JP4844334B2 - サスペンションシステム - Google Patents

サスペンションシステム Download PDF

Info

Publication number
JP4844334B2
JP4844334B2 JP2006274472A JP2006274472A JP4844334B2 JP 4844334 B2 JP4844334 B2 JP 4844334B2 JP 2006274472 A JP2006274472 A JP 2006274472A JP 2006274472 A JP2006274472 A JP 2006274472A JP 4844334 B2 JP4844334 B2 JP 4844334B2
Authority
JP
Japan
Prior art keywords
wheel
vehicle
state
slip
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006274472A
Other languages
English (en)
Other versions
JP2008094124A (ja
Inventor
幹彦 本間
郁秀 伊与田
秀樹 大橋
正基 金谷
浩太郎 沖村
修史 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006274472A priority Critical patent/JP4844334B2/ja
Publication of JP2008094124A publication Critical patent/JP2008094124A/ja
Application granted granted Critical
Publication of JP4844334B2 publication Critical patent/JP4844334B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は、車両のサスペンションシステムに関し、特に、離間力特性を変更することが可能なサスペンションシステムに関する。
現在、車両の走行性能や乗り心地を向上させるため、ばね定数,車高,減衰力等の離間力特性を変更することが可能なサスペンションシステムや、制動装置等に指令を行いヨー運動(ヨーイング運動)を適正化する装置等が車両に設けられる場合がある。下記特許文献1〜3には、サスペンションシリンダたるストラットと接続するアキュムレータの個数を切り換えることによって、ばね定数を変更することが可能なサスペンション装置が記載されている。また、下記特許文献4には、いわゆるスピン傾向やドリフト傾向(過剰なオーバステアやアンダステア)を抑制すべく、制動装置に指令を行いヨー運動を制御する装置が記載されている。
特開昭63−130419号公報 特開昭63−78806号公報 特開昭63−49512号公報 特開平8−318841号公報
上記特許文献1〜3の記載の技術は、車体のヒーブ量(上下量)に基づいてばね定数が変更されているが、ばね定数を変更することが好ましくない状態について考慮されていない。例えば、急旋回や低μ路(摩擦係数μが低い路面)における旋回を行うことにより車両のスピン傾向やドリフト傾向が発生した状態では、ばね定数を変更すると車両の挙動を乱す虞やスピン傾向等が助長される虞があるという問題がある。また、例えば、スピン傾向やドリフト傾向を抑制する指令が行われている場合には、ばね定数を変更するとスピン傾向等を抑制する効果が低下する虞があるという問題がある。このような問題は、従来のサスペンションシステムの実用性を向上させる上で障害となり得る問題の一例であり、サスペンションシステムには種々の観点からの改良の余地がある。すなわち、従来のサスペンションシステムに改良を加えることによって、車両の安定性を向上させる等、サスペンションシステムをより実用的なものとすることが可能である。本発明は、そういった実情に鑑みてなされたものであり、サスペンションシステムの実用性を向上させることを課題としてなされたものである。
上記課題を解決するために、本発明のサスペンションシステムは、複数の車輪のうちの少なくとも2以上のものの各々と車体との離間力特性を変更する離間力特性変更部と、車両の走行状態が走行不安定状態であると判定された場合に離間力特性の変更を制限する変更制限部とを含むことを特徴とする。
本発明のサスペンションシステムによれば、走行不安定状態における離間力特性の変更を確実に制限することができ、車両の安定性を向上させ得る。すなわち、本発明によってサスペンションシステムの実用性を向上させることができるのである。なお、本発明のサスペンションシステムの各種態様およびそれらの作用および効果については、以下の、〔発明の態様〕の項において詳しく説明する。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から一部の構成要素を削除した態様も、請求可能発明の一態様となり得るのである
(1)車両の複数の車輪の各々と車体とを接近離間可能に連結するサスペンションシステムであって、
複数の車輪のうちの2以上のものの各々と車体との離間距離とそれらを離間させる向きの力である離間力との関係である離間力特性を変更する離間力特性変更部と、
車両の走行状態が不安定な状態である走行不安定状態を判定する走行不安定状態判定部を有してその走行不安定状態判定部によって前記走行不安定状態であると判定された場合に前記離間力特性の変更を制限する変更制限部と
を含むことを特徴とするサスペンションシステム。
サスペンションシステムは、車輪と車体とを上下方向に接近離間可能に連結し、離間力を発生させて車体を弾性的に支えるものである。車体を支持する力として作用する離間力は、気体やばね材等の弾性体によって発生させられる。その離間力の特性は、例えば、離間距離の変化(例えば、単位距離の変化)に対する離間力の変化の度合いである「ばね特性」や、静止時の車体を支持するための静止支持荷重を発生する離間距離である「基準離間距離」や、離間距離の変化速度を低減する「減衰力」等のうちの少なくとも1つによって規定されるようにすることができる。なお、基準離間距離は、静止時の車体の高さ、つまり、車高を示す値となる。
本項のサスペンションシステムは、例えば、ばね特性,車高,減衰力等のうちの少なくとも1つの離間力特性を変更することが可能にされている。なお、ばね特性が、離間距離の変化に対する離間力の変化の度合いが比較的大きいものである場合に、ばね定数が大きいと表現する。一方、離間力の変化の度合いが比較的小さい場合に、ばね定数が小さいと表現する。
本項の離間力特性変更部は、例えば、ばね特性を変更する装置,車高を調整する装置,減衰力を調整する装置等のうちの少なくとも1つと、それらのうちの少なくとも1つを制御する制御装置とを含むものとすることができる。離間力特性の変更は、例えば、運転者の指令に応じて行うことや、車両の運動状態(例えば、直進状態、旋回状態、加減速状態等)に応じて行うことができる。例えば、旋回時や加減速時等においてばね定数や減衰力を大きくして車体の姿勢変化(ロール,ピッチ等)を抑制するとともに、直進時においてばね定数や減衰力を小さくして乗り心地を向上させる(車体のヒーブ加速度を小さくする)ことができる。また、例えば、悪路走行時において車高を高くして走破性を高めるとともに、高速走行時において車高を低くして走行安定性を向上させることができる。
しかしながら、サスペンションシステムの離間力特性を変更すると、車体の重心位置,揺れ方(姿勢変化の量、速度、加速度),接地加重の変動の度合い等のうちの少なくとも1つが変化するため、状況によっては、離間力特性を変更することが好ましくない場合がある。すなわち、車両が走行不安定状態である場合には、離間力特性を変更することが好ましくない場合が多いのである。
走行不安定状態は、例えば、急激な旋回や低μ路(摩擦係数が低い路面)における旋回によってスピン傾向やドリフト傾向(過剰なオーバステアやアンダステア)が生じた状態、急激な加速や低μ路における加速によって駆動輪の車輪の空転傾向が生じた状態、急激な減速や低μ路における減速によって車輪のロック傾向が生じた状態等のうちの少なくとも1つの状態とすることができる。また、左右の車輪が接地する路面の摩擦係数(μ)が互いに異なる場合に加減速を行うと、車両がヨー方向に回転させられやすくなるが、その様な状態も走行不安定状態とすることができる。すなわち、走行不安定状態は、車輪と路面との間の摩擦力の不足によって生じやすいのである。なお、上記各状態には、各傾向が生じると予測される状態が含まれるものとすることができる。また、路面の摩擦係数が十分大きくとも、例えば、一般的なアスファルト路面程度であったとしても、旋回や加減速の激しさによって車輪と路面との間の摩擦力の不足が生じる。
また、走行不安定状態は、例えば、車両に加わる外乱に起因して生じる場合がある。例えば、横風によって車両の進路が左右方向(進行方向と直交する方向)に移動させられるような場合である。すなわち、車両に加わる外乱も車両の走行状態を不安定にする要因となり得るのである。なお、このような車両が左右方向に移動させられる状態を、車輪と路面との間の摩擦力が不足して、車輪が横滑りしている、あるいは横スリップが生じている状態と考えることもできる。すなわち、走行不安定状態は、例えば、車輪と路面との間の摩擦力の不足,車両に加わる外乱等の車両の走行状態を不安定にする要因によって車両の走行状態が不安定になる状態と考えることができる。
上述のような走行不安定状態において離間力特性が変更されると、走行不安定状態が助長される虞や、運転者に違和感を与える虞がある。また、後述するように、走行不安定状態を緩和する制御がなされている場合には、離間力特性を変更しない方が望ましい場合が多い。
なお、走行不安定状態は、例えば、旋回中や加減速中に発生しやすいのに対して、離間力特性の変更は、例えば、ばね特性であれば、旋回や加減速が開始された時点と終了した時点に行われる場合が多く、走行不安定状態において離間力特性が変更される可能性は低いと考えられる。しかしながら、離間力特性の変更が確実に制限されるわけではない。例えば、車速と操舵角とに基づいて旋回状態であるか否かを判定している場合には、車両がスピン(過剰なオーバステア)傾向にある状態で運転者がステアリングホイールを中立位置(操舵角が0)付近に戻した際に、旋回が終了したと誤った判定がなされ、ばね特性の変更指令がなされる虞がある。また、路面の摩擦係数(μ)が部分的に小さくなっている場合には、車両がどのような挙動を示すのか、あるいは、車体にどのような力が作用するのかを予測することが難しく、不必要な離間力特性の変更が行われる可能性がある。さらにまた、路面からの振動入力が大きい場合にばね定数を小さくする態様では、路面の凹凸部に突入することを確実に予測し、あるいは凹凸部を通過したことを確実に検出することが困難であり、走行不安定状態において、ばね特性が変更さる可能性がある。
すなわち、サスペンションシステムの離間力特性を変更する条件を設定するに当たって、例えば、車両がスピン傾向になる状態や車輪がロック傾向になる状態において予期せぬ離間力特性の変更がなされることを確実に回避し得る条件を設定することは難しく、走行不安定状態における離間力特性の変更を確実に制限することは困難なのである。それに対して、本項の変更制限部によれば、離間力特性変更部の通常の制御とは別個の判断によって、つまり、走行不安定状態であると判定されたか否かに基づいて離間力特性の変更を制限することで、確実に離間力特性の変更を制限することができるのである。その結果、走行不安定状態における離間力特性の変更による弊害を回避することができる。
したがって、本項の態様によれば、走行不安定状態における離間力特性の変更を確実に制限することができ、車両の安定性を向上させ得る。すなわち、本サスペンションシステムによれば、車両の実用性を向上させることができるのである。
本項の変更制限部が離間力特性の変更を制限する態様は、例えば、一切の離間力特性の変更を禁止する態様、車両の運動に悪影響を及ぼしやすい条件等の特定の条件を満たす離間力特性の変更を禁止するとともに、その他の離間力特性の変更を許容する態様等とすることができる。車両の運動に悪影響を及ぼしやすい条件は、例えば、ばね特性や車高の大きな変化を伴う変更等が挙げられる。本項の変更制限部は、例えば、サスペンションシステム以外の走行システム、例えば、制動装置等を制御する装置に配設されていてもよい。また、本項の変更制限部を、離間力特性変更部に含まれるものとすることもできる。
サスペンションシステムは、例えば、いわゆるエアサスペンション装置を含むものとすることができる。その場合には、エアサスペンション装置のエアを収容するエアチャンバに充填するエアの量を変化させて車高やばね特性を変更することや、エアチャンバにサブチャンバなどを連通させてエアの収容容積を変化させることによってばね特性を変更することができる。また、例えば、後述するように液体を収容したシリンダに複数のアキュムレータが接続されたものとすることができる。その場合には、シリンダに連通するアキュムレータの数を変更することによってばね特性を変更することができる。
(2)前記離間力特性変更部が、前記離間力特性としてのばね特性と、前記離間力特性としての車両静止時における車体と車輪との離間距離である基準離間距離との少なくとも一方を変更するものである(1)項に記載のサスペンションシステム。
本項の態様は、ばね特性と基準離間距離(車高)との少なくとも一方が変更される。なお、ばね特性と車高との一方を変更すると他方が変化する場合があり、ばね特性と車高との一方の変更を制限することによって他方の変更をも制限することになる場合がある。
(3)前記走行不安定状態判定部が、路面に対する車輪のスリップの度合いが設定された許容範囲の範囲外である場合に、前記走行不安定状態であると判断するものである(1)項または(2)項に記載のサスペンションシステム。
本項の走行不安定状態判定部は、車輪がスリップする度合いに基づいて走行不安定状態であるか否かを判定するものである。本項の態様において、路面に対する車輪のスリップには、回転軸線方向の滑り(以後、「横スリップ」と称する)と、回転方向の滑り(以後、「縦スリップ」と称する)との少なくとも一方が含まれるものとする。
横スリップの度合いは、例えば、車両のヨー運動速度であるヨーレート(車両の重心点を通る鉛直軸(Z軸)回りの回転速度)に基づいて推測することができる。具体的には例えば、ヨーレートセンサ等によって検出された検出ヨーレートと、操舵角および車速に基づいて決定される目標ヨーレートとの偏差が小さいときは横スリップの度合いが小さく、偏差が大きいときは横スリップの度合いが大きいと推測できる。つまり、上記偏差に基づいて車輪の横スリップの度合いを推測することができるのである。
例えば、上記偏差が偏差しきい値を超える場合に、車輪の横スリップの度合いが横スリップ上限値(正の値)以上、あるいは下限値(負の値)以下となる場合に走行不安定状態であると判定されるようにすることができる。具体的には、オーバステアやアンダステアを許容し得る限界付近の状態における上記偏差の値を上限値あるいは下限値とすれば、上記偏差が上限値等を超えた場合にオーバステアやアンダステアが過剰である、つまり、走行不安定状態であると判定されるようにすることができる。この場合には、上記偏差の上限値と下限値とによって横スリップの度合の許容範囲が設定されている。また、例えば、後述する重心点横スリップ角の大きさと横スリップ角の変化率との少なくとも一方に基づいて、車輪の横スリップの度合いが許容範囲内であるか否かが判定されるようにすることもできる。
縦スリップの度合いは、例えば、車体速度と車輪速度との偏差に基づいて取得される縦スリップ量とすることができる。なお、車体速度は、車体と路面との相対移動速度(つまり、「車速」である)、車輪速度は、車輪の回転速度に基づいて推測される車輪の移動速度である。この場合には、縦スリップ量の上限値と下限値とによって縦スリップの度合いの許容範囲を設定することができる。また、例えば、縦スリップの度合いを車輪の回転加速度とすることもできる。つまり、制動時のロック傾向や駆動時の空転(ホイールスピン)傾向が生じた場合には、縦スリップ量や車輪の回転加速度の絶対値が大きくなる。この場合には、回転加速度の上限値と下限値とによって縦スリップの度合いの許容範囲を設定することができる。以上の説明のように、車輪の縦スリップ量と車輪加速度との少なくとも一方に基づいて、車輪の縦スリップの度合いが縦スリップの許容範囲外であるか否かが判定されるようにすることができる。
(4)前記車両が、前記走行不安定状態を緩和する走行不安定状態緩和装置を備え、
前記走行不安定状態判定部が、前記走行不安定状態緩和装置による制御が行われる場合に、前記走行不安定状態であると判断するものである(1)項または(2)項に記載のサスペンションシステム。
本項の走行不安定状態緩和装置は、走行不安定状態緩和制御を行い、例えば、車両の制動装置によって各車輪に付与される制動力を制御することで走行不安定状態を緩和するものである。また、駆動装置に指令を行うことで駆動力を制御することや、走行システムに操舵装置が含まれる場合に操舵装置に指令を行うことで転舵角を制御することができるように構成することも可能である。
走行不安定状態緩和制御は、通常、離間力特性が変更されることを前提にしていないため、走行不安定状態を緩和している最中に離間力特性が変更されると、走行不安定状態を効果的に緩和できない虞や走行不安定状態を助長する虞がある。それは、例えば、離間力特性の変更によって車体の揺れ方や車輪の接地性(例えば、接地荷重変動等)等が変化して、車輪と路面との間の摩擦力の変動の仕方が変化することが一因であると推察される。
すなわち、走行不安定状態緩和制御が行われている場合に離間力特性の変更を制限することにより、走行不安定状態の緩和が妨げられることを回避することができるのである。また、本項の態様において、走行不安定状態判定部は、走行不安定状態であるか否かを判定する必要が無く、走行不安定状態緩和制御が行われているか否かを判定するだけで、離間力特性の変更を制限すべき適切なタイミングを取得することができ、簡便である。
(5)前記走行不安定状態緩和装置が、少なくとも車両に設けられた制動装置を制御することによって前記走行不安定状態を緩和するものである(4)項に記載のサスペンションシステム。
本項の走行不安定状態緩和装置は、制動装置を制御することにより、例えば、後述するヨー運動適正化制御や、アンチロック制御等を行うことができる。
(6)前記走行不安定状態緩和装置が、路面に対する車輪のスリップを抑制することによって走行不安定状態を緩和するスリップ抑制制御部を含む(4)項または(5)項に記載のサスペンションシステム。
本項の態様において、「車輪のスリップ」の内容は、前記(3)項の態様のもの(縦スリップ、横スリップ等)と同様である。走行不安定状態は、多くの場合、車輪(詳しくは、タイヤ)がグリップを失うことに起因するため、スリップを抑制することで走行不安定状態を緩和することができる。
(7)前記スリップ抑制制御部が、車両のヨー運動を適正化するヨー運動適正化部と、制動時の車輪のスリップを抑制するアンチロック制御部と、加速時の車輪のスリップを抑制するトラクション制御部とのうちの少なくとも1つを含む(6)項に記載のサスペンションシステム。
ヨー運動適正化部は、制動装置に指令を行うことによって旋回時のスピン傾向やドリフト傾向の発生を抑制するものであり、車両の移動方向に対する車両の向きを適切にする制御を行うものである。なお、制動装置だけでなく、駆動装置,操舵装置等にも指令を行うものとすることができる。また、ヨー運動適正化部は、旋回時に限らず、直進時にもヨー運動を適正化し得るものとすることができる。
アンチロック制御部は、制動装置に指令を行うことによって制動時のロック傾向を抑制するものである。また、トラクション制御部は、制動装置(あるいは、制動装置および駆動装置)に指令を行うことによって加速時の空転傾向を抑制するものである。
(8)前記変更制限部が、前記走行不安定状態判定部によって前記走行不安定状態であると判定された場合に、前記離間力特性を設定された特性に変更する指令を行う変更制限時変更指令部を含む(1)項ないし(7)項のいずれかに記載のサスペンションシステム。
走行不安定状態において、離間力特性が設定された特性になっていることが望ましい場合があり、そのような場合に好適である。例えば、ばね特性,車高の少なくとも一方を、標準的な硬さ,高さ(例えば、定常直進状態に適した離間力特性)にすることや、ばね定数を比較的小さくしたり、車高を低くしたりすること等ができる。本項の態様において、例えば、運転者によって入力装置が操作されて目標となる離間力特性が選択されている場合や、離間力特性変更部によって目標離間力特性が決定されている場合であっても、それらとは無関係に離間力特性を標準的な値等に変更することができる。
また、後述するように、サスペンション装置のうちの離間力特性を変更する部分が、電力の供給によって作動するソレノイド等を含む電磁作動器(後述の例では電磁弁)を含む場合に、それら電磁作動器に電力の供給を停止した場合の離間力特性を設定された特性とすることができる。つまり、ソレノイド等への電力の供給を停止することで離間力特性を変更する態様とすることができる。その場合には、複数の車輪に対応する複数の電磁作動器の一部が断線等の故障によって電力の供給を受けない状態と同様の離間力特性となっていた場合には、離間力特性の変更によって、複数の車輪に対応する全ての部分の離間力特性を設定された特性にすることができ、フェールセーフ性が向上する。
なお、変更制限条件が満たされると同時に変更指令がなされるようにする等、速やかに変更指令がなされることが望ましい。
(9)前記変更制限部が、前記走行不安定状態緩和装置による制御が行われる際に、前記離間力特性を前記走行不安定状態緩和装置において想定されている特性に変更する指令を行う変更制限時変更指令部を含む(4)項ないし(7)項のいずれかに記載のサスペンションシステム。
本項の態様は、前項の態様の一例である。なお、本項の走行不安定状態緩和装置において想定されている特性は、前項の設定された特性に相当する。
本項の態様は、例えば、走行不安定状態緩和装置が、特定の離間力特性である場合に効果的に走行不安定状態を緩和しやすくされている場合や、複数の車輪についての離間力特性が統一されていることが想定されている場合等に好適である。離間力特性が統一されているのは、例えば、全てのばね定数の大きさが、大、中、小のいずれかに統一されている場合等である。また、前述のように、電磁作動器が非通電状態にされた場合の離間力特性を、走行不安定状態緩和装置において想定されている特性とすることでこともできる。
なお、変更指令は、走行不安定状態緩和制御が行われたことが判明すると同時等、判明後速やかに行われることが望ましい。そうすることによって、制動装置等が走行不安定状態緩和制御されて作動するのとほぼ同時期に離間力特性を変更することができ、走行不安定状態の緩和を妨げる可能性を小さくすることができる。
(10)前記離間力特性変更部が、車両の運動状態を示す状態量である運動状態量に基づいて離間力特性を変更する制御を行う運動状態量依拠制御部を含む(1)項ないし(9)項のいずれかに記載のサスペンションシステム。
本項の態様とは異なるが、例えば、車両に離間力特性の目標値や変更を入力する入力装置を設け、運転者の入力に応じて離間力特性を変更することもできる。それに対して、本項の態様は、車両の運動状態量に基づいて適切な離間力特性に変更することができる。例えば、運動状態量の一種である車体の横加速度に基づけば、旋回状態においてばね定数を大きくして車体のロールを抑制し、直進状態でばね定数を小さくして乗り心地を向上させることができる。また、横加速度が比較的大きい場合には、旋回外輪側の車高を高くすることと旋回内輪側の車高を低くすることとの少なくとも一方によっても車体のロールを抑制することができる。また、例えば、運動状態量の一種である車体の上下加速度に基づけば、例えば、悪路走行状態においてばね定数を小さくするとともに車高を高くする一方、一般路においてばね定数を大きくするとともに車高を低くすることができる。その他、後の実施例において詳述する。なお、運動状態量として、前後,左右,上下方向の移動速度および加速度、ヨー方向の回転速度(いわゆるヨーレート)および回転加速度、姿勢変化(ロール,ピッチ,ヒーブ)の量,速度および加速度、操舵の量および速度、車輪の回転速度及び回転加速度、ストロークの量,速度および加速度(基準離間距離を基準とした場合の車輪と車体との接近離間の量,速度および加速度)、車体のスリップ角およびそれの変化率等の検出値あるいは推定値のうちの少なくとも1つを採用することができる。また、これらの状態量のうちの複数のものに基づいて離間力特性を変更することができる。
しかしながら、走行不安定状態では、車両の運動状態が変化し易いこと、車両の運動状態を正確に把握することが難しいこと等に起因して、不要な、あるいは、誤った離間力特性の変更がなされる虞がある。すなわち、本項の態様は、走行不安定状態において、変更制限部によって離間力特性の変更が制限されることが望ましい態様、あるいは、変更が制限される必要性の高い態様といえる。
(11)前記運動状態量依拠制御部が、前記運動状態量に基づいて車体の姿勢変化が設定範囲内になるか否かを判定するとともに、車体の姿勢変化が設定範囲外になると判定された場合に、設定範囲内になると判定された場合の前記離間力特性で走行するよりも車体の姿勢変化が小さくなる前記離間力特性に変更する制御を行うものである(10)項に記載のサスペンションシステム。
車体の姿勢変化が設定範囲内になると判定される場合は、例えば、一般的な道路を低中速(例えば、時速50km以下)で定常直進走行するような場合(低中速で緩やかに旋回する場合や緩やかな加減速を行う場合も含まれる)等とすることができる。その様な場合には、車体の姿勢変化(ヒーブ、ロール、ピッチ)が比較的小さいため、例えば、ばね定数を比較的小さくして乗り心地を向上させることができる。
一方、車体の姿勢変化が設定範囲外になると判定される場合は、例えば、相当程度の旋回や加減速を行う場合、高速走行(例えば、時速70km以上)する場合等である。その様な場合は、車体の姿勢変化が大きくなり易いため、ばね定数を比較的大きくして(ばねを硬くして)姿勢変化を抑制することが望ましい。上記以外に、例えば、路面の凸部を乗り越える場合、悪路を走行する場合等には、車体の姿勢変化が設定範囲外になると判定される。この場合には、ばね定数が大きいと凸部を乗り越える際に車体に伝わる振動が大きくなるため、離間力特性を比較的小さくして振動ができるだけ良好に吸収されるようにして、車体の上昇加速度を低減して姿勢変化を抑制することが望ましい。なお、車体に伝わる振動を減少させることは、乗り心地を向上させると考えることもできる。
(12)前記離間力特性変更部が、予め設定された複数段階の前記離間力特性の候補特性のうちの1つを選択することによって前記離間力特性を変更するものである(1)項ないし(11)項のいずれかに記載のサスペンションシステム。
本項の態様において、複数段階の候補特性の段階数が少ない場合(2段階,3段階等)は、離間力特性の変更が車両の走行状態に与える影響が大きいため、変更制限部によって制限されるのに適した態様である。
(13)当該サスペンションシステムが、前記複数の車輪のうちの2以上のものの各々に対応して設けられて流体を収容するとともに自身と対応する車輪である対応輪と車体との接近離間に応じて容積が変化させられて前記対応輪と車体とを離間させる離間力を発生させる2以上の流体作動器を含み、
前記離間力特性変更部が、
前記2以上の流体作動器の各々と連通させられて流体を加圧した状態で蓄える1以上ずつの加圧流体収容器と、
前記2以上の流体作動器の各々と前記1以上ずつの加圧流体収容器の各々との連通を個別に許容・遮断する2以上の連通切換器と、
それら2以上の連通切換器を制御することにより、前記1以上ずつの加圧流体収容器のうちの前記2以上の流体作動器の各々との連通が許容されるものの個数を増減させて前記離間力特性を変更する離間力特性制御部と
を含む(1)項ないし(12)項のいずれかに記載のサスペンションシステム。
本項の態様では、各流体作動器毎に1以上の加圧流体収容器(例えば、アキュムレータ)が連通させられており、各流体作動器と1以上の加圧流体収容器の各々との連通を個別に許容するか遮断するかを切り換えるだけで、迅速に離間力特性を変更することができる。特に、離間力特性のうちのばね特性の変更が容易である。なお、流体作動器は複数の車輪のうちの2以上とされているが、例えば、4つの車輪のうちの前方の2つの車輪に対応する2つの流体作動器を設けることができる。その場合には、前方の2つの車輪に対応する部分の離間力特性(この場合は、ばね特性が好適である)が変更可能にされ、後方の2つの車輪のばね定数が変更不能にされるように構成することができる。また、2以上の流体作動器を複数の車輪と同数にすることができ、すなわち、複数の流体作動器を複数の車輪の各々に対応して設けることができる。
なお、本項の態様において、流体を気体や液体を含むものとすることができる。例えば、流体を気体とした場合は、いわゆるエアサスペンション装置にサブチャンバ(加圧流体収容器)を連通させたもの、といった態様にすることができる。また、例えば、流体を液体とした場合は、例えば、流体作動器を、車体と車輪との接近離間に応じて容積が変化させられる作動液収容作動部と、その作動液収容作動部と連通する加圧流体収容部(例えば、アキュムレータ)とを含むものとすることができる。液体はほとんど弾性を有しないが、加圧流体収容部に液体を加圧した状態で蓄えることによって、流体作動器を、車体と車輪との接近離間に応じて容積が変化させられて車体と車輪とを離間させる向きの力である離間力を発生させるものとすることができる。
(14)前記2以上の連通切換器の各々が、前記2以上の流体作動器の各々に対応して設けられて通電の有無によって前記2以上の流体作動器の各々と前記1以上ずつの加圧流体収容器の各々との連通を許容する状態と遮断する状態とが切り換わる1以上ずつの電磁弁を含み、
前記変更制限部が、前記走行不安定状態判定部によって前記走行不安定状態であると判定された場合に、前記1以上ずつの電磁弁の各々に通電されない状態にすべく前記離間力特性を変更する指令を行う作動解除型変更指令部を含む(13)項に記載のサスペンションシステム。
本項の態様は、連通切換器が、電磁作動器たる電磁弁を含むものである。その電磁弁を、例えば、常閉型または常開型の電磁弁とすることができる。また、本項の態様が、複数の電磁弁を含む場合に、全てを常閉型または常開型の電磁弁とすることや、一部のものを常閉型の電磁弁にして他のものを常開型の電磁弁にすることができる。なお、電磁弁は、2ポート形に限られず、3ポート以上の形式とすることができる。
本項の作動解除型変更指令部は、前記変更制限時変更指令部の一態様であり、前記1以上ずつの電磁弁の各々を非通電状態にする変更指令が、離間力特性を設定された特性、あるいは、走行不安定状態緩和装置において想定されている特性に変更すべき旨の変更指令に相当する。
本項の態様は、1以上の電磁弁への電力供給を停止することによって離間力特性を設定された特性に変更することができる。そのため、例えば、前述のように、複数の車輪の各々に対応する連通切換器の一部が故障して、それの電磁弁が非通電状態になっていたとしても、走行不安定状態であると判定された場合に、他の連通切換器の電磁弁を非通電状態にすることによって、複数の車輪の離間力特性を設定された特性にすることができ、フェールセーフ性に優れている。また、複数の車輪のうちの一部の車輪について離間力特性が変更可能にされ、他の車輪について離間力特性が変更不能にされている場合において、連通切換器の電磁弁を非通電状態にした場合に、複数の車輪のうちの上記一部の車輪の離間力特性が他の車輪の離間力特性とバランスする特性となるようにすることができる。その場合には、走行不安定状態であると判定された場合に、全ての車輪についての離間力特性が統一されるようにすることができる。
(15)当該サスペンションシステムが、車両が有する複数の車輪の各々に対応して設けられて流体を収容するとともに自身と対応する車輪である対応輪と車体との接近離間に応じて容積が変化させられて前記対応輪と車体とを離間させる離間力を発生させる複数の流体作動器を含み、
前記離間力特性変更部が、前記複数の流体作動器の各々に個別に流体を供給し、前記複数の流体作動器の各々から個別に流体を排出させる流体給排装置を含む(1)項ないし(14)項のいずれかに記載のサスペンションシステム。
本項の離間力特性変更部は、車高を変更する装置として流体給排装置を含むものである。なお、本項の態様が、前記(13)項に掛かる場合には、サスペンションシステムが前記2以上の流体作動器として複数の流体作動器を含むものとすることができる。
以下、請求可能発明の実施例を、図面を参照しつつ説明する。なお、請求可能発明は、下記実施例の他、上記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更を施した態様で実施することができる。
図1に、請求可能発明の一実施例であるサスペンションシステム(サスペンション装置とサスペンションコントローラとを含む)が設けられた車両を概念的に示す。本実施例において、車両には、4つの車輪12と、それら4つの車輪12を支持するサスペンション装置14と、車輪12の操舵を行う操舵装置16と、車輪12に駆動トルクを付与する駆動装置18と、車輪12に制動トルクを付与する制動装置20とを含む走行システムが設けられている。
また、車両には、サスペンション装置14、操舵装置16、駆動装置18、制動装置20の各々を制御する車両運動コントロール装置25(正確には、上記各種の装置の各々に指令(制御指令)を行う)が設けられている。その車両運動コントロール装置25は、サスペンションコントローラ30、ステアリングコントローラ32、エンジンコントローラ34、スキッドコントローラ36を含む。また、車両運動コントロール装置25は、コントローラ・エリア・ネットワーク通信システム38(以後、「CAN」と略称する)を備えており、そのCAN38によって上記各種のコントローラが情報やデータを互いに授受可能に接続されている。また、そのCAN38には後述する各種のセンサ(操舵角センサ、加速度センサ等)が接続されており、上記各種のコントローラは各種のセンサの検出値を受信することができるようにされている。なお、この図において、各種のコントローラと、各種のセンサや走行システムの各種の装置との接続については、図が煩雑になることを避けるため、一部を例示的に示し、その他を省略するものとする。
車体40には、運転者が車両の操縦を行う操縦部42が設けられている。その操縦部42には、操舵操作を入力するステアリングホイール44、加速操作を入力するアクセルペダル46、および、制動操作を入力するブレーキペダル48が配設され、運転者が加減速操作や操舵を行うことで、つまり、操縦することで車両を任意の走行状態にすることができるようにされている。
車輪12は、ホイールの外周にタイヤ50が装着されて構成されている。4つの車輪12のうち、前方の2つの車輪12は、概ね上下方向の軸線回りに回転可能に支持されており、転舵輪とされている。また、後方の2つの車輪12は、駆動トルクが付与される駆動輪とされている。なお、本実施例において、車両の前方左側,前方右側,後方左側,後方右側に対応する構成部品であることを、その部品の符号の後にそれぞれFL,FR,RL,RRの記号を付して表す場合がある。例えば、前方左側の車輪は車輪12FLとなる。
操舵装置16は、ステアリングホイール44を介して操舵操作が入力される操舵入力部52と、入力された操舵操作に応じて車輪12を転舵する転舵部54とを含む。操舵入力部52には、ステアリングホイール44の操舵角を検出する操舵角センサ56(θ)が設けられている。その操舵角センサ56はCANに接続されており、上記各種のコントローラが操舵角を取得できるようにされている。転舵部54には、転舵ロッド58が設けられており、その転舵ロッド58の両端部がそれぞれ転舵輪に間接的に連結されている。そして、転舵部54が有する駆動力源(電動モータ)の駆動力によって、転舵ロッド58が軸方向に移動させられて車輪12が転舵される。
駆動装置18には、動力源たるエンジン60と、エンジン60が発生させる駆動力を車輪12に伝える動力伝達部62とが設けられている。
車体40には、車体40の4つの車輪12の各々に対応する部分の上下加速度を検出する加速度センサ63(Gz)、車体40の前後加速度、横加速度を検出する加速度センサ64(Gxy)、車体40のヨーレートを検出するヨーレートセンサ66(γ)が設けられ、それらはCAN38に接続されている。
制動装置20について詳細に説明する。
制動装置20には、図2に示すように、運転者がブレーキペダル48を踏み込む操作に応じて作動液(ブレーキ液)を加圧する、つまり、運転者の制動操作を作動液の圧力に変換する制動操作−液圧変換部68と、各車輪12毎に設けられたディスクブレーキ70と、制動操作−液圧変換部68の液圧に応じて各ディスクブレーキ70に供給する作動液の液圧を制御する液圧制御装置たるブレーキアクチュエータ72とが設けられている。ディスクブレーキ70は、車輪12とともに回転するディスクプレートと、車体30の一部に保持されてディスクプレートを挟む2つのディスクパッドと、2つのディスクパッドをディスクプレートに押し付けるホイールシリンダ76とを備えている。
制動操作−液圧変換部68は、ブレーキ操作部材たるブレーキペダル48と、マスタシリンダ装置80とを備えている。
マスタシリンダ装置80は、ブレーキペダル48に加えられた踏力によって作動液(ブレーキ液)を加圧するマスタシリンダ82を備えている。マスタシリンダ82は、本実施例において、2つの加圧室84a,bを備えており、それら加圧室84a,bは、それぞれ液通路86a,bによって、左前輪12FL,右前輪12FRの回転をそれぞれ制動するブレーキのホイールシリンダ76FL,76FRと接続されている。また、マスタシリンダ装置80には、作動液が大気圧で蓄えられるリザーバ90が設けられており、そのリザーバ90からマスタシリンダ82の加圧室84a,bの各々に作動液が供給される。なお、ブレーキペダル48が踏込まれた際には、リザーバ90と加圧室84a,bとの連通が遮断されるとともに、加圧室84a,bにおいて加圧された作動液がホイールシリンダ76FL,76FRに供給される。さらに、マスタシリンダ82の一方の加圧室84aには、電磁開閉弁92を介してストロークシミュレータ94が接続されている。
ブレーキアクチュエータ72(以後、特に必要がない限り「ブレーキACT」と略記する)を説明する。ブレーキACT72は、上記ホイールシリンダ76FL,76FRおよび左後輪12RLおよび右後輪12RRの回転をそれぞれ制動するブレーキのホイールシリンダ76RL,76RRの各液圧を制御する。ブレーキACT72は、図2に示すように、2つのマスタカット弁96a,b、液圧源たる動力液圧源100、液圧制御弁装置102、2つのマスタシリンダ圧センサ104および4つのホイールシリンダ圧センサ106を備えている。これらブレーキACT72の構成要素は図示を省略するブロック状の本体部材に組み付けられて1ユニットを構成している。
動力液圧源100は、リザーバ90から作動液を汲み上げるポンプ110と、ポンプ110を駆動する電動モータ112と、ポンプ110から吐出された作動液を加圧された状態で蓄えるアキュムレータ114と、ポンプ110の吐出圧を設定値以下に規制するリリーフ弁116とを含んでいる。
動力液圧源100には、液圧制御弁装置102を介して前記4つのホイールシリンダ76FL,FR,RL,RR(以後、FL,FR,RL,RRを省略する場合がある)が接続されている。液圧制御弁装置102は、ポンプ110とアキュムレータ114との少なくとも一方から各ホイールシリンダ76への作動液の流入を制御する4つの増圧用電磁液圧制御弁(以後、増圧弁と略称する)120と、各ホイールシリンダ76からリザーバ90への作動液の流出を制御する4つの減圧用電磁液圧制御弁(以後、減圧弁と略称する)122とを含んでおり、ポンプ110およびアキュムレータ114と各増圧弁120とは増圧通路124により接続され、各減圧弁122とリザーバ90とは減圧通路126により接続されている。4つのホイールシリンダ76のそれぞれについて増圧弁と減圧弁とが1つずつ設けられ、それぞれ液圧が互いに独立して制御されるのであり、4組の増圧弁120および減圧弁122はそれぞれ、4つのホイールシリンダ通路130FL,FR,RL,RRによって各ホイールシリンダ76に接続されている。
ポンプ110と各増圧弁120との間には、動力液圧源100の液圧を検出する液圧源液圧センサ134が設けられている。また、各ホイールシリンダ通路130には、各ホイールシリンダ76の液圧を検出するホイールシリンダ圧センサ106が設けられている。また、マスタシリンダ82の2つの加圧室84a,bとホイールシリンダ76FL,76FRとの間にそれぞれ前記マスタカット弁96a,bが設けられており、それらマスタカット弁96a,bと加圧室84a,bとの間にそれぞれ設けられた前記マスタシリンダ圧センサ104a,bによって加圧室84a,bにそれぞれ発生させられる液圧が検出される。
上記各増圧弁120および各減圧弁122はいずれもリニア弁とされている。リニア弁は、その上流側と下流側との液圧差と供給電流との間に予め定められた一定の関係があり、供給電流の増減に応じて開弁圧が変えられる。したがって、各増圧弁120および各減圧弁122は、供給電流の制御により、各ホイールシリンダ76の液圧であるホイール液圧を連続的に変化させることができ、ホイール液圧を容易に任意の高さに制御することができる。本制動装置20においては、各増圧弁120はいずれも常閉弁とされ、左右前輪12FL,FRについて設けられた減圧弁90,92はそれぞれ常閉弁とされ、左右後輪12RL,RRについて設けられた減圧弁94,96はそれぞれ常開弁とされている。
本制動装置20において、いずれかのホイールシリンダ76のホイール液圧を増大させる場合は、そのホイールシリンダ76に対応する増圧弁120が開状態にされるとともに減圧弁122が閉状態にされる。逆に、ホイール液圧を減少させる場合は、増圧弁120が閉状態にされるとともに減圧弁122が開状態にされる。また、ホイール液圧を一定に保持する場合は、増圧弁120および減圧弁122の両者が閉状態にされる。また、動力液圧源100において、液圧源液圧センサ134の検出値が設定範囲になるように、電動モータ112が作動または停止させられる。
サスペンション装置14について詳細に説明する。
図3に示すサスペンション装置は、前後左右輪12FL,FR,RL,RRの各々を保持する車輪保持装置144FL,FR,RL,RRと、それら車輪保持装置144の各々と車体40との間に設けられた作動液収容作動部としての懸架シリンダ150FL,FR,RL,RRとを含んでいる。各懸架シリンダ150は各サスペンションスプリング152と並列に設けられている。各懸架シリンダ150は作動液により作動させられる。以下、懸架シリンダ150等に車輪位置を表す符号FL,FR,RL,RRを付して使用する場合がある。
各懸架シリンダ150は、互いに構造が同じものであり、それぞれ、ハウジング154と、ハウジング154の内部に相対移動可能に嵌合されたピストン156と、ピストン156からハウジング154の外部まで延び出させられたピストンロッド158とを含み、ピストンロッド158が車体40に、ハウジング154が車輪保持装置144に、それぞれ上下方向に相対移動不能に連結されている。ピストンロッド158は、サスペンションスプリング152を保持するスプリングリテーナ170にゴム等の弾性部材を介して取り付けられ、スプリングリテーナ170が車体40に上下方向に相対移動不能に取り付けられている。
ピストン156には、そのピストン156により仕切られた2つの液室160,162を連通させる連通路164が設けられ、連通路164には絞り166が設けられている。絞り166により、ピストン156のハウジング154に対する相対移動速度(絞り166を流れる作動液の流速)に応じた減衰力が発生させられる。つまり、懸架シリンダ150はショックアブソーバとしての機能を有している。
各懸架シリンダ150の液室160には、それぞれ、個別制御通路180FL,FR,RL,RRが接続されている。各個別制御通路180には、各懸架シリンダ150に対応して、互いに並列にアキュムレータ182FL,FR,RL,RRとアキュムレータ184FL,FR,RL,RRとが接続されている。また、各懸架シリンダ150と各アキュムレータ184との間には、それぞればね定数の一種であるホイールレートを切り換えるホイールレート切換弁186FL,FR,RL,RRが設けられている。なお、ホイールレートは、設定された荷重状態において車輪中心と車体とを鉛直方向に単位距離近づけるのに必要な接地荷重の増加量であり、サスペンションレートとも称される。個別制御通路180の各々には、液圧を検出する通路液圧センサ188FL,FR,RL,RRが設けられている。
アキュムレータ182,184の各々は、いずれもばねとしての機能を有するものであり、例えば、図示しないハウジングとそのハウジングの内側を仕切る仕切部材とを含み、その仕切部材の一方の容積変化室(作動液蓄積室と称する)に個別制御通路180が連通させられ、他方の容積変化室(弾性力発生室と称する)に弾性体が設けられたものであり、一方の容積変化室の容積の増加に起因して他方の容積変化室の容積が減少し、それによって弾性力を発生させるものとすることができる。アキュムレータ182,184は、ベローズ式のものとしたり、ブラダ式のものとしたり、ピストン式のものとしたりすること等ができる。
本実施例においては、アキュムレータ182の方がアキュムレータ184よりばね定数が大きいものとされており、以下、アキュムレータ182を高圧アキュムレータと称し、アキュムレータ184を低圧アキュムレータと称する。ホイールレート切換弁186は常開の電磁開閉弁である。
各個別制御通路180と各低圧アキュムレータ184とは、ホイールレート切換弁186をバイパスして接続するバイパス通路190によって接続されている。そのバイパス通路190には絞り192が設けられており、定常状態(静的な状態)において作動液の流れが許容されるが、過渡状態(動的な状態)において作動液の流れが阻止されるようにされている。すなわち、ホイールレート切換弁186が閉状態とされた後に、低圧アキュムレータ184の液圧と個別制御通路180の液圧とに差が生じたとしても、作動液が少しずつ移動することができるため、ある程度の時間が経てば液圧差が緩和され、ホイールレート切換時に生じる脈動が低減されるのである。一方、ホイールレート切換弁186が閉じられた状態で旋回あるいは制動・駆動が行われた際には、バイパス通路112の過渡的な流体の流れが絞り192によって抑制されるため、ホイールレートが大きくされた状態が保たれ、ロール、ピッチが良好に抑制されることとなる。なお、上記バイパス通路190および絞り192を省略することは可能である。
各個別制御通路180には、それぞれ、可変絞り196FL,FR,RL,RRが設けられている。前述のように、車輪保持装置144の車体40に対する相対的な上下動により液室160において作動液が流入・流出させられるが、この場合に、可変絞り196によって個別制御通路180の流路面積が制御されることにより、懸架シリンダ150において発生させられる減衰力が制御される。本実施例においては、可変絞り196等により減衰力制御機構が構成されているのである。
各個別制御通路180には車高変更装置たる作動液給排装置200(流体給排装置の一種である)が接続されている。
作動液給排装置200は、高圧源202、低圧源としてのリザーバ204、個別制御弁装置206等を含む。高圧源202は、ポンプ210とそのポンプ210を駆動する電動モータ212とを備えたポンプ装置214、蓄圧用アキュムレータ216等を含む。ポンプ装置214,蓄圧用アキュムレータ216等は共通制御通路220に設けられ、ポンプ装置214と蓄圧用アキュムレータ216とは互いに接続されている。ポンプ210によってリザーバ204の作動液が汲み上げられて吐出され、蓄圧用アキュムレータ216において加圧した状態で蓄えられたり、懸架シリンダ150FR、FL、RR、RLに供給されたりする。本実施例において、ポンプ210はギヤポンプである。
蓄圧用アキュムレータ216は、前述のアキュムレータ182,184と同様の構造にされるとともに、それらよりも作動液収容室の容量が大きく、より高圧で作動液を蓄えるものとされている。蓄圧用アキュムレータ216は常閉の電磁開閉弁である蓄圧制御弁222を介して共通制御通路220に接続されている。
共通制御通路220には、ポンプ装置214の吐出液圧や、アキュムレータ液圧を検出する液圧源液圧センサ224、逆止弁226および消音用アキュムレータ228が設けられている。また、共通制御通路220ポンプ装置214の高圧側とリザーバ204とを接続する流出通路230が設けられ、その流出通路230にはポンプ装置214の吐出液圧によって閉状態にされる常開の流出制御弁232が設けられている。
個別制御弁装置206は、各個別制御通路180に設けられた個別制御弁240FL,FR,RL,RRを含む。また、個別制御通路180FL、FRを接続する前輪側左右連通路242に左右連通弁244が設けられ、個別制御通路180RL、RRを接続する後輪側左右連通路246に左右連通弁248が設けられている。
各個別制御弁240、左右連通弁244,248は、常閉の電磁開閉弁であり、左右連通弁244,248の閉状態において各個別制御弁240を個別に制御することにより、各車輪12を保持する各車輪保持装置144とそれに対応する車体40の部分(各懸架シリンダ150に対応する部分)との間の基準となる離間距離である基準離間距離(つまり、車両静止時の離間距離)である車高が独立に制御される。
以上のように構成されたサスペンション装置14においては、ホイールレート切換弁186の制御によりホイールレートが切り換えられる。
ホイールレート切換弁186が連通状態とされた場合には、液室160に2つのアキュムレータ182,184が連通させられて、ホイールレートが小さい状態(Soft)とされ、ホイールレート切換弁186が遮断状態とされた場合には、液室160から低圧アキュムレータ184が遮断されて高圧アキュムレータ182のみが連通させられるため、ホイールレートが大きい状態(Hard)とされる。
すなわち、本実施例において、懸架シリンダ150(作動液収容作動部)と高圧アキュムレータ182(加圧流体収容部)とを含んで前記「流体作動器」が構成されている。さらに、低圧アキュムレータ184が前記「加圧流体収容器」として機能している。なお、本実施例は、4つの流体作動器の各々に1つずつの加圧流体収容器が接続された態様である。また、常閉型の電磁弁たるホイールレート切換弁186を含んで前記「連通切換器」が構成されている。そして、低圧アキュムレータ184とホイールレート切換弁186とを含んでホイールレート切換装置(ばね特性変更装置の一種)が構成されている。
また、懸架シリンダ150の各々の減衰特性の制御が各可変絞り196の制御により行われる。可変絞り196により個別制御通路180の流路面積が小さくされた場合には、減衰力が大きくなり、流路面積が大きくされた場合には減衰力が小さくなる。
また、本実施例において、車高が変更される際に、4つの車輪12の各々に対応する車高の制御が作動液給排装置200の制御により行われる。左右連通弁244,248、個別制御弁240は、通常は、図示する原位置にある。
左前輪12FLについて車高を大きくする場合には、ポンプ装置214が作動させられるとともに蓄圧制御弁222が連通状態とされ、かつ、個別制御弁240FLが連通状態とされる。ポンプ装置214の作動により流出制御弁232が閉状態に切り換えられるため、ポンプ装置214から吐出された作動液が懸架シリンダ150FLに供給され、車高が大きくなる。懸架シリンダ150FLには、蓄圧用アキュムレータ216からも作動液が供給される。左前輪12FLについて、実際の車高が目標値に達すると、個別制御弁240FLが遮断状態とされ、ポンプ装置214の作動が停止させられる。
車高を小さくする場合は、個別制御弁240FLが連通状態とされる。ポンプ装置214は停止状態にあるため、流出制御弁232は連通状態にある。懸架シリンダ150FLからリザーバ204に作動液が流出させられて、実際の車高が目標値に達すると、個別制御弁240FLが遮断状態とされる。他の車輪12FR,RL,RRについて車高を増減する場合も同様である。
各種のコントローラについて詳細に説明する(図1)。
各種のコントローラ30〜36は、いずれも、コンピュータおよび入出力部を含む制御部と電磁弁等を作動させる駆動回路とを含む(図示省略)。コンピュータは、CPU,ROM,RAMおよびそれらを接続するバスを含み、入出力部は、CAN38を介して他のコントローラやセンサと指令やデータの送受信や、操舵角センサ56、加速度センサ63,64、ヨーレートセンサ66等の各種センサの検出値の取得等を行うCAN通信部を含む。また、CAN38に接続される各種センサもCAN通信部を備えている。
エンジンコントローラ34(以後、「エンジンCU」と略称する)は、エンジン60を制御して、アクセルペダル44の踏み込み量、つまり、アクセル開度に応じた駆動出力を発生させるものである。エンジンCU34の入出力部には、アクセル開度を検出するアクセル開度センサ(図示省略)が接続されており、そのアクセル開度センサの検出値に基づいてアクセル開度が取得される。エンジンCU34は、アクセル開度に基づいて指令をエンジン60に行うことにより、その指令に応じた燃料が消費され、アクセル開度に応じた駆動出力が発生する。なお、エンジンCU34はCAN38を介してスキッドコントローラ36(以後、「スキッドCU」と略称する)と接続されており、後述するようにスキッドコントローラ36の指令や要求を受けて駆動出力を増減させる指令も行う。
スキッドCU36について詳細に説明する。
スキッドCU36は、通常時は、制動操作に応じた制動トルクをディスクブレーキ70に発生させるべくブレーキACT72に指令を行い、車輪12のスリップの度合いが許容範囲外になる場合には、車輪12のスリップを抑制すべくスリップ抑制制御を行うものである。スキッドCU36の入出力部には、前記マスタシリンダ圧センサ104、ホイールシリンダ圧センサ106、車輪速センサ140、ブレーキペダル48が操作されていることを検出するブレーキセンサ260等、各種センサ等が入力側に接続され、前記各増圧弁120および各減圧弁122等のソレノイド等が出力側に接続されている。
また、スキッドCU36のROMには、図示を省略するメインルーチン,液圧制御ルーチン,アンチロック制御ルーチン,トラクション制御ルーチン,ヨー運動制御ルーチン等、種々のプログラムが格納されており、各種センサの検出結果に基づいて車両状態が取得され、電気制動制御等が行われる。なお、コンピュータにおいては、上記メインルーチンその他のルーチンが予め定められた設定時間毎に繰り返し実行される。
図2において、スキッドCU36の各種の機能部、スリップ状態判定部300、通常制動制御部302、アンチロック制御部304、トラクション制御部306、ヨー運動適正化部308を示す。これらの機能は、スキッドCU36のコンピュータにより、上記各種のルーチンが実行されることによって発揮される。また、これら各種の機能部により、ブレーキACT72に制御指令が行われることによってブレーキACT72が作動し、各ホイールシリンダ76の液圧が制御される。
各種の機能部による制御について説明する。なお、スキッドCU36により、ブレーキACT72に異常が発生する等の特段の事情がなければ、マスタカット弁96a,bが閉状態にされ、制動操作に応じて各ホイールシリンダ76に動力液圧減100から高圧の作動液が供給されるように制御指令が行われる。また、電磁開閉弁92が開かれて、加圧室84aとストロークシミュレータ94とが連通させられ、制動操作に応じた操作感がブレーキペダル48に付与される。
スリップ状態判定部300(走行不安定状態判定部の一例である)は、各車輪12がスリップ状態であるか否かを判定する。スリップ状態は、車輪12のスリップの度合いが許容範囲外となる状態であり、車輪12が回転方向に滑る縦スリップ状態と、回転軸線方向に滑る横スリップ(横滑り)状態とを含む。縦スリップ状態は、例えば、制動時のロック傾向や加速時の空転傾向が生じた状態であり、横スリップ状態は、例えば、旋回時のスピン傾向(過剰なオーバステア)やドリフト傾向(過剰なアンダステア)が生じた状態である。
縦スリップ状態は、車輪12の加速度である車輪加速度と縦スリップ量とに基づいて判定される。車輪加速度は、車輪速センサ140の検出値に基づいて取得され、また、縦スリップ量は、車輪速度から車速を減じた値、つまり、車輪速度と車速との偏差とされる。なお、車輪加速度および縦スリップ量は、それぞれスリップの度合いを示す値であり、制動によるロック傾向時には負の値になり、加速による空転傾向時には正の値になる。車輪速度は、車輪12の回転角速度に車輪12の有効半径を乗じた値とされる。車速は、制動時において、4つの車輪12の車輪速度のうち最も大きな値とされ、加速時において2つの従動輪(本実施例において、前方側の車輪12)の車輪速度のうちの大きい方の値とされる。
制動時において、4つの車輪12のうちの少なくとも1つが、車輪加速度が加速度下限値(負の値)以下である場合と、縦スリップ量が縦スリップ下限値(負の値)以下である場合との少なくとも一方の場合には、ロック傾向が生じており縦スリップ状態であると判定される。加速時において、2つの駆動輪のうちの少なくとも1つが、車輪加速度が加速度上限値以上である場合と、縦スリップ量が縦スリップ上限値以上である場合との少なくとも一方の場合には、空転傾向が生じており縦スリップ状態であると判定される。
横スリップ状態は、操舵角と車速とに基づいて決定される目標ヨーレートと、ヨーレートセンサ66の検出値である検出ヨーレートとに基づいて判定される。操舵角は、操舵角センサ56によって検出され、車速は、車輪12の縦スリップ(ロック、空転)が発生していない状態において、4つの車輪12の車輪速度の平均的な値とされる。また、ヨーレートは、車両がヨー方向の左右いずれの回転方向にどれだけの速度で回転しているかが取得される。
目標ヨーレートから検出ヨーレートを減じた偏差であるヨーレート偏差(スリップの度合いの一例である)が、設定された許容範囲外の値になる場合は横スリップ状態であると判定される。具体的には、ヨーレート偏差が、偏差下限値以下である場合はスピン傾向の横スリップ状態、偏差上限値以上である場合はドリフト傾向の横スリップ状態であると判定される。
なお、スピン傾向の横スリップ状態を、車両のスリップ角とスリップ角の変化率との少なくとも一方に基づいて判定することもできる。車両のスリップ角およびそれの変化率(それぞれスリップの度合いの一例である)は、横加速度センサ64によって検出された検出横加速度,車速および検出ヨーレートとに基づいて取得される(例えば、スリップ角の変化率=検出横加速度/車速−検出ヨーレート)。
なお、スリップ状態であるか否かの判定は、縦スリップのロック傾向はアンチロック制御部304によって、縦スリップの空転傾向はトラクション制御部306によって、横スリップのスピン傾向およびドリフト傾向はヨー運動適正化部308によって、それぞれ個別に行われている。したがって、正確には、上記アンチロック制御部304等が、それぞれロック傾向判定部、空転傾向判定部、スピン・ドリフト傾向判定部(それぞれスリップ状態判定部の一態様である)を有していると考えることができる。それに対して、本実施例では、理解を容易にするために上記3つの機能部のスリップ状態を判定する機能を有する部分を1つに纏めてスリップ状態判定部300として示したものと考えることができる。なお、スリップ状態判定部300を、アンチロック制御部304等とは別個の制御によってスリップ状態を判定し得るものとし、スキッドCU36以外の部分、例えば、サスペンションCU30に設けることが可能である。
また、スキッドCU36は、スリップ状態判定部300の判定結果、つまり、ロック傾向,空転傾向,スピン傾向等が生じているか否に基づいて、ブレーキACT72に指令を行う制御部を選択するようにされている。各制御部の処理について、以下に説明する。
通常制動制御部302は、スリップ状態ではないと判定された場合に指令を行う。通常制動制御部302は、各ホイールシリンダ76の液圧が、運転者の制動操作の強度に応じた大きさになるように制御指令を行うものである。各ホイールシリンダ76の液圧(以後、「ホイール液圧」と略称する)は、前述のように、ホイールシリンダ圧センサ106の検出値に基づいて取得される。一方、運転者の制動操作の強度は、マスタシリンダ圧センサ104によって検出される液通路84の入力液圧に基づいて取得される。その入力液圧に基づいて各ホイールシリンダ76の目標液圧が決定され、各ホイール液圧を各目標液圧に近づけるべく各増圧弁120および各減圧弁122が独立に作動させられ、前述のように各ホイール液圧が増減あるいは保持される。
このような制御によって各ホイールシリンダ76の液圧が制御され、各車輪12に運転者の制動操作に応じた制動トルクが付与されることとなる。
アンチロック制御部304は、ロック傾向の縦スリップ状態であると判定された場合に指令を行い、アンチロック制御を行うものである。アンチロック制御は、ロック傾向であると判定された車輪12のホイール液圧を減少させることによって制動トルクを低減し、ロック傾向を抑制する。また、ロック傾向が抑制されるとホイール液圧を保持または増加させて車輪12に適度な制動トルクが付与されるようにする。このアンチロック制御によって車輪12のロック傾向が抑制されて車輪12の縦スリップ量が適度な大きさになり、車両が効率よく制動される。すなわち、この制御によって、制動時の走行不安定状態が緩和されるのである。
トラクション制御部306は、空転傾向の縦スリップ状態であると判定された場合に指令を行い、トラクション制御を行うものである。トラクション制御は、空転傾向であると判定された車輪12のホイール液圧を増加させて制動トルクを付与することによって駆動トルクを低減し、空転傾向を抑制する。また、空転傾向が抑制されるとホイール液圧を減少させて車輪12に付与する制動トルクを低減する。また、トラクション制御では、空転の程度に応じてエンジン60の駆動出力を低下させるべく、エンジンCU34にCAN38を介して指令が送信される。その指令を受けたエンジンCU34が駆動出力を低下させることにより、空転傾向が抑制される。なお、空転傾向が抑制された場合には、駆動出力を増加させるべく、エンジンCU34に指令を送信する。このトラクション制御によって、加速時の駆動輪(本実施例において、後方側の車輪12)の空転が抑制されて車輪12の縦スリップ量が適度な大きさになり、駆動ロスが抑えられて効率よく車両が加速される。すなわち、この制御によって、駆動時の走行不安定状態が緩和されるのである。
ヨー運動適正化部308は、横スリップ状態であると判定された場合に指令を行い、ヨー運動適正化制御を行うものである。ヨー運動適正化制御は、VSC(ビークル・スタビリティ・コントロール)とも称され、スピン傾向(過剰なオーバステア)である場合に、前方側の旋回外輪のホイール液圧を増加させてスピンとは逆向きのヨーモーメントを発生させ、スピン傾向を抑制する。また、ドリフト傾向(過剰なアンダステア)である場合に、前後の旋回内輪および前方の旋回外輪のホイール液圧を増加させてドリフト傾向を抑制する。このヨー運動制御によって、旋回時のスピンやコースアウトが抑制され、安定した旋回が実現される。すなわち、この制御によって、旋回時の走行不安定状態が緩和されるのである。
上記アンチロック制御部304,トラクション制御部306,ヨー運動適正化部308は、一旦スリップ状態であると判定されると、その後スリップ状態となる可能性が十分低くなるまで、つまり、終了条件が満たされるまでスリップ抑制制御を行うようにされている。なお、スリップ抑制制御を行っている状態において、常にスリップを抑制するために制動トルクが増減させられているわけではなく、スリップ抑制制御を行っている状態には、より迅速に車輪12のスリップを抑制し得るように待機する状態等も含まれる。
アンチロック制御部304は、例えば、運転者が制動操作を解除した場合、全ての車輪12の縦スリップ量がほぼ0となる状態が設定時間継続した場合等のアンチロック制御終了条件が満たされた場合に制御指令を終了する。トラクション制御部306は、例えば、駆動輪の縦スリップ量がほぼ0となる状態で車速の変化率がしきい変化率以下となった場合や、駆動輪の縦スリップ量がほぼ0となる状態が設定時間継続した場合等のトラクション制御終了条件が満たされた場合に制御指令を終了する。ヨー運動適正化部308は、概ね直進状態、つまり、制御横加速度(後述する)がしきい加速度以下の状態が設定時間継続した場合や、旋回状態であってもヨー運動適正化制御なしに目標ヨーレートと検出ヨーレートとの偏差がしきい偏差以下の状態が設定時間継続した場合等のヨー運動適正化終了条件が満たされた場合に制御指令を終了する。
「スリップ抑制フラグ」について説明する。スリップ抑制フラグは、後述するサスペンション装置14のホイールレートの切換制御において参照されるものである。スリップ抑制フラグは、スリップ状態判定部300によってスリップ状態であると判定され、上記通常制動制御部302以外のアンチロック制御部304,ヨー運動適正化部308等による制御(指令)がなされる場合に、メインルーチンにおいてON状態にされる。一方、アンチロック制御部304,ヨー運動適正化部308等の制御が終了した場合にはスリップ抑制フラグがOFFにされる。
本実施例において、スリップ状態であると判定された状態が、前記「走行不安定状態」の一例である。また、スキッドCU36のうちのアンチロック制御部304,トラクション制御部306およびヨー運動適正化部308を含む部分が、前記「スリップ抑制制御部」として機能している。さらに、スリップ状態判定部300が、前記「走行不安定状態判定部」として機能している。なお、アンチロック制御,トラクション制御,ヨー運動適正化制御の各々は、スリップ抑制制御の一種である。
サスペンションCU30について詳細に説明する。
サスペンションCU30の入出力部には、ホイールレート切換弁186、可変絞り196のコイル、作動液給排装置200が図示しない駆動回路を介して接続されている。また、入出力部には、液圧源液圧センサ224,前後左右の各輪毎に設けられて車高をそれぞれ検出する車高センサ250等のセンサがそれぞれ接続されている。
サスペンションCU30は、各種の機能部として、ホイールレート制御部320、車高制御部322、減衰力制御部324を備えている。それらの機能は、サスペンションCU30のROMに記憶された各種のプログラム、メインルーチン,ホイールレート制御ルーチン,車高制御ルーチン,減衰力制御ルーチン等が、サスペンションCU30のコンピュータによって実行されることで発揮される。なお、コンピュータにおいては、上記メインルーチン,その他のサブルーチン等が予め定められた設定時間毎に繰り返し実行される。
ホイールレート制御部320は、中低速度で概ね一定速度で直進走行をしているとみなせる定常直進状態においてホイールレートを低くし、旋回状態や加減速状態等においてホイールレートを高くする制御指令を行うものである。そうすることによって、定常直進状態における車両の乗り心地を向上させ、旋回状態や加減速状態における車体の姿勢変化(ロール,ピッチ等)を抑制することができる。図4にホイールレート制御ルーチンのフローチャートを示す。なお、ホイールレート制御部320は、4つの車輪12に対応する各懸架シリンダ150の全てのホイールレートを制御するものであるが、ホイールレート制御ルーチンは1の懸架シリンダ150のホイールレートを制御するようにされている。すなわち、本実施例において、サスペンションCU30により、4つの懸架シリンダ150の各々に対応する4つのホイールレート制御ルーチンが時分割で並列に実行され、4つの懸架シリンダ150のホイールレートが個別に制御されるようにされているのである。
S11(ステップ11の略称であり、他のステップについても同様とする)において、各種の検出値が取得される。具体的には、車速、操舵角、前後左右上下の加速度、個別通路22の液圧P等の検出値が、各種のセンサあるいは他のコントローラから取得され、後の判定で用いられる。
S12〜S18において、車両の運動状態が判断され、ホイールレートの目標となる目標ホイールレートが決定される。なお、本実施例において、目標ホイールレートは、HardまたはSoftの2段階のいずれかに決定される。また、目標ホイールレートをホイールレート目標値と称することもできる。
S12では、比較的大きな凹凸を有する路面を走行する状態である悪路走行状態であるか否かが判断される。具体的には、加速度センサ64によって検出された上下方向の加速度である検出上下加速度(運動状態量)が設定強度以上になる場合と、個別通路22の液圧P(運動状態量)が設定圧以上である場合との少なくとも一方の場合に悪路走行状態であると判定される。すなわち、悪路走行状態は、車両の運動状態のうち、車体40の振動が激しくなると判断される状態である。なお、液圧Pは、車輪12と車体40との離間距離が小さくなると大きくなり、ストローク量が大きいことを示す。悪路走行状態において、ホイールレートがHard(大きい値)であると車体40の上下方向の揺れ(ヒーブ方向の揺れ)が激しくなり、姿勢変化,接地性,乗り心地等の観点から好ましくない。したがって、悪路走行状態であると判定された場合には、S13〜S16の処理がスキップされ、ホイールレートがSoftにされて(S17)車体40の揺れが緩和される。一方、悪路走行状態ではないと判定された場合には、S13以下の処理が実行される。
S13では、車両が旋回状態であるか否かが判断される。具体的には、加速度センサ64によって検出された横方向の加速度である検出横加速度(運動状態量)と、操舵角および車速に基づいて取得された推定横加速度(運動状態量)とに基づいて決定された制御横加速度の絶対値が、しきい横加速度の絶対値以上である場合には旋回状態であると判定される。
S14では、車両が加速状態、減速状態であるか否かが判断される。加速状態は、加速度センサ64によって検出された前後方向の加速度である検出前後加速度(運動状態量)と、CAN38を介してエンジンCU34から取得されたアクセル開度,変速比および車速等に基づいて算出された推定前後加速度(運動状態量)とに基づいて決定された制御前後加速度が、しきい前後加速度以上である場合には加速状態であると判定される。なお、エンジンCU34は動力伝達部62の変速機の制御を行っており、変速比を把握している。減速状態は、加速度センサ64によって検出された前後方向の減速度である検出前後減速度と、制動操作の強度(操作速度、マスタシリンダ圧等)および車速等に基づいて算出された推定前後減速度とに基づいて決定された制御前後減速度が、しきい前後減速度(負の値)以下である場合には制動状態であると判定される。
S15では、高速走行をしている状態であるか否かが判断される。具体的には、設定時間前から現時点までの車速の平均的な値(運動状態量)が設定速度(例えば、時速70km)以上である場合に高速走行状態であると判定される。
S13〜S15のいずれかの判定がYESとなる場合は、S18において目標ホイールレートがHard(高い値)に決定される。すなわち、旋回状態において車体40のロールを抑制し、加減速状態において車体40のピッチを抑制し、高速走行状態において車体40のヒーブ等を抑制するためである。つまり、ホイールレートがSoftにされて走行するよりも車体の姿勢変化が小さくなる目標ホイールレートが決定されるのである。
S16では、中低速で定常直進走行をしている状態であるか否かが判断される。具体的には、本ホイールレート制御ルーチンが繰り返し実行され、S13〜S15の判定が全てNOになった状態が設定時間以上継続している場合には、中低速度での定常直進状態であると判定され、ホイールレートがSoftに決定される。中低速度での定常直進状態では、車体40の姿勢変化が少ないことから乗り心地が重視され、ホイールレートを小さくして乗り心地を向上させるためである。一方、S13〜S15の判定が全てNOであるが、まだ設定時間継続していない場合には、現在のホイールレートが維持される。
しかしながら、上記S12〜S18の処理では、車両が安定的な走行をしている状態が想定されており、ロック傾向やスピン・ドリフト傾向等のスリップ状態になることは想定されていない。そのため、車両がスリップ状態になった場合、特に、スリップ抑制制御が行われている場合にホイールレートの切換が行われると好ましくない場合が多いのである。例えば、ホイールレートの切換によってスリップ状態が強まる虞や、スリップ抑制制御の効果が低下する虞があるのである。そこで、本ホイールレート制御ルーチンには、ホイールレートの切換を制限する処理が設けられている。なお、ホイールレートの切換を制限しない場合には、例えば、本実施例において、部分的に摩擦係数の低い路面においてホイールレートがSoftの状態で穏やかな加減速操作や旋回操作がなされてスリップ状態が発生した場合に、スリップ抑制制御が開始されたとしても、運転者がスリップ状態であると気付かずに加減速操作や旋回操作を強めてしまうと、S13〜S15のいずれかの判定がYESとなってホイールレートがHardに切り換えられて、スリップの抑制が妨げられてしまうといった虞がある。
S19,S20の処理において、スリップ抑制制御が行われている場合にホイールレートの切換を制限する処理が行われる。S19において、スキッドCU36の「スリップ抑制フラグ」が参照され、アンチロック制御部304,ヨー運動適正化部308等によるスリップ抑制制御が行われているか否かが判断される。なお、スリップ抑制フラグの参照は、サスペンションCU30がCAN38を介してスキッドCU36からスリップ抑制フラグの値(例えば、ONならば1,OFFならば0)を取得することによってなされる。
スリップ抑制フラグがONの場合には、つまり、スリップ抑制制御がなされている場合には、上記S12〜S18において目標ホイールレートがどのように決定されたかに拘わらず、S20において目標ホイールレートがSoft(小さい値)にされる(Softにする意義については後述する)。そのため、S12〜S18の処理に基づくホイールレートの切換ができなくなる。すなわち、ホイールレートの切換(ばね定数の変更)が禁止される。
一方、スリップ抑制フラグがOFFである場合、つまり、スリップ抑制制御がなされていない場合には、S20の処理がスキップされ、上記S13〜S18の処理において決定された目標ホイールレートが維持される。
S21,S22の処理によってホイールレートの切換指令がなされる。
S21の判定では、上記S13〜S18の処理または上記S19,S20の処理において決定された目標ホイールレート(「目標レート」と略称する場合がある)が、現在のホイールレートである現レートと異なるか否かが判定される。目標レートと現レートとが異なる場合には、S22において切換指令がなされ、ホイールレートが切り換えられる。目標レートと現レートとが等しい場合やホイールレートが決定されなかった場合(S16においてNOと判定された場合)には切換指令はなされず、本ルーチンの1回の実行が終了する。切換指令がなされない場合には、現在のホイールレートが維持される。
ここで、目標レートの内容について説明する。S19の判定においてスリップ抑制フラグがOFFである場合、つまり、スリップ抑制制御がなされていない場合には、目標レートがS12〜S18の処理で決定された目標ホイールレートにされる。すなわち、車両の運動状態量に基づくホイールレートの切換が許容されるのである。
一方、スリップ抑制フラグがONの場合には、目標レートが上記S19,S20の処理によって決定されたSoftにされる。すなわち、S19,S20の処理の存在により、単にホイールレートの切換が禁止されるだけでなく、スリップ抑制制御が開始されたのと同時期に、ホイールレートが設定された特性(Soft)に変更されるのである。
設定された特性がSoftにされているのは、本実施例において、スキッドCU36(特に、ヨー運動適正化部308)が、ホイールレートがSoftである状態を想定してスリップ抑制制御を行うように構成されていることが一因である。なお、スキッドCU36がホイールレートがHardの状態を想定して制御指令を行うようにすることもでき、その場合には、S19,S20と同様の処理により、スリップ抑制フラグがONになると同時期にホイールレートをHardに切り換える指令がなされるようにすることができる。しかしながら、スキッドCU36が、ホイールレートがHardまたはSoftのいずれかを想定したものであることは不可欠な事項ではなく、例えば、ホイールレートがHardとSoftとの中間的な大きさを想定するものや、HardとSoftとのいずれにも適しているものとすることができる。
また、設定された特性がSoftにされているのは、本実施例において、ホイールレート切換弁186が、非通電状態においてホイールレートをSoftにする常開型の電磁弁とされていることが一因である。つまり、4つの車輪12のいずれかに対応するホイールレート切換弁186が故障して開状態になり、ホイールレートがSoftに固定されていたとしても、スリップ抑制制御が行われる際に他のホイールレートもSoftにすることによって、4つの車輪12についてホイールレートを全てSoftに揃えることができ、スリップ抑制制御を効果的に行うことができる。なお、ホイールレート切換弁186が常閉弁とされている場合には、S19,S20と同様の処理により、スリップ抑制フラグがONになると同時期にホイールレートをHardに切り換える指令がなされるようにすることができる。つまり、ホイールレート切換弁186を非通電状態にすべく切換指令を行うようにされるのである。
以上のように、本実施例において、走行不安定状態たるスリップ状態においてホイールレートがSoftとされることが好ましいのである。
上記S19,S20の処理により、ホイールレートの切換を確実に制限することができ、例えば、スリップ抑制制御が行われている状態でホイールレートが切り換えられて、スリップ抑制制御の効果が妨げられること、あるいは、車輪12のスリップが助長されることを防止することができる。すなわち、本実施例において、ホイールレート制御部320のS19,S20の処理を行う部分が、前記「変更制限部」として機能している。また、ホイールレート制御部320のS19の判定を行う部分は、走行不安定状態緩和制御たるスリップ抑制制御がなされている場合に変更制限条件が満たされたと判断するようにされており、前記「変更制限条件判定部」として機能している。
また、本実施例において、走行不安定状態緩和制御たるスリップ抑制制御が行われた際にホイールレートがスリップ抑制制御に適した値(Soft)に切り換えられるようにされている。すなわち、本実施例において、ホイールレート制御部320のうち、S20の処理を行う部分が、前記「変更制限時変更指令部」として機能している。さらにまた、本実施例において、ホイールレート切換弁186が非通電状態(開状態)にされてホイールレートがSoftに切り換えられており、変更制限時変更指令部が前記「作動解除型変更指令部」の態様にされている。
また、本実施例において、S12〜S18の処理により、各種の運動状態量に基づいて目標ホイールレートが決定され、S21,S22の処理によって切換指令がなされている。すなわち、本実施例において、ホイールレート制御部320のS12〜S18,S21,S22の処理を行う部分を含んで、前記「運動状態量依拠制御部」のうちの目標ばね特性を制御する部分が構成されているのである。なお、本実施例において、目標ホイールレートがHardかSoftかの選択によって決定されている。そのような決定は、予め設定された複数段階のホイールレートの候補特性(HardとSoft)のうちの1つが選択される態様に該当する。
なお、図5に示すように、上記ホイールレート制御ルーチンを、単にホイールレートの切換を禁止する態様であるホイールレート制御ルーチンBとすることもできる。すなわち、S19の判定により、スリップ抑制フラグがONの場合に、S21,S22の処理がスキップされ、一切の切換指令が行われなくなるのである。このような処理により、切換が制限された場合には、現状のホイールレートが維持されることとなる。この図5の例は、スリップ抑制制御の開始と同時期であってもホイールレートの切換を行うことが好ましくない場合に好適である。この図の例は、「変更制限時変更指令部」を含まない態様である。
なお、図5の例において、ホイールレートの切換を制限する場合に2つの意味合いが生じる。第一に、ホイールレート切換弁186が非通電状態である場合に切換が禁止されることは、ホイールレート切換弁186の作動が禁止される(通電されない)ことによってホイールレートの切換が禁止された状態となる。第二に、ホイールレート切換弁186が通電状態である場合に切換が禁止されることは、ホイールレート切換弁186の作動が保持される(通電が継続される)ことによってホイールレートの切換が禁止された状態となる。
本実施例において、ホイールレート制御ルーチンのS19の処理により、S12〜S18の処理に基づくホイールレートの切換が全て禁止されていたが、例えば、図6に示すフローチャートのように、特定の条件を満たすホイールレートの切換だけを禁止(あるいは許容)する態様であるホイールレート制御ルーチンCとすることもできる。なお、この図において、前記図4,図5と同様の処理に同じステップ(S11〜S22)を付してある。図4,図5において、S12〜S16の判定に基づくホイールレートの切換が禁止されていたが、それに対して、図6において、悪路走行状態である場合にHardからSoftへのホイールレートの切換が許容される。具体的には、スリップ抑制フラグがONである場合にS23の判定が実行されて、S23で悪路走行状態であると判定された場合に、目標ホイールレートがSoftにされた後、S21,S22の処理が行われる。このような処理によって、スリップ抑制制御が行われている最中であっても、ホイールレートの切換が実行される。このような処理は、例えば、ホイールレートの切換による悪影響よりも、ホイールレートがHardにされた状態で悪路走行を行うデメリットが大きいと判断される場合に好適である。
すなわち、ホイールレートの切換を制限する態様には、一切の切換を禁止する態様だけでなく、設定された条件の切換を許容し、その他の切換を禁止する態様も含まれるのである。なお、本実施例において、S12の判定とS23の判定とが同じ条件で行われるようにされているが、異なる条件で行うことができる。
本実施例において、ホイールレートの切換を制限する処理が、ホイールレート制御ルーチンに含まれる態様であったが、ホイールレート制御ルーチンとは別のルーチンで行うこともできる。また、サスペンションCU30とは別体のコンピュータによって行うこともでき、その場合には、例えば、CAN38を介して別体のコンピュータからサスペンションCU30に制限指令を送信することができる。なお、本実施例において、スキッドCU36がスリップ抑制フラグをON・OFFすることにより、ホイールレートの切換を制限していると考えることもでき、その場合には、変更制限部がスキッドCU36に配設されていると考えることができる。また、ホイールレートの切換を制限する処理を別体のコンピュータによって行う場合に、例えば、サスペンションCU30とホイールレート切換弁186との間にリレー等の通電切換スイッチを設けて、別体のコンピュータによって通電切換スイッチを作動させ、サスペンションCU30の指令を遮断して切換を制限することや、サスペンションCU30の指令を遮断するとともにその別体のコンピュータによってホイールレート切換弁186を直接制御すること等ができる。
車高制御部322について説明する。車高制御部322は、運転者の操作や、車両の運動状態量に基づいて車高を変更する制御を行うものである。運転者の操作に基づいて車高を変更する処理については、フローチャートを省略するが、その処理では操縦部42に設けられた車高指示入力装置(図示省略)の操作により、車高を増減させる入力がなされた場合に、車高が増加あるいは減少させられる。一方、車両の運動状態量に基づいて車高を変更する制御は、図7にフローチャートを示す車高制御ルーチンによって行われる。
S31において、各種の検出値が取得される。なお、車速やストローク量等の検出値は、現時点からそれぞれの設定時間前までの平均的な値とされる。
S32において、概ね一定速度で直進走行しているとみなせる状態である定常直進状態であるか否かが判定される。本実施例において、車高の変更が定常直進状態で行われるため、定常直進状態でない場合にはS33以下の処理がスキップされ、車高制御ルーチンの1回の処理が終了する。一方、定常直進状態である場合には、S33以下の処理が行われ、車高を変更する条件が満たされた場合に車高の変更が行われる。
なお、定常直進状態は、設定時間旋回や加減速が行われていない状態とされ、前出のホイールレート制御ルーチン(図4)におけるS13,S14,S16と同様な判定が行われる。なお、各種のしきい値や設定時間は異なるものとすることができる。
S33〜S40において、車両の運動状態量に基づいて車高の変更量が決定される。
S33〜S38において、車速に基づいて走行状態が判定される。高速走行状態である場合(時速70km以上)には、車速に基づく車高の変更量Aが設定量「−Xa」にされ(S33,S34)、中速走行状態である場合(時速30km以上)には変更量Aが0にされ(S35,S36)、低速走行状態である場合(時速30km以上)には変更量Aが設定量「Xa」にされる(S37)。なお、高速、中速走行状態である場合には悪路判定が行われず、S38,S39の処理がスキップされて変更量Bが0にされる(S40)。
S38において、車体の検出上下加速度に基づいて悪路走行状態であるか否かが決定される。悪路走行状態である場合には検出上下加速度に基づく車高の変更量Bが設定量「Xb」にされ(S39)、悪路走行状態でない場合には変更量Bが0にされる(S40)。
S41において、各車輪12に対応する部分の各々の目標車高H1が決定される。具体的には、各車輪12に対応する部分の各静止標準車高Hsに、それぞれの上記各変更量A,Bが加算される。
S42において、前記スリップ抑制フラグが参照され、スリップ抑制制御が行われているか否かが確認される。スリップ抑制フラグがONである場合には、S43,S44の処理がスキップされ、車高の変更が禁止される。一方、スリップ抑制フラグがOFFである場合には、S43において、目標車高H1と現在の車高H(ストローク量に基づいて取得される)とが異なるか否か(正確には、設定値以上の差があるか否か)が判定され、異なる場合にはS44において車高が調整され、異ならない場合には車高調整は行われない。S44の車高調整では、各懸架シリンダ150について、作動液の供給や排出が行われて、車高が目標車高H1にされる。
以上に述べた処理により、例えば、高速走行状態において車高を設定車高まで下降させて車両の安定性を向上させることや、悪路走行状態において車高を上昇させて車両の走破性を向上させることができる。しかしながら、以上のような車高の制御は、スリップ状態やスリップ抑制制御を考慮したものではなく、前記ホイールレートの切換と同様に制限されることが望ましい。例えば、車高制御において定常直進走行と判断される状態であっても、路面状態や横風等の状況によってはスリップ抑制制御が行われる場合もあり、その様な場合に車速が高速から中速へ、中速から低速へ(あるいはそれらの逆に)変化したことが検出された場合には、S42の処理がなければ車高が変更されてしまうのである。このように、スリップ抑制制御が行われている際に車高の変更を制限することにより、スリップ抑制制御の効果が低下することや、スリップ状態が助長されることを回避することができる。なお、運転者の操作に基づく車高の変更についても同様に、スリップ抑制制御が行われている場合に変更が禁止される。
本実施例において、車高制御部322のS42の処理を行う部分が、前記「変更制限部」として機能している。また、車高制御部322のS32〜S41,S43,S44の処理を行う部分を含んで、前記「運動状態量依拠制御部」のうちの目標車高を制御する部分が構成されているのである。
減衰力制御部324について説明する。減衰力制御部324は、車両の運動状態量に基づいて目標減衰力の大きさを決定するとともに、減衰力の大きさを変更するようにサスペンション装置14に制御指令を行い、可変絞り196を作動させるものである。目標減衰力の大きさは、目標ホイールレートの決定とよく似ており、車速、車体の制御前後加速度、制御横加速度等に基づいて決定され、高速走行状態における車体40の上下動の抑制、旋回状態におけるロール速度の低減、加減速状態におけるピッチ速度の低減等が図られる。一方、中低速での定常直進状態においては、減衰力が比較的小さくされ、乗り心地の向上が図られる。
この減衰力制御部324による減衰力の変更は、スリップ抑制制御時に制限される。すなわち、図示を省略する減衰力制御ルーチンに、前記ホイールレート制御ルーチンのS19と同様の処理が設けられ、スリップ抑制制御が行われている際に、減衰力の変更が制限されるのである。また、前記S19,S20と同様の処理を設け、スリップ抑制フラグがONにされた際に、減衰力を設定された特性に変更する指令を行うようにすることもできる。
本実施例において、前記「離間力特性変更部」が、ホイールレート制御部320,車高制御部322,減衰力制御部324を含む離間力特性制御装置と、ホイールレート切換装置,車高変更装置たる作動液給排装置200および可変絞り170(それを回転駆動する装置を含む)を含む離間力特性変更装置とを含んで構成されている。
ステアリングCU32について説明する。
ステアリングCU32は、操舵角センサ66の検出値や操舵入力部に設けられた操舵トルクセンサの検出値に基づいて目標転舵角を決定し、転舵輪(前方の車輪12)の転舵角を目標転舵角にすべき旨の指令を行うことにより、転舵部54の動力源たる電動モータを作動させ、転舵輪の転舵角を制御する。
本実施例において、スキッドCU36が、スリップ抑制制御の一環としてステアリングCU32に行う指令や要求について説明をしていないが、指令等を行うようにすることができる。例えば、ヨー運動適正化部308によってスピン傾向やドリフト傾向の抑制のために転舵角を増減させる指令等がステアリングCU32に行われるようにすることができる。
この場合に、ステアリングホイール44の回転位置と関係なく車輪12を転舵することができれば運転者に違和感を与えにくくなることから、操舵装置16が、いわゆるVGRS装置を備えているか、いわゆるステアバイワイヤ型の操舵装置にされていることが望ましい。なお、VGRS(Variable Gear Ratio Steering)装置は、ステアリングホイール44と転舵部52との間の回転の伝達比を変化させる伝達比可変装置を備え、実際の転舵角を運転者が行った操舵操作よりも増加あるいは減少させることができるものである。また、ステアバイワイヤ式のステアリング装置は、ステアリングホイール等の操作部材に入力された操作力が転舵部に伝達されず、転舵部の動力源を制御することによって車輪の転舵を行うものである。
請求可能発明の実施例であるサスペンションシステムを備えた車両を模式的に示す図である。 上記車両の制動装置を概念的に示す図である。 上記サスペンションシステムのサスペンション装置を概念的に示す図である。 上記サスペンション装置のホイールレートを制御するプログラムのフローチャートを示す図である。 上記とは別のホイールレートを制御するプログラムのフローチャートを示す図である。 上記とはさらに別のホイールレートを制御するプログラムのフローチャートを示す図である。 上記サスペンション装置の車高を制御するプログラムのフローチャートを示す図である。
符号の説明
10:車両運動コントロール装置(サスペンションシステム) 12(FL,FR,RL,RR):車輪 14:サスペンション装置 16:操舵装置 18:駆動装置 20:制動装置 30:サスペンションコントローラ 32:ステアリングコントローラ 34:エンジンコントローラ 36:スキッドコントローラ(走行不安定状態緩和装置) 38:コントローラ・エリア・ネットワーク通信システム[CAN] 40:車体 42:操縦部 44:ステアリングホイール 46:アクセルペダル 48:ブレーキペダル 50(FL,FR,RL,RR):タイヤ 56:操舵角センサ(θ) 60:エンジン 62:動力伝達部 63(FL,FR,RL,RR):加速度センサ(Gz:上下) 64:加速度センサ(Gxy:前後左右) 66:ヨーレートセンサ(γ) <制動装置> 68:制動操作−液圧変換部 70(FL,FR,RL,RR):ディスクブレーキ 72:ブレーキアクチュエータ 76(FL,FR,RL,RR):ホイールシリンダ 80:マスタシリンダ装置 100:動力液圧源 102:液圧制御弁装置 104a,b:マスタシリンダ圧センサ 106a,b:ホイールシリンダ圧センサ 120(FL,FR,RL,RR):増圧用電磁液圧制御弁(電磁弁) 122(FL,FR,RL,RR):減圧用電磁液圧制御弁(電磁弁) <サスペンション装置> 144(FL,FR,RL,RR):車輪保持装置 150(FL,FR,RL,RR):懸架シリンダ 152:サスペンションスプリング 182(FL,FR,RL,RR):アキュムレータ(高圧) 184(FL,FR,RL,RR):アキュムレータ(定圧) 186(FL,FR,RL,RR):ホイールレート切換弁(連通切換器) 196(FL,FR,RL,RR):可変絞り 200:作動液給排装置 250(FL,FR,RL,RR):車高センサ 260:ブレーキセンサ <スキッドCU36> 300:スリップ状態判定部(走行不安定状態判定部) 302:通常制動制御部 304:アンチロック制御部 306:トラクション制御部 308:ヨー運動適正化部 <サスペンションCU30> 320:ホイールレート制御部 322:車高制御部 324:減衰力制御部

Claims (4)

  1. 車両の複数の車輪の各々と車体とを接近離間可能に連結するサスペンションシステムであって、
    前記車両が、路面に対する車輪のスリップを抑制する制御であるスリップ抑制制御を行うことによって、前記車両の走行状態が不安定な状態である走行不安定状態を緩和するスリップ抑制制御部を含み、
    当該サスペンションシステムが、複数の車輪のうちの2以上のものの各々と車体との離間距離とそれらを離間させる向きの力である離間力との関係である離間力特性を変更する離間力特性変更部と、
    前記スリップ抑制制御部による前記スリップ抑制制御が開始された時から終了されるまでの間、前記離間力特性の変更を禁止する変更禁止部と
    を含むことを特徴とするサスペンションシステム。
  2. 当該サスペンションシステムが、前記複数の車輪のうちの2以上のものの各々に対応して設けられて流体を収容するとともに自身と対応する車輪である対応輪と車体との接近離間に応じて容積が変化させられて前記対応輪と車体とを離間させる離間力を発生させる2以上の流体作動器を含み、
    前記離間力特性変更部が、
    前記2以上の流体作動器の各々と連通させられて流体を加圧した状態で蓄える1以上ずつの加圧流体収容器と、
    前記2以上の流体作動器の各々に対応して設けられて通電の有無によって前記2以上の流体作動器の各々と前記1以上ずつの加圧流体収容器の各々との連通を許容する状態と遮断する状態とが切り換わる1以上ずつの電磁弁を有する2以上の連通切換器と、
    それら2以上の連通切換器を制御することにより、前記1以上ずつの加圧流体収容器のうちの前記2以上の流体作動器の各々との連通が許容されるものの個数を増減させて前記離間力特性を変更する離間力特性制御部と
    を含み、
    前記変更禁止部が、前記1以上ずつの電磁弁の前記通電の有無の変更を禁止する部分を
    含む請求項1に記載のサスペンションシステム。
  3. 前記スリップ抑制制御部が、路面に対する車輪のスリップの度合いが設定された許容範囲内から範囲外に変化した場合に、前記スリップ抑制制御を開始する手段を含む請求項1または2に記載のサスペンションシステム。
  4. 前記変更禁止部が、前記スリップ抑制制御が開始された時から終了されるまでの間であって、前記悪路走行中でない場合に、前記離間力特性の変更を禁止する手段を含む請求項1ないしのいずれか1つに記載のサスペンションシステム。
JP2006274472A 2006-10-05 2006-10-05 サスペンションシステム Expired - Fee Related JP4844334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274472A JP4844334B2 (ja) 2006-10-05 2006-10-05 サスペンションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274472A JP4844334B2 (ja) 2006-10-05 2006-10-05 サスペンションシステム

Publications (2)

Publication Number Publication Date
JP2008094124A JP2008094124A (ja) 2008-04-24
JP4844334B2 true JP4844334B2 (ja) 2011-12-28

Family

ID=39377466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274472A Expired - Fee Related JP4844334B2 (ja) 2006-10-05 2006-10-05 サスペンションシステム

Country Status (1)

Country Link
JP (1) JP4844334B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146608B2 (ja) 2011-04-14 2013-02-20 トヨタ自動車株式会社 前後加速度センサの異常判定装置及び方法
JP5873002B2 (ja) * 2012-12-28 2016-03-01 ブリヂストンサイクル株式会社 電動補助自転車
JP6750267B2 (ja) * 2016-03-24 2020-09-02 アイシン精機株式会社 車高調整装置
JP2018047722A (ja) * 2016-09-20 2018-03-29 Kyb株式会社 サスペンション装置
CN111386215B (zh) 2017-12-15 2024-01-19 株式会社久保田 滑移判定系统、行驶路径生成系统以及田地作业车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217310A (ja) * 1990-01-23 1991-09-25 Mazda Motor Corp 車両のサスペンション装置
JPH0459416A (ja) * 1990-06-29 1992-02-26 Mazda Motor Corp 車両のサスペンション装置
JPH05221213A (ja) * 1991-08-20 1993-08-31 Tokico Ltd サスペンション制御装置

Also Published As

Publication number Publication date
JP2008094124A (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
US7613557B2 (en) Vehicle control system
US5762157A (en) Vehicle attitude control apparatus wherein tire slip angle and wheel longitudinal force are controlled
US20060186728A1 (en) Suspension apparatus
JPH02182521A (ja) サスペンション制御装置
US20060158033A1 (en) Brake fluid pressure control apparatus and method
JP4844334B2 (ja) サスペンションシステム
JP2877084B2 (ja) 制動力制御装置
JP2014004885A (ja) 車両の制動力制御装置
JP2000344078A (ja) 制動装置
JP2013129373A (ja) 制動力制御装置
JP4678249B2 (ja) 車両用ブレーキ装置
JP2005059613A (ja) 車両用サスペンションシステム
JP2572860B2 (ja) 車両の旋回挙動制御装置
JP4460544B2 (ja) 車両用制御装置
JP4604926B2 (ja) 車両のトラクション制御装置、及び車両のトラクション制御方法
JP2019018815A (ja) 車両制動装置、車両制動方法および車両制動システム
JP4650174B2 (ja) 車両のトラクション制御装置、及び車両のトラクション制御方法
JP5018338B2 (ja) 車両挙動制御装置
KR20160142519A (ko) 차량 자세제어장치 및 그 제어방법
JP5446685B2 (ja) 車両の運動制御装置
JP4518008B2 (ja) サスペンション装置
JP6481388B2 (ja) 車両の制動制御装置
JPH08238915A (ja) 車体挙動制御装置
JP5067001B2 (ja) 車両用制動制御装置
JP7484667B2 (ja) 制動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4844334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees