JP4819554B2 - プラズマディスプレイパネルの製造方法 - Google Patents

プラズマディスプレイパネルの製造方法 Download PDF

Info

Publication number
JP4819554B2
JP4819554B2 JP2006104550A JP2006104550A JP4819554B2 JP 4819554 B2 JP4819554 B2 JP 4819554B2 JP 2006104550 A JP2006104550 A JP 2006104550A JP 2006104550 A JP2006104550 A JP 2006104550A JP 4819554 B2 JP4819554 B2 JP 4819554B2
Authority
JP
Japan
Prior art keywords
coating liquid
coating
dispersant
solvent
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104550A
Other languages
English (en)
Other versions
JP2007280730A (ja
Inventor
潤一 佐野
均志 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006104550A priority Critical patent/JP4819554B2/ja
Publication of JP2007280730A publication Critical patent/JP2007280730A/ja
Application granted granted Critical
Publication of JP4819554B2 publication Critical patent/JP4819554B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、プラズマディスプレイパネルの保護層をスプレー法により形成するプラズマディスプレイパネルの製造方法に関する。
プラズマディスプレイパネル(Plasma Display Panel:PDP)は、プラズマ放電による発光を利用して画像を表示する装置であり、放電空間を介して互いに対向配置された一対の平面ガラス基板である前面基板および背面基板を備えている。
このような前面基板の内面側には、複数の透明電極およびこれら透明電極の一端部に積層したバス電極からなる複数の表示電極対と、これら表示電極対間に設けられた複数のブラックストライプと、これら表示電極対およびブラックストライプ上を被覆する誘電体層と、この誘電体層上を被覆する保護層と、などがそれぞれ設けられている。
上記保護層は、誘電体層が放電によりスパッタリングされることを防ぐと共に、低電圧で放電を発生させるための二次電子の放出層として機能する。この保護層には、放電セル内での発光は保護層を通して前面基板側から観察されるため、可視光を透過させる光透過性が要求される。このため、保護層の材料としては、低スパッタ率、高二次電子放出係数、可視光透過性などの特性を有する酸化マグネシウム(以下MgOと記す)が広く用いられている。特に、単結晶MgOは、さらに放電確率を増加させる効果を奏するため、保護層の材料に適している。
従来、このような保護層の形成方法として、スプレーガンを用いたスプレー法により、MgOの微結晶粉末を溶剤に分散させた塗工液を基板上に塗布するものが知られている(例えば、特許文献1参照)。
この特許文献1に記載の構成では、直径が1〜2μmのMgOの微結晶粉末をエタノールを分散溶媒として分散させたものを、吹付用の懸濁液としている。そして、スプレーガンに懸濁液と霧化用の高圧エアを供給し、懸濁液をガラス基板上にスプレー塗布した後、ガラス基板を200℃に加熱しエタノールを充分に蒸発させて、MgO微結晶が積層したMgO膜を得るという構成が採用されている。
ここで、この特許文献1に記載の構成のようにスプレー法によりMgO膜を形成した場合、完成したPDPにおいて、MgO粉体が保護層として充分な厚さをもって堆積していない場合、放電遅れが大きくなり、選択不良等の特性不良を引き起すおそれがある。また、MgO粉体の塗布量にバラツキが生じた場合、輝度ムラや放電確率のバラツキ、スキャン不良等の特性不良を引き起こしてしまう。このため、スプレー法によるMgO膜の形成に当たっては、MgO粉体を充分な厚さをもって堆積させ、MgO粉体を基板上にできるだけ均一に分散させる必要がある。
ここにおいて、MgO粉体を基板上に均一に分散させるには、塗工液を霧化させた際の液滴を微小化することが有効である。このような液滴の微小化は、霧化用のエア圧力を上げることや、スプレーガンからの塗工液の吐出圧力を上げること等により達成することができる。
特開平7−296718号公報
しかしながら、霧化用のエア圧力あるいは塗工液の吐出圧力を増加させると、塗工液の噴射速度が増加するために基板表面において霧状の塗工液が反射して、当該霧状の塗工液が舞上がってしまう。このため、塗工液の基板への付着効率が低下し、所定の膜厚のMgO膜を形成するに当たり、使用する塗工液の量が増加する。この結果、PDPの製造コストが上昇してしまう問題がある。また、当該霧状の塗工液が舞上がってしまうことにより、塗工装置におけるスプレーブースやスプレーチャンバー内に配設したバグフィルター等の粒子捕獲体や装置内壁等の清掃頻度が増加してしまい、塗工装置のメンテナンスに要するコストも上昇してしまう問題が発生する。
ここで、塗工液中の溶剤の粘度を上げて、塗工液の基板への塗着効率を向上させるという方法も考えられるが、溶剤の粘度を上げることにより溶剤の沸点も高くなり、塗工後の基板を常温で乾燥することが困難となってしまう。しかも、塗工後の基板の乾燥時に、MgO粉体が溶剤の表面張力により島状に凝集してしまい、MgO粉体を基板上に均一に分散できなくなる問題が生じるおそれがある。
本発明は、上述したような問題点に鑑みて、好適に製造できかつパネルの表示特性を向上できるプラズマディスプレイパネルの製造方法を提供することを1つの目的とする。
請求項1に記載の発明は、放電空間を介して対向配置された一対の基板と、これら一対の基板のうち一方の基板の内面上に形成された複数の電極対と、これら電極対上を被覆する誘電体層と、この誘電体層上を被覆する保護層とを備えたプラズマディスプレイパネルの製造方法であって、前記保護層を形成する保護層形成工程には、スプレーガンを用いたスプレー法により、酸化マグネシウム粉体を溶剤に分散させた塗工液を塗布する工程が含まれ、前記酸化マグネシウム粉体は粒径が500Å以上5000Å以下の単結晶粉体であり、前記塗工液には、前記溶剤よりも高い粘度を有する分散剤を添加し、前記溶剤および前記分散剤は水酸基を有する物質であって、前記分散剤として、濃度が1〜20wt%の1−オクタノールを使用し、かつ、前記分散剤の水酸基の価数は、前記溶剤の水酸基の価数以上であり、前記塗工工程は、前記酸化マグネシウム粉体を溶剤に分散させた塗工液を貯留する塗工液タンクと、この塗工液タンクに第一配管を介して接続された液送ポンプと、この液送ポンプに第二配管を介して接続され、かつ、第三配管を介して前記塗工液タンク内に接続された三方弁と、この三方弁と前記スプレーガンとを接続する第四配管とを備えた塗工装置を用い、前記液送ポンプは駆動させておき、スプレー塗布を実施する場合にのみ前記三方弁を前記スプレーガン側に切り換えて前記塗工液タンク内の塗工液を前記スプレーガンに供給し、スプレー塗布を実施しない間は、前記塗工液タンク、前記第一配管、前記液送ポンプ、前記第二配管、前記三方弁、前記第三配管及び前記塗工液タンクと順に塗工液を循環させることを特徴とするプラズマディスプレイパネルの製造方法である。
本発明は、溶剤の粘度よりも高い粘度の分散剤を塗工液に添加することによって、塗工液の基板への塗着効率を向上でき、MgO粉を基板上に均一に分散できるという知見に基づいて案出されたものである。
以下、本発明の一実施形態について図面に基づいて説明する。図1は、本発明の一実施形態に係るプラズマディスプレイパネルの内部構造を示した分解斜視図である。図2は、当該プラズマディスプレイパネルを模式的に示した正面図である。図3は、図2におけるIII−III線に沿った側断面図である。図4は、図2におけるIV−IV線に沿った側断面図である。
(1)プラズマディスプレイパネルの構成
図1において、1はプラズマディスプレイパネル(Plasma Display Panel:PDP)であり、このPDP1は、例えば略平面長方形状に形成され、プラズマ放電による発光を利用して画像を表示する装置である。このPDP1は、画像表示領域を構成する放電空間Hを介して、互いに対向配置された背面基板2および前面基板3を備えている。
これら背面基板2および前面基板3は、それぞれの外周縁部に図示しないシールフリットが設けられて封着されている。そして、封着された当該空間内部は例えば6.7×104Pa(500Torr)程度の減圧状態とされ、当該空間にはHe−Xe(ヘリウム−キセノン)系やNe−Xe(ネオン−キセノン)系の不活性ガスが充填されている。
背面基板2は、例えば板状ガラス材にて平面長方形状に形成されている。この背面基板2の内面上には、図1に示すように、複数の直線状のアドレス電極21と、これらアドレス電極21上を覆うアドレス電極保護層22と、このアドレス電極保護層22上に一体的に設けられた隔壁23と、この隔壁23の放電セル231内部に充填された蛍光体層(24R,24G,24B)と、などがそれぞれ設けられている。
具体的には、アドレス電極21は、例えばAl(アルミニウム)などにて形成され、図1に示すように、背面基板2の長手方向に略直交して一定の間隔で配設されている。それぞれのアドレス電極21の一端には図示しないアドレス電極引出部が形成されて、このアドレス電極引出部を介して各アドレス電極21に図示しない列電極駆動部からの電圧パルスが印加されるようになっている。
アドレス電極保護層22は、例えばガラスペーストなどにて形成され、図1,3および4に示すように、背面基板2の内面上におけるアドレス電極引出部を除いた略全面に亘り設けられている。このアドレス電極保護層22は、パネル駆動時において、放電によるアドレス電極21の損耗を防止するとともに、駆動に必要な電荷を蓄積する誘電体層として機能する。なお、アドレス電極保護層22の外周縁部上には前述のシールフリットが設けられている。
隔壁23は、図1および3に示すように、例えばアドレス電極保護層22と同一成分のガラスペーストにて略梯子状に形成されている。そして、アドレス電極保護層22上において、アドレス電極21と略直交する複数の直線状の隙間S(図3参照)をそれぞれ間に挟んで、複数並列して設けられている。この隔壁23により放電空間Hが複数に区画され、これにて複数の矩形状の放電セル231が形成されている。そして、隔壁23は、その基端部から頂部までの高さがそれぞれ所定の高さ寸法に設定されており、背面基板2と前面基板3との間隙寸法を規定する。
蛍光体層(24R,24G,24B)は、図1,3および4に示すように赤(R)、緑(G)、青(B)の3原色の蛍光体ペーストが放電セル231内部に順に充填され、これが焼成されることにより形成される。これら蛍光体層(24R,24G,24B)は、それぞれの放電セル231で発生した紫外光により励起され、赤(R)、緑(G)、青(B)の3原色の可視光を発光する。
前面基板3は、PDP1の表示面を構成し、例えば背面基板2と同一材料にて略同一形状に形成されている。この前面基板の内面上には、図1に示すように、アドレス電極21と略直交して一定の間隔で配列された複数の表示電極対31と、これら表示電極対31間にそれぞれ設けられた複数のブラックストライプ32と、これら表示電極対31およびブラックストライプ32上を覆う誘電体層33と、この誘電体層33を覆う保護層34と、などがそれぞれ設けられている。
具体的には、表示電極対31は、図2および3に示すように、放電ギャップG(図2参照)を介して対向する複数対の透明電極311a,311bと、これら透明電極311a,311bの一端部に積層する一対の直線状のバス電極312a,312bとを備えて構成されている。
透明電極311a,311bは、図2に示すように、ITO(Indium Tin Oxide)などの透明導電膜で略T字形状に形成されており、所定の放電セル231に対応して一対ずつ設けられている。
バス電極312a,312bは、一対の透明電極311a,311bにおける放電ギャップG(図2参照)に対して反対側の端部に、それぞれ積層して設けられている。これらバス電極312a,312bのそれぞれの一端には図示しないバス電極引出部が形成され、このバス電極引出部を介して各透明電極311a,311bに図示しない行電極駆動部からの電圧パルスが印加されるようになっている。
このようなバス電極312a,312bは、図3に示すように、透明電極311a,311b上に積層して設けられた黒色無機顔料などからなるバス電極黒層313a,313bと、これらバス電極黒層313a,313bに積層して設けられたAg(銀)などを主成分とする金属材料からなる主導電層314a,314bとを備えた2層構造となっている。
ブラックストライプ32は、図2および3に示すように、バス電極黒層313a,313bと同質の材料にて、直線状に形成されている。このブラックストライプ32およびバス電極黒層313a,313bにて、前面基板3の外方から照射された可視光が吸収されるようになっている。
誘電体層33は、図1および3に示すように、例えばガラスペーストなどにて形成され、背面基板2のアドレス電極保護層22と対向して設けられている。この誘電体層33は、パネル駆動時において、放電による表示電極対31の損耗を防止するとともに、駆動に必要な電荷を蓄積する。
保護層34は、図1,3および4に示すように、誘電体層33の内周面の全面を被覆するMgO(酸化マグネシウム)からなる薄膜MgO層341と、この薄膜MgO層341を被覆する結晶MgO層342とを備えた2層構造となっている。
薄膜MgO層341は、例えば蒸着法やスパッタリング法などにより形成される。結晶MgO層342は、後述するスプレー法にて形成される。
このような保護層34は、誘電体層33が放電によりスパッタリングされることを防ぐと共に、低電圧で放電を発生させるための二次電子の放出層として機能する。
(2)PDP1の製造方法の概略構成
次に、上述した構成のPDP1の製造方法の概略構成について図面に基づいて説明する。図5は、スプレー法による単結晶MgO粉体層の形成工程を示した模式図である。
まず、PDP1の背面基板2の製造ラインにおいて、ガラス基板の内面側を超音波洗浄処理や中性洗剤を用いた水洗処理などにより十分に洗浄しておく。
この後、当該ガラス基板の内面側の全面に金属薄膜を形成して、フォトリソグラフィ法によりアドレス電極21のパターンを形成する。
このアドレス電極21上にガラスペーストを塗布して、当該ガラスペーストを成形・焼成することによりアドレス電極保護層22および隔壁23を形成する。
そして、放電セル231内部にスクリーン印刷法などにより赤(R)、緑(G)、青(B)の3原色の蛍光体ペーストを塗布し、これを焼成して蛍光体層(24R,24G,24B)を形成する。
以上により、PDP1の背面基板2が完成する。
次に、PDP1の前面基板3の製造ラインにおいて、ガラス基板の内面側を超音波洗浄処理や中性洗剤を用いた水洗処理などにより十分に洗浄しておく。
この後、当該ガラス基板の内面側の全面に透明電極材料層を形成して、フォトリソグラフィ法などにより複数の透明電極311a,311bを形成する。この透明電極対上にスクリーン印刷法などにより黒色無機顔料のペーストパターンを積層形成し、更にこのパターン上にAgペーストのパターンを積層形成する。そして、これらのパターンを焼成して、バス電極黒層313a,313bおよび主導電層314a,314bからなる2層構造のバス電極312a,312bを形成する。
この後、これらバス電極312a,312b間にスクリーン印刷法などにより黒色無機顔料のペーストパターンを塗布して、これを焼成して複数のブラックストライプ32を形成する。
さらに、透明電極311a,311b、バス電極312a,312bおよびブラックストライプ32を被覆する状態にダイコータなどによりガラスペーストを塗布して誘電体層33を形成する。
この後、誘電体層33の上に、薄膜MgO層341を蒸着法やスパッタリング法などにより成膜形成する。
さらに、図5に示すように、スプレー法により単結晶MgO粉体342Aを溶剤に分散させた塗工液を薄膜MgO層341上にスプレー塗布し、これを焼成して、結晶MgO層342を形成する(結晶MgO層342の形成工程)。本実施形態におけるスプレー法では、図6および7に示す塗工装置800,900を使用し、以下に示す各種霧化方式を採用することができる。また、塗工液には、以下に示すMgO粉体、溶剤および分散剤を混合したものを使用する。
以上により、PDP1の前面基板3が完成する。
(3)塗工装置の構成
上記した結晶MgO層342をスプレー法により形成する塗工装置について、図6および7に基づいて説明する。図6は第一の塗工装置を示す模式図である。図7は第二の塗工装置を示す模式図である。
図6に示すように、第一の塗工装置800は、単結晶MgO粉体を溶剤に分散させた塗工液LQを貯留する塗工液タンク810と、この塗工液タンク810に配管811を介して接続された液送ポンプ820と、この液送ポンプ820に配管821を介して接続されたスプレーガン830とを備えている。
このような第一の塗工装置800は、塗工液タンク810内の塗工液LQを液送ポンプ820にて吸引し、前面基板3の上方においてスプレーガン830を移動させながら、スプレーガン830より当該塗工液LQを前面基板3の塗工面に対して吐出させる。
なお、この第一の塗工装置800では、スプレー塗布を実施する場合にのみ、液送ポンプ820を駆動させて、塗工液LQをスプレーガン830に供給する。
図7に示すように、第二の塗工装置900は、単結晶MgO粉体を溶剤に分散させた塗工液LQを貯留する塗工液タンク910と、この塗工液タンク910に配管911を介して接続された液送ポンプ920と、この液送ポンプ920に配管921を介して接続され、かつ、配管931を介して塗工液タンク910内に接続された三方弁930と、この三方弁930に配管932を介して接続されたスプレーガン940とを備えている。
このような第二の塗工装置900では、液送ポンプ920は常に駆動させておき、スプレー塗布を実施する場合にのみ、三方弁930をスプレーガン940側に切り換えて塗工液タンク910内の塗工液LQをスプレーガン940に供給する。そして、前面基板3の上方においてスプレーガン940を移動させながら、スプレーガン940より当該塗工液LQを前面基板3の塗工面に対して吐出させる。
一方、スプレー塗布を実施しない間は、塗工液タンク910、配管911、液送ポンプ920、配管921、三方弁930、配管932、塗工液タンク910と順に塗工液LQを循環させる。このようにして、スプレー塗布の実施の有無に関わらず、塗工液LQを絶えず循環させて、装置の各部において単結晶MgO粉体が沈降することを防止している。
(4)霧化方式
上記した図6および7に示す塗工装置800,900を使用してスプレー塗布する場合、塗工液を霧化した上で基板上にスプレー塗布する。本実施形態では、この塗工液の霧化には、1流体霧化方式や2流体霧化方式、ベル方式等を採用することができる。
1流体霧化方式は、塗工液に対して圧力を印加し、噴射の際の剪断力を利用して塗工液を霧状とするものである。すなわち、例えば図6および7に示す液送ポンプ820,920よりスプレーガン830,940より吐出される塗工液LQに対して圧力を印加して、塗工液LQを霧化する。
このような1流体霧化方式において、形成される液滴の粒径は、ノズル先端形状に影響され、また、塗工液に加える圧力が大きい程当該粒径が小さくなる。なお、本方式は、塗工液に対して圧力を印加するため、配管を細くした場合でも塗工液の吐出量が増大してしまい、少量の塗工には適さない。
2流体霧化方式は、塗工液に対して圧縮空気を送り込み、この圧縮空気により塗工液を剪断して霧状とするものである。すなわち、例えば図6および7に示すスプレーガン830,940に図示しない圧縮空気供給手段を接続し、スプレーガン830,940に供給された塗工液LQに対して圧縮空気供給手段より圧縮空気を送り込んで、塗工液LQを霧化する。また、スプレーガン830,940の内部には図示しないパターンエア供給手段を接続しておき、このパターンエア供給手段からパターンエアを送り込むことにより、発生した霧状の塗工液LQをスプレーガン830,940から吐出させる。
このような2流体霧化方式において、形成される液滴の粒径は、ノズル先端形状に影響され、また、圧縮空気の圧力が大きい程当該粒径が小さくなる。なお、塗工液には吐出量調整のために圧力を与える場合もあるが、当該圧力は1流体霧化方式のものと比べて遥かに低い。
ベル方式は、高速回転するカップにより塗工液を剪断して霧状とするものである。すなわち、例えば、カップとして例えばφ20mmのコマを使用し(図示しない)、このコマを図6および7に示すスプレーガン830,940内部の流路上に回転可能に配設する。また、スプレーガン830,940内部におけるカップの外周側には図示しないパターンエア供給手段を接続しておく。そして、当該コマを高速回転(例えば回転数72000rpm)させているところに液送ポンプ820,920より塗工液LQを供給して、霧状の塗工液LQを発生させる。これと同時に、パターンエア供給手段からパターンエアを送り込むことにより、発生した霧状の塗工液LQをスプレーガン830,940から吐出させる。
通常、このようなベル方式は、上記1流体霧化方式あるいは2流体霧化方式の噴射速度に比べてカップの周速が低いために塗工液の剪断力が小さく、形成される液滴の粒径は流体霧化式のものと比べて大きくなる。
(5)MgO粉体の構成
MgO粉体には、BET法によって測定した平均粒径が500Å以上(好ましくは2000Å以上)の気相法酸化マグネシウム単結晶粉体を使用する。
このような単結晶MgO粉体を用いて結晶MgO層342を形成することにより、PDP1の放電特性が改善(放電遅れの減少、放電確率の向上)されることになる。すなわち、放電によって発生する電子線の照射によって結晶MgO層342に含まれる粒径の大きな単結晶MgO粒から、300〜400nmにピークを有するCL発光に加えて、波長域200〜300nm(特に、235nm付近、230〜250nm内)にピークを有するCL発光が励起される。そして、当該単結晶MgO粒は、そのピーク波長に対応したエネルギー準位を有し、そのエネルギー準位によって電子を長時間(数msec以上)トラップすることができる。この電子が電界によって取り出されることで、放電開始に必要な初期電子が得られ、結果として、放電遅れが減少し、放電確率が向上する。
なお、単結晶MgOではMgO粒子のBET換算粒径が5000Å以上であると、指数関数的に塗着効率が低下し、これに伴って塗工液の使用量が増大する。このようなMgO粒子を用いて塗工を実施すると、大量に溶剤やMgOを消費するために、生産コストや環境負荷の増大に繋がる。そのため、通常は粒径5000Å以下の粒子を使用する。
また、通常、単結晶MgOは真比重が約3でかつ溶剤の比重が1以下であるため、MgO粉体の沈降速度は大きくなる。特に、沈降速度は粒径の2乗に比例するため、MgO粉体の粒径が大きくなる程沈降しやすくなる。さらに、MgO粉体は凝集性が高いために、塗工液タンク810,910内部や、各配管内で沈降が生じたときに、MgO粉体同士が凝集して成長する。これにより塗工液LQの流路にMgO粉体の凝集物が付着し、固着や閉塞を引き起こす。このため、塗工液LQ中においてMgO粉体をできるだけ分散させておく必要がある。
(6)溶剤の構成
溶剤には、極性が強くかつ沸点が低いものを使用する。このような溶剤としては、例えばエタノールや、グリコール、IPA(2−プロパノール)などの水酸基を有する物質が挙げられ、特にエタノールなどの1価の水酸基を有するアルコールを使用することが好ましい。この他、溶剤としては、酢酸エチル、酢酸イソプロピル等のエステル化合物、ジメチルスルホキシド等の硫黄化合物、ジメチルホルムアミド等の窒素化合物を使用することもできる。
このような水酸基、カルボキシル基、スルホン基、アミン基等の親水基を有した極性の強い溶剤によれば、MgO粉体のMgまたはOと溶剤中の親水基による水素結合もしくは静電引力(極性によるもの)により、溶剤分子がMgO粉体の外周を取り囲み、MgO粉体を溶剤中に分散させることが可能となる。また、溶剤に沸点の低いものを使用することにより、塗工後の溶剤を常温においても基板上から揮発させることが可能となる。
(7)分散剤の構成
分散剤には、溶媒よりも粘度の高いものを使用する。このような分散剤を使用することで、分散剤がMgOと基板表面との接着剤として機能するため、粒径の大きなMgO粉体でも基板表面に付着させることができ、塗工液の基板への付着効率を向上できる。また、溶剤自体は粘度が低いものであるので塗工後に揮発し易く、塗工後の基板を常温でも乾燥可能となり、基板上におけるMgO粉体の凝集が防止される。したがって、基板表面でのMgO粉体の分散状態を良化させることが可能となる。
特に、溶剤にアルコール等の水酸基を有する物質を使用する場合、分散剤には溶剤の水酸基の価数よりも水酸基の価数が高い物質を使用することが好ましい。このように、分散剤の水酸基の価数を溶媒の水酸基の価数よりも高くすることで、塗工液中におけるMgO粉体の分散性を向上できるようになる。つまり、分散剤は溶剤よりも多くの水酸基を有しているので、分散剤は溶剤よりもさらにMgO粉体に吸着し易く、塗工液中において分散剤がMgO粉体の外周をより確実に取り囲むようになる。このため、塗工液中において、MgO粉体同士が凝集することが防止され、MgO粉体の分散性が向上される。
以上のような分散剤としては、具体的にはグリセリン、エチレングルコール、および1−オクタノールが例示できる。特に、グリセリンを用いた場合にはその濃度を1〜9wt%とし、エチレングリコールを用いた場合にはその濃度を1〜18wt%とし、1−オクタノールを用いた場合にはその濃度を1〜20wt%とすることが好ましい。これら分散剤では、塗着率、塗工表面粒子分散性ならびに液の分散性において、水酸化基が3価であるグリセリンが最も優れており、次いで水酸化基が2価であるエチレングリコール、水酸化基が1価である1−オクタノールの順となっている。
なお、グリセリン、エチレングリコールおよび1−オクタノールの濃度が1wt%よりも低い場合、グリセリンの濃度が9wt%よりも高い場合、エチレングリコールの濃度が9wt%よりも高い場合、1−オクタノールの濃度が20wt%よりも高い場合は、塗工表面の粒子分散性を向上できない。
(8)実施例
本実施形態の効果を確認するための実施例を以下に示す。
(8-1)種々の分散剤の使用による分散性評価
まず、スプレー法によるMgO粉体の塗工において、種々の分散剤の使用による分散性評価について説明する。
塗工装置としては図7に示す第二の塗工装置900を使用し、霧化方式は上記(4)に示したベル方式を採用した。具体的には、塗工液タンク910の内部は、φ40の攪拌羽根を約300rpmで回転させて、タンク内でのMgO粒子の沈降を防ぐようにした。液送ポンプ920にはギヤ式の定量(定積)ポンプを使用し、交流モーターにより駆動した。交流モーターはインバーターによりその回転数を制御した。配管921および配管931の長さはそれぞれ約10m、配管932の長さは約0.5mとし、それぞれ内径2mmのPFAチューブを用いた。スプレーガン940にはベル方式のものを用いた。カップとしてはφ20mmのコマを使用し、カップ回転数は72000rpmとした。スプレーガン940内部におけるカップの外周側には、図示しない空気供給手段を接続し、この空気供給手段からスプレーガン940内部にエア圧力0.5Mpaのパターン形成エアを送り込んだ。また、スプレーガン940からの塗工液LQの吐出量は10cc/minとした。
被塗工基板としてはソーダライムガラスを使用した。
塗工液のMgO粉体としてはMgO単結晶粒子を用い、BET換算粒径は5000Å、粉体重量比は5wt%とした。
塗工液の溶剤としては、エタノール(水酸基1価、20℃での粘度0.0012Pa・S(1.2cP))を使用した。
塗工液の分散剤としては、溶剤に比べて高粘度かつ水酸基の価数が溶剤の価数以上である、グリセリン(水酸基3価、20℃での粘度1.412Pa・S(1412cP))と、エチレングリコール(水酸基2価、20℃での粘度0.0232Pa・S(23.2cP)と、1−オクタノール(水酸基1価、20℃での粘度0.00893Pa・S(8.93cP))を使用した。分散剤濃度は、塗工液の全重量に対して1〜20wt%に調整した。
以上の条件で、基板上に塗工液LQをスプレー塗布した後、溶媒および分散剤を完全に乾燥するために、乾燥炉において200℃で10分間乾燥を行なった。
そして、各試料の分散状態をCCDカメラによって画像を撮像し、表面分散状態を目視により確認した。なお、撮像の際は粒の状態を明確に浮き上がらせるために、基板に対して45°の斜光を照射した。
その結果、分散剤としてグリセリンを使用した場合は濃度が3wt%のときに、エチレングリコールを使用した場合は濃度が5wt%のときに、1−オクタノールを使用した場合は濃度が10wt%のときに、それぞれ基板上に塗布されたMgO粉体の分散状態が最良となることが確認できた。
また、各分散剤における上記の最良状態での分散状態(以下、最良分散状態と称す)を比較すると、グリセリン、エチレングリコール、1−オクタノールの順で、最良分散状態が良好となることが確認できた。これは、水酸基の価数の作用であると思われる。
また、グリセリンでは濃度1〜9wt%の範囲で、エチレングルコールでは濃度1〜18wt%の範囲で、1−オクタノールでは濃度1〜20wt%の範囲で、分散材を添加しない場合に比べて分散状態が良化した。また、それぞれの分散剤において、分散剤の添加量が上記上限値よりも多くなるほど、MgO粉体の分散状態が悪化した。これは、塗工後に基板表面上で揮発していない分散剤が凝集することに伴って、MgO粉体が凝集して島が形成されたことによるものと考えられる。
以上の結果を考察すると、分散剤としてグリセリンを添加した場合、グリセリンの粘度が高いため基板へのMgO粉体の付着性が向上し、MgO粉体の最良分散状態が最も良好となったものと考えられる。しかし、逆にグリセリンの粘度が高いため乾燥凝集が生じ易く、良好な結果が得られる濃度の上限値がエチレングルコールおよび1−オクタノールと比較して低くなったものと考えられる。
また、分散剤としてエチレングリコールあるいは1−オクタノールを添加した場合は、グリセリンを添加した場合ほど基板への付着性は良くないため、最良分散状態がグリセリンの場合に比べて良くならなかったものと考えられる。しかし、エチレングリコールおよび1−オクタノールでは、乾燥凝集が生じ難いため、広い濃度範囲で分散状態が良化したものと考えられる。
(8-2)グリセリンを使用した場合におけるMgO粉体の分散状態の観察
次に、上記(8-1)と同様にして、分散剤としてグリセリンを3wt%添加した場合(実施例1)、分散剤を添加しない場合(比較例1−1)、および、分散剤としてグリセリンを10wt%添加した場合(比較例1−2)におけるMgO粉体の分散状態を撮像した。そして、分散剤添加の有無、および、分散剤の添加量の多寡によるMgO粉体の分散状態への影響について検討した。
図8には実施例1における、図9には比較例1−1における、図10には比較例1−2における塗工後の基板表面画像を2値化した画像を示す。これら画像中において、黒部分が塗工されたMgO粉体の集合体であり、2値化により抽出された領域である。
図8と図9とを比較すると、図8に示すグリセリンを3wt%添加した場合(実施例1)では、図9に示す分散剤を添加しない場合(比較例1−1)よりも、MgO粉体の細かく均一に分散しており、分散性が良好であることが分かる。このことより、分散剤としてグリセリンを3wt%添加することで、MgO粉体の分散性を向上できることが分かる。
図8と図10とを比較すると、図10に示すグリセリンを10wt%添加した場合(比較例1−2)では、MgO粉体が細かく分散している部分もあるが、MgO粉体が凝集して島状になっている部分が多く存在していることが分かる。このことより、グリセリンの添加量を上げ過ぎると、島状のMgO粉体が形成され易くなり、MgO粉体の分散性が低下することが分かる。
この結果を次のように考察する。グリセリンはエタノールよりも沸点が高いため、溶媒としてのエタノールはスプレー塗布後に自然乾燥するが、分散剤としてのグリセリンは自然乾燥せずに基板表面にMgO粉体と共に残る。そして、分散剤の濃度が高くなる程、基板表面に未乾燥状態で残る分散剤量が多くなり、基板乾燥時に分散剤の表面張力により分散剤が凝集する。そして、分散剤中にMgO粉体が存在しているために、MgO粉体の乾燥凝集が発生し易くなったものと考えられる。図10はMgO粉体の乾燥凝集が発生した例であるが、さらに分散剤添加量を増加させると、MgO粉体の分散性はさらに低下する。
(8-3)塗着効率の評価
次に、種々の分散剤について塗着効率を評価するため、種々の分散剤について以下の実験を行い、それぞれ基板上に形成されたMgO粉体層が所定の透過率になるまでに要した塗工液の吐出量をMgO粉体の粒径毎に調べた。
塗工装置としては図7に示す第二の塗工装置900を使用し、スプレーガン940以外の基本的な装置構成は上記(8-1)と同様とした。スプレーガン940には2流体エア霧化方式のものを使用し、スプレーガン940に供給する霧化用の圧縮空気圧力は0.1MPaとし、パターンエア圧力は0.2MPaとした。
被塗工基板としてはソーダライムガラスを使用した。
塗工液のMgO粉体としてはMgO単結晶粒子を用い、BET換算粒径は2200〜8300Å、粉体重量比は5wt%とした。
塗工液の溶剤にはエタノールを用い、塗工液の分散剤にはグリセリン(実施例2−1)、エチレングリコール(実施例2−2)および1−オクタノール(実施例2−3)を用いた。各分散剤濃度は、上記(8-1)の結果において最良分散状態が得られたときの濃度として、グリセリンでは3wt%、エチレングリコールでは5wt%、1−オクタノールでは10wt%と設定した。また、比較例2として、塗工液に分散剤を添加しないものも準備した。
以上の条件で、基板上に塗工液LQをスプレー塗布した後、溶媒および分散剤を完全に乾燥するために、乾燥炉において200℃で10分間乾燥を行なった。図11に、それぞれの分散剤について、基板上に形成されたMgO粉体層が所定の透過率になるまでに要した塗工液の吐出量(必要吐出量[cc/min])と、MgO粉体のBET換算粒径[Å]との関係を示す。ここでの所定透過率は拡散透過率80%とした。
図11に示す結果より、所望の透過率にてMgO粉体層を形成する際には、上述の各種分散剤を添加した場合の方(実施例2−1〜2−3)が、分散剤を添加しない場合(比較例2)と比較して、塗着効率が高くなることが分かる。また、高粘度の分散剤を添加した方が、より大きな粒径のMgO粉体を基板上に塗着できるようになることが分かる。
具体的に、図11において、分散剤を添加しなかった場合(比較例2)では、MgO粉体のBET換算粒径が約5000Å以下において必要吐出量が一定(約13[cc/min])であり、5000Åより大きい粒径では指数関数的に必要吐出量が増加した。
一方、グリセリンを3wt%添加した場合(実施例2−1)では、MgO粉体のBET換算粒径が約7000Å以下において必要吐出量が一定(約8[cc/min])であり、7000Åより大きい粒径では必要吐出量が増加した。
また、エチレングリコールを5wt%添加した場合(実施例2−2)では、MgO粉体のBET換算粒径が約6000Å以下において必要吐出量が一定(約11[cc/min])であり、6000Åより大きい粒径では指数関数的に必要吐出量が増加した。
そして、1−オクタノールを10wt%添加した場合(実施例2−3)では、必要吐出量が実施例2−2と比較例2との中間程度となっており、MgO粉体のBET換算粒径が約5500Å以下において必要吐出量が一定(約12[cc/min])であり、5500Åより大きい粒径では指数関数的に必要吐出量が増加した。
このように、MgO粉体のBET換算粒径に対して必要吐出量が一定の区間では、各種分散剤を添加した場合(実施例2−1〜2−3)の方が、分散剤を添加しない場合(比較例2)と比較して小さな値となった。通常、MgO粉体は5000Å未満のものを使用するため、当該一定の区間における必要吐出量が基本的な塗着効率となる。このため、グリセリンを添加した場合(実施例2−1)では約30%、エチレングリコールを添加した場合(実施例2−2)では約20%、1−オクタノールを添加した場合では約10%塗着効率が向上したと言える。
また、各種分散剤を添加した場合(実施例2−1〜2−3)、分散剤を添加しない場合(比較例2)と比較して、指数関数的な増加を始めるBET換算粒径の閾値が高くなっている。特に、実施例2−1(グリセリン添加)と比較例2(分散剤添加なし)とを比較すると、実施例2−1は当該閾値が40%程高くなっていることが分かった。これより、高粘度の分散剤を添加した方が、より大きな粒径のMgO粉体を基板上に塗着させることができるようになることが分かる。
ここで、MgO粉体の粒径に対して、必要吐出量の増加が始まる上記閾値が存在するのは、以下の理由によるものと考えられる。
MgO粉体が十分に小さい場合、粒子表面の表面エネルギーが高いために、付着性が高く、基板に付着しやすい。そして、MgO粉体が大きくなると、基板に付着するだけの表面エネルギーを持てず基板に付着し難くなる。
また、BET換算粒径は、通常、正規分布を持つ粒径分布が平均化された値である。したがって、基板に付着できなくなるBET粒径よりも大きなMgO粉体であっても、実際には分布を持っているため基板に付着可能な小さいMgO粉体を含んでいる。そのため、図11においては、ある粒径以上では必要吐出量が指数関数(実際の粒径分布が正規分布のため)的に増加したものと考えられる。
そして、分散剤を添加した場合(実施例2−1〜2−3)では、分散剤がMgO粉体と基板表面との接着剤として機能するため、高い表面エネルギーを持つのと同様の効果が得られ、上記のように、指数関数的な増加を始めるBET換算粒径の閾値が大きくなったものと考えられる。特にこの効果は、MgO粉体の分散性が高く、かつ、粘度が高い分散剤ほど強く現れるため、グリセリン(実施例2−1)およびエチルグリコール(実施例2−2)では上記閾値が高くなったものと考えられる。
(8-4)各分散剤を使用した場合におけるPDP1の放電遅れの検証
次に、各分散剤の使用によるPDP1(図1参照)の放電遅れを検証するため、以下の実験を行った。
上記(2)に示したようにPDP1を製造した。特に結晶MgO層342の形成工程では、塗工装置および塗工条件は上記(8-3)と同様とした。塗工液のMgO粉体としてはMgO単結晶粒子を用い、BET換算粒径は5500Å、粉体重量比は5wt%とした。塗工液の溶剤にはエタノールを使用し、塗工液の分散剤にはグリセリン3wt%(実施例3−1)、エチレングリコール5wt%(実施例3−2)、1−オクタノール10wt%(実施例3−3)添加した塗工液を用いた。また、比較例3として、分散剤を添加しない塗工液も準備した。
それぞれのPDP1について、放電遅れ測定を前面基板3面内の20ポイントで行なった。図12には面内20点の放電遅れの測定結果(範囲)を示す。放電遅れは単結晶MgO塗工を行なわないパネルの最大値で規格化した。なお、放電遅れとは、放電を発生させるための電圧を印加させてから、実際に放電が起きるまでの時間(形成遅れ+統計遅れ)を意味する。
図12に示す結果より、分散剤を添加したもの(実施例3−1〜3−3)は、分散剤を添加しないもの(比較例3)に比べて放電遅れが改善したことが分かった。特に、放電遅れの最小値においては、グリセリンを添加した場合(実施例3−1)が最も小さく、次にエチレングリコール(実施例3−2)、1−オクタノール(実施例3−3)の順となることが分かった。
このように、各種分散剤の添加により放電遅れのばらつきが減少したのは、基板上に塗工されたMgO粉体の分散性が改善し、放電に寄与するMgOのばらつきが減少したためと考えられる。
また、各種分散剤の添加により放電遅れの最小値が減少したのは、分散剤により大粒径のMgO粉体の付着性が向上したためである。すなわち、本実験で使用したMgO粉体はBET粒径が5500Åである。図11では、MgO粉体のBET粒径が5500Åの場合、分散剤添加しない条件(比較例2)では必要吐出量が増加する領域に含まれ、大きな粒径の粉は付着しないことを意味する。また、エチレングリコール(実施例2−2)および1−オクタノール(比較例2−3)では必要吐出量が僅かに上昇する領域に含まれ、グリセリン(実施例2−1)では必要吐出量が変化しない領域に含まれる。そして、MgO粉体粒径が大きいと、放電確率(1/放電遅れ)の向上に寄与し易くなる傾向がある。そのため、大粒径の粉の付着割合が高い程、放電遅れが改善する。したがって、図12に示すように、各種分散剤(実施例3−1〜3−3)を添加することにより、特にグリセリン(実施例3−1)を添加することにより、PDP1の放電遅れの最小値が減少したものと考えられる。
(9)PDP1の製造方法の効果
上述したように、本実施形態におけるPDP1の製造方法によれば、以下の効果を奏することができる。
(9-1)結晶MgO層342の形成工程において、図7に示す第二の塗工装置900を用いたスプレー法にて、MgO粉体を溶剤に分散させた塗工液を薄膜MgO層341上に塗布する。塗工液には、溶剤よりも高い粘度を有する分散剤を添加する。
このような分散剤を使用することで、分散剤がMgOと基板表面との接着剤として機能する。このため、粒径の大きなMgO粉体でも基板表面に付着させることができ、塗工液の基板への付着効率を向上できる。また、MgO粉体を基板上に均一に分散させるために、塗工液の霧化用のエア圧力あるいは塗工液の吐出圧力を増加させても、MgO粉体を基板表面に良好に付着させることができる。このことにより、塗工液の使用量および霧状の塗工液の飛散量を低減できるので、PDP1の製造コストの上昇および塗工装置900のメンテナンスに要するコストの上昇を防止できる。
また、溶剤自体は分散剤に比べて粘度が低いものであるので、塗工後に揮発し易く、塗工後の基板を常温でも乾燥できる。そして、分散剤の濃度を所定の条件に設定すれば、基板上に残留した分散剤によりMgO粉体が乾燥凝集することもなく、基板表面でのMgO粉体の分散状態を良化させることができる。
そして、このような塗工液を用いたスプレー法によれば、結晶MgO層342を均一に形成することができるので、PDP1の各放電セル231において、放電遅れ・放電確率を均一化できる。特に大粒径のMgO粉体も使用可能であるので、放電遅れをさらに低減できる。このため、均一な輝度および良好なスキャン特性を有したPDP1を得ることができる。
以上のように、本実施形態のPDP1の製造方法によれば、PDP1を好適に製造でき、かつ、PDP1の表示特性を向上できる。
(9-2)塗工液において、溶剤および分散剤は水酸基を有する物質であって、分散剤の水酸基の価数は前記溶剤の水酸基の価数以上であることが好ましい。
このような塗工液を用いた場合、分散剤は溶剤よりも多くの水酸基を有しているので、塗工液中において、分散剤は溶剤よりもMgO粉体に吸着し易く、分散剤によりMgO粉体の外周を確実に取り囲ませることができる。このため、塗工液中においてMgO粉体同士が凝集しなくなるので、MgO粉体の塗工液中での分散性を向上できる。また、MgO粉体の外周を高粘度の分散剤が取り囲むことにより、分散剤のMgOと基板表面との接着剤としての機能がさらに向上し、MgO粉体の基板への塗着効率をより向上できる。
そして、塗工装置の各部におけるMgO粉体の凝集も防止できるので、MgO粉体の付着による流路の閉塞等を防止でき、塗工装置の安定した塗工動作を確保できる。
(9-3)塗工液において、溶剤は1価の水酸基を有するアルコールであることが好ましい。
このような塗工液を用いた場合、溶剤の極性が強くかつその沸点が低いので、MgO粉体を溶剤中における分散性を向上でき、常温においても塗工後の溶剤を基板上から揮発させることができる。これにより、塗工後の基板上においてMgO粉体をより均一に分散させることができる。
また、塗工装置の各部におけるMgO粉体の凝集をより確実に防止できるので、MgO粉体の付着による流路の閉塞等をさらに防止でき、さらに安定した塗工装置の塗工動作が得られる。
(9-4)塗工液において、分散剤として、グリセリン、エチレングルコール、および1−オクタノールのうち少なくともいずれか1種を使用することが好ましい。
このような分散剤を使用することにより、塗工後の基板表面におけるMgO粉体の分散性、MgO粉体の基板への付着効率、大径MgO粉体の基板に対する吸着性、および、塗工液中でのMgO粉体の分散性において、優れた効果を得ることができる。
(9-5)塗工液において、分散剤として、グリセリンを用いた場合にはその濃度を1〜9wt%とし、エチレングリコールを用いた場合にはその濃度を1〜18wt%とし、1−オクタノールを用いた場合にはその濃度を1〜20wt%とすることが好ましい。
このような分散剤を使用することにより、塗工後の基板表面におけるMgO粉体の分散状態を確実に良化させることができる。
(9-6)塗工液において、酸化マグネシウム粉体は単結晶粉体であることが好ましい。
このような単結晶MgO粉体を用いて薄膜MgO層341を形成すれば、PDP1において、放電遅れが減少しかつ放電確率が向上するなど、PDP1の表示特性を向上できる。
(9-7)塗工液において、溶媒としてエタノールを使用する。そして、分散剤として、グリセリンを3wt%、エチレングリコールを5wt%、あるいは、1−オクタノールを10wt%添加することが好ましい。
これらの場合、MgO粉体の基板表面における分散状態を最良なものとすることができる。特に分散剤としてグリセリンを3wt%添加した場合、塗工後の基板表面におけるMgO粉体の分散性、MgO粉体の基板への付着効率、大径MgO粉体の基板に対する吸着性、および、塗工液中でのMgO粉体の分散性において、最も優れた効果を得ることができる。
(10)実施形態の変形
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前記実施形態では、前面基板3側に表示電極対31および誘電体層33を設け、かつ、背面基板2側にアドレス電極21および蛍光体層(24R,24G,24B)を設けた、いわゆる反射型交流PDPを例示したが、本発明はこれに限定されない。すなわち、本発明が適用可能なPDPとしては、例えば、前面基板側に表示電極対とアドレス電極を形成してこれらを誘電体層によって被覆し、背面基板側に蛍光体層を形成した反射型交流PDPでもよい。また、例えば、前面基板側に蛍光体層を形成し、背面基板側に表示電極対とアドレス電極を形成してこれらを誘電体層によって被覆した透過型交流PDPでもよい。つまり、本発明は、前面基板あるいは背面基板のいずれか一方の基板上に、表示電極対と、誘電体層と、保護層とが設けられた構成であれば、いずれのタイプのPDPに対しても適用できる。
前記実施形態では、前面基板3の保護層34が薄膜MgO層341および結晶MgO層342からなる2層構造となったものを例示したが、これに限らず、本発明における保護層は結晶MgO層342からなる1層構造であってもよい。このような場合でも、前記実施形態と同様にして結晶MgO層342を形成できる。
前記実施形態では、保護層34は、誘電体層33の全面を被覆するとしたが、これに限らず、例えば、誘電体層33における透明電極311a,311bに対向する部分や逆に透明電極311a,311bに対向する部分以外の部分などのように、部分的にパターン化して形成するようにしてもよい。
(11)実施形態の作用効果
上述したように、前記実施形態では、結晶MgO層342の形成工程において、スプレー法にて、MgO粉体を溶剤に分散させた塗工液を薄膜MgO層341上に塗布する。塗工液には、溶剤よりも高い粘度を有する分散剤を添加する。
これにより、分散剤がMgOと基板表面との接着剤として機能するため、MgO粉体の基板への付着効率を向上できる。このため、基板上におけるMgO粉体の分散性を向上できると共に、使用する塗工液の量を低減できる。また、溶剤自体は分散剤に比べて粘度が低いものであるので、塗工後に揮発し易く、塗工後の基板上においてMgO粉体が乾燥凝集することを防止できる。このような塗工液を用いたスプレー法によれば、結晶MgO層342を均一に形成することができるので、PDP1の各放電セル231において、放電遅れ・放電確率を均一化できる。このため、均一な輝度および良好なスキャン特性を有したPDP1を得ることができる。
したがって、本実施形態のPDP1の製造方法によれば、PDP1を好適に製造でき、かつ、PDP1の表示特性を向上できる。
本発明の一実施形態に係るプラズマディスプレイパネルの内部構造を示した分解斜視図である。 前記実施形態におけるプラズマディスプレイパネルを模式的に示した正面図である。 図2におけるIII−III線に沿った側断面図である。 図2におけるIV−IV線に沿った側断面図である。 前記実施形態における単結晶MgO粉体層の形成工程を示した模式図である。 前記実施形態における第一の塗工装置を示す模式図である。 前記実施形態における第二の塗工装置を示す模式図である。 前記実施形態の効果を確認する実施例における、塗工後の実施例1の基板表面画像を2値化した画像である。 前記実施形態の効果を確認する実施例における、塗工後の比較例1−1の基板表面画像を2値化した画像である。 前記実施形態の効果を確認する実施例における、塗工後の比較例1−2の基板表面画像を2値化した画像である。 前記実施形態の効果を確認する実施例における、基板上に形成されたMgO粉体層が所定の透過率になるまでに要した塗工液の吐出量と、MgO粉体のBET換算粒径との関係を各種分散剤毎に示したグラフである。 前記実施形態の効果を確認する実施例における、スプレー法にて形成された結晶MgO層を具備したPDPの放電遅れの測定結果を示すグラフである。
符号の説明
1…PDP(プラズマディスプレイパネル)
2…背面基板
3…前面基板
31…表示電極対
33…誘電体層
34…保護層
341…薄膜MgO層
342…結晶MgO層
342A…単結晶MgO粉体
800…第一の塗工装置
810…塗工液タンク
820…液送ポンプ
830…スプレーガン
900…第二の塗工装置
910…塗工液タンク
920…液送ポンプ
930…三方弁
940…スプレーガン
H…放電空間
LQ…塗工液

Claims (2)

  1. 放電空間を介して対向配置された一対の基板と、これら一対の基板のうち一方の基板の内面上に形成された複数の電極対と、これら電極対上を被覆する誘電体層と、この誘電体層上を被覆する保護層とを備えたプラズマディスプレイパネルの製造方法であって、
    前記保護層を形成する保護層形成工程には、スプレーガンを用いたスプレー法により、酸化マグネシウム粉体を溶剤に分散させた塗工液を塗布する工程が含まれ、
    前記酸化マグネシウム粉体は粒径が500Å以上5000Å以下の単結晶粉体であり、
    前記塗工液には、前記溶剤よりも高い粘度を有する分散剤を添加し、
    前記溶剤および前記分散剤は水酸基を有する物質であって、前記分散剤として、濃度が1〜20wt%の1−オクタノールを使用し、かつ、前記分散剤の水酸基の価数は、前記溶剤の水酸基の価数以上であり、
    前記塗工工程は、前記酸化マグネシウム粉体を溶剤に分散させた塗工液を貯留する塗工液タンクと、この塗工液タンクに第一配管を介して接続された液送ポンプと、この液送ポンプに第二配管を介して接続され、かつ、第三配管を介して前記塗工液タンク内に接続された三方弁と、この三方弁と前記スプレーガンとを接続する第四配管とを備えた塗工装置を用い、前記液送ポンプは駆動させておき、スプレー塗布を実施する場合にのみ前記三方弁を前記スプレーガン側に切り換えて前記塗工液タンク内の塗工液を前記スプレーガンに供給し、スプレー塗布を実施しない間は、前記塗工液タンク、前記第一配管、前記液送ポンプ、前記第二配管、前記三方弁、前記第三配管及び前記塗工液タンクと順に塗工液を循環させる
    ことを特徴とするプラズマディスプレイパネルの製造方法。
  2. 請求項1に記載のプラズマディスプレイパネルの製造方法において、
    前記溶剤は1価の水酸基を有するアルコールである
    ことを特徴とするプラズマディスプレイパネルの製造方法。
JP2006104550A 2006-04-05 2006-04-05 プラズマディスプレイパネルの製造方法 Expired - Fee Related JP4819554B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104550A JP4819554B2 (ja) 2006-04-05 2006-04-05 プラズマディスプレイパネルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104550A JP4819554B2 (ja) 2006-04-05 2006-04-05 プラズマディスプレイパネルの製造方法

Publications (2)

Publication Number Publication Date
JP2007280730A JP2007280730A (ja) 2007-10-25
JP4819554B2 true JP4819554B2 (ja) 2011-11-24

Family

ID=38681970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104550A Expired - Fee Related JP4819554B2 (ja) 2006-04-05 2006-04-05 プラズマディスプレイパネルの製造方法

Country Status (1)

Country Link
JP (1) JP4819554B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943194B1 (ko) 2007-12-14 2010-02-19 삼성에스디아이 주식회사 마그네슘 산화물 입자가 표면에 부착된 플라즈마디스플레이 패널용 보호막, 이의 제조 방법 및 상기보호막을 구비한 플라즈마 디스플레이 패널
JP5272450B2 (ja) * 2008-03-06 2013-08-28 パナソニック株式会社 プラズマディスプレイ装置
JP2009218130A (ja) * 2008-03-12 2009-09-24 Panasonic Corp プラズマディスプレイパネルの製造方法
JP2009218131A (ja) * 2008-03-12 2009-09-24 Panasonic Corp プラズマディスプレイパネルの製造方法
JP5124580B2 (ja) * 2008-04-02 2013-01-23 パナソニック株式会社 プラズマディスプレイパネルの製造方法
JP2009258467A (ja) * 2008-04-18 2009-11-05 Panasonic Corp プラズマディスプレイ装置
JP2009258465A (ja) * 2008-04-18 2009-11-05 Panasonic Corp プラズマディスプレイ装置
JP2009258466A (ja) * 2008-04-18 2009-11-05 Panasonic Corp プラズマディスプレイ装置
JP4589980B2 (ja) * 2008-06-04 2010-12-01 パナソニック株式会社 プラズマディスプレイパネルの製造方法
JP2012159558A (ja) * 2011-01-31 2012-08-23 Panasonic Corp プラズマディスプレイ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318085A (ja) * 1986-07-10 1988-01-25 Mitsubishi Electric Corp シヤドウマスクの製造方法
JPH01278727A (ja) * 1988-04-30 1989-11-09 Matsushita Electron Corp レジスト塗布装置
JP2571015B2 (ja) * 1994-04-27 1997-01-16 日本電気株式会社 ガス放電表示パネルの製造方法
JPH09106765A (ja) * 1995-10-09 1997-04-22 Dainippon Printing Co Ltd 交流型プラズマディスプレイ及びその製造方法
JP4846077B2 (ja) * 1998-01-26 2011-12-28 パナソニック株式会社 プラズマディスプレイ基板の製造方法
JP3267247B2 (ja) * 1998-10-21 2002-03-18 三菱マテリアル株式会社 Fpd保護膜用コーティング液及びその調製方法
JP2000200544A (ja) * 1999-01-08 2000-07-18 Canon Inc 電子放出素子の製造方法、および電子源と画像形成装置の製造方法
JP4541832B2 (ja) * 2004-03-19 2010-09-08 パナソニック株式会社 プラズマディスプレイパネル

Also Published As

Publication number Publication date
JP2007280730A (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4819554B2 (ja) プラズマディスプレイパネルの製造方法
JP2007149384A (ja) プラズマディスプレイパネルの製造方法、および、プラズマディスプレイパネル
WO2001079362A1 (fr) Encre pour panneau d'affichage et procede permettant de produire un panneau d'affichage a plasma au moyen de ladite encre
JP2011122033A (ja) 液体組成物、硫化物膜の形成方法、表示パネルの製造方法
JP2007103296A (ja) プラズマディスプレイパネルの製造方法
JP2007109410A (ja) プラズマディスプレイパネルの製造方法、および、プラズマディスプレイパネル
EP1803692B1 (en) Green sheet for barrier ribs of plasma display panel
JP2007103276A (ja) 塗工装置、塗工方法、および、プラズマディスプレイパネルの製造方法
JP2007185565A (ja) 塗工装置、塗工装置の洗浄方法、および、プラズマディスプレイパネルの製造方法
JP2007103231A (ja) プラズマディスプレイパネルの製造方法
JP4589980B2 (ja) プラズマディスプレイパネルの製造方法
JP2000203887A (ja) プラズマディスプレイパネルの製造方法
WO2011114700A1 (ja) プラズマディスプレイパネル
JP2007103230A (ja) プラズマディスプレイパネルの製造方法
WO2011108230A1 (ja) プラズマディスプレイパネル
JP3979813B2 (ja) プラズマディスプレイパネル用基板の製造方法
US20100181909A1 (en) Plasma display panel
JP2007111579A (ja) 塗工装置、塗工方法、および、プラズマディスプレイパネルの製造方法
JP2013122857A (ja) プラズマディスプレイパネルの製造方法
JPH11329254A (ja) プラズマディスプレイパネル
JP2013122858A (ja) プラズマディスプレイパネルの製造方法
JPH11354035A (ja) プラズマディスプレイパネル及びその製造方法
JP2014063637A (ja) プラズマディスプレイパネルの製造方法およびプラズマディスプレイ用インク
JP2009218131A (ja) プラズマディスプレイパネルの製造方法
JP2010108677A (ja) プラズマディスプレイパネルの製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees