JP4827947B2 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP4827947B2
JP4827947B2 JP2009090954A JP2009090954A JP4827947B2 JP 4827947 B2 JP4827947 B2 JP 4827947B2 JP 2009090954 A JP2009090954 A JP 2009090954A JP 2009090954 A JP2009090954 A JP 2009090954A JP 4827947 B2 JP4827947 B2 JP 4827947B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
voltage
signal
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009090954A
Other languages
English (en)
Other versions
JP2009158088A (ja
Inventor
司 大石
正敏 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2009090954A priority Critical patent/JP4827947B2/ja
Publication of JP2009158088A publication Critical patent/JP2009158088A/ja
Application granted granted Critical
Publication of JP4827947B2 publication Critical patent/JP4827947B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、半導体集積回路装置に関し、特にCMOSトランジスタで構成される論理ゲートを含む半導体集積回路装置の消費電流を低減し、かつ高速動作を可能とするための構成に関する。
近年、半導体の分野においては、高集積化とともに電源電圧の低下が進められている。
しかしながら、内部回路を構成するMOSトランジスタは、しきい値電圧が存在し、高速動作を保証するためにはしきい値電圧を小さくする必要がある。これに対し、しきい値電圧を小さくすると、リーク電流が急激に増加するという問題がある。
この問題を解決するための手法として、階層電源システムがある。ここで、従来の半導体集積回路装置における階層電源システムについて、図67を用いて説明する。
図67は、従来の半導体集積回路装置における階層電源システムの構成を示す図である。
図67においては、内部回路の一例として、複数段縦続接続されたCMOSインバータX1,X2,X3…を示している。
CMOSインバータX1,X2,X3のそれぞれは、PMOSトランジスタおよびNMOSトランジスタを含む。インバータX1〜X3に対して、動作電源電圧を印加するためにメイン電源線L1、サブ電源線L2、メイン接地線L3、そしてサブ接地線L4を配置する。
メイン電源線L1とサブ電源線L2との間には、スイッチトランジスタT1が配置される。メイン接地線L3とサブ接地線L4との間には、スイッチトランジスタT2が配置される。
スイッチトランジスタT1は、階層電源制御信号/φcに応答して導通状態となり、メイン電源線L1とサブ電源線L2とを電気的に接続する。
また、スイッチトランジスタT2は、階層電源制御信号φcに応答して導通状態となり、メイン接地線L3とサブ接地線L4とを電気的に接続する。
奇数段のインバータX1,…は、一方の動作電源ノード(高電位を受けるノード)が、サブ電源線L2に接続され、他方の動作電源ノード(低電位を受けるノード)がメイン接地線L3に接続されている。
また、偶数段のインバータX2,…は、一方の動作電源ノード(高電位を受けるノード)が、メイン電源線L1に接続され、他方の動作電源ノード(低電位を受けるノード)が、サブ電源線L4に接続されている。
メイン電源線L1は、電源電位の供給を受ける。メイン接地線L3は、接地電位の供給を受ける。メイン電源線L1の電圧を電圧Vcc、サブ電源線L2の電圧を電圧SubVccと、メイン接地線L3の電圧を電圧Vssと、サブ接地線L4の電圧を電圧SubVssと称す。
次に、図67に示す従来の階層電源システムにおける動作について、図68および図69を用いて説明する。
図68は、図67における従来の階層電源システムでの電源電位の変化を表わすタイミングチャートであり、図69は、スタンバイサイクルにおける各インバータX1,…の電圧条件を説明するための図である。
図69に示すようにインバータX1、…は、PMOSトランジスタP1およびNMOSトランジスタN1を含む。
図69に示す内部回路に対して、スタンバイサイクルにHレベル、アクティブサイクルにLレベルとなる入力信号INが入力されるものとする。スタンバイサイクルでは、制御信号φcはLレベルに設定される。これにより、スタンバイサイクルでは、スイッチトランジスタT1およびT2は、ともにオフ状態にある。アクティブサイクルでは、制御信号φcはHレベルに設定される。
アクティブサイクルからスタンバイサイクルに移ると(図68の時刻t0、t2)、サブ電源線L2の電圧SubVccは、容量負荷により、メイン電源線L1の電圧Vccレベルから徐々に低下していく。また、サブ接地線L3の電圧SubVssは、容量負荷により、メイン接地線L3の電圧(接地電源電圧)Vssレベルから徐々に高いレベルに移行していく。
スタンバイサイクルからアクティブサイクルに移ると(図68の時刻t1)、制御信号φcがHレベルとなる。これにより、スイッチトランジスタT1およびT2が、共にオン状態となる。サブ電源線L2の電圧SubVccは、メイン電源線L1の電圧Vccレベルに充電される。また、サブ接地線L4の電圧SubVssが、メイン接地線L3の電圧Vssレベルに近づく。
図69を参照して、スタンバイサイクルでは、インバータX2は、入力信号INを反転した接地電源電圧Vssの信号を受ける。したがって、インバータX2において、PMOSトランジスタP1がオン状態となり、PMOSトランジスタP1とNMOSトランジスタN1との接続ノードがメイン電源線L1の電圧Vccに設定される。NMOSトランジスタN1は、接地電源電圧Vssより高いサブ接地線L4の電圧SubVssを受けるため、ゲート電圧がソース電圧よりも低くなる。これにより、インバータX2におけるリーク電流が抑制される。
インバータX3は、メイン電線L1の電圧Vccの信号を受ける。したがって、NMOSトランジスタN1がオン状態となり、PMOSトランジスタP1とNMOSトランジスタN1との接続ノードがメイン接地線L3の電圧Vssに設定される。PMOSトランジスタP1は、メイン電源線L1の電圧Vccより低いサブ電源線L2の電圧SubVccを受けるため、ゲート電圧は、ソース電圧よりも高くなる。これにより、インバータX3におけるリーク電流が抑制される。
特開平10−348864号公報
しかしながら、従来の階層電源システムでは、図68に示すように、スタンバイサイクルからアクティブサイクルに移行する瞬間に、スイッチトランジスタT1およびT2がオン状態となると、サブ電源線L2およびサブ接地線L4に急激な電圧変化が生じる(電圧ドロップと称す)。
また、スイッチトランジスタT1およびT2がオン状態になった場合、これらの接合容量により、サブ電源線L2の電圧SubVccは、メイン電源線L1の電圧Vccより若干低いレベルとなり、またサブ接地線L4の電圧SubVssが、メイン接地線L3の電圧Vssより若干高いレベルを維持することになる。
したがって、この状態で内部回路が動作した場合、所望の条件を満足する動作特性が得られず、内部回路の出力が確定するまでに時間がかかるという問題が生じる。
また、半導体集積回路装置においては、動作タイミングに応じて効果的に消費電流を低減させる必要がある。
それゆえ、本発明の目的は、かかる問題を解決するためになされたものであり、その目的は低消費電流かつ高速動作が可能な半導体集積回路装置を提供することである。
また、本発明の他の目的は、動作モードに応じて、低消費電流かつ高速動作が可能な半導体集積回路装置を提供することである。
また、本発明の他の目的は、リーク電流をモニタし、モニタ結果を用いて、消費電流を調整することが可能な半導体集積回路装置を提供することである。
この発明のある局面による半導体集積回路装置は、メイン電源線と、サブ電源線と、アクティブサイクルにおいて、メイン電源線とサブ電源線とを電気的に結合し、スタンバイサイクルにおいて、メイン電源線とサブ電源線とを電気的に非結合する結合手段と、記メイン電源線上の電圧を動作電源電圧として動作し、与えられた入力に対して所定の論理処理を施して出力する第1の論理ゲートと、サブ電源線上の電圧を動作電源電圧として動作し、与えられた入力に対して所定の論理処理を施して出力する第2の論理ゲートとを含む論理回路と、アクティブサイクルにおいて、論理回路の動作を確保するために必要とされる所定の動作電源電圧を、論理回路に供給するようにメイン電源線の電圧を制御する電圧制御手段とを備える。メイン電源線は、第1のメイン電源線と、第2のメイン電源線とを含み、サブ電源線は、第1のメイン電源線に対応する第1のサブ電源線と、第2のメイン電源線に対応する第2のサブ電源線とを含み、結合手段は、第1のメイン電源線と第1のサブ電源線とを短絡する第1の結合回路と、第2のメイン電源線と第2のサブ電源線とを短絡する第2の結合回路とを含み、第1の論理ゲートは、第1のメイン電源線の電圧と第2のサブ電源線の電圧とを動作電源電圧とし、第2の論理ゲートは、第2のメイン電源線の電圧と第1のサブ電源線の電圧とを動作電源電圧とし、さらに、外部接地電位と外部電源電位との間の第1から第4の基準電位を発生する基準電位発生回路を備え、第2の基準電位は第1の基準電位より高く、第3の基準電位は第2の基準電位より高く、第4の基準電位は第3の基準電位より高く、第4の基準電位と第1のメイン電源線の電位とを差動的に増幅する第1の増幅手段を含む第1の電圧制御回路と、第1の基準電位と第2のメイン電源線の電位とを差動的に増幅する第2の増幅手段を含む第2の電圧制御回路と、第3の基準電位と第1のメイン電源線の電位とを差動的に増幅する第3の増幅手段を含む第3の電圧制御回路と、第2の基準電位と第2のメイン電源線の電位とを差動的に増幅する第4の増幅手段を含む第4の電圧制御回路と、第1および第2の結合回路の各々は、アクティブサイクルにおいてオン状態となる少なくとも1以上のスイッチトランジスタから構成される。
この発明の実施の形態によれば、低消費電流かつ高速動作が可能となる。
本発明の実施の形態1の半導体記憶装置1000の構成を示す概略ブロック図である。 半導体記憶装置1000における内部クロック信号int.CLKを分配する構成を示す概念図である。 半導体記憶装置1000におけるアドレスバスおよびコマンドデータバスの構成を示す概略ブロック図である。 本発明の実施の形態1における半導体集積回路装置の階層電源システムを示す図である。 図4に示す階層電源システムの動作を説明するためのタイミングチャートである。 本発明の実施の形態2における半導体集積回路装置2000の要部の構成を示す図である。 本発明の実施の形態2における制御信号DLCCOを発生する発生回路の構成を示す図である。 本発明の実施の形態2における階層電源システムの構成を示す図である。 本発明の実施の形態2における階層電源システムの構成を示す図である。 本発明の実施の形態2の半導体集積回路装置2000における階層電源システムの動作を示すタイミングチャートである。 本発明の実施の形態3における半導体集積回路装置3000の要部の構成を示す図である。 本発明の実施の形態3の半導体集積回路装置3000における階層電源システムの動作を示すタイミングチャートである。 本発明の実施の形態4のロウプリデコーダ36の構成を示す概略ブロック図である。 図13に示すフリップフロップ回路224、ドライバ回路226およびレベル保持回路228の構成を示す概略ブロック図である。 図13に示したロウプリデコーダ36の動作を説明するためのタイミングチャートである。 図13に示したロウプリデコーダ36の構成において、複数の異なるバンクへのアクセスが連続して起こる場合の動作を説明するためのタイミングチャートである。 本発明の実施の形態4のコラムプリデコーダ34の構成を示す概略ブロック図である。 図17に示したコラムプリデコーダ34の読出動作を説明するためのタイミングチャートである。 図17に示したコラムプリデコーダ34の読出動作を説明するためのタイミングチャートである。 本発明の実施の形態5における階層電源システムの構成を示す図である。 本発明の実施の形態5におけるDLCCシステムの動作確認のために行なったシミュレーションの構成を示す図である。 図21に示すインバータチェーンに接続される負荷インバータ135の構成を示す図である。 図21におけるシミュレーションの具体的な条件を示す図である。 従来の階層電源システムのシミュレーション波形を示すグラフである。 DLCCシステムのシミュレーション波形を示すグラフである。 本発明の実施の形態5におけるシミュレーションにおいて、インバータ速度を比較した図である。 DLCCシステムにおけるインバータチェーンの遅延を測定するための条件を示す図である。 電源線の電圧が変化した後に回復した場合におこるインバータチェーンの遅延をプロットした図である。 本発明の実施の形態6におけるリーク電流テスト回路120aおよび120bの要部の構成を示す図である。 本発明の実施の形態7におけるリーク電流テスト回路の要部の構成を示す図である。 本発明の実施の形態7におけるリーク電流テスト回路の他の一例を示す回路図である。 本発明の実施の形態7におけるリーク電流テスト回路の他の一例を示す回路図である。 本発明の実施の形態8におけるリーク電流テスト回路126の要部の構成を示す図である。 本発明の実施の形態9における階層電源システムの構成を示す図である。 本発明の実施の形態9における階層電源システムの構成を示す図である。 本発明の実施の形態9におけるスイッチ制御回路600の具体的構成の一例を示す回路図である。 図36に示すスイッチ制御回路600の動作について説明するためのタイミングチャートである。 本発明の実施の形態9におけるスイッチ制御回路620の具体的構成の一例を示す回路図である。 図38に示すスイッチ制御回路620の動作を説明するためのタイミングチャートである。 本発明の実施の形態9における階層電源システムの他の構成を示す図である。 機能ブロックを示す図である。 本発明の実施の形態10における半導体集積回路装置の構成を概略的に示す平面図である。 図42のA1 −A1 線に沿う概略断面図である。 図42の構成を下層から順に示す第1平面図である。 図42の構成を下層から順に示す第2平面図である。 図42の構成を下層から順に示す第3平面図である。 図42の構成を下層から順に示す第4平面図である。 図42の構成を下層から順に示す第5平面図である。 図42の構成を下層から順に示す第6平面図である。 図42の構成を下層から順に示す第7平面図である。 図42の構成を下層から順に示す第8平面図である。 図43の構成を下層から順に示す第1断面図である。 図43の構成を下層から順に示す第2断面図である。 図43の構成を下層から順に示す第3断面図である。 図43の構成を下層から順に示す第4断面図である。 図43の構成を下層から順に示す第5断面図である。 図43の構成を下層から順に示す第6断面図である。 図43の構成を下層から順に示す第7断面図である。 図43の構成を下層から順に示す第8断面図である。 インバータの構成を示す平面図である。 NAND回路またはNOR回路の構成を示す平面図である。 ウェル固定セルの構成を示す平面図である。 図62のA2 −A2 線に沿う概略断面図である。 図42および図43の構成の容量成分を抽出した図である。 典型的なアレイ構成を示す図である。 ダミーゲートが回路の周囲を覆う構成を示す平面図である。 従来の階層電源システムの構成を示す図である。 図67に示す従来の階層電源システムでの電源電位の変化を表すタイミングチャートである。 図67に示す従来の階層電源システムにおけるスタンバイサイクルの状態を示す図である。 DRAMのビット線周囲にダミーを配置した様子を示す断面図である。 フリップフロップ回路224の構成を示す回路図である。
[実施の形態1]
本発明の実施の形態1における半導体集積回路装置について説明する。本発明の実施の形態1は、低消費電流でしかも高速動作を可能とするの半導体集積回路装置を提供する。半導体集積回路装置の一例として、同期型半導体記憶装置について説明する。
図1は、本発明の実施の形態の同期型半導体記憶装置1000の構成を示す概略ブロック図である。
図1を参照して、同期型半導体記憶装置1000は、外部制御信号入力端子群10を介して与えられる外部制御信号/RAS、/CAS、/W、/CS等を受けて、これをデコードし、内部制御信号を発生するコントロール回路20と、コントロール回路20から出力される内部制御信号を伝達するコマンドデータバス53aおよび53bと、メモリセルが行列状に配列されるメモリセルアレイ100とを備える。
メモリセルアレイ100は、図1に示すとおり、全部で16個のメモリセルブロック100a〜100pに分割配置されている。たとえば、同期型半導体記憶装置1000の記憶容量が1Gビットである場合、各メモリセルブロックは64Mビットの容量を有する。各ブロックは、独立にバンクとして動作し得る構成となっている。
同期型半導体記憶装置1000は、さらに、クロック信号入力端子16に与えられる外部クロック信号CLKを受け、コントロール回路20により制御されて同期動作を開始し、内部クロック信号int.CLKを出力する内部同期信号発生回路18を含む。
内部同期信号発生回路18は、たとえば、ディレロックドループ回路(以下、DLL回路と称す)等により、外部クロック信号CLKに対して、同期した内部クロック信号int.CLKを生成する。
アドレス信号入力端子群12を介して与えられる外部アドレス信号A0〜Ai(i:自然数)は、コントロール回路20の制御の下に、内部クロック信号int.CLKに同期して、同期型半導体記憶装置1000内に取込まれる。
外部アドレス信号A0〜Aiのうち、所定数のビット数のデータは、アドレスバス51aを介して、バンクデコーダ22に与えられる。バンクデコーダ22からは、アドレスバス51bおよび51cを介して、デコードされたバンクアドレスB0〜B7が、各バンクに伝達される。
一方、アドレス信号入力端子群12に与えられるその他の外部アドレス信号は、アドレスバス50aおよび50bを介して、アドレスドライバ52に伝達される。アドレスドライバ52からさらに、アドレスバス50cを介して、アドレス信号は各バンク(メモリセルブロック)に伝達される。
同期型半導体記憶装置1000は、さらに、メモリセルブロックの対ごとに設けられ、コントロール回路20の制御の下に、アドレスバス50cにより伝達されたロウアドレスをラッチし、プリデコードするロウプリデコーダ36と、ロウプリデコーダ36からの出力をもとに選択されたメモリセルブロックの対応する行(ワード線)を選択するロウデコーダ44と、メモリセルブロックごとに設けられ、コントロール回路20の制御の下に、アドレスバス50cにより伝達された列アドレスをラッチし、プリデコードするコラムプリデコーダ34と、プリデコーダ34からの出力を伝達するコラムプリデコーダ線40と、コラムプリデコーダ線40からの出力をもとに選択されたメモリセルブロックの対応する列(ビット線対)を選択するコラムデコーダ42とを含む。
同期型半導体記憶装置1000は、さらに、チップ中央部の長辺方向に沿う領域であって、外部制御信号入力端子群10およびアドレス信号入力端子群12が設けられる領域の外側に、それぞれ配置されるデータ入力端子DQ0〜DQ15およびDQ16〜DQ31と、データ入出力端子DQ0〜DQ31にそれぞれ対応して設けられる入出力バッファ回路14a〜14fと、入出力バッファと対応するメモリセルブロックとの間でデータの伝達を行なうデータバス54と、メモリセルブロック100a〜100bにそれぞれ対応して設けられ、データバス54と選択されたメモリセル列との間でデータの授受を行なうリード/ライトアンプ38とを含む。
外部制御信号入力端子群10へ与えられる信号/RASは、同期型半導体記憶装置1000の内部動作を開始させ、かつ内部動作の活性期間を決定するロウアドレスストローブ信号である。この信号/RASの活性化に応じて、ロウデコーダ44等のメモリセルアレイ100の行を選択する動作と関連する回路は活性状態とされる。
外部制御信号入力端子群10へ与えられる信号/CASは、コラムアドレスストローブ信号であり、メモリセルアレイ100における列を選択する回路を活性状態とする。
外部制御信号入力端子群10へ与えられる信号/CSは、この同期型半導体記憶装置1000が選択されることを示すチップセレクト信号であり、信号/Wは、同期型半導体記憶装置1000の書込動作を指示する信号である。
信号/CS、信号/RAS、信号/CASおよび信号/Wの取込動作は、内部クロック信号int.CLKに同期して行なわれる。
また、アドレス信号入力端子群12に与えられるアドレス信号の取込動作や、データ入出力端子DQ0〜DQ31を介してのデータの授受も内部クロック信号int.CLKに同期して行なわれる。
図2は、図1に示した同期型半導体記憶装置1000における内部クロック信号int.CLKを外部制御信号入力端子群10中の入力端子およびデータ入力端子DQ0〜DQ15に、それぞれ分配する構成を示す概念図である。
図2を参照して、クロック信号入力端子16に与えられた外部クロック信号CLKは、バッファ回路60を介して、内部同期信号発生回路18に与えられる。
内部同期信号発生回路18から出力される内部クロック信号int.CLKは、まず、バッファ回路68に与えられる。バッファ回路68の出力は2分割され、その一方はバッファ回路70に、他方はバッファ回路80にそれぞれ与えられる。
バッファ回路70の出力は、さらに2分割されて、それぞれバッファ回路72a、72bに与えられる。
バッファ回路72aの出力は、さらに2分割されて、それぞれバッファ回路74a、74bに与えられる。
一方、バッファ回路72bの出力も、さらに2分割されて、それぞれバッファ回路74c、74dに与えられる。
バッファ回路74a、74b、74cおよび74dの出力は、さらに、それぞれ2分割された上で、それぞれ、バッファ回路76aおよび76b、バッファ回路76cおよび76d、バッファ回路76eおよび76f、バッファ回路76gおよび76hに与えられる。
すなわち、バッファ回路70の出力は、順次、2分割され最終的に8つのクロック信号に分割される。この8つのクロック信号は、それぞれ、配線78a〜78hに与えられる。配線78a〜78hのそれぞれの端部から供給されるクロック信号に同期して、外部制御信号入力端子群10から外部制御信号の取込が行なわれる。
配線78hの端部からのクロック信号は、レプリカバッファ回路62および遅延調整回路64を介して、内部同期信号発生回路18に与えられる。内部同期信号発生回路18は、遅延調整回路64からの出力とバッファ回路60から与えられる外部クロック信号CLKの位相を同期させて、内部クロック信号int.CLKを生成する。
ここで、遅延調整回路64が存在しない場合を想定すると、バッファ回路60とレプリカバッファ回路62とは同様の構成を有するので、バッファ回路60に与えられる外部クロック信号CLKと、レプリカバッファ回路62に与えられる配線78h上のクロック信号との位相が等しくなるように調整されることになる。ここで、配線78h上のクロック信号と、他の配線78a〜78g上のクロック信号の位相も等しくなっている。
すなわち、外部制御信号の取込動作は、外部クロック信号CLKに同期して行なわれることになる。
ここで、遅延調整回路64が設けられているのは、外部クロック信号CLKの振幅レベルやその周期に対するクロック信号の活性期間の比などが、内部クロック信号int.CLKの対応量と異なるために、その調整を行なう必要があるためである。
なお、以上の説明では、外部制御信号入力端子群10に対する内部クロック信号int.CLKの分配の構成について説明したが、図2にも示すとおり、同様の構成が、データ入出力端子群DQ0〜DQ15に対応しても設けられている。
すなわち、バッファ回路68の出力のうちの他方は、バッファ回路80に与えられ、順次2分割された結果、最終的にはバッファ回路86a〜86hの出力に分割される。バッファ回路86a〜86hから出力される内部クロック信号に同期して、データ入出力端子群DQ0〜DQ15と外部との間でデータの授受が行なわれる。
さらに、図2においては、外部制御信号入力端子群10およびデータ入出力端子群DQ0〜DQ15に対する内部クロック信号int.CLKの分配の構成について説明したが、同様の構成が、アドレス信号入力端子群12、データ入出力端子群DQ16〜DQ31に対応して設けられている。このような構成とすることで、アドレス信号の取込や、データ信号の授受も外部クロック信号CLKに同期して行なわれることになる。
図3は、図1に示した同期型半導体記憶装置1000の構成のうち、アドレス信号入力端子群12およびアドレスバス50a、50b、50c、51a、51bおよび51c、コマンドデータバス53aおよび53bの構成を示す概略ブロック図である。
アドレス信号入力端子群12のうち、アドレス信号入力端子群12aに与えられるアドレス信号の上位ビットのデータは、それぞれ内部クロック信号int.CLKに同期して動作する入力バッファ13a〜13cにより、バンクアドレスバス51aに出力される。バンクアドレスバス51aからのデータを受けて、バンクデコーダ22は、デコードした信号を、バンクアドレスバス51bおよび51cを介して、それぞれのメモリセルブロック(バンク)に伝達する。
アドレス信号入力端子群12のうち、アドレス信号入力端子群12bに与えられるアドレス信号の下位のビットのデータは、それぞれ内部クロック信号int.CLKに同期して動作する入力バッファ13d〜13gにより、アドレスデータバス50aおよび50bを介して、アドレスドライバ52に与えられる。アドレスドライバ52は、アドレス信号をアドレスデータバス50cを介して、各バンク(メモリセルブロック)に伝達する。
コントロール回路20は、制御信号入力端子群10に与えられたコマンドデータを受けて、デコードし、デコードしたコマンドデータをコマンドデータバス53aおよび53bを介して、各メモリセルブロック(バンク)に伝達する。
各バンクのうち、たとえばメモリセルブロック100eは、さらにメモリセルサブブロック100eaおよび100ebに分割されている。
ロウプリデコーダ36のうち、メモリセルサブブロック100eaに対してはロウプリデコーダ36aが、メモリセルサブブロック100ebに対してはロウプリデコーダ36bが対応している。ロウプリデコーダ36aは、バンクアドレスバス51cにより伝達されるバンクアドレスに応じて、バンク100eが選択されたことを検知し、かつコマンドデータバス53bにより、行系の動作が指示されていることを検知すると活性化し、アドレスバス50cからアドレスデータを、コマンドデータバス53bからコマンドデータをそれぞれ取込む。これに応じて、ロウプリデコーダ36aは、プリデコードしたアドレス信号をロウデコーダ44に出力する。
ロウプリデコーダ36b〜36dについても、同様の動作をする。
コラムプリデコーダ34のうち、メモリセルブロック100eaに対応して設けられるコラムプリデコーダ34aは、バンクアドレスバス51cを介して伝達されたバンクアドレスに応じて、メモリセルブロック100eが選択され、かつコマンドデータバス53bにより、列系の動作が活性化されていることを検知すると、それに応じて、アドレスバス50cから対応するアドレスデータを取込む。
コラムプリデコーダ34aは、取込んだ列アドレスデータをプリデコードし、対応するコラムプリデコーダ線40に対してプリデコードされた列アドレス信号を出力する。
次に、本発明の実施の形態1における階層電源システムについて図4を用いて説明する。本発明の実施の形態1における階層電源システムは、コラム系回路、ロウ系回路等に使用される。
図4は、本発明の実施の形態1における半導体集積回路装置の階層電源システムを示す図である。
図4においては、内部回路の構成としてインバータX1、X2およびX3を代表的に示す。インバータX1、X2およびX3はそれぞれ、PMOSトランジスタP1およびNMOSトランジスタN1を含み、CMOSインバータの構成を備える。PMOSトランジスタP1およびNMOSトランジスタN1は、しきい値が低い。
インバータX1〜X3に対して、動作電源電圧を印加するために、メイン電源線L1、サブ電源線L2と、メイン接地線L3と、そしてサブ接地線L4を配置する。
インバータX1およびX3は、サブ電源線L2とメイン接地線L3との間に接続される。また、インバータX2は、メイン電源線L1とサブ接地線L4との間に接続される。
メイン電源線L1とサブ電源線L2との間には、階層電源制御信号/φcに応答して、メイン電源線L1とサブ電源線L2とを電気的に接続するスイッチトランジスタP0が設けられている。また、メイン接地線L3とサブ接地線L4との間には、階層電源制御信号φcに応答して、メイン接地線L3とサブ接地線L4とを電気的に接続するスイッチトランジスタN0が設けられている。階層電源制御信号φcと/φcとは、互いに逆相関係にあり、アクティブサイクルにおいて制御信号φcは、Hレベルの活性状態となる。
メイン電源線L1に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生させる内部電源電圧降圧回路VDC1aが配置される。サブ電源線L2に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生される内部電源電圧降圧回路VDC1bが配置される。
メイン接地線L3に対しては、外部接地電圧ExtVssレベルから一定電位に上昇した電位を発生させる内部電源電圧昇圧回路VUC1aが配置される。サブ接地線L4に対しては、外部接地電圧ExtVssレベルから一定電位に上昇した電位を発生される内部電源電圧昇圧回路VUC1bが配置される。
内部電源電圧降圧回路VDC1aおよびVDC1bについて説明する。内部電源電圧降圧回路VDC1aは、差動増幅器1aおよびPMOSトランジスタP2aを含む。PMOSトランジスタP2aは、一方の導通端子が外部電源電圧ExtVccと接続され、他方の導通端子がメイン電源線L1と接続される。PMOSトランジスタP2aのゲート電極は、差動増幅器1aの出力を受ける。差動増幅器1aは、基準電圧Vref2とメイン電源線L1の電圧Vccとを入力に受ける。
内部電源電圧降圧回路VDC1bは、差動増幅器1bおよびPMOSトランジスタP2bを含む。PMOSトランジスタP2bの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はサブ電源線L2と接続される。PMOSトランジスタP2bのゲート電極は、差動増幅器1bの出力を受ける。差動増幅器1bは、基準電圧Vref1とサブ電源線L2の電圧SubVccとを入力に受ける。
内部電源電圧昇圧回路VUC1aおよびVUC1bについて説明する。内部電源電圧昇圧回路VUC1aは、差動増幅器2aおよびNMOSトランジスタN2aを含む。NMOSトランジスタN2aの一方の導通端子は、接地電圧(ExtVss)と接続され、他方の導通端子はメイン接地線L3と接続される。NMOSトランジスタN2aのゲート電極は、差動増幅器2aの出力を受ける。差動増幅器2aは、基準電圧Vref3とメイン接地線L3の電圧Vssとを入力に受ける。
内部電源電圧昇圧回路VUC1bは、差動増幅器2bおよびNMOSトランジスタN2b含む。NMOSトランジスタN2bの一方の導通端子は接地電圧(ExtVss)と接続され、他方の導通端子はサブ接地線L4と接続される。NMOSトランジスタN2bのゲート電極は、差動増幅器2bの出力を受ける。差動増幅器2bは、基準電圧Vref4とサブ接地線L4の電圧SubVssとを入力に受ける。
基準電圧Vref1、Vref2、Vref3およびVref4は、内部回路である基準電圧発生回路555で調整する。
次に、図4に示す階層電源システムの動作を、タイミングチャートである図5を用いて説明する。図5は、図4に示す階層電源システムの動作を説明するためのタイミングチャートである。
スタンバイサイクル(時刻t0〜t1,時刻t2〜t3)において、階層電源制御信号φcは、Lレベルに設定する。この状態において、スイッチトランジスタP0およびN0は、オフ状態にある。メイン電源線L1とサブ電源線L2とは、カットオフ状態にある。メイン接地線L3とサブ接地線L4とは、カットオフ状態にある。インバータX1への入力信号INは、Hレベルにある。
2.5ボルトの外部電源電圧ExtVccに対して、1.5ボルトを内部動作電圧と仮定すると、メイン電源線L1の電圧Vccは、1.5ボルトより高く、サブ電源線L2の電圧SubVccは、1.5ボルト付近に設定する(基準電圧Vref1および基準電圧Vref2を調整する)。
これにより、サブ電源線L2と接続されるPMOSトランジスタP1(インバータX3)においては、ゲート電圧(電圧Vcc)が、ソース電圧(電圧SubVcc)より高くなる。すなわち、相対的な負バイアスがゲート電極にかかることになり、この結果リーク電流が減少する。なお、基準電圧Vref1とVref2とを調整することにより、スタンバイサイクルにおけるリーク電流が決定する。
同様に、0ボルトの外部接地電圧ExtVssに対して、0.5ボルトを内部動作電圧と仮定すると、メイン接地線L3の電圧Vssは、0.5ボルトよりも低い電圧となり、サブ接地線L4の電位SubVssは、0.5ボルトに設定される。
これにより、サブ接地線L4と接続されるNMOSトランジスタN1(インバータX2)においては、ゲート電圧(メイン接地電圧Vss)に対して、ソース電圧(SubVss)が高くなる。すなわち、相対的な負バイアスがゲート電極にかかるため、リーク電流が減少する。なお、基準電圧Vref3とVref4とを調整することにより、リーク電流が決定する。
さらに、スタンバイサイクルからアクティブサイクルへの移行時(時刻t1)に、階層電源制御信号φcをHレベルに設定する。スイッチトランジスタP0およびN0がオン状態となる。メイン電源線L1とサブ電源線L2とがショートする。メイン電源線L1とサブ電源線L2の各々の電圧レベルは、対応する内部電源電圧降圧回路VDC1aおよびVDC1bによりコントロールされるため、電圧ドロップの発生を抑制することができる。
同様に、メイン接地線L3とサブ接地線L4とがショートするが、各々の電圧レベルは、対応する内部電源電圧昇圧回路VUC1aおよびVUC1bによりコントロールされるため、電圧ドロップの発生を抑制することができる。
また、各電源線の電圧レベルは、内部電源電圧で決定される所定の設定値(本発明の実施の形態1においては1.5ボルトを仮定)よりも大きくなるため、アクティブサイクルにおけるロジックの動作速度の低下を防ぐことができる。
[実施の形態2]
本発明の実施の形態2における半導体集積回路装置について説明する。本発明の実施の形態2の半導体集積回路装置は、動作タイミングの異なるそれぞれの内部回路に対して、動作電源電圧を動作タイミングに応じて制御するものである。
本発明の実施の形態2における半導体集積回路装置の構成について図6を用いて説明する。
図6は、本発明の実施の形態2における半導体集積回路装置2000の要部の構成を示す図である。図1に示す半導体集積回路装置1000と同じ構成に要素には、同じ符号を付し、その説明を省略する。
図6に示す半導体集積回路装置2000は、コントロール回路20a、バッファ101および102、SMD回路18a(シンクロナスミラーディレイ)、ならびにメモリセルブロック100a〜100dを含む。
コントローラ20aは、バッファ76を介して、外部制御信号入力端子群10から外部制御信号(/WE、/CAS、/RAS、/CS、外部クロックイネーブル信号/CKE等)を受ける。コントロール回路20aはさらに、図示しないモード設定回路から、バーストレングスBL、カスレイテンシCL、または特定のテストを指定するテストモード信号TESTを受ける。コントロール回路20aは、これらの信号に応答して、内部動作を制御する制御信号を発生する。本発明の実施の形態2においては、後述するように、チップセレクト信号/CSに応答して、一定期間の間一定レベルを保持する階層電源制御信号DLCCOおよび/DLCCOを出力する。
バッファ102は、階層電源制御信号DLCCOを取込み、階層電源制御信号DLCCFを出力する。バッファ101は、階層電源制御信号DLCCFを取込み(遅延して)、階層電源制御信号DLCCを出力する。
バッファ68は、外部クロック信号/CLKおよびCLKを取込み、コントロール回路20aに出力する。コントロール回路20aから出力される内部クロックイネーブル信号CKEは、SMD回路18aに伝送される。SMD回路18aは、内部動作(出力動作等)を制御するクロックを発生する。
半導体集積回路装置2000はさらに、ローカルサーキット105、センターサーキット106を含む。センターサーキット106は、チップの動作を指定するコマンドが入力された場合に、最も早く動作を開始する回路である。ローカルサーキット105は、センターサーキット106に遅れて動作を開始する回路である。
階層電源制御信号DLCCFは、センターサーキット106における電源線の電位を制御するために用いる。階層電源制御信号DLCCは、ローカルサーキット105における電源線の電位を制御するために用いる。
図7は、本発明の実施の形態2における階層電源制御信号DLCCOを発生する発生回路の構成を示す図である。図7に示すDLCCO発生回路は、差動増幅器107、バッファ108,114,および116、遅延回路109aおよび109b、インバータ110a,110b,113,および115、NAND回路112aおよび112b,ならびにフリップフロップ111を含む。
差動増幅器107は、PMOSトランジスタP5aおよびP5b、ならびにNMOSトランジスタN5a、N5bおよびN4を含む。差動増幅器107は、チップセレクト信号/CSと基準電位/Vrefとの差を増幅して、信号/OUTを出力する。バッファ108は、信号/OUTを取込み、これをフリップフロップ111、インバータ110、および遅延回路109に出力する。
遅延回路109aは、バッファ108の出力信号を遅延してNAND回路112aに出力する。インバータ110aは、バッファ108の出力信号を反転してNAND回路112aに出力する。遅延回路109bは、バッファ108aの出力信号を遅延してインバータ110bに出力する。NAND回路112bは、インバータ110bの出力とバッファ108の出力とを受ける。
フリップフロップ111は、NAND回路で構成される。フリップフロップ111は、NAND回路112aおよび112bの出力をうける。インバータ113は、フリップフロップ111の出力を反転する。バッファ114は、インバータ113の出力を取込み、制御信号/DLCCOを出力する。インバータ115は、インバータ113の出力を反転する。バッファ116は、インバータ115の出力を取込み、制御信号DLCCOを出力する。
制御信号DLCCOは、チップセレクト信号/CSがLレベルになると、Hレベルに立上がり一定期間Hレベルを保持する。
次に、本発明の実施の形態2における階層電源システムの構成を図8および図9を用いて説明する。
図8および図9は、本発明の実施の形態2における階層電源システムの構成を示す図であり、図8は、ローカルサーキット105に、図9は、センターサーキット106に、それぞれ対応している。
図8および図9においては、内部回路の構成としてインバータX1、…を代表的に示す。インバータX1、…はそれぞれ、PMOSトランジスタP1およびNMOSトランジスタN1を含み、CMOSインバータの構成を備える。インバータX1、…を構成するトランジスタは、いずれもしきい値が低い。
メイン電源線L1とサブ電源線L2との間には、制御信号/DLCC(または/DLCCF)に応答して、メイン電源線L1とサブ電源線L2とを電気的に接続するスイッチトランジスタP0a、P0b、…を所定の間隔で配置する。
メイン接地線L3とサブ接地線L4との間には、制御信号DLCC(または、DLCCF)に応答して、メイン接地線L3とサブ接地線L4とを電気的に接続するスイッチトランジスタN0a、N0b、…を所定の間隔で配置する。
メイン電源線L1に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生させる内部電源電圧降圧回路VDC3a、VDC3b、およびVDC3cを配置する。サブ電源線L2に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生される内部電源電圧降圧回路VDC3dを配置する。
内部電源電圧降圧回路VDC3aは、差動増幅器3aおよびPMOSトランジスタP3aを含む。PMOSトランジスタP3aは、一方の導通端子が外部電源電圧ExtVccと接続され、他方の導通端子はメイン電源線L1と接続される。PMOSトランジスタP3aのゲート電極は、差動増幅器3aの出力を受ける。差動増幅器3aは、高い基準電圧Vref5a(1.8ボルト)とメイン電源線L1の電圧Vccとを入力に受ける。差動増幅器3aは、信号DLCC(またはDLCCF)に応答して動作する。
内部電源電圧降圧回路VDC3bは、差動増幅器3bおよびPMOSトランジスタP3bを含む。PMOSトランジスタP3bの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はメイン電源線L1と接続される。PMOSトランジスタP3bのゲート電極は、差動増幅器3bの出力を受ける。差動増幅器3bは、基準電圧Vref5b(1.5ボルト)とメイン電源線L1の電圧Vccとを入力に受ける。
内部電源電圧降圧回路VDC3cは、差動増幅器3cおよびPMOSトランジスタP3cを含む。PMOSトランジスタP3cの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はメイン電源線L1と接続される。PMOSトランジスタP3cのゲート電極は、差動増幅器3cの出力を受ける。差動増幅器3cは、基準電圧Vref5c(1.5ボルト)とメイン電源線L1の電圧Vccとを入力に受ける。差動増幅器3cは、アクト信号ACTに応答して動作する。
内部電源電圧降圧回路VDC3dは、差動増幅器3dおよびPMOSトランジスタP3dを含む。PMOSトランジスタP3dの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はサブ電源線L2と接続される。PMOSトランジスタP3dのゲート電極は、差動増幅器3dの出力を受ける。差動増幅器3dは、基準電圧Vref5d(1.5ボルト)とサブ電源線L2の電圧SubVccとを入力に受ける。差動増幅器3cは、制御信号DLCC(または、DLCCF)に応答して動作する。
内部電源電圧降圧回路VDC3aは、内部回路におけるリーク電流を低減させるために用いる。内部電源電圧降圧回路VDC3aが活性化すると、メイン電源線L1の電圧Vccは、1.8ボルトに設定される。この場合、メイン電源線L1の電圧Vccは、サブ電源線L2の電圧SubVccより0.3ボルト高く設定される。オフ状態のトランジスタ(インバータ構成要素)のゲート電極に、負電圧が印加される。これにより、リーク電流が低減する。
内部電源電圧降圧回路VDC3bは、スタンバイサイクルにおいて、メイン電源の電圧Vccを1.5ボルトに設定するために用いる。内部電源電圧降圧回路VDC3bは、間欠動作の必要はない。
内部電源電圧降圧回路VDC3cは、チップがアクティブ状態になった際に活性化される。チップが動作するために必要とする比較的大きな電流を供給する。
内部電源電圧降圧回路VDC3dは、内部電源電圧降圧回路VDC3aが活性化されるのに応じて、サブ電源線L2の電圧SubVccを1.5ボルトに設定する。なお、これを取り除いた構成であってもよい。内部電源電圧降圧回路VDC3dを用いない場合には、サブ電源線L2の電圧SubVccは、内部電源電圧降圧回路VDC3aで決まるメイン電源線L1の電圧Vccに対してリーク電流で決まる任意の電位に設定される。
次に、本発明の実施の形態2における階層電源システムの動作についてタイミングチャートである図10を用いて説明する。
図10は、本発明の実施の形態2における階層電源システムの動作を示すタイミングチャートである。
スタンバイサイクル(時刻t0〜t1)においては、階層電源制御信号DLCCおよびDLCCFは、Lレベルである。内部電源電圧降下回路VDC3a、VDC3b、およびVDC3dはオン状態にある。内部電源電圧降下回路VDC3cは、オフ状態にある。
メイン電源線L1の電圧Vccは1.8ボルト、サブ電源線L2の電圧SubVccは、1.5ボルト、メイン接地線L3の電圧Vssは0ボルト,そしてサブ接地線の電圧SubVssは、リーク電流で決まる電圧レベル(0ボルトから高い値)に設定される。
この場合、ローカルサーキット105およびセンターサーキット106のいずれにおいても、メイン電源線L1の電圧Vccが、サブ電源線L2の電圧SubVccよりも0.3V高くなる。このため、リーク電流が低く抑えられる。
時刻t1におけるクロック信号CLKの立上がりエッジにおいて、チップセレクト信号/CSが入力される。チップセレクト信号/CSのLレベルの立下がりに応答して、階層電源制御信号DLCCFがHレベルに立上がる。続いて、階層電源制御信号DLCCがHレベルに立上がる。アクト信号ACTが入力される。
内部電源電圧降下回路VDC3aおよVDC3dがオフ状態になる(VDC3dは、オン状態でもよい)。内部電源電圧降下回路VDC3cが、オン状態になる。
メイン電源線L1とサブ電源線L2とがショートする。メイン電源線L1の電圧Vccが、サブ電源線L2の電圧SubVccに向かって放電される。サブ電源電圧SubVccは、メイン電源線L1の電圧Vccに向かって充電される。
メイン接地線L3とサブ接地線L4とがショートする。サブ接地線L4の電圧SubVssが、メイン接地線L3の電圧Vssに向かって放電される。メイン接地線L3の電圧Vssは、サブ接地線L3の電圧SubVssに向かって充電される。その後、回路内の電流消費に従って、それぞれの電圧レベルは、接地電位レベルに向かって放電される。これらの動作は、センターサーキット106、ローカルサーキット105の順で行なわれる。
アクト信号ACTが入力し、チップが活性状態になる。アクト信号が入力された時点(t1)から、3サイクルの期間(t2まで)は、ロウ系のアクセスが行われる。メモリアレイの動作が開始され、ワード線が活性状態となる。メモリセルから電荷が読出され、センスアンプにてメモリセルに記憶された信号が増幅される。この一連の動作が終了するとコラム系のアクセスが可能な状態となる。
ロウ系のアクセス動作が完了すると、続く4クロック(t3まで)は、ロウ系のアクセスの状態が保持される。センスアンプに信号を保持する回路以外の回路はリセット可能な状態になる。
したがって、時刻t2以降は、階層電源制御信号DLCCFおよびDLCCを、Lレベルに設定する。内部電源電圧降下回路VDC3a、VDC3b、VDC3c、およびVDC3dは、オン状態になる。
メイン電源線L1およびサブ電源線L2、ならびにメイン接地線L3およびサブ接地線L4が、カットオフ状態となる。メイン電源線L1の電圧Vccは、1.8Vに充電され、サブ電源線L2の電圧SubVccは、1.5Vに充電される。また、メイン接地線L3の電圧Vssは、0Vに放電され、サブ接地線L4の電圧SubVssは、リーク電流で決定される電位に放電される。
コラム系アクセス、たとえば、READサイクルが開始(時刻t3)された場合でも、同様の動作が実行される。一連のREADサイクルの実行終了と同時に、リーク電流を低減させるため、メイン電源線L1の電圧をサブ電源線の電圧SubVccに対して高く設定する。
このように、階層電源制御信号を動作タイミングに併せて発生させることで、各回路の動作タイミングに応じて、効率的なリーク電流の低減を図ることができる。
なお、内部回路が動作しているサイクル(時刻t1から3サイクル経過後の時刻t2まで)では、サブ電源線L2の電圧SubVccとメイン電源線L1の電圧Vccとの間に差が生じる。これは、スイッチトランジスタN0およびP0におけるオン抵抗によるものであるが、スイッチトランジスタのインピーダンスを低くすることにより、この電位差を小さくすることができる。
[実施の形態3]
本発明の実施の形態3における半導体集積回路装置について説明する。本発明の実施の形態3の半導体集積回路装置は、動作タイミングの異なるそれぞれの内部回路に対して、別個独立に動作電源電圧を制御するものである。
本発明の実施の形態3における半導体集積回路装置の構成について図11を用いて説明する。
図11は、本発明の実施の形態3における半導体集積回路装置3000の要部の構成を示す図である。半導体集積回路装置2000と同じ構成に要素には、同じ記号および符号を付し、その説明を省略する。
図11に示す半導体集積回路装置3000では、センターサーキット106を制御する階層電源制御信号DLCCFを、外部クロックイネーブル信号/CKEに基づき生成する。外部クロックイネーブル信号/CKEが入力されると、チップは、外部制御信号の入力受付けが可能となる。
ローカルサーキット105を制御する階層電源制御信号DLCCは、実施の形態2と同様に、コントロール回路20aから出力される階層電源制御信号DLCCOを遅延した信号を用いる。すなわち、階層電源制御信号DLCCFおよびDLCCをそれそれ独立して発生する。
なお、ローカルサーキット105およびセンターサーキット106における電圧レベルの調整については、たとえば、図8および図9に示す構成で行なう。
次に、本発明の実施の形態3の半導体集積回路装置における階層電源システムの動作についてタイミングチャートである図12を用いて説明する。
図12は、本発明の実施の形態3の半導体集積回路装置3000における階層電源システムの動作を示すタイミングチャートである。
図12において、信号B0〜B3はバンクアドレスを示す信号であり、信号Rowはロウ系(行系)の回路動作の活性化を指示するロウ系アクセス識別信号であり、信号Clmはコラム系(列系)の回路動作の活性化を指示するコラム系アクセス識別信号であり、信号ACTはコントロール回路20aから伝達されるバンク活性化信号である。
さらに、フラグ信号はバンクがアクセスされた(バンクがヒットした)のを受けて保持された信号であり、信号PCはコントロール回路20aから伝達され、選択されたバンクのプリチャージ動作を指示するプリチャージ信号であり、信号APCはコントロール回路20aから伝達される、すべてのバンクのプリチャージ動作を指示するオールバンクプリチャージ信号である。
信号EQはローカルビット線イコライズ信号であり、信号RXTはローカルワード線活性化信号であり、信号SEはローカルセンスアンプ活性化信号である。
信号l.EQはバンク対応のローカルビット線イコライズ信号であり、信号l.RXTはバンク対応のローカルワード線活性化信号であり、信号l.SEはバンク対応のローカルセンスアンプ活性化信号であり、電位MWLはメモリセルブロック(バンク)内のメインワード線の電位レベルである。
つぎに、動作について説明する。外部クロックイネーブル信号CKEが入力される。階層電源制御信号DLCCFが、Hレベルに立上がる。センターサーキット106におけるメイン電源線L1およびサブ電源線L2、ならびにメイン接地線L3およびサブ接地線L4がショートする。ローカルサーキット105は、スタンバイ状態にある。
時刻t1におけるクロック信号CLKの立上がりのエッジにおいて、デコードされたバンクアドレスB3が活性状態になる。対応するバンクの選択が行なわれる。信号Rowが活性状態にある。
活性化されたアクト信号ACTのレベルがフラグ信号として保持される。この時点で、階層電源制御信号DLCCがHレベルに立上がる。ローカルサーキット105におけるメイン電源線L1およびサブ電源線L2、ならびにメイン接地線L3およびサブ接地線L4がショートする。ローカルサーキット105がアクティブサイクルに入る。
信号l.EQのレベルは、Lレベルに立下がる。信号l.RXTが、活性状態となり、選択された行の主ワード線の電位レベルが活性状態(“H”レベル)へと変化する。信号l.SEが、Hレベルになる。
時刻t2において、階層電源制御信号DLCCは、Lレベルに立下がる。ここで、時刻t1からt2は、1つのバンクのロウ系制御に必要とされる期間である。ローカルサーキット105は、スタンバイサイクルに入る。
時t2からt3の間は、リーク電流をカットするために、回路をリセットする。ただし、信号l.EXQ、l.RXT、l.SE等の制御信号は、ラッチしておく。
時刻t3において、プリチャージ信号PCが入力される。この時点で、さらに、階層電源制御信号DLCCが、Hレベルに立上がる。ローカルサーキット105において、電源線がショートする。
時刻t3におけるクロック信号CLKの立上がりのエッジにおいて、デコードされたバンクアドレスB3が活性状態になる。対応するバンクの選択が行なわれる。信号Rowが活性状態にある。プリチャージ信号PCがHレベルに立上がる。
このように構成することにより、動作タイミングの異なる内部回路を個別に制御することが可能となる。特に、センターサーキット106におけるメイン電源線L1とサブ電源線L2とのショートのタイミングは、外部からの信号の入力開始タイミングに対して高速に加速される。したがって、効率的なリーク電流の低減を図ることができる。
[実施の形態4]
本発明の実施の形態4における半導体集積回路装置について説明する。本発明の実施の形態4の半導体集積回路装置は、ロウ系の回路とコラム系の回路とで個別に動作電源電圧を制御するものである。
半導体集積回路装置の動作としては、メモリセルを選択してデータの取出すロウ系回路の動作と、複数選択されたロウ系のデータの中から選択的に特定のデータを取出し、チップ外部とデータのやり取りを行なうコラム系回路の動作とが存在する。
ロウ系の動作を行なう期間中、コラム系の動作を行なう必要がない。そこで、ロウ系のコマンドが入力された時点で、ロウ系回路におけるメイン電源線L1とサブ電源線L2とをショートし、メイン接地線L3とサブ接地線L4とをショートする。コラム系回路は、スタンバイ状態を保持し、リーク電流を低減するようにする。
コラム系の動作を行なう期間中、ロラ系の動作を行なう必要がない。そこで、コラム系のコマンドが入力された時点で、コラム系回路におけるメイン電源線L1とサブ電源線L2とをショートし、メイン接地線L3とサブ接地線L4とをショートする。ロウ系回路は、スタンバイ状態を保持し、リーク電流を低減するようにする。
さらに、ロウ系回路は、ロウ系のアドレス選択に関わる系、ワード選択に関わる系、センスアンプの活性化に関わる系等に分類される。これらの系は、ロウアドレスが入力されてから、順次異なるタイミングで動作する。したがって、各々の系に対して、動作タイミングにあわせて、メイン電源線L1とサブ電源線L2とをショートし、メイン接地線L3とサブ接地線L4とをショートする。
また、コラム系回路は、コラム系のアドレス選択に関わる系、選択線の活性化に関わる系、読出動作に関わる系、書込動作に関わる系等に分類される。これらの系は、順次異なるタイミングで動作する。したがって、各々の系に対して、動作タイミングにあわせて、メイン電源線L1とサブ電源線L2とをショートし、メイン接地線L3とサブ接地線L4とをショートする。
以下、具体例を挙げて説明する。なお、全体構成は、図1に示す実施の形態1における半導体集積回路装置1000と同じであり説明を省略する。また、階層電源システムとして、実施の形態1〜実施の形態2におけるいずれのシステムを用いてもよい。
本発明の実施の形態4におけるロウプリデコーダ36の構成について図13を用いて説明する。
図13は、本発明の実施の形態4のロウプリデコーダ36の構成を示す概略ブロック図である。
コマンドアドレスバス53bは、ロウ系の回路動作を活性化することを指示する信号Row、コラム系の回路動作を活性化することを指示する信号Clm、内部回路の回路動作の活性化を指示する信号ACT、バンクのリセット(プリチャージ)を指示する信号PC、すべてのバンクのプリチャージを指示する信号APC、ビット線等のイコライズが解除されることや、不使用ビット線をセンスアンプより切り離す作業を行なうことを指示する信号EQ、ワード線の活性化を指示する信号RXT、センスアンプの活性化を指示する信号SE等の伝達を行なう。
バンクアドレスバス51cは、バンクデコーダ22によりデコードされたバンクアドレス信号B0〜B7を伝達する。アドレスバス50cは、アドレスドライバ52からのアドレス信号の伝達を行なう。
バンクアドレス信号のうち、たとえばビットデータB7が活性状態となり、かつ信号Rowが活性状態となると、AND回路203からは活性状態の信号が出力され、これに応じてワンショットパルス発生回路204から活性なワンショットパルスが出力される。
これに応じて、ドライバ回路206が活性化され、信号ACTのレベルが取込まれて、レベル保持回路208にそのレベルが保持される。
同様にワンショットパルス発生回路204からの信号に応じて、ドライバ回路210が活性化し、信号PCのレベルを受けて、レベル保持回路212がそのレベルを保持する。一方、ドライバ回路210からの出力を受けて、ワンショットパルス発生回路214は、レベル保持回路208に対してリセット信号を出力する。インバータ220は、レベル保持回路208からの出力信号に応じて、活性化され、信号EQを受けて出力する。一方、NOR回路222は、信号APCおよびワンショットパルス発生回路214からの信号を受けて、否定論理和演算結果を出力する。フリップフロップ回路224は、インバータ220からの出力に応じてセットされ、NOR回路222からの出力に応じてリセットされる。後に説明する階層電源制御信号SCRCにより活性化されるドライバ回路226は、フリップフロップ回路224の出力を受けて、出力し、このドライバ回路226の出力レベルを、レベル保持回路228が保持する。このレベル保持回路228の出力レベルは、信号l.EQとして、対応するメモリセルブロックに対して与えられる。
同様にして、フリップフロップ回路234は、レベル保持回路208からの信号に応じて活性化され、コマンドデータバス53bを介して伝達される信号RXTのレベルを入力として受けるインバータ230の出力によりセットされ、ワンショットパルス発生回路214およびコマンドデータバス53bを介して伝達される信号APCのレベルを受けるNOR回路232の出力によりリセットされる。
図14は、図13に示すフリップフロップ回路224、ドライバ回路226およびレベル保持回路228の構成を示す概略ブロック図である。
図14を参照して、フリップフロップ回路224は、互いに交差接続されたNAND回路2240および2260と、この交差接続されたNAND回路2240および2260に対する接地電位の供給状態を切換える切換回路2274と、NAND回路2240および2260に対する電源電位Vccの供給状態を切換える切換回路2254とを含む。切換回路2254および2274により階層電源が構成されている。
ここで、フリップフロップ回路224の具体的構成の一例について、図71を用いて説明する。図71は、フリップフロップ回路224の構成を示す回路図である。図71を参照して、フリップフロップ回路224は、RSフリップフロップを形成するために相互に接続されたNAND回路2240および2260と、NAND回路2240の電源側に互いに並列に接続されたPMOSトランジスタ4443および4444と、NAND回路2240の接地側に互いに並列に接続されたNMOSトランジスタ4445および4446と、NAND回路2260の電源側に互いに並列に接続されたPMOSトランジスタ4447および4448と、NAND回路2260の接地側に互いに並列に接続されたNMOSトランジスタ4449および4450と、NAND回路4451と、インバータ4452および4453と、NAND回路2240の出力ノードとメイン接地線(図中記号4016)との間に接続されたNMOSトランジスタ4454と、メイン電源線(図中記号4010)とNAND回路2260の出力ノードとの間に接続されたPMOSトランジスタ4455とを含む。
ここで、トランジスタ4443〜4450のしきい値は、好ましくは、他のトランジスタ(たとえばNAND回路2240,2260中のトランジスタ)のしきい値よりも大きく設定される。
NAND回路4451は、リセット信号RESETおよびパワーオンリセット信号/PORを受ける。NAND回路4451の出力信号は、インバータ4452を介してNAND回路2260に与えられる。パワーオンリセット信/PORは、直接トランジスタ4455のゲートに与えられるとともに、インバータ4453を介してトランジスタ4454のゲートに与えられる。このパワーオンリセット信号/PORは、電源投入時から所定時間だけLレベルになるので、トランジスタ4454および4455はともにオンになる。このため、NAND回路2240は、Lレベルの信号を出力し、NAND回路2260は、Hレベルの信号を出力する。このように、フリップフロップ回路224は、電源投入時にリセットされる。
また、動作モードにおいては制御信号SCRCがHレベルになり、制御信号/SCRCがLレベルになるので、トランジスタ4444,4446,4448,4450がいずれもオンになる。NAND回路2240および2260には、電源電圧VCCおよび接地電圧VSSが供給されるため、このフリップフロップ回路224は通常どおり動作する。
一方、待機モードにおいては制御信号SCRCがLレベルになり、制御信号/SCRCがHレベルになるので、トランジスタ4444,4446,4448,4450はいずれもオフになる。このフリップフロップ224がHレベルの信号を出力している場合、つまりNAND回路2240がHレベルの信号を出力し、かつNAND回路2260がLレベルの信号を出力する場合、トランジスタ4443および4449がオンになり、トランジスタ4445および4447がオフになる。したがって、NAND回路2240からはHレベルの出力として電源電圧VCCは出力されるが、NAND回路2240中に流れるサブスレッショルドリーク電流は低減される。また、NAND回路2260からは、Lレベルの出力信号として接地電圧VSSが出力されるが、NAND回路2260中に流れるサブスレッショルドリーク電流は低減される。
一方、このフリップフロップ回路224がLレベルの信号を出力している場合、つまりNAND回路2240がLレベルの信号を出力し、かつNAND回路2260がHレベルの信号を出力する場合は、トランジスタ4445および4447がオンになり、トランジスタ4443および4449がオフになる。したがって、NAND回路2240からはLレベルの出力信号として接地電圧VSSが出力されるが、NAND回路2240中に流れるサブスレッショルドリーク電流は低減される。また、NAND回路2260からは、Hレベルの出力信号として電源電圧VCCが出力されるが、NAND回路2260中に流れるサブスレッショルドリーク電流は低減される。
ドライバ回路226は、信号SCRCを一方の入力ノードに受け他方にフリップフロップ回路224の一方の出力信号を受けるNAND回路2286と、一方の入力ノードに信号SCRCを受け、他方の入力ノードにフリップフロップ回路224の他方の出力を受けるNAND回路2288と、NAND回路2286の出力によりゲート電位が制御され、ソースに階層電源電位SubVssを受けるNMOSトランジスタ2290と、ゲートに、NAND回路2288の出力を受け、ソースに階層電源電位SubVccを受けるPMOSトランジスタ2292とを含む。このNMOSトランジスタ2290のドレインと、PMOSトランジスタ2292のドレインとが接続され、この接続ノードの電位レベルがドライバ回路226の出力電位となっている。
レベル保持回路228は、信号SCRC2により活性化されるラッチ回路である。信号SCRCが活性状態である場合は、NAND回路2240および2260は、電源電位を受けて動作し、信号SCRCが不活性化している期間中は、そのリーク電流が減少するように自己バイアスが発生する構成(階層電源システム)となっている。
図13を参照して、ドライバ回路236は、フリップフロップ回路234の出力を受けて、信号SCRCにより活性化される。
ドライバ回路236の出力レベルは、レベル保持回路238により保持され、このレベル保持回路238の出力レベルが、信号l.RXTとして、対応するメモリセルブロックに出力される。
フリップフロップ回路244は、コマンドデータバス53bを介して伝達される信号SEを受けて、レベル保持回路208の出力レベルに応じて活性化されるインバータ240の出力によりセットされ、ワンショットパルス発生回路214の出力信号およびコマンドデータバス53bを介して伝達される信号APCのレベルを受けるNOR回路242の出力に応じてリセットされる。ドライバ回路246は、フリップフロップ回路244の出力を受け、信号SCRCにより活性化される。ドライバ回路246の出力レベルは、レベル保持回路248により保持され、このレベル保持回路248の出力レベルが信号l.SEとして、対応するメモリセルブロックに与えられる。
ラッチ回路250は、信号SCRCの活性化に応じてリセットされ、ワンショットパルス発生回路204の活性化に応じて活性化し、アドレスデータバス50cを介して伝達されたアドレス信号を保持する。ラッチ回路250からの出力は、冗長アドレスデコーダ(図示せず)に伝達されるとともに、プリデコーダ252に与えられ、プリデコードされた結果が、ドライバ回路254に与えられる。
ドライバ回路254からの出力は、それぞれレベル保持回路256により保持され、レベル保持回路256が、それぞれ対応するロウプリデコーダ線に出力される。
ドライバ回路254は、レベル保持回路208により保持されるフラグの値および信号SCRCにより制御されるドライバ制御回路302により活性化される。
ドライバ制御回路302は、一度活性化された後、不活性化すると、アクト信号ACTが活性期間中は、再び信号SCRCが活性状態となっても、ドライバ回路254を不活性状態に維持するための回路である。
ドライバ制御回路302によりドライバ回路254を制御することにより、一旦行アドレスがレベル保持回路256に取込まれた後、再び信号SCRCが活性化されるような動作が挿入された場合に、ドライバ回路254が活性状態となって、レベル保持回路256の保持されているプリデコーダアドレス信号がリセットされてしまうことを防止する。
ドライバ回路254が活性状態となった後、不活性化すると、アドレス信号の取込を行なう回路系であるラッチ回路250、プリデコーダ252とはリセットされているため再びドライバ回路254が活性状態となると、レベル保持回路256に保持されているプリデコードアドレス信号がリセットされてしまうことを防止する構成となっている。
図13に示したロウプリデコーダ36の構成のうち、レベル保持回路208、212、228、238および248ならびにレベル保持回路256と、対応するメモリセルブロックを含む領域301は、階層電源制御信号により制御されない領域であって、活性状態中においても、待機状態中においても、常に電源電位Vccと接地電位Vssとを電源電位として動作する領域である。
これに対して、ロウプリデコーダ36のうち領域301以外の領域(領域202)は、階層電源制御信号SCRCにより制御される領域であって、階層電源制御信号SCRCが活性状態である期間中は、電源電位Vccおよび接地電位Vssとを受けて動作し、階層電源制御信号SCRCが不活性状態(“L”レベル)である期間中は、電源電位Vccよりも低い電位および接地電位Vssよりも高い電位をそれぞれ電源電位として動作する。
なお、ドライバ制御回路302により、信号RDDRVが一旦活性化した後そのレベルを維持している期間中は、信号SCRCを不活性化することによりリセットされた後に再び信号SCRCが活性状態となっても、信号RDDRVが活性状態となることはない。
図13に示したロウプリデコーダ36の動作を、タイミングチャートである図15を用いて説明する。
図15は、図13に示したロウプリデコーダ36の動作を説明するためのタイミングチャートである。
図15において、信号SCRC2はコントロール回路20により発生する信号であって、レベル保持回路228、238、248等のリセットを行う信号であり、信号RDDRVは、ドライバ回路254の動作を制御する信号である。
信号B0〜B7はバンクアドレスを示す信号であり、信号Rowはロウ系(行系)の回路動作の活性化を指示するロウ系アクセス識別信号であり、信号Clmはコラム系(列系)の回路動作の活性化を指示するコラム系アクセス識別信号であり、信号ACTはコントロール回路20から伝達されるバンク活性化信号である。
さらに、フラグ信号はバンクがアクセスされた(バンクがヒットした)のを受けてレベル保持回路208に保持された信号であり、信PCはコントロール回路20から伝達され、選択されたバンクのプリチャージ動作を指示するプリチャージ信号であり、信号APCはコントロール回路20から伝達されすべてのバンクのプリチャージ動作を指示するオールバンクプリチャージ信号である。
信号l.EQはレベル保持回路228により保持されるローカルビット線イコライズ信号であり、信号l.RXTはレベル保持回路238により保持されるローカルワード線活性化信号であり、信号l.SEはレベル保持回路248により保持されるローカルセンスアンプ活性化信号であり、電位MWLはメモリセルブロック(バンク)内のメインワード線の電位レベルである。信号Add.ラッチは、レベル保持回路256に保持されるアドレス信号である。
つぎに、動作について説明する。時刻t1におけるクロック信号CLKの立上がりのエッジにおいて、デコードされたバンクアドレスのうちビットB7が活性状態であって、対応するバンクの選択が行なわれる。このとき、信号Rowも活性状態であるため、これに応じて、ワンショットパルス発生回路204から活性なワンショットパルスが出力される。これに応じて、コマンドデータバス53bにより伝達されている活性状態の信号ACTがドライバ回路206によりドライブされ、レベル保持回路208に、この活性状態のアクト信号ACTのレベルがフラグ信号として保持される。フラグ信号の活性化に応じて、ラッチ回路224には、コマンドデータバス53bにより伝達された信号EQのレベルが保持される。
これに応じて、ドライバ制御回路302から出力されるドライバ制御信号RDDRVが活性状態(“H”レベル)となる。
また、階層電源制御信号SCRCおよび信号SCRC2が活性状態となる。領域202中の回路は、すべて電源電位Vccと接地電位Vssとを受けて動作している。ロウアドレス系スイッチ(ショート用のスイッチトランジスタ)をオン状態とし、ロウアドレス系の回路における電源線をショートさせる。
ラッチ回路224に取込まれた信号EQのレベルは、ドライバ回路226によりドライブされ、レベル保持回路228に内部イコライズ信号l.EQとして保持される。
一方、時刻t2において、コマンドデータバス53bにより伝達される信号RXTが、活性状態となり、このレベルがラッチ回路234に取込まれる。これに応じて、レベル保持回路238は、ローカルワード線活性化信号l.RXTのレベルを活性状態に保持する。
時刻t1からt2の間に、ワード線系スイッチをオン状態とし、ワード線選択のための回路における電源線をショートさせる。
センス系スイッチをオン状態とし、センスアンプの周辺回路における電源線をショートさせる。
時刻t3において、コマンドデータバス53bにより伝達された信号SEのレベルが活性状態となり、このレベルがラッチ回路244に取込まれる。
これに応じてレベル保持回路248は、内部センスアンプ活性化信号l.SEのレベルを活性状態に保持する。
ローカルワード線活性化信号l.RXTの活性化に応じて、選択された行の主ワード線の電位レベルが活性状態(“H”レベル)へと変化する。
2クロック目(時刻t4)において、ロウアドレス系スイッチをオフ状態とする。続いて(時刻t5)、ワード線系スイッチをオフ状態とする。各回路において、電源線をカットオフ状態にする。
アドレスバス50cを介して伝達されたアドレス信号は、ラッチ回路250によりラッチされ、プリデコーダ252によりプリデコードされた後、ドライバ254によりドライブされ、ロウプリデコーダ線PDLのレベルが、それぞれ対応するレベルへと駆動される。ロウプリデコーダ線PDLのレベルによりプリデコーダ252により時刻t6において、信号SCRCが不活性状態(“L”レベル)へと変化する。同じく信号RDDRVが、不活性状態となる。
時刻t1から時刻t6までの期間が、1個のバンクのロウ系の回路の動作に必要とされる期間である。
信号SCRCが不活性状態となることにより、領域202中に含まれる回路は、リーク電流が小さくなる動作モードへと移行する。
これに対し、レベル保持回路228、238および248からそれぞれ出力される内部イコライズ信号l.EQ、内部ワード線活性化信号l.RXTおよび内部センスアンプ活性化信号l.SEは、そのレベルを保持する。
時刻t7において、センス系スイッチをオフ状態とし、電源線をカットオフ状態にする。
時刻t8におけるクロック信号CLKの立上がりのエッジにおいて、バンク信号B7および信号Rowが活性化状態となり、かつプリチャージ信号PCが活性状態となることにより、ドライバ回路210を介して入力された信号PCのレベルを受けて、ワンショットパルス発生回路214から出力される信号により、NOR回路222、232および242が駆動され、フリップフロップ回路224、234および244のレベルがリセットされる。
信号SCRCも時刻t8において活性状態となるので、これに応じて、信号l.EQ、l.RXTおよびl.SEは、それぞれリセットする。また、ラッチ回路250の保持するレベルも信号SCRCの活性化に応じてリセットされ、これに応じて、ロウプリデコード線PDLのレベルもリセットされる。
時刻t6からt8の期間においては、リーク電流を減少させるために、領域202中に含まれる回路はリセットされてしまうが、信号l.EQ、信号l.RXT、信号l.SEおよびロウプリデコーダ線PDLのレベルは、すべてそのレベルを保持する。
このように、活性化されたバンクに対するコマンド信号およびアドレス信号の取込を行なうための一定期間(時刻t1から時刻t6までの期間)が終了した後は、領域202中に含まれる回路については、階層電源構成により、リーク電流を抑制することが可能であるため、待機状態におけるリーク電流を減少させるばかりでなく、バンクが活性状態となっている期間中のリーク電流をも低減させることが可能となる。また、各ロウ系の回路毎に、個別に、電源線の電圧レベルを制御することが可能となる。
図16は、図13に示したロウプリデコーダ36の構成において、複数の異なるバンクへのアクセスが連続して起こる場合の動作を説明するためのタイミングチャートである。
図15と同様に、時刻t1において、バンクアドレスB7が活性状態であって、信号Rowが活性状態であることに応じて、コマンドデータバス53bから活性状態となっている信号ACTのレベルが、レベル保持回路208に取込まれる。これに応じて、レベル保持回路208から出力されるフラグのレベルは“H”レベルへと変化する。
以後は、図15に示したのと同様にして、このバンクアドレスB7に対応するバンクの動作が行なわれる。
引続いて、時刻t5において、バンクアドレスB2および信号Rowが活性状態となって、時刻t1に選択されたのとは異なる他のバンクへのロウアクセスが行なわれる。このとき、信号RDDRVは、一度活性化後、不活性となった後には、他のバンクへのアクセスがセットされても活性化されず、時刻t1において選択されたバンクにおけるロウプリデコーダ線のレベルは、もとのレベルを維持することになる。
これらの過程において、ロウアドレス系スイッチ、ワード線系スイッチ、センス系スイッチを図15で示したタイミングでON/OFFさせる。
以上のように、たとえば、ロウアドレス系、ワード線選択系、センス系のそれぞれにおけるショートのタイミングを制御することにより、スタンバイサイクルおよびアクティブサイクルでの消費電力を低減することが可能である。
次に、コラム系の回路について、コラムデコーダを代表例として、図17を用いて説明する
図17は、本発明の実施の形態4のコラムプリデコーダ34の構成を示す概略ブロック図である。
図17を参照して、コントロール回路20からは、コマンドデータバス53bを介して、読出動作を指示するためのリード系アクセス識別信号READと、書込動作を指示するためのライト系アクセス識別信号WRITEと、オートプリチャージ動作を指示するためのオートプリチャージ識別信号ATPCと、各バンク毎にバースト動作の終了を指示するためのバースト終了識別信号BENDと、コラム選択動作中に他のバンクが選択された場合、このコラム選択動作を強制的に終了させることを指示するターミネーション識別信号TERMと、プリチャージ動作の終了を指示するためのプリチャージ動作識別信号PCCMPが伝達される。
また、信号BACTは、バンクが選択されるのにともなって、レベル保持回路208に保持されるフラグ信号である。
コラムプリデコーダ34は、コマンドデータバス53bにより伝達される信号Clmと対応するバンクアドレス信号B7を受けるAND回路510と、AND回路510の出力が活性化するのに応じてワンショットパルス信号を出力するワンショットパルス生成回路512と、フラグ信号BACTの活性化に応じて活性化され、ワンショットパルス生成回路512の出力をドライブするドライブ回路514と、信号ATPC、信号BENDおよび信号TERMを受けるOR回路516と、ドライブ回路514の出力によりセットされ、OR回路516の出力によりリセットされ、コラム系の動作が活性化されたことを示すコラムフラグ信号ColumnFLAGを出力するフリップフロップ回路518とを含む。
コラムプリデコーダ34は、さらに、コラムフラグ信号ColumnFLAGの活性化に応じて活性化され、コマンドデータバス53bにより伝達された信号READをドライブするインバータ回路520と、信号WRITE、信号ATPC、信号BENDおよび信号TERMを受けるOR回路522と、インバータ回路520の出力によりセットされ、OR回路522の出力によりリセットされ、読出動作が活性化されたことを示すリードフラグ信号READFLAGを出力するフリップフロップ回路524とを含む。
コラムプリデコーダ34は、さらに、コラムフラグ信号ColumnFLAGの活性化に応じて活性化され、コマンドデータバス53bにより伝達された信号WRITEをドライブするインバータ回路530と、信号READ、信号ATPC、信号BENDおよび信号TERMを受けるOR回路532と、インバータ回路530の出力によりセットされ、OR回路532の出力によりリセットされ、書込動作が活性化されたことを示すライトフラグ信号WriteFLAGを出力するフリップフロップ回路524とを含む。
コラムプリデコーダ34は、さらに、コラムフラグ信号ColumnFLAGを受けて所定クロック時間遅延するシフト回路542と、フラグ信号BACTおよびシフト回路542の出力を受けるOR回路544と、OR回路544の出力の活性化に応じて活性化され、コマンドデータバス53bにより伝達された信号ATPCをドライブするインバータ回路540と、コマンドデータバス53bにより伝達された信号PCCMPを受けるインバータ回路546と、インバータ回路540の出力によりセットされ、インバータ回路546の出力によりリセットされ、オートプリチャージ動作が活性化されたことを示すオートプリチャージフラグ信号ATPCFLAGを出力するフリップフロップ回路548とを含む。
コラムプリデコーダ34は、さらに、ワンショットパルス発生回路512の出力信号に応じて活性化され、アドレスバス50cにより伝達されたコラム信号を取りこむラッチ回路550を含む。ラッチ回路550は、信号SCRCの活性化に応じてリセットされる。
コラムプリデコーダ34は、さらに、ラッチ回路550に保持されたコラムアドレスの下位ビットに応じて、活性化する列選択線(図示せず)に対応するアドレス信号の下位ビットを調整する偶数ビット調整回路552および奇数ビット調整回路554と、ラッチ回路550からの上位ビットデータをプリデコードするプリデコーダ556と、偶数ビット調整回路552からの下位ビットデータをプリデコードするプリデコーダ557と、奇数ビット調整回路554からの下位ビットデータをプリデコードするプリデコーダ558と、信号READまたは信号WRITEにより活性化され、プリデコーダ556、557および558からのプリデコード信号を所定数のクロック(たとえば、2クロック)だけ遅延して出力するシフト回路560と、冗長デコーダ(図示せず)からのアドレスが欠陥アドレスに相当しないことを示す信号Missに応じて活性化され、シフト回路560からの出力を受けてコラムプリデコード線のレベルをシフト回路560の出力信号に応じてドライブするドライブ回路562を含む。
図17に示したコラムプリデコーダ34の読出動作を、タイミングチャートである図18および図19を用いて説明する。
図18および図19は、図17に示したコラムプリデコーダ34の読出動作を説明するためのタイミングチャートである。なお、参考のため、図19においては、ロウ系回路の状態も示している。
図18および図19を参照して、時刻t1において、選択されたバンクが活性化し、イコライズ信号EQの不活性化に応じて、ローカルイコライズ信号l.EQも不活性化して、選択されたバンク中のビット線対等のイコライズ状態が解除される。信号SCRC、SCRC2が活性状態となる。
時刻t1から順次、ロウアドレス系スイッチ、ワード線系スイッチ、センス系スイッチがオン状態とし、各々の電源線をショート状態とする。そして、所定のタイミングで、オフ状態とし、各々の電源線をカットオフ状態とする。
時刻t2において、ワード線活性化信号RXTが活性化し、ロウアドレス信号に応じてワード線の選択動作が行われ、時刻t3においてセンスアンプ活性化信号SEの活性化に応じて、ローカルセンスアンプ活性化信号l.SEも活性化して選択された複数のメモリセルからのデータが対応するビット線電位として増幅される。
時刻t4において、信号READが活性化し、読出動作が指定されると、フラグ信号ColumnFLAGおよびREADFLAGが活性化する。一方、コラムアドレス信号が選択されたバンクに取りこまれ、時刻t5およびt6において選択されたメモリセルからのデータのがバンクから読み出され、保持される。時刻t6において、バースト長4分のデータの読出が完了するのに応じて、信号BENDが活性化する。
時刻t4から順次、コラムアドレス系スイッチ、YSゲート系スイッチ、データ系スイッチ、出力系スイッチをオン状態とし、各々の電源線をショート状態とする。さらに所定のタイミングで、各々のスイッチをオフ状態として、各々の電源線をカットオフ状態とする。
時刻t6、t7のクロック信号CLKの立上がり、および立下りに応じて、時刻t5においてバンクから読み出され、保持されているデータがパラレル・シリアル変換されて外部に出力される。
時刻t8、t9のクロック信号CLKの立上がり、および立下りに応じて、時刻t6においてバンクから読み出され、保持されているデータがパラレル・シリアル変換されて外部に出力される。
一方、時刻t8においては、信号PCの活性化に応じて、選択さたバンクのプリチャージが行われる。
時刻t10において、バースト長4の場合のデータ出力が完了する。
時刻t11において、信号SCRCは不活性状態となり、階層電源により動作してリーク電流の小さな動作モードに移行する。
以上のように、たとえば、コラムアドレス系、YSゲート系、データ系、出力系のそれぞれにおけるショートのタイミングを制御することにより、スタンバイサイクルおよびアクティブサイクルでの消費電力を低減することが可能である。
[実施の形態5]
本発明の実施の形態5における半導体集積回路装置について説明する。
図20は、本発明の実施の形態5における階層電源システムの構成を示す図である。
図20においては、内部回路の構成としてインバータX1、X2およびX3を代表的に示す。インバータX1,X2およびX3はそれぞれ、PMOSトランジスタP1およびNMOSトランジスタN1を含み、CMOSインバータの構成を備える。
メイン電源線L1に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生させる内部電源電圧降圧回路VDC5a、VDC5bを配置する。サブ電源線L2に対しては、外部電源電圧ExtVccレベルから一定電位に降下した電位を発生される内部電源電圧降圧回路VDC5cを配置する。
内部電源電圧降圧回路VDC5aは、差動増幅器5aおよびPMOSトランジスタP20aを含む。PMOSトランジスタP20aは、一方の導通端子が外部電源電圧ExtVccと接続され、他方の導通端子はメイン電源線L1と接続される。PMOSトランジスタP20aのゲート電極は、差動増幅器5aの出力を受ける。差動増幅器5aは、基準電圧(1.5ボルト)とメイン電源線L1の電圧Vccとを入力に受ける。差動増幅器5aは、信号act(アクティブサイクル)に応答して動作する。
内部電源電圧降圧回路VDC5bは、差動増幅器5bおよびPMOSトランジスタP20bを含む。PMOSトランジスタP20bの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はメイン電源線L1と接続される。PMOSトランジスタP20bのゲート電極は、差動増幅器5bの出力を受ける。差動増幅器5bは、高い基準電圧(1.8ボルト)とメイン電源線L1の電圧Vccとを入力に受ける。差動増幅器5bは、スタンバイサイクルにおいて(信号stdbyに応答して)動作する。
内部電源電圧降圧回路VDC5cは、差動増幅器5cおよびPMOSトランジスタP20cを含む。PMOSトランジスタP20cの一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はサブ電源線L2と接続される。PMOSトランジスタP20cのゲート電極は、差動増幅器5cの出力を受ける。差動増幅器5cは、基準電圧(1.5ボルト)とサブ電源線L2の電圧SubVccとを入力に受ける。差動増幅器5cは、スタンバイサイクル(信号stdby)およびアクティブサイクル(信号act)のいずれにおいても動作する。
さらに、スイッチトランジスタに代わり、複数の内部電源電圧降圧回路VDC6をメイン電源線L1およびサブ電源線L2間に所定の間隔で配置する(以下、分散降圧回路VDC6と称す)。
分散降圧回路VDC6は、差動増幅器6aおよびPMOSトランジスタP21を含む。PMOSトランジスタP21の一方の導通端子は、外部電源電圧ExtVccと接続され、他方の導通端子はサブ電源線L2と接続される。PMOSトランジスタP21cのゲート電極は、差動増幅器6aの出力を受ける。差動増幅器6aは、メイン電源線L1の電圧Vccとサブ電源線L2の電圧SubVccとを入力に受ける。差動増幅器6aは、信号actに応答して動作する。
従来の階層電源システムでは、スタンバイサイクルにおいて、サブ電源線L2の電圧SubVccを低下させていた。このため、スタンバイサイクルからアクティブサイクルに移行する際に、電圧の回復時間が必要であった。
このため、本発明の実施の形態5においては、スタンバイサイクルにおいて、メイン電源線L1の電圧Vccを昇圧し、ゲート電圧を高くして、リーク電流を抑える。そして、アクティブサイクルに移行した直後の実効電圧を確保する。
分散降圧回路VDC6は、アクティブサイクルにおける(スイッチトランジスタが原因で発生する)サブ電源線L2の電圧低下を抑制させるために用いる。分散降圧回路VDC6は、基準電圧としてメイン電源線L1の電圧Vccを用いるため、参照用の電源配線を必要とせず、配置の自由度が大きい。
メイン接地線L3とサブ接地線L4との間には、階層電源制御信号SWに応答して、メイン接地線L3とサブ接地線L4とを電気的に接続するスイッチトランジスタN0a、N0b、…を所定の間隔で分散配置する。これにより、電源や接地電位によるインピーダンスを低く抑える。以下本発明の実施の形態5における階層電源システムを、DLCCシステムと称す。
次に、図20に示すDLCCシステムの動作確認のためのシミュレーションについて図21〜図23を用いて説明する。
図21は、本発明の実施の形態5におけるDLCCシステムの動作確認のために行なったシミュレーションの構成を示す図である。
図21を参照して、インバータチェーンは、100段である(X1、X2、…)。各インバータ間には、図22に示す負荷インバータ135を接続する。負荷インバータ135は、図22に示すように、複数のインバータ136a、136bを含む。各インバータ136aおよび136bのそれぞれには、さらに複数のインバータ137a、137bおよび137cを接続する。
分散降圧回路VDC6を合計5つ所定の間隔で配置する。スイッチトランジスタN0a、N0b、…を合計5つ所定の間隔で配置する。
NMOSトランジスタであるスイッチトランジスタN0a、…は、階層電源制御信号SWでオン/オフする。
図23は、図21におけるシミュレーションの具体的な条件を示す図である。
図23を参照して、メイン電源線L1およびメイン接地線L3は、それぞれ幅10μmのアルミ配線を、サブ電源線L2およびサブ接地線L4は、それぞれ幅5μmのアルミ配線を、それぞれ想定する。それぞれの長さは、1.8mmとする。
外部電源電圧ExtVccは、2.25V(2.5Vの90%)、内部電源電圧Vddは、1.35V(1.5Vの90%)とした。スイッチトランジスタのしきい値(Vthp、Vthn)、長さ(Lp、Ln)、幅(Wp、Wn)、およびインバータのしきい値(Vthp、Vthn)、長さ(Lp、Ln)、幅(Wp、Wn)等は、図23に示すとおりである。
メイン電源線L1の電圧Vccは、アクティブサイクルにおいて1.35Vとし、スタンバイサイクルにおいて、1.65Vにオーバードライブさせる。PMOSトランジスタのウェルに対しても、メイン電源線L1の電圧Vccと同様に、電圧変化を与えた。サブ電源線L2の電圧SubVccは、1.35Vとした。
従来の階層電源システムを用いた場合と、DLCCシステムを用いた場合とで、シミュレーションを行なった結果を、図24〜図28を用いて比較検討する。
図24は、従来の階層電源システムのシミュレーション波形を示すグラフであり、図25は、DLCCシステムのシミュレーション波形を示すグラフである。それぞれ、縦軸は、ボルトを、横軸は、時間(ns)を表す。ともに、19〜20nsの付近で信号(Signal)を印加した。図24および図25において、記号Vccは、メイン電源線L1の電圧を、記号S―Vccは、サブ電源線L2の電圧を、記号S−GNDは、サブ接地線L4の電圧をそれぞれ示している。
図24に示す従来の階層電源システムにおいては、サブ電源線L2の電圧が、0.1V(メイン電源線L1の電圧)から約0.1V程度低下している。これに対して、図25に示すDLCCシステムでは、サブ電源線L2の電圧低下は、約0.02V程度に抑えられている。
図26は、スイッチトランジスタを常時オン状態として、インバータ速度をスイッチトランジスタの位置からのインバータの段数で比較したものである。図26において、実線aは、従来の階層電源システムに、実線bは、DLCCシステムにそれぞれ対応している。なお、DLCCシステムについては、分散降圧回路VDC6の位置からのインバータ段数を軸としている。
図26に示すように、DLCCシステムでは、配線抵抗の影響が減り、インバータの段数によらず、処理速度が高速化されていることが明らかである。
インバータ100段の平均速度に関しては、DLCCシステムにおいては、従来と同程度のしきい値を用いた場合に比べ32%、従来の階層電源システムと比べ、20%の高速化が達成される。
さらに、図27に示す条件でのインバータチェーンの遅延について、図28に示す。図27および図28は、電源線の電圧が変化した後に回復した場合におこるインバータチェーンの遅延を測定したものである。
図27に示すように、インバータへの入力信号は、スイッチトランジスタのオンタイミングからt0秒後に入力する。図28では、この時点でのインバータチェーンの遅延増加量を測定した結果をプロットしてある。なお、DLCCシステムについては、メイン電源線L1の電圧を(記号MVcc)、図27に示すように変化させる。
図28おける実線aは、従来の階層電源システムにおける遅延増加量を、実線bは、DLCCシステムにおける遅延増加量をそれぞれ示している。
図28に示すように、従来の階層電源システムに対して、DLCCシステムは、遅延が約0.05nsだけ改善され、t0を約1.5nsとすれば、遅延が解消される。
このように、実施の形態5における階層電源システム(DLCCシステム)では、アクティブサイクルにおけるサブ電源線L2の電圧低下を抑え、インバータの平均速度を改善することができる。また、動作電源の回復による影響を抑え、インバータチェーンの遅延を解消することが可能となる。
なお、本構成では、動作時にサブ電源線の電位を外部電位から供給する動作は、電源側のみについて実施した。これにより、電源側の電位降下を低く抑えることができた。この手法は、接地電位側の電源線についても実施可能であることは自明である。
[実施の形態6]
本発明の実施の形態6における半導体集積回路装置について説明する。本発明の実施の形態6における半導体集積回路装置は、階層電源システムに対するリーク電流試験を可能とするものである。
本発明の実施の形態6におけるリーク電流テスト回路について図29を用いて説明する。図29は、本発明の実施の形態6におけるリーク電流テスト回路120aおよび120bの要部の構成を示す図である。
図29においては、インバータX1、X2およびX3から構成される内部回路に対して、メイン電源線L1、サブ電源線L2、メイン接地線L3およびサブ接地線L4が配置される。メイン電源線L1とサブ電源線L2との間には、スイッチトランジスタP0を接続する。メイン接地線L3とサブ接地線L4との間には、スイッチトランジスタN0を接続する。
さらに、メイン電源線L1とサブ電源線L2との間には、一定の電位差以上に電位レベルの差が大きくならないようにするため、ダイオード接続されたNMOSトランジスタN7を接続する。また、メイン接地線L3とサブ接地線L4との間には、一定以上に電位差が広がらないようにするため、ダイオード接続されたPMOSトランジスタP7を接続する。
スイッチトランジスタP0は、階層電源制御信号/DLCCをゲート電極に受ける。スイッチトランジスタN0は、階層電源制御信号DLCCをゲート電極に受ける。
メイン電源線L1には、差動増幅器3a、差動増幅器3b、および差動増幅器3cが配置される。サブ電源線L2には、差動増幅器3dが配置される。差動増幅器3aは、制御信号DLCCに応答して活性状態となる。差動増幅器3cは、アクト信号ACTに応答して活性状態となる。
サブ接地線L4に対しては、差動増幅器4が配置される。差動増幅器4は、制御信号/DLCCに応答して活性状態となる。
差動増幅器3a、3b、3cおよび3dに対しては、リーク電流テスト回路120aを配置する。差動増幅器4に対してはリーク電流テスト回路120bを配置する。
リーク電流テスト回路120aは、定電流源121a、抵抗R1およびR2、ならびにPMOSトランジスタP9a、P9b、P8a、P8b、…、P8h、を含む。電源電位と接地電位との間に定電流源121a、PMOSトランジスタP9a、およびPMOSトランジスタP8a、…、P8hが直列に接続される。PMOSトランジスタP9aのゲート電極は、テスト信号TESTPHを受ける。PMOSトランジスタP8a、…、P8hのそれぞれのゲート電極は、接地電位に接続される。
抵抗R1、PMOSトランジスタP9b、抵抗R2は、定電流源121aとPMOSトランジスタP8aおよびP8bの接続ノードとの間に直列に接続される。抵抗R1とPMOSトランジスタP9bとの接続ノードは、PMOSトランジスタP9aとP8aとの接続ノードに接続されている。PMOSトランジスタP9bのゲート電極は、テスト信号TESTPLを受ける。
リーク電流テスト回路120bは、定電流源121b、NMOSトランジスタN9a、N9b、N8a、…、N8c、ならびに抵抗R3およびR4を含む。
電源電位と接地電位との間に定電流源121b、NMOSトランジスタN9a、およびNMOSトランジスタP8a、…P8cが直列に接続される。NMOSトランジスタN9aのゲート電極は、テスト信号TESTSHを受ける。NMOSトランジスタN8a、…のゲート電極は、電源電位に接続される。
抵抗R3、NMOSトランジスタN9bおよび抵抗R4は、定電流源121bとNMOSトランジスタN8aおよびN8bの接続ノードとの間に直列に接続される。抵抗R3とNMOSトランジスタN9bとの接続ノードは、NMOSトランジスタN9aとN8aとの接続ノードに接続されている。NMOSトランジスタN9bのゲート電極は、テスト信号TESTSLを受ける。
定電流源121aの出力ノードの電圧を基準電圧VrefHと記す。NMOSトランジスタP8aとP8bとの接続ノードの電圧をVrefLと記す。定電流源121bの出力ノードの電圧を基準電圧Vrefと記す。
差動増幅器4は、基準電位Vrefとサブ接地線L4の電圧を入力に受ける。差動増幅器3aは、基準電位VrefHとメイン電源線L1の電圧とを入力に受ける。差動増幅器3bは、基準電位VrefLとメイン電源線L1の電圧とを入力に受ける。差動増幅器3cは、基準電位VrefLとメイン電源線L1の電圧とを入力に受ける。差動増幅器3dは、基準電位VrefLとサブ電源線L2の電圧とを入力に受ける。
定電流源121aから流入する電流と抵抗素子とで基準電位を発生し、メイン電源線L1とサブ電源線L2との電位を調整する。定電流源121bから流入する電流と抵抗素子とで基準電位を発生し、メイン接地線L3とサブ接地線L4との電位を調整する。
リーク電流テスト回路120aについて説明する。通常モードにおいては、テスト信号TESTPHはLレベルの状態にあり、テスト信号TESTPLはHレベルの状態にある。
スタンバイサイクルにおいては、基準電圧VrefHと基準電圧VrefLとの間には、PMOSトランジスタP8aによる一定の電位差が存在する。
テストモードに入るとテスト信号TESTPHをHレベルに設定する。これによりPMOSトランジスタP9aがオフ状態となる。基準電圧VrefHは、基準電圧VrefLに対して、さらに抵抗R1で発生する電位分だけ高い電圧となる。これにより、スタンバイサイクルにおけるメイン電源線L1の電圧Vccをサブ電源線L2の電圧SubVccに対して高く設定することができる。
テスト信号TESTPLをLレベルの状態にするとPMOSトランジスタP9bがオン状態となる。これにより基準電圧VrefHは、基準電圧VrefLに対して、抵抗R2で発生される電位分だけ高い電位に変化する。
これをPMOSトランジスタにより発生する電位よりも小さく設定することにより、スタンバイサイクルにおけるメイン電源線L1の電圧Vccをサブ電源線L2の電圧SubVccに対して通常よりも小さく設定することができる。これによりリーク電流がより大きい状態に移行することができるため、リーク電流試験を行なうことができる。
リーク電流テスト回路120bについて説明する。通常モードにおいては、テスト信号TESTSHはHレベルの状態にあり、テスト信号TESTSLはLレベルの状態にある。
スタンバイサイクルにおいては、サブ接地線L4の電圧レベルを接地電位より高く設定するため、基準電圧Vrefと接地電位との間には、一定の電位差が存在する。
テストモードに入るとテスト信号TESTSHをLレベルに設定する。これによりNMOSトランジスタN9aがオフ状態となる。基準電圧Vrefは、接地電位に対して抵抗R3で発生する電位分だけ高い電圧となる。これにより、スタンバイサイクルにおけるサブ接地線L4の電圧SubVssをメイン接地線L3の電圧Vssに対して高く設定することができる。
テスト信号TESTSLをHレベルの状態にするとNMOSトランジスタN9bがオン状態となる。これにより基準電圧Vrefは、接地電位Vssに対して、2つのNMOSトランジスタのチャネル抵抗と抵抗R4とで発生される電位分だけ高い電位に変化する。
これを抵抗R3およびR4により発生する電位よりも小さく設定することにより、スタンバイサイクルにおけるサブ接地線L4の電圧SubVssをメイン接地線L3の電圧Vssに対して通常よりも小さく設定することができる。これによりリーク電流がより大きい状態に移行することができるため、リーク電流試験を行なうことができる。
[実施の形態7]
本発明の実施の形態7における半導体集積回路装置について説明する。本発明の実施の形態7における半導体集積回路装置は、階層電源システムに対するリーク電流試験を外部からモニタすることを可能とするものである。
本発明の実施の形態7におけるリーク電流テスト回路について図30を用いて説明する。図30は、本発明の実施の形態7におけるリーク電流テスト回路123aの要部の構成を示す図である。
図30に示すリーク電流テスト回路123aは、定電流源124aおよび124b、NMOSトランジスタN10aおよびN10b、ならびにバッファ125を含む。NMOSトランジスタN10aは、ダイオード接続されている。
カレントミラー接続されたNMOSトランジスタN10aおよびN10bのそれぞれは、メイン接地線L3およびサブ接地線L4にそれぞれ接続されている。なお、メイン接地線L3およびサブ接地線L4には、スイッチトランジスタN0が接続されている。
NMOSトランジスタN10aには、定電流源124aから基準電流を流入する。NMOSトランジスタN10bには、定電流源124bから基準電流を流入する。
定電流源124bとNMOSトランジスタN10bとの接続ノードには、バッファ125を配置する。バッファ125の出力ノードは、外部端子と接続する。
ここで、メイン接地線L3における電圧Vssとサブ接地線L4における電圧SubVssとが同一レベルであるならば、NMOSトランジスタN10aおよびN10bのそれぞれのゲート電極に負バイアスがかかることがないため、双方に流入する基準電流量は、ほぼ均衡している状態となる。
リーク電流が低減している場合、サブ接地線L4の電圧SubVssは、メイン接地線L3の電圧Vssに対して上昇している。この場合、メイン接地線L3と接続されるNMOSトランジスタN10aに流入する基準電流量に対し、サブ接地線L4に接続されるNMOSトランジスタN10bに流入する基準電流量が小さくなる(この基準電流量の比は、リーク電流の低減比率となる)。
定電流源124bの電流は、バッファ125に蓄積される。蓄積される電流が、バッファ125の論理しきい値を超えると、論理値が発生する。この論理しきい値は、外部端子からモニタできる。
本発明の実施の形態7におけるリーク電流テスト回路の他の一例を、図31を用いて説明する。
図31は、本発明の実施の形態7におけるリーク電流テスト回路の他の一例を示す回路図である。図31に示すリーク電流テスト回路123bにおいては、図6に示す定電流源124aに代わり、PMOSトランジスタP10aを、定電流源124bに代わり、PMOSトランジスタP10bをそれぞれ配置する。外部パッドには、NMOSトラジスタN11の一方の導通端子を接続する。PMOSトランジスタP10aおよびP10bのそれぞれの一方の導通端子は、電源電位に接続する。
PMOSトランジスタP10aおよびP10bのゲート電極を、NMOSトランジスタN11の他方の導通端子と接続する。NMOSトランジスタN11は、テスト用のイネーブル信号ENを受けてオン状態となり、外部パッドの電位をPMOSトランジスタP10aおよびP10bのゲート電極に供給する。これにより、外部から、NMOSトランジスタN10aおよびN10bに流入する基準電流量を変化させることが可能となる。
本発明の実施の形態7におけるリーク電流テスト回路の他の一例を、図32を用いて説明する。
図32は、本発明の実施の形態7におけるリーク電流テスト回路の他の一例を示す回路図である。図32に示すリーク電流テスト回路123cでは、NMOSトランジスタN11の一方の導通端子とPMOSトランジスタP10aおよびP10bのゲート電極との間に、さらにカレントミラー接続されるPMOSトランジスタP12を備える。これにより、外部からの入力に対して、PMOSトランジスタP12、P10aで電流を発生する。
このように構成することにより、外部からリーク電流をモニタすることが可能となる。
[実施の形態8]
本発明の実施の形態8における半導体集積回路装置について説明する。本発明の実施の形態8における半導体集積回路装置では、階層電源システムにおけるスイッチトランジスタによるリーク電流の度合いをモニタしながら変更させる。
本発明の実施の形態8におけるリーク電流テスト回路について図33を用いて説明する。図33は、本発明の実施の形態8におけるリーク電流テスト回路126の要部の構成を示す図である。リーク電流テスト回路123aと同じ構成要素には、同じ符号および同じ記号を付し、説明を省略する。
図33に示すリーク電流テスト回路126は、NMOSトランジスタN12aおよびNMOSトランジスタN12bを含む。NMOSトランジスタN12bのトランジスタサイズは、ダイオード接続されたNMOSトランジスタN12aのn(>0)倍である。カレントミラー接続されたNMOSトランジスタN12aおよびN12bはそれぞれ、定電流源124aおよび124bから基準電流の供給を受ける。
NMOSトランジスタN12aの一方の導通端子は、接地電圧Vssを受ける。NMOSトランジスタN12bの一方の導通端子と接地電圧Vssとの間には、NMOSトランジスタN13を配置する。
定電流源124bとNMOSトランジスタN12bの一方の導通端子との接続ノードには、バッファ125を接続する。バッファ125の出力ノードは、負電圧ポンプ127と接続される。負電圧ポンプ127の出力は、NMOSトランジスタN13のゲート電極と接続される。
サブ接地線L4およびメイン接地線L3をショートするスイッチトランジスタN0のゲート電極は、スイッチS/Wにより、アクティブサイクルにおいては、電源電位に接続され、スタンバイサイクルにおいては、NMOSトランジスタN13のゲート電極とを接続される。
NMOSトランジスタN13は、スイッチトランジスタN0に対するダミーのトランジスタである。NMOSトランジスタN12b、バッファ125、負電圧ポンプ127およびNMOSトランジスタN13で、ループ回路を構成する。
NMOSトランジスタN12bに流入する基準電流量(リーク電流)が増えると、負電圧ポンプ127が負電圧を出力する。NMOSトランジスタN13が、オフ状態となる。
NMOSトランジスタN12bに流入する基準電流量が減ると、負電圧ポンプ127の動作を停止する。NMOSトランジスタN13はオン状態になる。
NMOSトランジスタN12aおよびN12bのそれぞれに流入する電流量は、互いに等しいが、トランジスタサイズの比が、1:nであるため、判定結果である論理値(バッファ125の出力)に対して、実際のリーク電流の低減比率は、1/nとなる。この状態を保つように、負電圧ポンプ127において、NMOSトランジスタN13のゲート電極に供給される電位が発生する。
アクティブサイクルでは、スイッチS/Wを電源電位に接続する。これにより、スイッチトランジスタN0がオン状態となり、メイン接地線L3およびサブ接地線L4がショート状態となる。
スタンバイサイクルでは、スイッチトランジスタを流れるリーク電流は、負電圧ポンプ127の出力する負電圧のレベルに応答して、低減される。
[実施の形態9]
本発明の実施の形態9における半導体集積回路装置について説明する。本発明の実施の形態9における半導体集積回路装置は、階層電源システムにおけるスイッチトランジスタに対し負バイアスを印加することによりスタンバイサイクルにおけるリーク電流の低減を図る。
本発明の実施の形態9における階層電源システムの構成について、図34および図35を用いて説明する。図34および図35は、本発明の実施の形態9における階層電源システムの構成を示す図である。図34および図35においては、内部回路の構成としてインバータX1、X2…を代表的に示す。インバータX1、…はそれぞれPMOSトランジスタP1およびNMOSトランジスタN1を含み、CMOSインバータの構成を備える。インバータX1、…を構成するトランジスタは、いずれもしきい値が低い。
図34を参照して、メイン電源線L1とサブ電源線L2との間には、スイッチトランジスタP0a、P0b、…を所定の間隔で配置する。メイン接地線L3とサブ接地線L4との間には、スイッチトランジスタN0a、N0b、…を所定の間隔で配置する。
スイッチトランジスタP0a、P0b、…に対して、スイッチ制御回路620を配置する。スイッチトランジスタN0a、N0b、…に対して、スイッチ制御回路600を配置する。スイッチ制御回路600および620は、階層電源制御信号SCRCFに応答して、対応するスイッチトランジスタのゲート電圧を制御する。
図35に示すスイッチ制御回路600は、ゲート電圧の3値制御を行なう。より具体的には、スイッチ制御回路600は、外部電源電圧ExtVcc、電圧Vss、基板電圧VBBのいずれかを所定のタイミングでスイッチトランジスタN0a、…に印加する。なお、電圧Vssは、メイン接地線L3の電圧、内部で発生した低電源電圧、外部接地電圧のいずれであってもよい。
図35に示すスイッチ制御回路620は、ゲート電圧の3値制御を行なう。より具体的には、スイッチ制御回路620は、電圧Vss、電圧MVcc、外部電源電圧ExtVccのいずれかを所定のタイミングでスイッチトランジスタP0a、…に印加する。なお、電圧MVccは、メイン電源線L1の電圧、内部で発生した電源電圧のいずれであってもよい。
なお、メイン電源線L1とサブ電源線L2とをショートさせるスイッチトランジスタ(P0a、P0b…)のそれぞれの基板は、メイン電源線L1と接続する。メイン接地線L3とサブ接地線L4とをショートさせるスイッチトランジスタ(N0a、N0b…)のそれぞれの基板は、メイン接地線L3と接続する。
ここで、図34および35に示すスイッチ制御回路600の具体的構成の一例を、図36を用いて説明する。図36は、本発明の実施の形態9におけるスイッチ制御回路600の具体的構成の一例を示す回路図である。図36に示すスイッチ制御回路600は、インバータ601、レベル変換バッファ602、603および604、ワンショットパルス発生回路605、NOR回路609、PMOSトランジスタP15、ならびにNMOSトランジスタN15およびN16を含む。
インバータ601は、階層電源制御信号SCRCFを反転する。レベル変換バッファ602は、インバータ601の出力ノードとノードSA1との間に接続される。レベル変換バッファ602は、外部電源電圧ExtVccを動作電源として、インバータ601の出力レベルを変換する。PMOSトランジスタP15の一方の導通端子は、ノードSX1と接続され、他方の導通端子は外部電源電圧ExtVccを受ける。PMOSトランジスタP15のゲート電極は、ノードSA1と接続される。
ワンショットパルス発生回路605は、インバータ601の出力に応答してワンショットのパルス信号を出力する。ワンショットパルス発生回路605は、インバータ606.1、606.2、606.3、606.4、606.5、606.6、および606.7、NAND回路607、ならびにインバータ608を含む。インバータ606.1…、606.7は、直列に接続される。インバータ606.1は、インバータ601の出力を受ける。NAND回路607は、インバータ601の出力とインバータ606.7の出力とを受ける。インバータ608は、NAND回路607の出力を反転する。
レベル変換バッファ603は、インバータ608の出力ノードとノードSB1との間に接続される。レベル変換バッファ603は基板電圧VBBを動作電源として、インバータ608の出力レベルを変換する。NMOSトランジスタN15の一方の導通端子はノードSX1と接続され、他方の導通端子は電圧Vssを受ける。NMOSトランジスタN15のゲート電極はノードSB1と接続され、基板は、基板電圧VBBを受ける。
NOR回路609は、インバータ608の出力とインバータ601の出力とを受ける。レベル変換バッファ604は、NOR回路609の出力ノードとノードSC1との間に接続される。レベル変換バッファ604は基板電圧VBBを動作電源として、NOR回路609の出力レベルを変換する。NMOSトランジスタN16の一方の導通端子はノードSX1と接続され、他方の導通端子は基板電圧VBBを受ける。NMOSトランジスタN16のゲート電極はノードSC1と接続され、基板は、基板電圧VBBを受ける。ノードSX1は、メイン接地線L3とサブ接地線L4とを結合するスイッチトランジスタ(図中記号N0)のゲート電極と接続される。
ここで、図36に示すスイッチ制御回路600の動作についてタイミングチャートである図37を用いて説明する。図37は、図36に示すスイッチ制御回路600の動作について説明するためのタイミングチャートである。図中記号intVccは、チップの内部電源電圧を表わす。
図37を参照して、時刻t0において階層電源制御信号SCRCFがLレベルからHレベルに立上がることで、アクティブサイクルに入る。これを受けて、ノードSA1は、Hレベル(intVCC以上)からLレベル(Vss)に立下がる。またノードSB1はLレベル(Vss以下)を保持する。ノードSC1は、HレベルからLレベル(Vss以下)に立下がる。ノードSX1は、Lレベル(Vss以下)からHレベル(外部電源電圧ExtVcc)に立上がる。これにより、スイッチトランジスタN0が導通状態となる。
時刻t1において階層電源制御信号SCRCFがLレベルに立下がることで、アクティブサイクルからスタンバイサイクルに移行する。これに伴いモードSA1は、LレベルからHレベルに立上がる。ワンショットパルス発生回路605からワンショットのパルス信号が発生する。ノードSB1は、ワンショットのパルス信号に基づき、時刻t1においてHレベルに立上がり、時刻t2においてLレベルに立下がる。ノードSC1は、ワンショットのパルス信号に基づき、時刻t2においてLレベルからHレベルに立上がる。
ノードSX1は、時刻t1においてHレベルから一旦Vssレベルに立下がり、時刻t2においてさらに低い電圧レベルになる。
このように、スタンバイサイクルにおいてスイッチトランジスタN0のゲート電極に負バイアスが印加することにより、スタンバイサイクルにおけるリーク電流を低減させことが可能となる。
次に、本発明の実施の形態9におけるスイッチ制御回路620の具体的構成の一例を、図38を用いて説明する。図38は、本発明の実施の形態9におけるスイッチ制御回路620の具体的構成の一例を示す回路図である。図38に示すスイッチ制御回路620は、インバータ621、および628、レベル変換バッファ622、623および624、NOR回路629、ワンショットパルス発生回路625、NMOSトランジスタN17、ならびにPMOSトランジスタP16およびP17を含む。
インバータ621は、階層電源制御信号SCRCFを反転する。インバータ628は、インバータ621の出力を反転する。レベル変換バッファ622は、インバータ628の出力ノードとノードSA2との間に接続される。レベル変換バッファ622は、外部電源電圧ExtVccを動作電源として、インバータ628の出力レベルを変換する。NMOSトランジスタN17の一方の導通端子は、ノードSX2と接続され、他方の導通端子は電圧Vssを受ける。NMOSトランジスタN17のゲート電極は、ノードSA2と接続される。
ワンショットパルス発生回路625は、インバータ621の出力に応答してワンショットのパルスのパルス信号を出力する。ワンショットパルス発生回路625は、インバータ626.1、626.2、626.3、626.4、626.5、626.6、および626.7、ならびにNAND回路627を含む。インバータ626.1…、626.7は、直列に接続される。インバータ626.1は、インバータ621の出力を受ける。NAND回路627は、インバータ621の出力とインバータ626.7の出力とを受ける。
レベル変換バッファ623は、NAND回路627の出力ノードとノードSB2との間に接続される。レベル変換バッファ623は外部電源電圧ExtVccを動作電源として、NAND回路627の出力レベルを変換する。PMOSトランジスタP16の一方の導通端子はノードSX2と接続され、他方の導通端子は電圧MVccを受ける。PMOSトランジスタP16のゲート電極はノードSB2と接続され、基板は、外部電源電圧ExtVccを受ける。
NOR回路629は、インバータ621の出力とNAND回路627の出力とを受ける。レベル変換バッファ624は、NOR回路629の出力ノードとノードSC2との間に接続される。レベル変換バッファ624は外部電源電圧ExtVccを動作電源として、NOR回路629の出力レベルを変換する。PMOSトランジスタP17の一方の導通端子はノードSX2と接続され、他方の導通端子は外部電源電圧ExtVccを受ける。PMOSトランジスタP17のゲート電極はノードSC2と接続され、基板は、外部電源電圧ExtVccを受ける。ノードSX2は、メイン電源線L1とサブ電源線L2とを結合するスイッチトランジスタ(図中記号P0)のゲート電極と接続される。
次に、図38に示すスイッチ制御回路620の動作についてタイミングチャートである図39を用いて説明する。図39は、図38に示すスイッチ制御回路620の動作を説明するためのタイミングチャートである。
図39を参照して、時刻t0において階層電源制御信号SCRCFがLレベルからHレベルに立上がることで、スタンバイサイクルからアクティブサイクルに移行する。ノードSA2は、Lレベル(Vss)からHレベル(外部電源電圧ExtVcc)に立上がる。ノードSB2は、Hレベル(外部電源電圧ExtVcc)を保持する。ノードSC2は、Lレベル(Vss)からHレベル(外部電源電圧ExtVcc)に立上がる。ノードSX2は、Hレベル(外部電源電圧ExtVcc)からLレベル(Vss)に立下がる。
時刻t1において階層電源制御信号SCRCFがLレベルに立下がることで、アクティブサイクルからスタンバイサイクルへ移行する。ノードSA2は、HレベルからLレベルに立下がる。ワンショットパルス発生回路625からワンショットのパルス信号が発生する。ノードSB2は、ワンショットのパルス信号に基づき、時刻t1においてLレベルに立下がり、時刻t2においてHレベルに立上がる。ノードSC2は、ワンショットのパルス信号に基づき、時刻t2においてLレベルに立下がる。
ノードSX2は、時刻t1においてLレベルから中間電圧レベルに立上がり、時刻t2においてさらに高い電圧レベルになる。
このように、スタンバイサイクルにおいてスイッチトランジスタP0のゲート電極に負バイアスを印加することにより、スタンバイサイクルにおけるリーク電流を低減することが可能となる。
ところで、スイッチ制御回路600および620は、アクティブサイクルからスタンバイサイクルへの移行時において段階的にゲート電極に印加する電圧を変化させている。これに対し、アクティブサイクルからスタンバイサイクルへの移行時、スイッチトランジスタP0に対し外部電源電圧ExtVccを、スイッチトランジスタN0に対し基板電圧VBBを直接印加したとすると(2値制御)、ゲート電極の充放電に伴い基板電圧の浮きが生じ、メモリセルの動作マージンを損なう。
本発明の実施の形態9に示すように段階的に電圧を変化させて印加すると、スイッチトランジスタのゲート電極の充放電に伴う基板電圧の浮きを小さく抑えることが可能となり、チップの動作マージンを拡大することが可能となる。
なお、一例として、3つの異なる電圧を用いてスイッチトランジスタのオン/オフを制御する場合の構成について説明したが、これに限らず4段階の異なる電圧で制御することも可能である。たとえば、スイッチトランジスタN0に対し、外部電源電圧ExtVcc、電圧Vss、および基板電圧VBBを用いて制御する代わりに、昇圧電源電圧VPP、外部電源電圧ExtVcc、電圧Vss、および基板電圧VBBで制御することにより、アクティブサイクル時におけるスイッチトランジスタのインピーダンスを低減することが可能となる。
図40は、本発明の実施の形態9における階層電源システムの他の構成を示す図である。図40に示すように、スイッチ制御回路600および620に加えて、さらにメイン電源線L1に対して内部電源電圧降圧回路VDC3a、VDC3b、およびVDC3cを配置し、サブ電源線L2に対して内部電源電圧降圧回路VDC3dを配置するようにしてもよい。
実施の形態2で説明したように、内部電源電圧降圧回路VDC3aは、内部回路におけるリーク電流を低減させる。内部電源電圧降圧回路VDC3aは、信号DLCCに応答して動作する。内部電源電圧降圧回路VDC3bは、スタンバイサイクルにおいて、メイン電源線L1の電圧を所定のレベル(1.5V)に設定する。内部電源電圧降圧回路VDC3cは、チップがアクティブになった際に活性化し、チップの動作に必要とする比較的大きな電流を供給する。内部電源電圧降圧回路VDC3dは、内部電源電圧降圧回路VDC3aが活性化されるのに応じて、サブ電源線L2の電圧を所定のレベル(1.5V)に設定する。ここで、信号DLCCは、回路動作を制御する制御信号であって、階層電源制御信号SCRCFと同一であってもよい。
このように、スイッチ制御回路600および620と、内部電源電圧降圧回路VDC3a、VDC3b、VDC3cおよびVDC3dとを組合せることにより、スタンバイサイクルにおけるリーク電流をさらに低減し、高速かつ高精度の動作を確保することが可能となる。
[実施の形態10]
本発明の実施の形態10における半導体集積回路装置について説明する。本発明の実施の形態10における半導体集積回路装置は、電源線容量を分散配置することで、回路動作に伴う電源ドロップの軽減を図る。
上述した回路が集合して、図41に示す機能ブロックを構成するとき、メイン電源線とサブ電源線とを含めたレイアウトが重要になる。なお、図41では、Vcc703に接続されたPMOS領域701とVss704に接続されたNMOS領域702とから機能ブロックが構成されている。
図42は、この階層電源システムにおけるレイアウトを示す平面図であり、図43は、図42のA1 −A1 線に沿う概略断面図である。また、図44〜図51は図42のレイアウトを下層から順に示す平面図であり、図52〜図59は図43の構成を下層から順に示す断面図である。なお、説明を簡単にするために、このレイアウトでは、サイズの異なるインバータのシリアル接続を例にとっている。
まず、この階層電源システムの構成の概要を図42、43を用いて説明する。図42と図43とを参照して、内部回路を構成するインバータX1、X2、X3、X4、…が形成されており、そのインバータX1、…はそれぞれPMOSトランジスタP1およびNMOSトランジスタN1を含み、CMOSインバータの構成を備える。
そしてこのインバータX1、…の形成領域を両側から挟むようにサブVcc電位が与えられる導電層721dと、サブVss電位が与えられる導電層721fとが配置されている。導電層721dの外側にはメインVcc電位が与えられる導電層721cが配置され、導電層721fの外側にはメインVss電位が与えられる導電層721eが配置されている。
サブVccが与えられる導電層721dはPMOSトランジスタP1、P3、…の各ソース領域718aに電気的に接続されており、サブVssが与えられる導電層721fはNMOSトランジスタN2、N4、…の各ソース領域719aに電気的に接続されている。また、メインVccが与えられる導電層721cはPMOSトランジスタP2、P4、…の各ソース領域718aに電気的に接続されており、メインVssが与えられる導電層721eはNMOSトランジスタN1、N3、…の各ソース領域719aに電気的に接続されている。
PMOSトランジスタP1、P3、…の各ドレイン領域の718aはNMOSトランジスタN1、N3、…の各ドレイン領域719aと電気的に接続されている。またPMOSトランジスタP2、P4、…の各ドレイン領域718aはNMOSトランジスタN2、N4、…の各ドレイン領域719aに電気的に接続されている。
PMOSトランジスタPn(n:自然数)とNMOSトランジスタNnとの双方のドレイン領域718a、719aは、PMOSトランジスタPn+1およびNMOSトランジスタNn+1の各ゲート電極717aの双方に電気的に接続されている。
特に注目すべきは、サブVssに固定されたダミーゲート717bおよびサブVccに固定されたダミーゲート717cが設けられている点、および導電層721cと導電層721bと導電層721eと導電層721fとの各々が基板表面に形成されたP型層718b、718cもしくはN型層719b、719cの各々に電気的に接続されている点である。
このようなダミーは、トランジスタその他の素子に用いられる層の形状加工の安定性を増すことに効果がある。ダミーの存在がなければ、各形状間の距離関係がばらばらであり、それらの仕上がりが寸法的に伸縮を発生し、安定した形状に仕上がらない。特に、ゲートは、そのゲート長の仕上がりがばらばらであると、ゲート遅延のコントロールが管理できず、誤動作を起こす可能性もある。ダミーの存在は、それら各形状間の距離を比較的一定に揃えることで、形状の仕上がりを安定させることができる。また、近年、多く用いられているCMP(Chemical Mechanical Polishing )による平坦化工程において、チップ上の平坦部の仕上がりばらつきを抑えるためにも有効である。したがって、CMP工程は、あらゆる層の形成において適用することもあり、それに伴い、ダミーもあらゆる層で配置される可能性がある。ここでは、活性領域とゲートを説明の簡便さの都合上挙げるが、その他の層においてもダミーが配置できることはいうまでもない。
次に、このレイアウトを各層に分けて製造方法をまじえて詳細に説明する。
図44と図52とを参照して、半導体基板は、P型基板領域711上にN型ボトム層712を介在して、N型ウェル713とP型ウェル714とが隣接して配置されることで形成されている。この基板表面には、溝(トレンチ)内に絶縁層715が埋込まれたトレンチ分離が形成され、これにより各活性領域が電気的に分離されている。
図45と図53とを参照して、基板上に絶縁層(たとえばシリコン酸化膜)を介在してゲート電極層717a、ダミーゲート717b、717cが、同一の層から互いに分離して形成される。このゲート電極層717aなどをマスクとしてイオン注入が行なわれることにより、PMOSトランジスタ部の活性領域には1対のP型ソース/ドレイン領域718aが形成される。またNMOSトランジスタ部の活性領域には1対のN型ソース/ドレイン領域719aが形成される。これにより、PMOSトランジスタP1、…およびNMOSトランジスタN1、…が構成される。
図46と図54とを参照して、ダミーゲート層717bなどをマスクとしてイオン注入が行なわれることによりP型層718b、718cが形成され、またダミーゲート層717cなどをマスクとしてイオン注入が行なわれることによりN型層719b、719cが形成される。
また図46中の中央下部に示された小さい四角領域719dには、N型ウェル713へのウェル電位固定用のN型活性領域719dが形成され、小さい四角領域718dにはP型ウェル714へのウェル電位固定用のP型活性領域718dが形成される。
図47と図55とを参照して、基板の表面全面を覆うように、たとえばシリコン酸化膜よりなる層間絶縁層720が形成される。この層間絶縁層720には、ソース/ドレイン領域718a、719a、P型層718b、718c、N型層719b、719cおよびゲート電極層717aの各々の表面に達する複数個のコンタクトホール720aが形成される。この複数個のコンタクトホール720aの各々には導電層720bが充填される。
図48と図56とを参照して、層間絶縁層720の全面上に導電層が形成された後、通常の写真製版技術およびエッチング技術によりパターニングされる。これにより各導電層721a、721b、721c、721d、721e、721fが互いに分離して形成される。
導電層721dは、PMOSトランジスタP1、P3、…のソース領域718aおよびP型層718cとに電気的に接続される。導電層721fはNMOSトランジスタN2、N4、…のソース領域719aおよびN型層719cとに電気的に接続される。導電層721cはP型層718bに電気的に接続され、導電層721eはN型層719bに電気的に接続される。
導電層721aは、1のインバータ内のPMOSトランジスタとNMOSトランジスタとの各ドレイン領域718aと719aとを電気的に接続する。導電層721bは、各ゲート電極層717aに電気的に接続される。
図49と図57とを参照して、導電層721a、721b、721c、721d、721e、721f上を覆うように、たとえばシリコン酸化膜よりなる層間絶縁層722が形成される。この層間絶縁層722には、導電層721a、721b、721c、721eの各々の表面に達する複数個のコンタクトホール722aが形成され、この複数個のコンタクトホール722aの各々には導電層722bが充填される。
図50と図58とを参照して、層間絶縁層722の表面全面に導電層723が形成された後、通常の写真製版技術およびエッチング技術によりパターニングされる。このパターニングされた導電層723により、NMOSトランジスタN1、N3、…のソース領域に電気的に接続された導電層721aと導電層721eとが電気的に接続され、1のインバータ内のPMOSトランジスタとNMOSトランジスタの各ゲート電極層717aが電気的に接続され、PMOSトランジスタP2、P4、…のソース領域に電気的に接続される導電層721bと導電層721cとが電気的に接続される。
図51と図59とを参照して、導電層723を覆うように、たとえばシリコン酸化膜よりなる層間絶縁層724が形成される。この層間絶縁層724には、各導電層723の表面に達する複数個のコンタクトホール724aが形成され、この複数個のコンタクトホール724aの各々には導電層724bが充填される。
そして図42と図43とを参照して、層間絶縁層724の表面全面に導電層725が形成された後、通常の写真製版技術およびエッチング技術によりパターニングされる。これにより、PMOSトランジスタP2、P4、…のソース領域に電気的に接続された導電層725と、NMOSトランジスタN1、N3、…のソース領域に電気的に接続された導電層725と、PMOSトランジスタPnおよびNMOSトランジスタNnの各ゲート電極層717aとPMOSトランジスタPn+1およびNMOSトランジスタNn+1のドレイン領域とを電気的に接続する導電層725とが形成される。
これにより、本実施の形態の階層電源システムのレイアウトが完成する。
次に、基本セル例のレイアウトについて、図60〜図63を用いて説明する。
インバータは、PMOSトランジスタおよびNMOSトランジスタの2つのトランジスタよりなり、図60に示すようにこの2つのトランジスタPn,Nnを配置することで構成できる。
またNAND回路とNOR回路の双方は、2つのPMOSトランジスタと2つのNANDトランジスタとの4つのトランジスタで構成でき、図61に示すようにこの4つのトランジスタPn、Pn+1、Nn、Nn+1を配置することで構成できる。
なお、図60および図61の部材のうち、図42〜図59で示した部材と同一または相当する部材については、それらの部材と同一の符号を付している。
図62はウェル固定セルのレイアウトを示す平面図であり、図63は図62のA2 −A2 線に沿う概略断面図である。
図62と図63とを参照して、このウェル固定セルは、図42〜図59に示されるインバータ内に適当な間隔で配置されるものである。このウェル固定セルにおいては、P型ウェル714は、導電層721h、723、721eなどに電気的に接続されることで、Vss電位に固定される。またN型ウェル領域713は、導電層721g、723、721cなどに電気的に接続されることで、Vcc電位に固定される。
また、N型ボトム層712が部分的にくり抜かれることで、P型ウェル714がP型基板領域711に直接接している。これにより、P型基板領域711の電位もVss電位に固定される。なお、図62および図63中で示した部材のうち図42〜図59で示した部材と同一または相当する部材については、それらと同一の符号を付している。
図64は、図42、図43に示す構成から容量成分を抽出した図である。以下、図42、図43の構成とこの図64との対応関係について説明する。
図42、図43および図64を参照して、容量751aはダミーゲート717bと導電層721cとの間に形成される容量であり、容量751bはダミーゲート717bと導電層721dとの間に形成される容量である。容量751cはダミーゲート717cと導電層721eとの間に形成される容量であり、容量751dはダミーゲート717cと導電層721fとの間に形成される容量である。
MOSキャパシタ752aは、N型層719cとN型ソース/ドレイン領域719aとダミーゲート717cとから構成される寄生MOSトランジスタにより形成される容量である。MOSキャパシタ752bは、N型層719b、719cとダミーゲート717cとから構成される寄生MOSトランジスタにより形成される容量である。MOSキャパシタ752cは、P型層718cとP型ソース/ドレイン領域718aとダミーゲート721dとから構成される寄生MOSトランジスタにより形成される容量である。MOSキャパシタ752dは、P型層718b、718cとダミーゲート717bとにより構成される寄生MOSトランジスタにより形成される容量である。
ダイオード753aは、PMOSトランジスタのP型ソース領域718aがサブVccになっている場合にN型ウェル713がメインVccであるために形成されるものである。ダイオード753bは、NMOSトランジスタのN型ソース領域719aがサブVssになっている場合に、P型ウェル714がメインVssであるために形成されるものである。ダイオード753cは、P型層718bとN型ウェル713との間に形成されるものである。ダイオード753dはN型層719bとP型ウェル714との間に形成されるものである。ダイオード753eは、N型ウェル713とP型ウェル714との間に形成されるものである。ダイオード753fは、N型ボトム領域712とP型基板領域711との間に形成されるものである。
なお抵抗754a〜754eは接触抵抗を示している。
図64から明らかなように、図43においてP型基板領域711、P型ウェル714およびN型層719bにはメインVssが与えられ、N型ソース領域719aおよびN型層719cにはサブVssが与えられる。またN型ボトム層712、N型ウェル713およびP型層718bはメインVccが与えられ、P型ソース領域718aおよびP型層718cにはサブVccが与えられる。
本実施の形態では、メインVccが与えられる導電層721c、サブVccが与えられる導電層721d、メインVssが与えられる導電層721e、およびサブVssが与えられる導電層721fの各々がP型層718b、718c、N型層719b、719cに各々電気的に接続されている(図48)。また、メインVccが与えられる導電層721cがN型ウェル713に、メインVssが与えられる導電層721eがP型ウェル714に各々電気的に接続されている(図62)。
これにより、図64に示すように各電源線L1、L2および各接地線L3、L4との間に多数の接合容量(ダイオード753a〜753fでの容量)が構成され、それぞれの電源線のデカップリング容量が構成される。このように電源線容量を複数個分散配置したことにより、回路動作に伴う電源ドロップを軽減することが可能となる。
また本実施の形態では、図43に示すようにダミーゲート717b、717cを設けたことにより、図64に示すように電源線L1、L2と接地線L3、L4との間に複数個のゲート容量751a〜751d、752a〜752dが構成され、それぞれの電源線のデカップリング容量が構成される。このように、電源線容量を複数個分散配置したことにより、回路動作に伴う電源ドロップを軽減することが可能となる。
ここで、メイン電源線の形成する接合容量の相手電源はサブ電源線であるが、メイン電源およびサブ電源の配線抵抗成分が異なるため、ノイズに対する位相が異なることで、このメイン電源およびサブ電源はデカップリング容量の働きを有する。また、このように同電位間で容量を形成する場合には、容量が最大となる。
また、本実施の形態では、接合容量の関係を、VssとVccとの関係にすることも可能である。
次に、本実施の形態において(1)ダミー活性層(P型層718b、718c、N型層719b、719c)の必要性、(2)ダミーゲート717b、717cの必要性および(3)N型ボトム層712について詳細に説明する。
(1) ダミー活性層の必要性について
トレンチ分離は、基板上に深い溝を掘り、その溝に絶縁膜を埋込むことで形成される。この埋込の際には、絶縁膜は基板全面に堆積され、上面から溝の高さに合わせてCMP(Chemical Mechanical Polishing )工程により削られることで溝部分だけに残存される。この工程において、活性領域以外が溝として認識されるため、トランジスタの活性領域以外に活性領域が存在しないとトランジスタが存在しない領域には大きな溝が存在することになる。この場合、この溝の部分に堆積された絶縁膜をCMPにより削り取った場合、通常の溝の部分に対して削り量が大きくなり、絶縁膜の厚さが薄くなり、トレンチ分離の分離特性が悪くなる。そのため適度な間隔以下の範囲で溝が区切られることが望ましく、たとえば10μm以上のトレンチ分離領域の連続は発生させないことが望ましい。その意味においてダミー活性層は必要である。
また、ここでは階層電源の回路部で言及したが、チップ全体から見れば回路部以外のところにダミー活性層が配置されることとなる。
(2) ダミーゲートの必要性について
ゲートの微細化が進むと、露光の特性により、光の回折が発生し、ゲート配線の配置関係(2次元)や、折れ曲がり、くびれなどのレイアウトのバラエティにより、出来上がりのゲートの大きさ(幅、長さ)がまちまちになる。特にトランジスタのゲートとしては、個々にゲート長、ゲート幅の仕上がりがばらつくと個々のトランジスタのパフォーマンスが異なり、シミュレーションの結果と食い違いが発生してしまう。
そこで、トランジスタのゲートの仕上がりを統一させるために、適度に隣合うゲートが配置されるようにする。たとえば、トランジスタのゲートから3μm以上のゲート隙間を発生させないことが望ましく、そのためにダミーゲートが必要となる。
本実施の形態の図42では、トランジスタのゲートをダミーのゲートが取り囲む状態になっている。チップ全体から見れば、ダミーのゲートを配置できない領域も多々ある(レーザブローのリダンダンシプログラム領域など)が、トランジスタの領域がダミーゲートで囲まれていれば、緩衝領域となり、トランジスタのゲート仕上がりの安定性が増す。もちろん、このダミーゲート領域が二重、三重になればより安定性が増す。
(3) N型ボトム層712について
N型ボトム層712はN型ウェル713の下部だけでなく、P型ウェル714の下部にも延在する。N型ウェル713の下部には、P型基板領域711との接合容量が存在するが、より濃度の高いN型ボトム層712を埋込むことにより、単位面積あたりの接合容量を増大させることができる。
また、P型ウェル714は、P型基板領域712と同電位のため、ここではN型ボトム層712により仕切りは不要であるが、意図的にN型ボトム層712を配置することで、N型ボトム層712とP型領域(P型基板領域711およびP型ウェル714)との間に接合容量が形成される。
ここで注意することは、N型ボトム層712の抵抗を減らし、電源の容量として機能させるため、ところどころで電源線とのシャントを設けることと、P型ウェル714とP型基板領域711との間の抵抗を低減させるために、ところどころN型ボトム層712を形成しない部分を設け、P型ウェル714とP型基板領域711とをシャントする必要があることである。
なお、図65に示すDRAM(Dynamic Random Access Memory)のアレイにおけるセンスアンプ帯とワードドライバ帯とのクロスポイントにおいても図42、43と同様の構成をとることにより、デカップリング容量を大きく得ることができ、センス動作時の大電流消費状態でも、電源ドロップを小さくすることができる。
以下、この典型的なDRAMのアレイ構成について説明する。
図65を参照して、メモリセルアレイは、センスアンプ帯とワードドライバ帯に囲まれたメモリセルアレイ単位に細分化されている。
メインワード線MWLは、メモリセルアレイ単位をまたいで設けられ、活性化させる必要のあるサブワードドライバSWDを活性化させる。サブワードドライバSWDの活性化に応じて、対応するサブワード線SWLが活性化される。センスアンプがメモリセルアレイ単位を挟んで交互に配置される構成となっている。一方、活性化させる領域(バンク)の選択線とセンス選択線とが交差する領域に属するセンスアンプが活性化される。
メモリセルアレイ単位のワード線方向に沿ってセンスアンプ帯を横切るようにセグメントYS線が配置される。
メモリセルアレイ単位からのデータの読出は、セグメントYSが活性化されることにより、セグメントYSと活性化される領域のバンク選択線とが交差する領域が活性化される。活性化された領域(バンク)からは、4センスアンプごとに1データが読出される構成となっている。
この読出データは、メモリセルアレイ上をワード線とは直交する方向に走るデータ線ペアを通じて、読出/書込アンプ(以下、R/Wアンプ)に伝達される。その後、周辺回路上やデータバス領域を介して、データ出力部に伝達される。あるいは、メモリ/ロジック混載チップである場合は、データバス領域を介して、ロジック部にデータが伝達される。
図65のクロスポイントにおけるレイアウト例を図66に示す。
図66を参照して、クロスポイントにおけるレイアウト例では、ダミー活性層718c、719cと、ダミーゲート717b、717cがインバータ形成領域およびウェル固定セル形成領域の周りを取り囲むように形成されている。
なおこれ以外の構成については図42、図43、図62および図63に示す構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
この図66に示す構成では、ウェル固定セル部においてN型ボトム層712がくり抜かれ、P型ウェル714とP型基板領域711とが直接接続されている。このため、P型基板領域711からの電位固定により、デカップリング容量の効果を大きくすることができる。
また、今回の実施の形態中では、接合部とゲート容量とに関しての容量を抽出して説明を行なったが、これ以外の多結晶シリコン配線やアルミニウムや銅などの金属配線間容量なども十分に利用でき、電源配線容量として、本実施の形態のように活用できることは言うまでもない。
また、今回の実施の形態中では、活性領域とゲート配線とに対するダミーの存在を扱ったが、これ以外の配線においても同様のダミーを配置することを許可することは言うまでもない。また、その際に、それらダミーに電位を供給し、他の配線間との容量として利用できる。
また、今回の実施の形態においては、ダミーの領域を容量として利用したが、電位を供給することで、シールドとして利用することもできる。実施の形態において重要なことは、ダミーの領域に電位を供給することであり、電位を供給された層を容量として利用してもよく、シールドとして利用してもよい。
また、今回の実施の形態を通して、インバータを説明の簡便さのため代用したが、回路として用いられるのは、インバータに限られず、いかなる回路素子でもよい。
またダミーは図70に示す構成に適用されてもよい。
図70を参照して、DRAMのビット線の層を配線として、特に高精度DC電位供給用の配線として利用した場合に、回路素子との間で、ノイズによる影響が心配される。その際に、ビット線配線と、回路部に用いられるビット線との周囲にダミービット線を配置し、さらにビット線下層のゲート配線層のダミーと、ビット線上層のアルミニウム配線層のダミーとでビット線配線を覆うことでシールドすることもできる。
[発明の効果]
この発明のある局面による半導体集積回路装置によれば、階層電源システムを用いて、論理回路に与える電源電圧を制御することにより、スタンバイサイクルにおけるリーク電流を低減させることができる。また、アクティブサイクルにおける動作電源電圧を確保することにより、アクティブサイクルにおけるロジックの動作速度の低下を防ぐことができる。さらに、各電源線の電圧をコントロールするため、電圧ドロップの発生を抑制することができる。
好ましくは、階層電源システムを用いて、高電位側の動作電源電位を供給する電源線の電圧を調整することにより、スタンバイサイクルにおけるリーク電流を低減させることができるとともに、アクティブサイクルにおける動作電源電圧を確保することが可能となる。
好ましくは、階層電源システムを用いて、低電位側の動作電源電位を供給する電源線の電圧を調整することにより、スタンバイサイクルにおけるリーク電流を低減させることができるとともに、アクティブサイクルにおける動作電源電圧を確保することが可能となる。
好ましくは、階層電源システムを用いて、高電位側および低電位側の動作電源電位を供給する電源線の電圧を調整することにより、スタンバイサイクルにおけるリーク電流を低減させることができるとともに、アクティブサイクルにおける動作電源電圧を確保することが可能となる。
好ましくは、階層電源システムを用いて、スタンバイサイクルにおける電源線の電圧とアクティブサイクルにおける電源線の電圧とをそれぞれ制御することにより、回路全体の消費電流を低減化することが可能となる。
好ましくは、階層電源システムを用いて、電源線をショートさせるために少なくとも1以上のスイッチトランジスタを設ける。これにより、電源線の抵抗を下げることが可能となる。
好ましくは、階層電源システムを用いて、電源線をショートさせるための結合回路として、アクティブサイクルにおいて、サブ電源線の電圧をメイン電源線の電圧に設定する手段を少なくとも1以上設ける。これにより、電源線間をショートした時点での電圧ドロップを抑制することが可能となる。また、論理回路の処理速度を向上することが可能となる。
好ましくは、階層電源システムを用いて、電源線間にダイオード接続されたトランジスタを設ける。これにより、メイン電源線とサブ電源線との電位差を一定以下に抑えることが可能となる。
好ましくは、動作モードに応答して、階層電源システムにおける電源線の電圧の制御タイミングを変化させる。これにより、たとえば、チップが活性化してすぐに動作する内部回路と、その後に動作する内部回路とに対して、個別に消費電流を低減させることが可能となる。
好ましくは、動作モードに応答して、階層電源システムにおける電源線の電圧を制御することが可能となる。これにより、動作モードに応答して、メイン電源線とサブ電源線との電位を制御することが可能となる。
好ましくは、テストモードに応答して、階層電源システムにおけるリーク電流をモニタすることが可能となる。
好ましくは、階層電源システムにおいてスタンバイサイクルにおけるスイッチトランジスタを介して流れるリーク電流を低減させることができる。また、3値以上のバイアス制御を行なうことにより、スイッチトランジスタのゲート電極の充放電に伴う基板電圧の浮きを防止することが可能となり、メモリセルの動作マージンを拡大することが可能となる。
好ましくは、メイン電源線とサブ電源線と結ぶPMOSトランジスタから構成されるスイッチトランジスタに対し、外部電源電圧以上の電圧を印加することにより、リーク電流を低減することが可能となる。
好ましくは、メイン接地線とサブ接地線とを結ぶNMOSトランジスタから構成されるスイッチトランジスタに対し接地電圧以下のバイアスを印加することにより、リーク電流を低減することが可能となる。
この発明の他の局面による半導体集積回路装置によれば、スタンバイサイクルにおいて階層電源システムでのスイッチトランジスタのゲート電極に負バイアスを印加することにより、スタンバイサイクルにおけるリーク電流を低減することが可能となる。また、3値以上のバイアス制御をかけることにより、スイッチトランジスタのゲート電極の充放電に伴う基板電圧の浮きを抑え、チップの動作マージンを拡大することが可能となる。
好ましくは、メイン電源線とサブ電源線とに対して設けられるPMOSトランジスタで構成されるスイッチトランジスタに対し、外部電源電圧以上のバイアスを印加する。これにより、リーク電流の低減を図ることが可能となる。
好ましくは、メイン接地線とサブ接地線との間に設けられるNMOSトランジスタで構成されるスイッチトランジスタに対し、接地電圧以下のバイアスを印加する。これにより、リーク電流を低減することが可能となる。
この発明の他の局面による半導体集積回路装置は、階層電源システムを用いて、動作タイミングに応答して、電源線間のショートタイミングを制御する。これにより、たとえば、チップが活性化してすぐに動作する内部回路と、その後に動作する内部回路とに対して、個別に消費電流を低減させることが可能となる。また、ロウ系の各々の回路、コラム系の各々の回路を個別に制御することも可能である。
好ましくは、階層電源システムにおけるリーク電流を、パイプライン処理に従って制御することが可能となる。
好ましくは、階層電源システムにおけるリーク電流を、たとえば、それぞれのバンクにおけるメモリ選択動作に従って制御することが可能となる。
、好ましくは階層電源システムを用いて、電源線の電圧を調整することにより、スタンバイサイクルにおけるリーク電流を低減させることができるとともに、アクティブサイクルにおける動作電源電圧を確保することが可能となる。
この発明の他の局面による半導体集積回路装置は、階層電源システムにおけるリーク電流を外部からモニタすることが可能となる。
好ましくは、メイン電源線に流入する電流とサブ電源線に流入する電流とを比較することにより、リーク電流を検出し、検出したリーク電流量を外部に出力することが可能となる。
好ましくは、メイン電源線に流入する電流とサブ電源線に流入する電流とを外部からコントロールすることが可能となる。
好ましくは、テスト用(ダミー)トランジスタに流れる電流量に応答して、テスト用トランジスタのゲート電圧を制御する制御回路を設ける。この制御回路の出力する電圧をスイッチトランジスタに印加することにより、スイッチトランジスタにおけるリーク電流を低減させることが可能となる。
この発明の他の局面による半導体集積回路装置によれば、第1および第2不純物領域により構成されるpn接合によって接合容量を形成できる。これにより、メイン電源線およびサブ電源線の少なくともいずれかの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。また、このような接合容量を多数分散配置することで、より一層電源ドロップを軽減することができる。また、この第1不純物領域を第1および第2の論理ゲート形成領域の横に配置することで、論理ゲート部の活性領域の形成が安定する。
好ましくは、第1および第2不純物領域は接合容量を形成するように構成されている。これにより、上述したようにメイン電源線およびサブ電源線の少なくともいずれかの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。
好ましくは、接合容量は、位相の異なる同電位間の接合容量である。これにより、接合容量の両端をノイズ位相の異なる同電位で固定することで電位の固定効果を高めることができる。
好ましくは、接合容量は、メイン電源線に電気的に接続された不純物領域とサブ電源線に電気的に接続された不純物領域との間の接合容量である。これにより、メイン電源線とサブ電源線との電位を接合容量で固定することができるため、電位の固定効果を高めることができる。
好ましくは、接合容量は、Vcc電位が与えられる不純物領域とVss電位が与えられる不純物領域との間の接合容量である。これにより、Vcc電位とVss電位とを接合容量により固定することができ、電位の固定効果を高めることができる。
好ましくは、半導体基板は半導体基板内に形成された基板領域と、基板領域と導電型の異なる逆導電型領域とを有し、接合容量は基板領域と逆導電型領域との間の接合容量を含む。これにより、より一層接合容量による電位の固定効果を高めることができる。
この発明の他の局面による半導体集積回路装置は、メイン電源線およびサブ電源線の少なくともいずれかと対向する導電層を有しているため、これらの対向する導電層間で容量を形成することができる。これにより、メイン電源線およびサブ電源線の少なくともいずれかの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。また、このような容量を多数分散配置することで、より一層電源ドロップを軽減することができる。また、この導電層を第1および第2の論理ゲート形成領域の横に配置することで、回路部のゲート電極層の形成が安定する。
好ましくは、導電層は容量を形成するように用いられている。これにより、上述したように対向する導電層間で容量を形成することができ、メイン電源線およびサブ電源線の少なくともいずれかの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。
好ましくは、導電層はメイン電源線およびサブ電源線の少なくともいずれかとの間で容量を形成する。これにより、メイン電源線およびサブ電源線の少なくともいずれかの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。
好ましくは、容量は、Vcc電位とVss電位との間で形成される容量である。これにより、VccとVssとの電位を固定できるため、回路動作に伴う電源ドロップを軽減することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1〜6 差動増幅器、10 外部制御信号入力端子群、12 アドレス信号入力端子群、14 入出力バッファ回路、16 クロック信号入力端子、18 内部同期信号発生回路、20 コントロール回路、34 コラムプリデコーダ、36 ロウプリデコーダ、38 リード/ライトアンプ、40 コラムプリデコーダ、42 コラムデコーダ、44 ロウデコーダ、50a〜50c アドレスバス、52 アドレスドライバ、54 データバス、105 ローカルサーキット、106 センターサーキット、VDC 内部電源電圧降圧回路、VUC 内部電源電圧昇圧回路、120,123,126 リーク電流テスト回路、121,124 定電流源、125 バッファ、127 負電圧ポンプ、600,620 スイッチ制御回路、1000〜3000 半導体集積回路装置。

Claims (3)

  1. メイン電源線と、
    サブ電源線と、
    アクティブサイクルにおいて、前記メイン電源線と前記サブ電源線とを電気的に結合し、スタンバイサイクルにおいて、前記メイン電源線と前記サブ電源線とを電気的に非結合する結合手段と、
    前記メイン電源線上の電圧を動作電源電圧として動作し、与えられた入力に対して所定の論理処理を施して出力する第1の論理ゲートと、前記サブ電源線上の電圧を動作電源電圧として動作し、与えられた入力に対して所定の論理処理を施して出力する第2の論理ゲートとを含む論理回路とを備え、
    前記メイン電源線は、
    第1のメイン電源線と、
    第2のメイン電源線とを含み、
    前記サブ電源線は、
    前記第1のメイン電源線に対応する第1のサブ電源線と、
    前記第2のメイン電源線に対応する第2のサブ電源線とを含み、
    前記結合手段は、
    前記第1のメイン電源線と前記第1のサブ電源線とを短絡する第1の結合回路と、
    前記第2のメイン電源線と前記第2のサブ電源線とを短絡する第2の結合回路とを含み、
    前記第1の論理ゲートは、
    前記第1のメイン電源線の電圧と前記第2のサブ電源線の電圧とを動作電源電圧とし、
    前記第2の論理ゲートは、
    前記第2のメイン電源線の電圧と前記第1のサブ電源線の電圧とを動作電源電圧とし、さらに、
    外部接地電位と外部電源電位との間に第1の基準電位、第2の基準電位、第3の基準電位および第4の基準電位を発生する基準電位発生回路を備え、前記第2の基準電位は前記第1の基準電位より高く、前記第3の基準電位は前記第2の基準電位より高く、前記第4の基準電位は前記第3の基準電位より高く、
    前記第4の基準電位と前記第1のメイン電源線の電位とを差動的に増幅する第1の増幅手段を含む第1の電圧制御回路と、
    前記第1の基準電位と前記第2のメイン電源線の電位とを差動的に増幅する第2の増幅手段を含む第2の電圧制御回路と、
    前記第3の基準電位と前記第1のサブ電源線の電位とを差動的に増幅する第3の増幅手段を含む第3の電圧制御回路と、
    前記第2の基準電位と前記第2のサブ電源線の電位とを差動的に増幅する第4の増幅手段を含む第4の電圧制御回路とを備え、
    前記第1および第2の結合回路の各々は、前記アクティブサイクルにおいてオン状態となる少なくとも1以上のスイッチトランジスタから構成される、半導体集積回路装置。
  2. 外部から受ける動作指定信号に応答して、前記論理回路の前記アクティブサイクルを指定する内部動作制御信号を発生するコントロール手段をさらに備え、
    前記結合手段は、
    前記内部動作制御信号に応答して結合/非結合動作を行う、請求項1記載の半導体集積回路装置。
  3. 外部から受ける動作指定信号に応答して、前記論理回路の前記アクティブサイクルを指定する内部動作制御信号を発生するコントロール手段をさらに備え、
    前記電圧制御手段および前記結合手段は、
    前記内部動作制御信号に応答して動作する、請求項1記載の半導体集積回路装置。
JP2009090954A 1998-05-26 2009-04-03 半導体集積回路装置 Expired - Lifetime JP4827947B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090954A JP4827947B2 (ja) 1998-05-26 2009-04-03 半導体集積回路装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14435998 1998-05-26
JP1998144359 1998-05-26
JP2009090954A JP4827947B2 (ja) 1998-05-26 2009-04-03 半導体集積回路装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34886498A Division JP4390304B2 (ja) 1998-05-26 1998-12-08 半導体集積回路装置

Publications (2)

Publication Number Publication Date
JP2009158088A JP2009158088A (ja) 2009-07-16
JP4827947B2 true JP4827947B2 (ja) 2011-11-30

Family

ID=40961907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090954A Expired - Lifetime JP4827947B2 (ja) 1998-05-26 2009-04-03 半導体集積回路装置

Country Status (1)

Country Link
JP (1) JP4827947B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569310B2 (ja) * 1993-10-14 2004-09-22 株式会社ルネサステクノロジ 半導体記憶装置
JP3725911B2 (ja) * 1994-06-02 2005-12-14 株式会社ルネサステクノロジ 半導体装置
JP3645593B2 (ja) * 1994-09-09 2005-05-11 株式会社ルネサステクノロジ 半導体集積回路装置
JP3071408B2 (ja) * 1996-12-27 2000-07-31 松下電器産業株式会社 半導体集積回路の駆動方法及び半導体集積回路

Also Published As

Publication number Publication date
JP2009158088A (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4390304B2 (ja) 半導体集積回路装置
JP4627827B2 (ja) 半導体集積回路装置
JP3853513B2 (ja) ダイナミック型ram
US6384674B2 (en) Semiconductor device having hierarchical power supply line structure improved in operating speed
US6492863B2 (en) Internal high voltage generation circuit capable of stably generating internal high voltage and circuit element therefor
US6954103B2 (en) Semiconductor device having internal voltage generated stably
US5844853A (en) Memory regulator control method with flexibility for a wide change in supply voltage
KR100311328B1 (ko) 메모리와 논리 회로를 혼재하고 내부 버스폭을 매우 크게 취한 반도체 집적 회로 장치
JP2001067868A (ja) 半導体記憶装置
KR100452322B1 (ko) 반도체 메모리 장치의 전원전압 공급 방법 및 셀 어레이전원전압 공급회로
JP4071379B2 (ja) 半導体回路装置
US5698876A (en) Memory standard cell macro for semiconductor device
JP4827947B2 (ja) 半導体集積回路装置
KR100488325B1 (ko) 단자의 입력 용량이 감소된 반도체 장치
JP2010267355A (ja) スタティックランダムアクセスメモリ
JP3718512B2 (ja) 半導体装置
JP2010146725A (ja) ダイナミック型半導体記憶装置
JP2000022515A (ja) 半導体集積回路装置
JP3257504B2 (ja) 半導体記憶装置
JP4475465B2 (ja) 半導体記憶回路装置及び半導体集積回路装置
JP2008125095A (ja) 半導体回路装置
JP2006310871A (ja) 半導体装置
JP2006031933A (ja) ダイナミック型半導体記憶装置、ダブル・データ・レート・シンクロナス・ダイナミック型ランダム・アクセス・メモリ、半導体記憶回路装置及び半導体集積回路装置
JP2000057799A (ja) ヒュ―ズ・ラッチ回路および半導体集積回路
JP2009026451A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term