接合ステップとを備え、第2の接合部材は、第1の接合部材よりも融点が低く、第3の接合部材よりも融点が高いことから、第1の接合ステップで、高温になる反応器と導入管および排出管との接合をできるだけ高融点の第1の接合部材を用いて行い、次に、第2の接合ステップで、反応器よりも温度が低く保持される基板と導入管および排出管との接合を第1の接合部材よりも融点の低い第2の接合部材を用いて行い、さらに、第3の接合ステップで、反応器から離れているためにそれほど高温にならない収容容器と導入管および排出管との接合を第2の接合部材よりも融点の低い第3の接合部材を用いて行うことができるため、高温動作する反応器と導入管及び排出管との接合信頼性を良好なものにできる。また、導入管及び排出管と反応器との接合を、それらと収容容器との接合の前に行うことから、収容容器に対して不必要な熱履歴を与えることがなく、導入管及び排出管と収容容器との良好な接合を得ることが可能となり、組立の際の収容容器への熱応力を最小限にすることができる。また、導入管及び排出管を同一基板に接合し、その基板を基体の貫通孔を塞ぐように基体に接合するため、反応器から収容容器における接合部材を用いた接合箇所までの距離が長くなり、高温の反応器からの伝熱距離を稼ぐことができることから、第3の接合部材を用いた接合箇所の温度が温度分布的に下がり、第3の接合部材に与える熱の影響を最小限に抑えることができる。よって、これにより、反応装置の信頼性を高めることができる。更に、第2の接合ステップで、導入管及び排出管を同一基板に接合していることから、第3の接合ステップにおける導入管及び排出管と収容容器との実装が非常に容易なものとなり、また、複数の挿通孔をそれぞれ気密封止するよりも、少数の貫通孔を気密封止するプロセスで済むため、導入管および排出管と収容容器との接合信頼性がより高くなる。その結果、反応器及び収容容器の動作信頼性が高くなり、導入管及び排出管と反応器との接合不良による流体の漏れや、導入管及び排出管と収容容器との接合不良による反応器の断熱不良を有効に抑制し、その結果、反応器が携帯機器内の他の部品を破壊するといったことを有効に防止できる。
本発明の反応装置のの製造方法によれば、反応器と、応器を収容する収容容器と、容容器の外部から反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、反応器の内部から収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、収容容器は、導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、板によって塞がれる貫通孔を備えた基体とを有し、導入管および排出管を、反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、反応器に接合された導入管および排出管を、基板の対応する挿通孔に挿通して、通孔に第2の接合部材を用いてそれぞれ接合するとともに、基板を、基体の貫通孔を塞ぐように第3の接合部材を用いての内部側に接合する第2の接合ステップとを備え、第1の接合部材は、第3の接合部材よりも融点が高く、第2の接合部材は、第3の接合部材と融点が等しいことから、第1の接合ステップで、高温になる反応器と導入管および排出管との接合をできるだけ高融点の第1の接合部材を用いて行い、次に、第2の接合ステップで、高温となる反応器から離れているために反応器よりも温度が低く保持される基板および収容容器と導入管および排出管との接合を第1の接合部材よりも融点の低い第2および第3の接合部材を用いて行うことができるため、高温動作する反応器と導入管及び排出管との接合信頼性を良好なものにできる。また、導入管及び排出管と反応器との接合を、それらと収容容器との接合の前に行うことから、収容容器に対して不必要
な熱履歴を与えることがなく、導入管及び排出管と収容容器との良好な接合を得ることが可能となり、組立の際の収容容器への熱応力を最小限にすることができる。また、導入管及び排出管を同一基板に接合し、その基板を基体の貫通孔を塞ぐように基体に接合することから、反応器から収容容器における接合部材を用いた接合箇所までの距離が長くなり、高温の反応器からの伝熱距離を稼ぐことができることから、第3の接合部材を用いた接合箇所の温度が温度分布的に下がり、第3の接合部材に与える熱の影響を最小限に抑えることができる。よって、これにより、反応装置の信頼性を高めることができる。更に、第2の接合ステップで、導入管及び排出管を同一基板に接合していることから、第2の接合ステップにおける導入管及び排出管と収容容器との実装が非常に容易なものとなり、また、複数の挿通孔をそれぞれ気密封止するよりも、少数の貫通孔を気密封止するプロセスで済むため、導入管および排出管と収容容器との接合信頼性がより高くなる。その結果、反応器及び収容容器の動作信頼性が高くなり、導入管及び排出管と反応器との接合不良による流体の漏れや、導入管及び排出管と収容容器との接合不良による反応器の断熱不良を有効に抑制し、その結果、反応器が携帯機器内の他の部品を破壊するといったことを有効に防止できる。
本発明の反応装置の実施形態を以下に詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1による反応装置の構成例を示す断面図である。1は収容容器、2は配線としてのリード端子、3はボンディングワイヤ、4は蓋体、5aは燃料を供給する供給路としての導入管、5bは改質ガスを排出する排出路としての排出管、6aは第1の接合部材、6bは第2の接合部材、7は導入管5aおよび排出管5bを収容容器1に挿通するための挿通孔、8は収容容器1の貫通孔にリード端子2を絶縁しつつ封止固定するための絶縁封止材、9は反応器である。
導入管5aは、反応器9に原料や燃料ガス流体を導入するための管であり、反応器9の燃料供給口(図示せず)に接続されている。また、排出管5bは、反応器9から水素を含有する改質ガスを排出するための管であり、反応器9の燃料供給口(図示せず)に接続されている。導入管5aおよび排出管5bは、収容容器1に形成した挿通孔7にそれぞれ挿通され、収容容器1の外部に導出される。
なお、第1の接合部材6aは、導入管5aおよび排出管5bを、反応器9に接合する際に用いる接合部材であり、第2の接合部材6bは、導入管5aおよび排出管5bを、収容容器1の挿通孔7に接合する際に用いる接合部材である。
リード端子2は、ボンディングワイヤ3を介して、反応器9上の電極(図示せず)に電気的に接続される。さらに蓋体4を用いて収容容器1の凹部を封止することによって、収容容器1の凹部内に収容した反応器9を気密に封止した反応装置12が形成される。
本実施の形態による反応装置12において、収容容器1及び蓋体4は、ともに反応器9を収納する容器としての役割を果たす。それらは、例えばFe系合金,無酸素銅、SUS等の金属材料や、酸化アルミニウム(Al)質焼結体,ムライト(3Al・2SiO)質焼結体,炭化珪素(SiC)質焼結体,窒化アルミニウム(AlN)質焼結体,窒化珪素(Si)質焼結体,ガラスセラミックス等のセラミック材料や、ポリイミド等の高耐熱の樹脂材料で形成されている。
なお、収容容器1および蓋体4に適用可能なガラスセラミックスは、ガラス成分とフィラー成分とから成る。そのガラス成分としては、例えばSiO−B系,SiO−B−Al系,SiO−B−Al−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す),SiO−Al−MO−MO系(但し、MおよびMは同一または異なってCa,Sr,Mg,BaまたはZnを示す),SiO−B−Al−MO−MO系(但し、MおよびMは前記と同じである),SiO−B−M O系(但し、MはLi,NaまたはKを示す),SiO−B−Al−M O系(但し、Mは前記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。
また、フィラー成分としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物、TiOとアルカリ土類金属酸化物との複合酸化物、AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。
一方、収容容器1および蓋体4が、例えば相対密度が95%以上の緻密質の酸化アルミニウム質焼結体で形成されている場合は、例えば、まず酸化アルミニウム粉末に希土類酸化物粉末や酸化アルミニウム粉末等の焼結助剤を添加,混合して、酸化アルミニウム質焼結体の原料粉末を調製する。次いで、この原料粉末に有機バインダおよび分散媒を添加,混合してペースト化し、このペーストをドクターブレード法によって、あるいは原料粉末に有機バインダを加え、プレス成形,圧延成形等によって、所定の厚みのグリーンシートを作製する。その後、所定枚数のシート状成形体を位置合わせして積層圧着した後、この積層体を、例えば非酸化性雰囲気中、焼成最高温度が1200〜1500℃の温度で焼成して、目的とするセラミック製の収容容器1および蓋体4を得る。なお、収容容器1および蓋体4の成形は粉末成形プレス法であっても良い。
他方、収容容器1および蓋体4が金属材料から成る場合は、切削法,プレス法,MIM(Metal Injection Mold)法等により所定の形状に形成される。
また、収容容器1および蓋体4が金属材料から成る場合には、腐食を防止するためにその表面は、例えばAu,Niのめっき処理や、ポリイミド等の樹脂コーティング等の被覆コーティング処理が行なわれることが望ましい。例えばAuめっき処理の場合であれば、その厚さは0.1〜5μm程度であることが望ましい。
また、収容容器1および蓋体4の少なくとも内側表面をAuやAlのめっき処理膜で覆うことにより、収容された反応器9で発生する輻射熱を効率良く防ぐことができ、収容容器1および蓋体4の昇温を抑制することが可能となる。
以上のような収容容器1および蓋体4は、反応装置12全体の小型化,低背化を可能とするために厚さを薄くすべきであるが、機械的強度である曲げ強度は200MPa以上であることが好ましい。
次に、本発明におけるリード端子2は、収容容器1および蓋体4の熱膨張係数と同一または近似した金属が用いられるのがよく、例えば、Fe−Ni合金,Fe−Ni−Co合金よりなるものが、実用時の温度変化に対して熱歪の発生を防止できる。その上、リード端子2と収容容器1との良好な封着性が得られるとともに、ボンディング性に優れ、実装時に必要な強度と良好なはんだ付性や溶接性を確保できる。
また、本実施の形態による反応装置12において、絶縁封止材8は、例えば、硼珪酸ガラス,アルカリガラス,鉛を主成分とする絶縁ガラス等のガラス材料や酸化アルミニウム等のセラミック材料等から成り、収容容器1に形成された貫通孔において、この絶縁封止材8によって収容容器1とリード端子2とが電気的に絶縁されてリード端子2が封止固定されている。収容容器1に形成された、リード端子2が挿通される貫通孔は、収容容器1とリード端子2とが接触して電気的に導通することがない大きさが必要であり、具体的にはリード端子2から収容容器1までの間隔が0.1mm以上確保できる内径が必要である。
なお、絶縁封止材8が酸化アルミニウム等のセラミック材料からなる場合、リード端子2を収容容器1の貫通孔に例えば筒状のセラミック材料から成る絶縁封止材8を介して挿入し、絶縁封止材8と収容容器1との接続および絶縁封止材8とリード端子2との接続をAu−GeやAg−Cu等のロウ材により行なうことができる。
また、収容容器1に収容される反応器9は、微小ケミカルデバイスとして、半導体製造技術を適用して、例えば、シリコン等の半導体,石英,ガラス,セラミックス等の無機材料の基材に、切削法,エッチング法,ブラスト法等により細い溝を形成することによって液体流路が作製され、操作中の液体の蒸発防止等を目的として、ガラス板等のカバーを陽極接合ロウ付け等により表面に密着させて使用される。
また、反応器9内には、温度調節機構、例えば、抵抗層等から成る薄膜ヒーター(不図示)を形成し、表面にはこの薄膜ヒーターへ電力を供給する端子として電極(図示せず)が形成される。この電極にはボンディングワイヤ3を介してリード端子2が電気的に接続され、この電極を通じて反応器9内に形成された温度調節機構が加熱される。この温度調節機構により、反応器9内を燃料改質条件に相当する200〜800℃程度の温度条件に調整することで、導入管5aが接続された燃料供給口から供給される燃料を水蒸気と結合させて、水素ガスを発生させる改質反応を良好に促進することができる。すなわち、反応器9において反応温度の維持が可能となり燃料の改質反応を安定させることができる。なお、発生した水素ガスは、燃料排出口に接続された排出管5bから外部に排出される。
この反応器9は、Au合金,Ag合金,Al合金等の金属ロウ材やガラス材による接合や、シームウェルド法、プロジェクション溶接、電子ビーム法などの溶接等により蓋体4が収容容器1にその凹部を覆って取着されることによって封止される。
例えば、Au−Snロウ材により接合する場合は、蓋体4に予めAu−Snロウ材を溶着させておくか、あるいは金型等を用いて打ち抜き加工等で枠状に形成したAu−Snロウ材を収容容器1と蓋体4との間に載置した後、封止炉あるいはシームウェルダーで蓋体4を収容容器1に接合することにより、反応器9を封止することができる。
収容容器1および蓋体4によって構成される空間内の断熱性をさらに向上させるためには、その空間内を真空にすることが効果的であり、反応器9を封止する際、真空炉でのロウ材による封止や真空チャンバー内でのシームウェルド法で行なえば良い。
また、導入管5aおよび排出管5bは、例えば、Fe−Ni合金,Fe−Ni−Co合金,SUS等の金属材料、Al質焼結体,3Al・2SiO質焼結体,SiC質焼結体,AlN質焼結体,Si質焼結体,ガラスセラミック焼結体等のセラミック材料、ポリイミド等の高耐熱の樹脂材料、または、ガラスでそれぞれ形成されている。導入管5aおよび排出管5bは、好ましくは、改質ガスに含まれる水素により脆化しにくいものであるのがよい。このような材料としては、Fe合金、セラミックス、ガラスが挙げられる。反応器9の燃料供給口と導入管5aとの接続、および燃料排出口と排出管5bとの接続には、Au−Sn合金,Au−Si合金,Au−Ge合金,Ag−Cu合金等の各種ロウ材から成るものを用いる接続方法が適用できる。
次に、上述の反応装置12を製造する方法を説明する。まず、反応器9に、導入管5aおよび排出管5bを第1の接合部材6aを用いてそれぞれ接合する。次に、反応器9を収容容器1に収容するとともに、導入管5aおよび排出管5bを、収容容器1に設けられた対応する挿通孔7にそれぞれ挿通し、該導入管5aおよび排出管5bを挿通孔7に第2の接合部材6bを用いてそれぞれ接合する。そして、リード端子2を、反応器9上の電極(図示せず)にボンディングワイヤ3を介して電気的に接続し、さらに蓋体4を用いて収容容器1の凹部を封止する。
ここで、導入管5a等と反応器9との接合に使用される第1の接合部材6aは、導入管5a等と挿通孔7との接合に使用される第2の接合部材6bよりも融点の高い材料を選定する必要がある。それらの接合には、導入管5a,排出管5b,収容容器1、及び反応器9を構成する材料に応じて、Ag−CuやAu−Sn等のロウ材が適宜用いられるが、例えば、第1の接合部材6aとしてAg−Cuを用い、第2の接合部材6bとしてAu−Snを用いることにより、接合信頼性の高い接合が可能となる。
ここで、Ag−Cuは、例えばAg78w%,Cu22w%の組成を有し、融点が780℃である。また、Au−Snは、例えばAu80w%,Sn20w%の組成を有し、融点は280℃である。なお、第2の接合部材6bとして、例えばAu88w%,Ge12w%の組成を有し、融点が356℃であるAu−Geを用いてもよい。
なお、反応器9内に触媒等の反応用部材を入れる場合には、反応用部材を反応器9に入れるタイミングに応じて、第1および第2の接合部材6a,6bを選定すればよい。例えば、反応器9を収容容器1に収容する前に反応用部材を入れる場合には、その反応用部材の耐熱温度以下の融点を有する第2の接合部材6bを選定すれば、反応用部材の反応率の低下を防ぐことができ、反応器9内の反応を良好に行うことができる。なお、反応装置12を完全に組み立てた後で、反応用部材を入れる場合には、反応用部材の耐熱温度を考慮することなく、第1および第2の接合部材6a,6bを選定すればよい。
上述の反応装置12によれば、高温になる反応器9の接合箇所にはできるだけ高融点の接合部材を用い、それほど高温にならない収容容器1の接合箇所には比較的低融点の接合部材を用いることができ、高温動作する反応器9と導入管5a及び排出管5bとの接合信頼性を良好なものにできる。また、導入管5a及び排出管5bと反応器9との接合を、それらと収容容器1との接合の前に行うことから、収容容器1に対しては、不必要な熱履歴を与えることもなく、収容容器1と導入管5a及び排出管5bとの良好な接合を得ることが可能となり、組立の際の収容容器1への熱応力を最小限にすることができる。その結果、反応器9及び収容容器1の動作信頼性が高くなり、反応器9と導入管5a及び排出管5bとの接合不良による流体の漏れや、導入管5a及び排出管5bと収容容器1との接合不良による反応器9の断熱不良を有効に抑制し、その結果、反応器9が携帯機器内の他の部品を破壊するといったことを有効に防止できる。
なお、図1に示された反応装置12においては、導入管5a及び排出管5bが反応器9の下面に接合されているが、これらは反応器9の仕様に応じて上面又は側面に接合されてもよい。また、これに応じて、収容容器における挿通孔7の位置を変化させてもよいことはもちろんである。
さらに、上述の反応装置12には、導入管5aおよび排出管5bがそれぞれ1つずつ設けられているが、導入管5aおよび排出管5bがそれぞれ複数個設けられていてもよい。その場合には、導入管5a及び排出管5bを1つずつ対応させて挿通する挿通孔が収容容器に設けられる。なお、導入管5aおよび排出管5bの数は、一般的に同一であるが、異なっていてもよい。
(実施の形態2)
図2(a),(b)は、本発明の実施の形態2による反応装置の構成例を示す断面図である。図2(a),(b)に示された反応装置20が実施の形態1による反応装置と異なる点は、反応器9に接合された導入管5aおよび排出管5bが収容容器1の挿通孔に挿通されるのではなく、別個の基板21に挿通され、その基板21が基体22に接合される点である。基体22は、貫通孔23を有し、基板21は、その貫通孔23を塞ぐように、基体22に接合される。なお、基体22及び基板21は、収容容器をなす。
本実施の形態による反応装置20では、導入管5aおよび排出管5bを反応器9に接合する際に第1の接合部材24aを用い、導入管5aおよび排出管5bを基板21に接合する際に第2の接合部材24bを用い、導入管5aおよび排出管5bを収容容器1に接合する際に第3の接合部材24cを用いる。
基板21には、導入管5aおよび排出管5bがそれぞれ挿通される挿通孔が設けられている。反応装置20では、導入管5aおよび排出管5bを基板21の挿通孔に挿入し、それらを該挿通孔に第2の接合部材24bによって接合した後、その基板21を基体22に第3の接合部材24cによって接合する。基板21は、例えば、図2(a)に示されるように、貫通孔23を塞ぐように基体22の内表面に接合されてもよく、図2(b)に示さ
れるように、貫通孔23に勘合されてもよい。また、基板21は、反応装置20の外部から貫通孔23を塞ぐように基体22の外表面に接合されてもよい。
ここで、導入管5a等と基板21の挿通孔との接合に使用される第2の接合部材24bは、導入管5a等と反応器9との接合に使用される第1の接合部材22aよりも融点が低く、基板21と基体22との接合に使用される第3の接合部材24cよりも融点が高い材料を選定する必要がある。それらの接合には、導入管5a、排出管5b、収容容器1、および反応器9を構成する材料に応じて、Ag−Cuや、Au−Ge、Au−Sn等のロウ材等による接合が適宜用いられるが、例えば、第1の接合部材24aとしてAg−Cuを用い、第2の接合部材24bとしてAu−Geを用い、第3の接合部材24cとしてAu−Snを用いればよい。
ここで、Ag−Cuは、例えばAg78w%,Cu22w%の組成を有し、融点が780℃である。また、Au−Geは、例えばAu88w%,Ge12w%の組成を有し、融点が356℃である。さらに、Au−Snは、例えばAu80w%,Sn20w%の組成を有し、融点は280℃である。
また、導入管5aおよび排出管5bを反応器9に接合すると同時に、基板21の挿通孔に挿入して接合し、その後、導入管5aおよび排出管5bが挿入された基板21を基体22に接合してもよい。このとき、第1の接合部材24aおよび第2の接合部材24bは、融点が同じであってよい。すなわち、第1の接合部材24aおよび第2の接合部材24bは、同じ材料であってよく、その材料は、第3の接合部材24cよりも融点が高い材料であってよい。
さらに、導入管5aおよび排出管5bを反応器9に接合した後、導入管5aおよび排出管5bを基板21の挿通孔に挿入して接合し、その接合と同時に、基板21を基体22に接合してもよい。このとき、第2の接合部材24bおよび第3の接合部材24cは、融点が同じであってよい。すなわち、第2の接合部材24bおよび第3の接合部材24cは、同じ材料であってよく、その材料は、第1の接合部材24よりも融点が低い材料であってよい。
本実施の形態による反応装置20によれば、反応器9に接合された導入管5a及び排出管5bがそれぞれ基板21と一体化していることから、導入管5a及び排出管5bの収容容器への実装が非常に容易なものとなる。また、反応装置20に設けられる貫通孔23は、実施の形態1で説明された反応装置12に設けられた挿通孔7よりも少数で済むので、収容容器の製造も容易になる。また、挿通孔7をそれぞれ気密封止するよりも、少数の貫通孔23を気密封止するプロセスで済むため、反応装置12と比較して、導入管5aおよび排出管5bと収容容器との接合信頼性がより高くなる。
さらに、導入管5a及び排出管5bを同一基板21に接合し、その基板21を基体22の貫通孔23を塞ぐように基体22に接合するため、反応器9から収容容器における接合部材を用いた接合箇所までの距離が長くなり、高温の反応器9からの伝熱距離を稼ぐことができることから、第3の接合部材24cを用いた接合箇所の温度が温度分布的に下がるため、第3の接合部材24cに与える熱の影響を最小限に抑えることができる。これにより、反応装置20の信頼性を高めることができる。
なお、上述の反応装置20では、導入管5aおよび排出管5bが挿通される基板21は1つであったが、複数個であってもよい。その場合には、反応器9に接合された導入管5aおよび排出管5bがそれぞれ複数個あり、対応する基板21にそれぞれ挿通される。
さらに、基板21に対して、導入管5aおよび排出管5bを挿通する挿通孔だけでなく、例えばリード線を挿通する挿通孔を設けることにより、反応器9と反応装置12外部との電気的接続を実現してもよい。また、基板21内に配線を設ける等、基板21が他の機能を実現するための構成を有していても構わない。
基板21は、例えばFe系合金,無酸素銅、SUS等の金属材料や、酸化アルミニウム(Al)質焼結体,ムライト(3Al・2SiO)質焼結体,炭化珪素(SiC)質焼結体,窒化アルミニウム(AlN)質焼結体,窒化珪素(Si)質焼結体,ガラスセラミックス等のセラミック材料や、ポリイミド等の高耐熱の樹脂材料で形成されている。
なお、基板21に適用可能なガラスセラミックスは、ガラス成分とフィラー成分とから成る。そのガラス成分としては、例えばSiO−B系,SiO−B−Al系,SiO−B−Al−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す),SiO−Al−MO−MO系(但し、MおよびMは同一または異なってCa,Sr,Mg,BaまたはZnを示す),SiO−B−Al−MO−MO系(但し、MおよびMは前記と同じである),SiO−B−M O系(但し、MはLi,NaまたはKを示す),SiO−B−Al−M O系(但し、Mは前記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。
また、フィラー成分としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物、TiOとアルカリ土類金属酸化物との複合酸化物、AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。
一方、基板21が、例えば相対密度が95%以上の緻密質の酸化アルミニウム質焼結体で形成されている場合は、例えば、まず酸化アルミニウム粉末に希土類酸化物粉末や酸化アルミニウム粉末等の焼結助剤を添加,混合して、酸化アルミニウム質焼結体の原料粉末を調製する。次いで、この原料粉末に有機バインダおよび分散媒を添加,混合してペースト化し、このペーストをドクターブレード法によって、あるいは原料粉末に有機バインダを加え、プレス成形,圧延成形等によって、所定の厚みのグリーンシートを作製する。その後、所定枚数のシート状成形体を位置合わせして積層圧着した後、この積層体を、例えば非酸化性雰囲気中、焼成最高温度が1200〜1500℃の温度で焼成して、目的とするセラミック製の基板を得る。なお、基板21の成形は粉末成形プレス法であっても良い。
他方、基板21が金属材料から成る場合は、切削法,プレス法,MIM(Metal Injection Mold)法等により所定の形状に形成される。
また、基板21が金属材料から成る場合には、腐食を防止するためにその表面は、例えばAu,Niのめっき処理や、ポリイミド等の樹脂コーティング等の被覆コーティング処理が行なわれることが望ましい。
また、基板21がセラミック材料と金属材料とガラス材料を全てもしくは、いずれかの組み合わせで接合して作製されたものであっても構わない。
基板21と基体22との接合部分の形状としては、通常は円形とすればよいが、これに限定されない。すなわち、円形の他には、楕円形や、流体の流れ方向にその辺部を合わせることができる角状のもの、例えば、正方形,長方形が挙げられる。また、面接合、側面接合など問わないが、接合の容易さから面接合であることが好ましい。肉厚は原料供給や反応ガス排出の圧力で変形しない厚みが必要であり、上記の材料から成る場合には、携帯機器等に使用するものでは通常は0.1mm以上であれば良い。
また、基板21に形成されている挿通孔と導入管5aおよび排出管5bとの接合部分の形状としては、通常は円形とすればよいが、これに限定されない。すなわち、円形の他には、楕円形や、流体の流れ方向にその辺部を合わせることができる角状のもの、例えば、正方形,長方形が挙げられる。また、接合の状態としては、基板21の厚みに沿って接合されるが、良好な接合強度と接合信頼性を得るためには、基板21の面と導入管5aおよび排出管5bに適切なメニスカスを形成した上で、基板21の挿通孔の深さ方向に0.1mm以上接合していることが好ましい。
また、導入管5aおよび排出管5bの内径はφ0.1mm以上として流体の圧力損失を抑えるとともに、小型化,低背化のためにはφ5mm以下とすることが好ましい。
導入管5aおよび排出管5bの接合部分の断面形状としては、通常は円形とすればよいが、これに限定されない。すなわち、円形の他には、楕円形や、流体の流れ方向にその辺部を合わせることができる角状のもの、例えば、正方形,長方形が挙げられる。また、肉厚は原料供給や反応ガス排出の圧力で変形しない厚みが必要であり、上記の材料から成る場合には、携帯機器等に使用するものでは通常は0.1mm以上であれば良い。また、流れ方向の長さは、反応器9で発生する熱を発電セルに伝えにくくするためには長い程よいが、燃料電池システム全体の大きさを考慮した長さにすべきである。
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。
本発明の実施の形態1による反応装置の構成例を示す断面図である。 (a)は、本発明の実施の形態2による反応装置の構成例を示す断面図であり、(b)は、(a)に示された反応装置の構成の変形例を示す断面図である。
符号の説明
1・・・・・・・収容容器
2・・・・・・・リード端子
3・・・・・・・ボンディングワイヤ
4・・・・・・・蓋体
5a・・・・・・導入管
5b・・・・・・排出管
6a,24a・・第1の接合部材
6b,24b・・第2の接合部材
7・・・・・・・挿通孔
8・・・・・・・(リード端子2用の)貫通孔
9・・・・・・・反応器
12,20・・・反応装置
21・・・・・・基板
22・・・・・・基体
23・・・・・・(基板21用の)貫通孔
24c・・・・・第3の接合部材

Claims (6)

  1. 反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記反応器の内部から前記収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備える反応装置であって、前記収容容器は、前記導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記導入管および排出管は、第1の接合部材によって前記反応器にそれぞれ接合されるとともに、前記基板の対応する挿通孔にそれぞれ挿通され、該挿通孔に第2の接合部材によってそれぞれ接合され、前記基板は、第3の接合部材によって前記基体の貫通孔を塞ぐように前記基体の前記内部側に接合され、前記第2の接合部材は、前記第1の接合部材の融点以下、かつ前記第3の接合部材の融点以上の融点を有することを特徴とする反応装置。
  2. 前記基板は、前記基体の内表面に接合されていることを特徴とする請求項1記載の反応装置。
  3. 前記基板は、前記基体の前記貫通孔の前記内部側に勘合されていることを特徴とする請求項1記載の反応装置。
  4. 反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記反応器の内部から前記収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、前記収容容器は、前記導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記導入管および排出管を、前記反応器に第1の接合部材を用いてそれぞれ接合するとともに、前記基板の対応する挿通孔にそれぞれ挿通し、かつ該挿通孔に第2の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記導入管および排出管が挿通された基板を、前記基体の貫通孔を塞ぐように第3の接合部材を用いて該基体の前記内部側に接合する第2の接合ステップとを備え、前記第1の接合部材は、前記第3の接合部材よりも融点が高く、前記第2の接合部材は、前記第1の接合部材と融点が等しいことを特徴とする反応装置の製造方法。
  5. 反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記反応器の内部から前記収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法
    であって、前記収容容器は、前記導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記導入管および排出管を、前記反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記反応器に接合された導入管および排出管を、前記基板の対応する挿通孔に第2の接合部材を用いてそれぞれ接合する第2の接合ステップと、前記導入管および排出管が挿通された前記基板を、前記基体の貫通孔を塞ぐように該基体の前記内部側に第3の接合部材を用いて接合する第3の接合ステップとを備え、前記第2の接合部材は、前記第1の接合部材よりも融点が低く、前記第3の接合部材よりも融点が高いことを特徴とする反応装置の製造方法。
  6. 反応器と、該反応器を収容する収容容器と、該収容容器の外部から前記反応器の内部に反応前の流体を導入する少なくとも1つの導入管と、前記反応器の内部から前記収容容器の外部に反応後の流体を排出する少なくとも1つの排出管とを備えた反応装置の製造方法であって、前記収容容器は、前記導入管および排出管を1つずつ対応させて挿通する複数の挿通孔を備えた基板と、該基板によって塞がれる貫通孔を備えた基体とを有し、前記導入管および排出管を、前記反応器に第1の接合部材を用いてそれぞれ接合する第1の接合ステップと、前記反応器に接合された導入管および排出管を、前記基板の対応する挿通孔に挿通して、該挿通孔に第2の接合部材を用いてそれぞれ接合するとともに、前記基板を、前記基体の貫通孔を塞ぐように第3の接合部材を用いて該基体の前記内部側に接合する第2の接合ステップとを備え、前記第1の接合部材は、前記第3の接合部材よりも融点が高く、前記第2の接合部材は、前記第3の接合部材と融点が等しいことを特徴とする反応装置の製造方法。
JP2006206571A 2006-07-28 2006-07-28 反応装置および反応装置の製造方法 Expired - Fee Related JP4854421B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206571A JP4854421B2 (ja) 2006-07-28 2006-07-28 反応装置および反応装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206571A JP4854421B2 (ja) 2006-07-28 2006-07-28 反応装置および反応装置の製造方法

Publications (2)

Publication Number Publication Date
JP2008029960A JP2008029960A (ja) 2008-02-14
JP4854421B2 true JP4854421B2 (ja) 2012-01-18

Family

ID=39119934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206571A Expired - Fee Related JP4854421B2 (ja) 2006-07-28 2006-07-28 反応装置および反応装置の製造方法

Country Status (1)

Country Link
JP (1) JP4854421B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261735A (ja) * 1997-03-18 1998-09-29 Hitachi Ltd 半導体装置およびその製造方法
JP2004048072A (ja) * 2003-10-24 2004-02-12 Ngk Spark Plug Co Ltd 樹脂製配線基板及びその製造方法
JP4471634B2 (ja) * 2003-11-27 2010-06-02 京セラ株式会社 燃料改質器収納用容器
JP2005225686A (ja) * 2004-02-10 2005-08-25 Kyocera Corp 燃料改質器収納用容器および燃料改質装置

Also Published As

Publication number Publication date
JP2008029960A (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4157405B2 (ja) 燃料改質器収納用容器
JP4471634B2 (ja) 燃料改質器収納用容器
JP4471635B2 (ja) 燃料改質器収納用容器
JP4854421B2 (ja) 反応装置および反応装置の製造方法
JP4360607B2 (ja) 燃料改質器収納用容器
JP4812288B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4493356B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4493357B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4471690B2 (ja) 燃料改質装置
JP5046484B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4458889B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4628069B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4868734B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4493361B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4628090B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4471727B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4423098B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4903381B2 (ja) 燃料改質装置
JP4948759B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4889217B2 (ja) 燃料改質装置の製造方法
JP2005225686A (ja) 燃料改質器収納用容器および燃料改質装置
JP4601288B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4794182B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP2005268030A (ja) 燃料改質器収納用容器および燃料改質装置
JP2005187233A (ja) 燃料改質器収納用容器および燃料改質装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees