JP4814440B2 - Mr撮像を用いて末梢動脈血管系中の狭窄を効率的に識別する装置 - Google Patents

Mr撮像を用いて末梢動脈血管系中の狭窄を効率的に識別する装置 Download PDF

Info

Publication number
JP4814440B2
JP4814440B2 JP2001175357A JP2001175357A JP4814440B2 JP 4814440 B2 JP4814440 B2 JP 4814440B2 JP 2001175357 A JP2001175357 A JP 2001175357A JP 2001175357 A JP2001175357 A JP 2001175357A JP 4814440 B2 JP4814440 B2 JP 4814440B2
Authority
JP
Japan
Prior art keywords
flow
stenosis
computer
patient
pulse sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175357A
Other languages
English (en)
Other versions
JP2002095647A (ja
Inventor
ヴィンセント・ビイ・ホー
トーマス・ウォック−ファー・フー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Publication of JP2002095647A publication Critical patent/JP2002095647A/ja
Application granted granted Critical
Publication of JP4814440B2 publication Critical patent/JP4814440B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般に、ヒトである対象物中の血管障害を突き止める技術に関し、より詳細には、磁気共鳴撮像法(MRI)を用いて、患者の末梢動脈血管系全体にわたって障害を効率的に識別し、識別された狭窄があればそれに等級を付けるための装置および方法に関する。
【0002】
【従来の技術】
動脈は、必要な栄養分を人体の器官および組織に供給する、心臓から発する血管である。動脈の狭細または絞窄は、酸素などの栄養分が受取り側の組織に送られるのを減少させ、組織機能に深刻な影響を及ぼす。一般に、動脈の著しい狭細は、よくても当該の器官の機能欠陥を生じ、最悪の場合は器官障害または死に至る。腹大動脈から腓腹を通る動脈の経路に沿った絞窄または狭細は、何箇所であっても、遠位下肢への動脈血流の欠陥を引き起こす可能性がある。末梢血管の評価は、高発生率の連携障害または同期障害によってさらに複雑になり、これらはどれも、動脈血流が減少する潜在的な原因になる可能性がある。さらに、遠位血流を改善するための可能なバイパス手順に対する外科的決定は、足の中の動脈を判定する能力の影響を大きく受ける。この結果、下肢の撮像(すなわち末梢流出の調査)をうまく行うには、狭細の存在および機能上の重大性を正確に判定することだけでなく、腹大動脈から足への末梢大動脈ツリーの動脈経路全体を評価する能力も必要となる。狭細点および狭細のすぐ後の血管中の流れは、急な流速および/または複雑なフロー・パターンを特徴とすることが知られている。定量的なフロー・データが、患者の診断および管理を容易に支援することができ、また、疾患プロセスの基本的な理解も容易に助けることができる。
【0003】
従来の侵襲性カテーテル血管造影および超音波を含め、末梢動脈の判定に利用可能な技術が多くある。従来のX線血管造影は、カテーテル法および腎毒性ヨウ素コントラスト・エージェントを使用する必要があるため、最終的な選択肢として残される。末梢動脈閉塞性疾患(PAOD)に対するスクリーニングは、通常、超音波またはプレチスモグラフィなどの非侵襲性方法を用いて行われる。しかし、これらの技術はいずれも、血管の血管造影を図解することができず、単に、介在する動脈の解剖学的構造の個別セグメントを判定できるだけである。これらの技術は両方とも、オペレータに依存し、混乱させるような技術的困難があり、これらの困難により、撮像の実施が長く単調になることが多い。さらに、いずれの技術も、外科計画を立てるのに必要な包括的な情報を提供することができず、一般に、従来のX線血管造影による描写が術前管理の補助として必要である。
【0004】
磁気共鳴血管造影法(MRA)は、動脈の非侵襲性を判定するための、新しく出現した方法である。これまでは、MRAの適用は、より小さい個別の血管領域(40〜50cm視野)に合わせられてきた。今やMRAは、テーブルを平行移動させる現在の能力と、重なり合う複数の視野の撮像により、PAODの評価に必要なほどのずっと広いエリアを撮像するように指示することができる。特に、コントラスト増強MRAのために静脈内投与型コントラスト・エージェントを使用することにより、1分未満で1〜1.2メートルの動脈の解剖学的構造を描写することが可能になった。MRAはまた、いくつかの方法を用いて実施することができる。ある技術、位相コントラスト(PC)MRAは、血流を撮像するための、実際的かつ臨床に適用可能な技法である。MRIは、強い磁場中にある対象物に加えられた無線周波パルスおよび傾斜磁場を利用して、見ることのできる画像を作成する。ヒトの組織中の陽子など、正味核磁気モーメントを有する核を含む対象物が均一な磁場(分極場B0 )にさらされると、組織中のスピンの個々の磁気モーメントは、この分極場と整列しようとする(z方向に整列しようとすると仮定する)が、この磁場の方向を中心として、ラーモア周波数と呼ばれる独特の周波数で歳差運動をする。物質または組織が、ラーモア周波数に等しい周波数で加えられた時間変化する磁場(励起場B1 )にさらされた場合、正味整列モーメントまたは「縦磁化」Mz は、x−y平面で向きを変え、または「傾いて」、正味横磁気モーメントMtを生み出すことができる。励起信号B1が終了した(励起されたスピンが接地状態に減衰したために)後で、励起されたスピンから信号が発せられるが、この信号を受け取り処理して、画像を形成することができる。
【0005】
これらの信号を利用して画像を作成するとき、傾斜磁場(Gx、Gy、Gz)が採用される。通常、撮像されることになる領域は一連の測定サイクルで走査され、これらのサイクル中に、これらの傾斜が、使用される特定の定位方法に従って変化する。得られるMR信号は、ディジタル化され処理されて、周知の多くの再構成技術の1つを使用して画像が再構成される。
【0006】
位相コントラストMRAは、静止スピンに影響を与えずに、運動スピンの横磁化に速度依存の位相シフトを付与する血流エンコード傾斜パルスを利用する(Moran P.R.A Flow Velocity Zeugmatographic Interlace for NMR Imaging in Humans.Magnetic Resonance Imaging 1982;1:197〜203)。各位相コントラスト獲得は、2つの画像を生成する。すなわち、対象物の陽子密度に比例し、T1 強調もできる振幅画像と、対象物の位相を表す画像である。作成される位相画像は、運動スピンのみからの情報を有し、静止組織からの信号は抑制される。この技術を使用して、心周期全体にわたる平均流速と、周期中の個々の時点の連続における平均流速の両方を表す画像が生成されてきた。位相コントラストMR方法は、流速の大きさ、さらに流動方向も表す強度を有する位相画像を作成する。したがってこのような画像は、血流の定性的な観察と定量的な測定の両方に使用することができる。したがって、位相コントラストMR血管造影法および静脈造影法が流速の定量的な決定に実際的に適用されることは明白である。
【0007】
磁気共鳴撮影技術を使用して、患者の末梢動脈血管系に沿った血管中の狭窄を効率的に突き止めて識別し、そのMR技術を使用して、経過観察ケアのために狭窄に等級を付けることが有利であろう。また、スクリーニング技術を向上させるために、コントラスト・エージェント・ボーラス注入を用いて、コントラスト材料が最初に通過する間に動脈血管中で画像の信号対雑音比を改善することも有利であろう。ただし、こうするには、コントラスト・ボーラスが身体を通って移動するときにマルチステーション獲得シーケンスを使用して末梢血管系全体を走査しなければならない。MR技術を使用して末梢動脈狭窄を検出し等級を付ける能力を向上させる以前の試みは、主として、単一の解剖学的走査を用いて狭窄血管セグメントの場所を視覚化することに依存してきた。この方法では、ピクセル・サイズを縮小することによって可能な最高の空間分解能を達成することが望ましかった。また、狭窄の程度を高く見積もりすぎる可能性のあるボクセル内ディフェージングなど、流れに関係するアーチファクトを最小限に抑えるために、従来技術では、フロー補償のためのファースト・モーメント傾斜ナリング(first moment gradient nulling)およびショート・エコー・タイム(TE)のパラメータが採用された。
【0008】
この逆を達成することにより、従来技術に改良を加えることが望ましいであろう。すなわち、流れに関係するアーチファクトの存在を利用して、画像獲得をボクセル内フロー・ディフェージング効果に対して増感させ、したがってフロー・ボイドを悪化させて動脈障害の顕著さを増大させることにより、素早いスクリーニング走査における動脈狭窄の検出を向上させる。また、患者をスクリーニングした後で個々の狭窄をより綿密に時間をかけて検査して、より時間効率の高い検査を可能にするために、MR技術を使用して狭窄(すなわち障害または狭細)を効率的に視覚化する方法および装置を有することも有利であろう。また、コントラスト・エージェント・ボーラス注入を用いて、コントラスト材料が最初に通過する間に動脈血管中で画像の信号対雑音比を改善し、スクリーニング技術を向上させることも有利であろう。ただし、こうするには、コントラスト・ボーラスが身体を通って移動するときにマルチステーション獲得シーケンスを使用して末梢血管系全体を走査しなければならない。
【0009】
【発明が解決しようとする課題】
本発明は、MR技術を使用して末梢動脈血管系中で効率的に狭窄を識別するための方法および装置であって、前述の問題を解決する方法および装置に関する。
【0010】
【課題を解決するための手段】
本発明は、どんな血管障害も正確に識別し、次いで、障害が見つかった場合に狭窄の程度を特定する、2ステップの手法を含む。最初のステップでは、障害を識別するための検査が開示されるが、これは、患者のコントラスト・ボーラスが動脈血管系を通って移動するときにコントラスト・ボーラスを追跡し、コントラスト・ボーラスが患者の血管系を通って移動するときに空間分解能の低い一連のMR画像を獲得することを含む。MR画像は、流れを感知する双極傾斜波形を有する傾斜エコー撮像パルス・シーケンスを使用して獲得することが好ましい。これらの双極傾斜は、大きなボクセル中で広い速度分散を生成する。所与のボクセル中に狭窄があると、その狭窄のすぐ近くおよび遠位のボクセル中にボクセル内フロー・ディフェージングが生じることになるので、最初のステップを用いて狭窄の場所を素早く効率的に突き止めることができる。狭窄が識別された後で第2のステップが実施され、ターゲット・エリア中の狭窄をより正確かつ具体的に等級を付けるために空間分解能の高いMR画像が獲得される。
【0011】
本発明の一態様によれば、MR撮像を用いて患者の末梢動脈血管系中の狭窄血管を識別する方法が開示され、これは、患者を通るコントラスト・ボーラスの通過を追跡し、同時に、コントラスト・ボーラスが患者を通過するときに、患者の末梢動脈血管系に沿って空間分解能の低い一連の第1の高速MR画像を獲得することによってスクリーニング調査を行って、疑わしい狭窄があるかどうか走査することを含む。この方法は次に、一連の第1のMR画像を走査して疑わしい狭窄を識別し、次いで、一連の第1のMR画像よりも分解能の高い第2のMR画像を獲得することによって詳細な調査を行って、識別した狭窄に等級を付けることを含む。
【0012】
本発明の別の態様によれば、患者の末梢動脈血管系の血管中の障害を識別し、それによって得られた狭窄に等級を付けるための検査方法が開示される。この検査は、例えば流れに対して増感させる双極傾斜波形を有する傾斜エコー撮像パルス・シーケンスに基づくコントラスト増強MRAを用いて、まず患者の末梢動脈血管系全体にわたって末梢血管を走査し、次いで、一連の第1のMR画像を使用して疑わしい狭窄を検出し局所化することを含む。この方法は次に、狭窄が検出されて局所化された場合に第2のMR画像を獲得することを含む。第2のMR画像は、一連の第1のMR画像よりも空間分解能が高く、疑わしい狭窄が検出されて局所化された領域中で獲得されて、疑わしい狭窄が等級を付けられる。狭窄が検出されず局所化されない場合は、それ以上MR画像が獲得されることなく検査が終了する。
【0013】
本発明の別の態様によれば、MR狭窄スクリーニングを行い、必要なら狭窄血管に等級を付けるためのMRI装置が開示されるが、これは、分極磁場を印加するように磁石の内腔周辺に配置されたいくつかの傾斜コイルと、RF送受信機システムと、MR画像を獲得するためにRF信号をRFコイル・アセンブリに送信するようにパルス制御モジュールによって制御されるRF変調器とを有するMRIシステム含む。MRI装置はまた、MRIシステムを2つの動作モードで操作して、患者の末梢動脈血管系全体にわたって狭窄検査を効率的に行うようにプログラムされたコンピュータも含む。第1のモードは、分解能の低い一連の第1のMR画像を患者の末梢動脈血管系にわたって獲得し、次いで、狭窄検査を終了するための入力、または一連の第1のMR画像中で狭窄が識別された場合に第2の動作モードに切り替えるための入力を受け取るようにプログラムされる。第2の動作モードでは、コンピュータは、狭窄をターゲットとするように視野(FOV)を局所化し、次いで、一連の第1のMR画像よりも高い分解能で、局所化したFOVの第2のMR画像を少なくとも1つ獲得するようにプログラムされる。
【0014】
本発明の別の態様によれば、コンピュータ可読記憶媒体上に固定されたコンピュータ・プログラム中に前述の方法が実装されるが、このコンピュータ可読記憶媒体は、実行されると、患者の末梢動脈血管系の一連の第1のMR画像をコンピュータに獲得させる。一連の第1のMR画像中の、各第1のMR画像は、コントラスト・ボーラスが走査ステーションを通って移動するときにその走査ステーション内で獲得される。一連の第1のMR画像は、動脈障害の可能性があるかどうか患者をスクリーニングするために、高い位相相殺を有する。コンピュータはさらに、障害が突き止められた場合に、患者の末梢動脈血管系内のターゲット領域にFOVを限定し、次いで、ターゲットにした領域の第2のMR画像を獲得するようにプログラムされる。第2のMR画像は、一連の第1のMR画像よりも分解能が高く、一連の第1のMR画像に障害または狭窄の存在が示された場合にのみ獲得される。
【0015】
このようにして、障害が存在する場合にのみ、当該の部位の近くで、より高い分解能でターゲットを絞った獲得が行われて、効率的に狭窄に等級を付けることができる。この技術は2ステップの技術を用いるが、これは、素早く獲得できる障害を末梢動脈血管系全体にわたって検出するように感度を上げた第1のステップの後、第1のステップで障害が検出された場合にのみ、その障害に等級を付けるために限定性の高い画像を獲得する、より時間のかかる第2のステップを実施することを含む。この2段階手法により、末梢血管系の狭窄を正確に検出および判定する効率が上がる。
【0016】
本発明の他の様々な特徴、目的、および利点は、以下の詳細な説明および図面から明らかになるであろう。
【0017】
図面に、本発明の実施に対して現在考えられる最良のモードを示す。
【0018】
【発明の実施の形態】
図1を参照すると、本発明を組み込んだ好ましいMRIシステム10の主要なコンポーネントが示されている。このシステムの動作はオペレータ・コンソール12が制御する。オペレータ・コンソール12は、キーボードまたはその他の入力デバイス13、制御パネル14、および表示装置16を含む。コンソール12は、リンク18を介して別個のコンピュータ・システム20と通信する。コンピュータ・システム20によって、オペレータは画像を作成し画面16上に表示する。コンピュータ・システム20は、バックプレーン20aを介して相互に通信するいくつかのモジュールを含む。これらは、画像プロセッサ・モジュール22と、CPUモジュール24と、画像データ配列を記憶するためのフレーム・バッファとして当技術分野で知られるメモリ・モジュール26とを含む。コンピュータ・システム20は、画像データおよびプログラムを記憶するディスク記憶装置28、テープ・ドライブ30、またはいずれか他の形のコンピュータ可読記憶媒体にリンクされ、高速シリアル・リンク34を介して別個のシステム・コントロール32と通信する。入力デバイス13には、マウス、ジョイスティック、キーボード、トラック・ボール、タッチ・スクリーン、ライト・ワンド、音声コントロール、または同様のデバイスを含めることができ、インタラクティブな幾何学的指示に使用することができる。
【0019】
システム・コントロール32は、バックプレーン32aによって相互に接続された一組のモジュールを含む。これらは、CPUモジュール36とパルス発生器モジュール38とを含む。パルス発生器モジュール38は、シリアル・リンク40を介してオペレータ・コンソール12に接続される。このリンク40を介して、システム・コントロール32は、実施すべき走査シーケンスを示すコマンドをオペレータから受け取る。パルス発生器モジュール38は、システム・コンポーネントを動作させ、所望の走査シーケンスを実施し、生み出されたRFパルスのタイミング、強さ、および形状、ならびにデータ獲得ウィンドウのタイミングおよび長さを示すデータを作成する。パルス発生器モジュール38は、走査中に生み出す傾斜パルスのタイミングおよび形状を示すために、一組の傾斜増幅器42に接続されている。パルス発生器モジュール38はまた、生理獲得コントローラ44から患者データも受け取る。この生理獲得コントローラ44は、患者に取り付けられた電極からのECG信号など、患者に接続された異なるいくつかのセンサから信号を受け取る。パルス発生器モジュール38は、走査室インタフェース回路46に接続され、走査室インタフェース回路46は、患者および磁石システムの状況に関連する信号を様々なセンサから受け取る。この走査室インタフェース回路46を介して、患者位置決めシステム48が、走査に望まれる位置に患者を移動させるコマンドを受け取る。
【0020】
パルス発生器モジュール38によって生み出された傾斜波形は、Gx、Gy、およびGz増幅器を有する傾斜増幅器システム42に加えられる。各傾斜増幅器は、50で一般に示すアセンブリ中の対応する傾斜コイルを励起させて、獲得された信号を空間符号化するのに用いられる傾斜磁場を生成する。傾斜コイル・アセンブリ50は磁石アセンブリ52の一部を形成し、磁石アセンブリ52は、分極磁石54および全身RFコイル56を含む。システム・コントロール32中の送受信機モジュール58はパルスを生み出し、これらのパルスはRF増幅器60によって増幅され、送信/受信スイッチ62によってRFコイル56に結合される。その結果得られる、患者の中の励起された核から発せられる信号は、同じRFコイル56で感知して、送信/受信スイッチ62を介して前置増幅器64に結合される。増幅されたMR信号は、送受信機58の受信機セクション中で復調、フィルタリング、およびディジタル化される。送信/受信スイッチ62は、パルス発生器モジュール38からの信号によって制御されて、送信モード中はRF増幅器60をコイル56に電気的に接続し、受信モード中は前置増幅器64をコイルに接続する。送信/受信スイッチ62はまた、別のRFコイル(例えば表面コイル)を送信モードと受信モードのいずれに使用できるようにもする。
【0021】
RFコイル56によってピックアップされたMR信号は、送受信機モジュール58によってディジタル化され、システム・コントロール32中のメモリ・モジュール66に転送される。走査が完了したときには、生のk空間データの配列がメモリ・モジュール66中に獲得されている。この生のk空間データは、再構成すべき各画像ごとに別々のk空間データ配列に再編成され、これらはそれぞれアレイ・プロセッサ68に入力され、アレイ・プロセッサ68は、このデータを画像データの配列にフーリエ変換するように動作する。この画像データは、シリアル・リンク34を介してコンピュータ・システム20に搬送され、そこでディスク・メモリ28に記憶される。オペレータ・コンソール12から受け取ったコマンドに応じて、この画像データは、テープ・ドライブ30に保存することもでき、あるいは、画像プロセッサ22によってさらに処理してオペレータ・コンソール12に搬送し、表示装置16上に表示することもできる。
【0022】
本発明は、上に参照したMRシステムで、あるいはMR画像を得るためのいずれかの同様または同等のシステムで使用するのに適した方法およびシステムを含む。本発明は、末梢血管系狭窄を正確に識別して等級を付ける効率を上げる2段階技術である。
【0023】
図2を参照すると、血管100の概略図が、その中を流れる粘性血液102と共に長手方向に示されている。血管100は、入口の役割を果たす第1の端部104と、出口の役割を果たす第2の端部106と共に示されている。端部104と106の間には、絞窄または狭窄エリア108がある。このような狭窄血管中では、出口端部106における血流速度V2 は、104の入口における血流速度V1 よりも高く(すなわちV2>V1)、それに応じて、出口端部106における血圧P2は、入口104における血圧P1よりも低い(すなわちP2<P1)。一般に、血管100などの狭窄血管中では、絞窄108のすぐ下流である、血管の出口端部106内の領域110は、速い血流速度または複雑な血流パターンを有することを特徴とする。さらに、絞窄の程度が高い領域では、領域110中に現れる流動パターンは層状ではなくなり、流動渦または渦が生成されることを含めて複雑なフロー・パターンを帯びる。
【0024】
本発明は、血行力学的に重大な狭窄を、流動軸にわたりその長さに沿って速度傾斜が高いことによって特徴付けることができることを部分的に利用する。この場合、狭窄エリアを通した速度傾斜の変化によって、狭窄の血行力学的な重症度に等級を付けることができる。一般に本発明は、狭窄血管または障害を有する血管上の領域を識別し、必要なら、次いでより詳細な画像獲得によって狭窄に等級を付けるという2段階の手法である。この手法により、狭窄を正確に検出および判定する効率が上がる。これは、障害検出感度の高い、空間分解能の低い画像(例えば1〜2mmピクセル)をまず獲得することにより、最初に広い領域を素早く走査することができ、障害が識別された場合は、その狭窄をより正確かつ具体的に等級を付けるために、より高い空間分解能の第2の走査を獲得することができるからである。
【0025】
図3は、この方法と、図1のMRI装置のコンピュータ中にプログラムされるソフトウェアの表現の両方を表す、本発明の一実施形態を示すフロー・チャートである。走査は初期化120で開始し、これは、MRI検査を受けるように患者を準備すること(122)を含む。このような準備は、図8を参照しながら詳細に述べるように患者を可動テーブル上に適切に配置すること、および、コントラスト・エージェント・ボーラスを注入して、コントラスト材料が最初に通過する間に動脈血管中の信号対雑音比を向上させることを含む。本発明の2段階システムにおける第1のステップでは、細胞外コントラスト・エージェントと血管内コントラスト・エージェントの両方に適用可能な高速スクリーンのためにスクリーニング調査が行われる。効果的かつ効率的に患者の末梢動脈血管系を撮像するために、流れ感知三次元高速撮像パルス・シーケンスが使用される。末梢血管系は体長の1〜1.2メートルをカバーする可能性があるので、本発明はマルチステーション高速三次元パルス・シーケンスを使用するが、これは、コントラスト・ボーラスが身体を通過するときにその経路を追従または追跡することができ、これについては図8〜11を参照しながらさらに述べる。そのプロセスに従って、この技術は通常、例えば楕円中心ビュー獲得オーダーを使用して、マルチステーション構成における後続の各ステーションにコントラストが到着したかどうかを定期的に調べる。後続のステーションにコントラストが到着した後は、画像獲得が中断され、テーブルが自動的に次のステーションに動かされる。この技術で使用される三次傾斜獲得シーケンスは約2×3×4mmのボクセル面積を利用し、部分フーリエ獲得技術は約96kyラインおよび約32kzラインを獲得するのが望ましい。約3〜5ミリ秒の反復時間を使用し、各RFパルスごとに1つのエコーが獲得されると仮定すると、総計3072のRF励起パルスが獲得ごとに使用される。この結果、約15秒の総走査時間で完全な画像を獲得することができる。図4を参照しながらさらに述べるが、流れに対して増感させる傾斜が3方向すべてに加えられて、血管または狭窄の向きを感知しないようにされる。しかし、流れが頭部−尾部(上位−下位)方向に優勢な遠位末梢血管系では、流れに対して増感させる傾斜を一方向に加えるだけでよい。
【0026】
図3に戻って参照すると、患者の準備ができた(122)後、マルチステーション調査が計画され、スカウト走査が獲得される。狭窄調査用のマルチステーション走査面が、患者の末梢動脈血管系に対して配置される(124)。次に、分解能の低い一連の第1のMR画像が獲得されて、走査面がスクリーニングされる(126)。一連の第1のMR画像は、流れに対して増感させる双極傾斜を有するパルス・シーケンスを使用して獲得されるが、これについては図4を参照しながらさらに述べる。次いで、一連の第1のMR画像は、狭窄の標識であるフロー・ボイドを探すことにより、障害または狭窄の標識があるかどうかが128で分析される。フロー・ボイドは、流れに対して増感させる双極傾斜波形をパルス・シーケンス中の3方向すべてに加える結果、狭窄部位の付近または周囲に生成される。フロー・ボイドの標識がない場合(130、132)、したがって狭窄の標識がない場合は、検査が完了した(134)と見なされ、時間のかかるMR画像をそれ以上獲得することなく患者が解放される。このようにして、末梢動脈血管系を完全に検出するために患者をより効率的にスクリーニングすることができる。
【0027】
しかし、一連の第1のMR画像のうち少なくとも1つにフロー・ボイドが現れたことにより狭窄が示された場合(130、136)は、視野(FOV)が、疑わしい狭窄のターゲット領域に限定される(138)。次に、ターゲットにされ局所化された領域内で、一連の第1のMR画像よりも分解能の高い第2のMR画像が獲得されて、識別された疑わしい狭窄が走査される(140)。さらに、速度エンコーディング(VENC)値をリアルタイムで測定することにより、狭窄の重症度を判定することもでき、したがって、大きいボクセル・サイズの獲得では、完全なボクセル内フロー・ディフェージングの開始が観測され、あるいは、小さいボクセル・サイズの獲得では、血管内のエイリアシングの開始が観測される。これは図5〜7を参照しながらさらに述べる。次いで、分解能の高い画像が分析されて(142)狭窄に等級を付けた後、検査は完了する(134)。こうして、障害検出の感度を高める方法およびシステムが提供され、また、単一の獲得ではなく一連の獲得で障害に等級を付ける、限定性の高い方法およびシステムが提供される。
【0028】
図4に、一連の第1のMR画像を獲得する際に使用される位相コントラスト撮像パルス・シーケンス160を示す。この好ましい実施形態に示すように、流れに対して増感させる傾斜162、164、および166は、障害検出感度の高いスクリーニング・ツールとして作用する、流れを感知するパルス・シーケンスを生み出す。流れに対して増感させる傾斜162、164、166は、位相相殺を際立たせて、それによりフロー・ディフェージングを増大させるための双極傾斜である。別法として、一連の第1のMR画像中のフロー・ディフェージングは、速度ベクトルをより大きく分散させるためにボクセル・サイズを大きくすることによって達成することもできる。いずれの場合も、第1の(スクリーニング)MR画像は、高い位相相殺および低い分解能で獲得され、したがって相対的に速く獲得される。一般に第1のスクリーニング調査は、図4に示すような、流れを感知するパルス・シーケンスでも、あるいはコントラスト材料で強化された撮像パルス・シーケンスでも達成することができる。パルス・シーケンスは、息をとめた二次元の獲得と、ナビゲータ・エコーまたは同様の呼吸同期技術を使用して呼吸同期された三次元の自由呼吸獲得とのいずれでも獲得することができる。
【0029】
図4に示すように、流れに対して増感させる双極傾斜162、164、および166が3方向すべてに加えられて、血管または狭窄の向きを感知しないようにされる。本発明のこの態様は流速の測定を対象としていないので、図4には、流れに対して増感させる傾斜がほぼ整列して示してあるが、これらは一致する必要はないことを理解されたい。流れに対して増感させる傾斜162、164、166がパルス・エンコーディング傾斜168と読出し傾斜170との間に位置するのが好ましいだけである。基準点として、位相エンコーディング傾斜172および174を、傾斜クラッシャ176、178およびRFパルス180と共にそれぞれ示す。流れに対して増感させる位相方向の傾斜166は、位相エンコーディング傾斜172によって分離されて示されているものの、これは、流れに対する感知性を高めるための好ましい一実施形態であることに留意されたい。別法として、双極傾斜166の各極を、第1モーメント中の対応する振幅増加を伴って近い時間に集めることもできる。明らかになるであろうが、スピンをディフェーズして流れに対する感知性を高めるためには、モーメントをより大きくするか、または時間分離を増大させることが必要である。好ましい一実施形態では、パルス・シーケンスは、流れに対して増感させる双極傾斜162、164、166を使用する三次元高速傾斜エコー・パルス・シーケンスである。
【0030】
双極傾斜の第1モーメントの値は、ボクセル内の速度分散がより大きくなるように、公称で低いVENC値に設定される。これにより、正味磁化の平均が0になるかまたは0に近くなるので、そのボクセルからの信号は相殺される。
【0031】
次に、VENC値の計算および設定の簡単な要約記述を説明する。単一の双極傾斜波形に対する第1モーメントの値は、以下の式から得られる。
1=AT [1]
上式で、Aは、双極傾斜波形の単極部分のエリアであり、Tは、それぞれが反対の極性を有する2つの単極ローブ間の時間分離であり、2つの単極ローブは、図4に示すような双極傾斜波形を形成する。この双極傾斜波形によって生成される、得られる位相は、以下の式からもたらされる。
【数1】
Figure 0004814440
上式で、γは磁気回転比であり、
【数2】
Figure 0004814440
は速度である。位相差処理で測定される位相は、以下の式によって得られる。
【数3】
Figure 0004814440
【0032】
しかし本発明によれば、VENC値は、その特定の速度において対応する位相シフトがπラジアンであるので、双極波形の第1モーメントは以下のように調節される。
【数4】
Figure 0004814440
式3と4を比較すれば明白だが、VENC値に対するこの数式は、双極波形の極性がトグルする2つの獲得間の位相差が第1モーメントの値を決定する位相コントラスト獲得において使用されるものの2分の1である。
【0033】
次に図5を参照し、ここで、図3のブロック140で述べたピーク流速測定値のリアルタイムの検出を詳細に述べる。血行力学的に重大な狭窄を、流動軸にわたり狭窄の長さに沿って速度傾斜が高いことで特徴付けることができることを本発明のこの部分で利用する。本発明のこの態様を用いて、狭窄エリアを通した速度傾斜の変化に基づいて狭窄に等級を付けることができる。こうするために、位相差処理を伴うリアルタイム位相コントラストMR画像パルス・シーケンスを使用して、そのような狭窄にわたるピーク流速が評価される。したがって、速度エンコーディング傾斜の方向および速度エンコーディング傾斜の値をユーザが制御することができ、これらを以後VENC値と呼ぶ。一般に、流れに関係するエイリアシングの開始が観測されるまでVENC値を増加させることにより、流速エイリアシングの開始とVENC設定を相関させることで、狭窄にわたるピーク速度を決定することができる。コントラスト・エージェントを投与することにより、T1時間が短縮されて信号強度が高まり、したがって信号対雑音比が向上する。これに対応して、本発明による、狭窄の重症度を判定する効率が向上することになる。
【0034】
本発明のこの態様に従って、図5に、この方法と、図1のMRI装置のコンピュータ中にプログラムされるソフトウェアの表現の両方を示す。重症度判定ルーチン140、200の開始時、患者にMRI検査を受ける準備が周知のように施される(202)。患者および/またはMR装置は、疑わしい狭窄血管204のターゲット・エリア中で第2のMR画像が獲得されるように配置される。206で、前述のように、また図6を参照しながらさらに述べるようにリアルタイムの位相コントラスト・パルス・シーケンスを使用して、流れに対して増感させる方向が流れの方向または軸に沿って、かつ狭窄にわたって整列される。この時点で、流速エイリアシングが起こらないと分かっている値より下にVENC値208が設定されるか、あるいは、エイリアシングが観測されない値にVENC値を設定するように画像を獲得することができる。図7に、流れに関係するこのようなエイリアシングの一例を示す。図7は、図2に示したものなどの血管100の断面である。流れに関係するエイリアシングがなければ、血管100は、参照番号262で示すように再構成MR画像中でホワイトアウトとして表示されることになる。血管中の位相はまた、滑らかに変動する。しかし、流れに関係するエイリアシング(これについては以下でより詳細に数学的に述べる)が開始した後は、エイリアシング・セクション264は灰色の影または黒で暗く表示される。エイリアシング・セクション264は、図7に示すように血管100の部分全体として表示することもでき、血管100の細片またはより小さいセクションとして表示することもできる。さらに、流れに関係するエイリアシングの開始は、血管内の位相の急な変化によって特徴付けることができる。いずれの場合も、VENC値がエイリアシング点まで上昇したときは、血管内が急に灰色になるという何らかの標識がある。
【0035】
図5に戻って参照すると、VENC値が設定された(208)後で、画像が獲得され(210)、VENC値が増加され(212)、別の画像が獲得される(214)。次いで、この画像を使用して、流れに関係するエイリアシングが狭窄血管中に生じているかどうかが判定される(216)。生じていない場合(218)は、214で獲得される画像中に流れに関係するエイリアシングが観測されるまで(216、220)VENC値がインクリメンタルに増加される(212)。次いで、流れに関係するエイリアシングの開始(216、220)をもたらしたVENC値212が記録される(222)。狭窄血管に沿った異なる位置で別のデータ・セットを獲得する(224)ことが望まれる場合は、狭窄血管に沿って獲得部位が再配置され(226)、MRオペレータが望む回数にわたり前述のプロセスが繰り返される。すなわち、スピンが流れに対して増感させる方向に沿って狭窄血管にわたって再び整列され(206)、VENC値がリセットされ(208)、画像が210で獲得され、次いで、獲得した画像(214)中にエイリアシングが観測されるまで(216、220)VENC値がインクリメントされる(212)。VENC値が再び記録され(222)、MRオペレータが十分なデータを獲得した(224、228)後、次いで、相関するVENC値を比較して(230)、狭窄の重症度および/または狭窄の正確な場所を決定することができる。次いで、検査は完了する(232)。
【0036】
図6に、本発明で使用する位相コントラスト撮像パルス・シーケンス240を示す。この好ましい実施形態に示すとおり、流れに対して増感させる傾斜242、244、246は、流れに対して増感させる傾斜の方向をユーザがリアルタイムで回転できるように、相対的に時間が一致している。図6には、流れに対して増感させる傾斜がほぼ整列して示してあるが、流れに対して増感させる傾斜の配置の重要性は、それらがパルス・シーケンス240全体からみて相対的に一致することであることを理解されたい。流れに対して増感させる傾斜242、244、246は、パルス・エンコーディング傾斜248と読出し傾斜250との間で相対的に時間が一致するように配置するのが好ましい。基準点として、位相エンコーディング傾斜252および254を、傾斜クラッシャ256、258およびRFパルス260と共にそれぞれ示す。
【0037】
以下の記述は、双極傾斜と位相コントラスト撮像のより完全な説明である。特定方向に加えられる傾斜磁場を考えた場合、スピン集団によって累積される位相は、その集団の運動および加えられる傾斜場の式の関数である。すなわち以下のとおりである。
【数5】
Figure 0004814440
上式で、
【数6】
Figure 0004814440
は、時間変化する傾斜(方向および振幅)を示すベクトルであり、
【数7】
Figure 0004814440
は、運動ベクトルであり、したがって以下のとおりである。
【数8】
Figure 0004814440
第1の項は、時間t=0におけるスピン集団の初期位置を表し、他の項は、一定速度による運動、加速度、および高次の運動を表す。一定速度成分が優勢なので、高次の運動は、この記述では無視することができる。
【0038】
速度と位相の相互作用をよりよく理解するために、式[5]を以下のように拡張することができる。
【数9】
Figure 0004814440
上式で、M0およびM1は、それぞれ0番目および第1の傾斜モーメントを表す。G(t)が単一かつ単極の傾斜ローブである場合、ボリューム要素中の位相が式[7]から得られる。この傾斜のすぐ後に続く場合は、同一の単極傾斜が逆の符号で加えられ、この第2の傾斜ローブによる位相は、以下の式から得られる。
φ’=γr0M’0+γνM’1 [8]
【0039】
0番目のモーメントは単に傾斜ローブの下のエリアなので、M'0は−M0 に等しい。結合されたとき、同一エリアだが逆の符号であるこの2つの単極ローブは、ほぼ単一の双極傾斜波形である。しかし、第1モーメントは時間で重み付けされた積分なので、M'1は−M1 に等しくはない。結合された双極傾斜ローブによって累積される位相は、この場合、式[7]と式[8]の合計になり、以下の式から得られる。
φ1=φ+φ’=γν(M'1+M1) [9]
加えられた双極傾斜からの位相累積は、初期位置に依存せず、速度に直接的に比例することに留意されたい。双極傾斜は、0の正味エリアを有し、静止組織に影響を与えない。したがって、一般性を失うことなく、G(t)は単一の双極波形と考えることができ、したがって位相は単純に式[2]から得られる。
【数10】
Figure 0004814440
【0040】
完璧な実験では、双極傾斜による単一の獲得は、式[2]から得られる加えられた傾斜の方向の流れをその位相が表す画像をもたらす。しかし、残余渦電流、磁場均一性、および磁化率が、静止組織に対しても、空間変化する非ゼロ位相の一因となる。この空間位相の変化は、流れに関係せず、画像にわたって大きい可能性がある。この問題を回避するために、逆の符号の双極傾斜(トグルする双極傾斜)を有する2つの画像が減算される。静止組織によるどんな非ゼロ位相も打ち消され、その2つの獲得で累積された位相の差を有する画像が残される。第2の獲得に対する双極波形を反転することにより、この後続の獲得の位相は、式[2]の否定となり(すなわちφ2=−φ1)、M1,acq2=−M1,acq1=−M1 である。この場合、減算された画像における位相差は、以下のようになる。
【数11】
Figure 0004814440
上式で、
【数12】
Figure 0004814440
スピンが流れの方向を反転させる場合、すなわち
【数13】
Figure 0004814440
が符号を反転させる場合は、対応する変化がΔφの符号にあることが、位相差式、式[10]から明らかである。したがって、位相差画像の振幅は流速の測定値を提供し、符号は流れの方向を示す。
【0041】
位相差画像(減算後の)は、式[10]の値を各ピクセルに表示する。式[10]から得られる位相シフトは、第1の傾斜モーメント(式[11])における速度および差に比例する。Δφがπラジアンまたは180°を超える場合、すなわち位相が別の異なる位相として誤って表された場合は、図7に示すようにエイリアシングが生じる。例えば、190°の位相差は、−170°の位相差、さらには−530°の位相差と区別がつかない。したがって、高速のスピンが、より低い速度を有するものとして表される場合があり、あるいは、ある方向に流れるスピンが、逆方向に流れるものとして誤って表される場合がある。これは、本明細書で速度フロー・エイリアシングと呼ぶ現象であり、画像折返しに類似する。
【0042】
流れに関係するエイリアシングの地点を見つけるために、まず、式[10]における位相シフトが±180°(±πラジアン)以内にされる。次いで前述のように、流れに関係するエイリアシングが開始するまでVENC値の目盛りを上げていくことにより、ピーク速度を決定することができる。
【0043】
本発明はまた、スクリーニング調査を行う間に、患者を通してコントラスト・ボーラスの通過を追跡することも含む。図8〜11に、コントラスト・ボーラスの追跡と同時に一連の第1のMR画像を獲得する技術を示す。
【0044】
ここで図8を参照すると、コンピュータ制御式の可動テーブル282上に支持された患者280が示されているが、この可動テーブルは、矢印284で示すようにMR装置10の磁石中で前後方向にスライドまたは平行移動させることができる。したがって患者280は、主要磁石50の内腔内で選択的に位置決めすることができる。テーブルの動きはコンピュータ制御下にあり、磁石内腔の軸284に沿ったその位置は、正確に制御することができ、再現可能である。
【0045】
より具体的には、図8には、大動脈、大腿動脈、または他の動脈など、対象物の腹部エリアから下肢に延びるかなり長い血管294を有する患者280が示してある。血管294全体のMR画像データを獲得するのが望ましい。しかし血管294はかなり長いので、患者280の長さに沿ってMRシステムのコンポーネント内に複数の走査場所またはステーション286、288、290を確立することによってデータを得ることが必要である。各走査ステーション286、288、290は、患者280の予め決めた部分を含む。例えば、走査ステーション286は患者280の上部躯幹エリアを含み、走査ステーション288は下部躯幹エリアを含み、走査ステーション290は患者280の下肢を含む。特定の走査ステーションに関連するMRデータを獲得するために、可動テーブル282を軸284に沿って前後方向に動かして、特定の走査ステーションを主要磁石50との指定の関係で位置決めする。例えば、図8は、走査ステーション286の中央点が磁石50のアイソセンタ292に位置決めされている。
【0046】
従来の構成では、走査ステーション286が図8に示す位置にある間に、血管294のそうしたステーション内にあるセグメントに関係するMRデータの全セットが獲得される。次いで、テーブル282が患者280を、図8で見た場合に左方向に平行移動させて、走査ステーション288の中央点をアイソセンタ292に位置決めする。走査ステーション288内の血管294のセグメントに関係するデータの全セットが走査された後、患者280はさらに平行移動されて、走査ステーション290の中央点がアイソセンタ292に位置決めされる。次いで、走査ステーション290に関係するMRデータのセットが走査されて、データ獲得手順が完了する。隣接する走査ステーション間にいくらかの量のオーバーラップ296、298が生じる場合があることに留意されたい。これは、各ステーションからの画像を、すべてのステーションからの撮像領域の全範囲をカバーする単一の結合画像に効果的に結合するために望ましく、かつ必要である。
【0047】
MR血管造影では、血管294を流れる血流300中に20〜40ccのガドリニウム・キレートなどのコントラスト・エージェントを静脈内注入することが一般に行われ、血管294は、ボーラス302が血流300を流れるようにする。血管294は患者280の上体から下肢に血液を搬送するので、流れの方向は、図8で見た場合に左から右である。ボーラス302は、肺システム306に到達した後、まず走査ステーション286に到着し、次いで走査ステーション288に到着し、最後に走査ステーション290に到着することになる。
【0048】
General Electric Companyによって開発され、Foo TKL、Saranathan M、Prince MR、Chenevert TLによる「Automated Detection of Bolus Arrival and Initiation of Data Acquisition in Fast,Three Dimentional,Gadolinium−Enhanced MR Angiography」Radiology1997、203、273〜280に詳細に記述されている、SMARTPREP(商標)として商業的に知られている従来技術によれば、走査ステーション286を構成する視野に対し、血管294に近接して動脈血流の上流にモニタ306が配置されるが、この一例を図8に示す。モニタ306を正確に配置することはクリティカルではないが、関係する走査ステーションの最初の25%内に配置するのが好ましい。モニタ306は、血管294の小ボリューム中または小領域中で励起されたMR信号を定期的に検出する。検出されるMR信号は、走査ステーション286内にある血管294のその部分またはセグメントにコントラスト・エージェントが入ったときに指定のしきい値レベルに達することになり、その時にステーション286の走査が開始する。走査が完了すると、MR装置は連続して、後続の走査ステーション288および290からのデータ獲得に進む。
【0049】
先に示したように、従来技術のMRA技法ではボーラス302がある走査ステーションから次の走査ステーションに移動するのに必要な時間は分かっておらず、この時間が患者ごとに変わるので、こうした移動時間を知ることが有利であろう。このことは過去に、従来の走査技術でコントラスト・エージェントを使用する利点を著しく減少させるか、あるいは量または濃度を増加させたガドリニウム・キレート・コントラスト材料を使用する必要がある場合があった。したがって、従来技術におけるこのような欠点を克服するために、かつ本発明の一実施形態により、モニタ308および310が走査ステーション288および290中で血管294の方に向けられる。この場合、モニタ308および310は、それぞれ走査ステーション288および290内でボーラス302の到着を検出することができる。モニタ308および310の動作および構造は、モニタ306と同様である。
【0050】
本発明のこの態様によれば、MR画像獲得を完了する主要アルゴリズムが2つある。第1は、図9に示すとおり、テスト・ボーラス移動時間決定アルゴリズム312であり、第2は、図10に示すとおり、図9のテスト・ボーラス移動タイミング決定を用いたMR画像獲得314である。
【0051】
図9を参照すると、テスト・ボーラス移動タイミング決定アルゴリズム312における始動316の後の第1のステップは、すべての走査ステーションに対するモニタ・ボリューム位置およびベースラインのデータを得ることである(318)。ベースライン・データは、血管造影検査の画像データを獲得する前、コントラスト・エージェントがないときに、各モニタから得られる。このようなデータから、対応する走査ステーションにボーラスが到着したことを示すためのしきい値レベルを各モニタごとにリセットすることができる。これらの局所化された走査は、通常、スカウト・ビューと呼ばれる。次いで、システムは第1の走査ステーションにリセットされ、通常の試験ボーラスと同じ流量で注入される通常1〜5mlの少量のコントラスト・エージェントを注入することによってテスト・ボーラスが開始される(322)。テスト・ボーラスが患者の末梢血管系を通過し始め、アルゴリズムが開始時間を記録してボーラス監視を開始する(324)。モニタ・ボリューム306、308、310は、各ステーション内の画像視野内のどこに配置してもよく、所望の視野内の当該エリアのちょうど上に配置できるのが好ましいことに留意されたい。このとき、監視されたMR信号がプリセットしきい値と比較され(326)、監視された信号がプリセットしきい値を超えていない場合は(328)、開始時間がリセットされ、ボーラス監視が324でもう一度開始する。監視された信号がプリセットしきい値を超える場合は(330)、その走査ステーションに対してボーラスが検出された時間が記憶される(332)。現在の走査ステーションが最後の事前定義済み走査ステーションでない限り、患者テーブルが次のまたは後続の走査ステーションに移動される(334、336)。次いで、次のモニタ・ボリューム場所でデータを獲得するためにモニタ・ボリュームが調節され(338)、この時システムは、その特定のモニタ・ボリュームのボーラス監視および開始時間の記録(324)に戻り、次いで、最後の走査ステーションが検出されるまで(334、340)ループし続け、所与の数の走査ステーションそれぞれを通るテスト・ボーラスの移動時間を獲得する。次いで342で、通常の試験ボーラスにおいて撮像を獲得するのに利用可能な時間が、Tavailとして各ステーションごとに記憶され、次いでシステムは、通常のMR画像獲得の準備ができる(344)。
【0052】
図10を参照すると、画像獲得アルゴリズム314が示されており、初期化346の後、すべての走査ステーションに対するモニタ・ボリューム位置およびベースラインのデータが獲得される(348)。次いで、システムはリセットされ、患者テーブルが第1の走査ステーションに動かされて戻され(350)、通常の試験ボーラスが患者に注入される(352)。次いで、ボーラス監視が開始され(354)、第1の走査ステーションに対するモニタ・ボリュームが監視される。監視された信号がプリセットしきい値と比較され(356)、プリセットしきい値を超えていない場合は(358)、モニタは、監視された信号がプリセットしきい値を超えるまで(360)ボーラスの存在を再チェックし(354)、プリセットしきい値を超えた時、タイマ(tn )が起動され(362)、MR装置は、主として中央k空間データの獲得から画像獲得を開始する(364)。次いで、この特定のステーションに対するタイマがテスト・ボーラス移動時間と比較され(366)、現在のデータ獲得時間がテスト・ボーラス移動時間未満であり(368)、かつデータ獲得がまだ完了していない場合(370、372)に限り、システムは、データの獲得を継続する(374)。この特定の走査ステーションに対するデータ獲得時間がテスト・ボーラス移動時間以上となる(366、376)か、あるいはシステムが十分なデータを獲得した(370、378)後は、システムが現在最後の走査ステーションにあるのではない場合に限り、患者テーブルが次の走査ステーションに調節される(380、382)。この後、システムは、次のモニタ・ボリューム場所でのデータ獲得に切り替わり(384)、354で再びボーラス監視を開始する。次いで、述べたように、最後の走査ステーションに対してデータが獲得されるかまたはシステムがタイムアウトになるまで(386)、システムはループする。次いでシステムは、完全なk空間データ・セットが獲得されていない走査ステーションがあればそこに戻り、欠けているk空間データを獲得する(388)。すべての走査ステーションに対してすべてのk空間データが獲得された後、画像獲得アルゴリズムは終了する(390)。
【0053】
図8には、3つの走査ステーション286、288、290を示してあるが、他の実施形態では、走査ステーションの数nは好ましい実施形態で示した数よりも多いかまたは少なくてもよいことは容易に明らかである。さらに、図10から容易に明らかになるように、各走査ステーションでの最初のデータ獲得は、中央k空間データすなわち低空間周波数のk空間データを獲得することに限定して記述している。この獲得は、時間が許せば、より高い空間周波数のk空間データの獲得に拡張することができる。しかし、空間周波数がより低いk空間データは、画像再構成の際に最も重要であり、約5〜10秒で有用に獲得できることを理解されたい。
【0054】
図11に、図1に示すMRI装置10と可動患者テーブル282とに接続されたコンピュータ24の機能ブロック図を示す。このコントロールは入力400を有し、この入力400は、テスト・ボーラスおよび/または試験ボーラスの開始をボーラス検出402に示すのに使用することができる。追加で、または別法として、前述のモニタ・ボリューム手順によってボーラス検出を達成することができ、この一例は、General Electric Companyより市販されている前述のSMARTPREP(商標)である。記憶装置404がボーラス検出402に接続され、モニタ・ボリュームから監視された信号を比較するためのプリセットしきい値を受け取る。信号コンパレータ406中で、プリセットしきい値が監視された信号と比較され、この出力がタイマ410の出力と共にMRI獲得コントロール408中で使用されて、MRI装置10を使用してボーラスの場所がチェックされる。MRI獲得コントロール408もまた、走査ステーション402に接続され、走査ステーション402は、テーブル移動制御404を介して患者テーブル282を制御する。走査ステーション402もまた、手順が最初に初期化されたときの第1の走査ステーションに患者テーブルをリセットするために、ボーラス検出402に接続される。タイマ410もまた、テスト・ボーラスが所与の走査ステーションを通って移動するのにかかる最大移動時間を記憶するために、記憶装置404に接続される。タイマ410はまた、信号コンパレータ406とMRI獲得制御408との間に接続されるが、これは画像獲得中に、現在のMRI獲得の時間を計り、それを時間コンパレータ406中で、記憶装置404から検索された最大テスト・ボーラス移動時間と比較するのに使用される。画像獲得を最適化するために、テスト・ボーラス移動時間について各走査ステーションごとに記憶された値がMRI獲得制御408中で使用されて、MRI装置10中の最も望ましいコイル要素が選択され、MRI装置10中の最適な受信機およびボディ・コイル送信機の利得パラメータが設定される。したがって本発明は、MR撮像を使用して患者の末梢動脈血管系内の狭窄血管を識別する方法を含み、この方法は、患者を通るコントラスト・ボーラスの通過を追跡することによってスクリーニング調査を行い、分解能の低い一連の第1のMR画像を獲得して、狭窄領域があればそれを突き止めることを含む。次いでこの方法は、一連の第1のMR画像を走査して、患者の末梢動脈血管系内の狭窄を識別することを含む。次にこの発明は、一連の第1のMR画像よりも分解能の高い第2のMR画像を獲得することによって詳細な調査を行って、識別した狭窄に等級を付けることを含む。
【0055】
一連の第1のMR画像は、血管中における障害検出に対して高い感度となるように獲得するのが好ましい。第2のMR画像を獲得するステップと、第2のMR画像を分析するステップは、前のステップにおける疑わしい狭窄の識別に左右される。そのように識別されるものがない場合は、時間のかかる画像をそれ以上獲得することなく検査を完了することができる。一連の第1のMR画像は、流れに対して増感させる双極傾斜を有するパルス・シーケンスによって獲得される。また、流れに対して増感させる双極傾斜の第1モーメントのVENC値が最初に公称で低い値に設定されて、各ボクセル内で2よりも大きい速度分散が確立される。一連の第1のMR画像を走査または分析するとき、血管付近のフロー・ボイドの検出が、狭窄の存在の標識として用いられる。一連の第1のMR画像を高い位相相殺で獲得するために、位相相殺を際立たせる双極傾斜を有するパルス・シーケンスを使用するか、あるいはボクセル・サイズを大きくして速度ベクトルをより大きく分散させ、それによりフロー・ディフェージングを増大させることができる。
【0056】
本発明はまた、患者の末梢動脈血管系の血管中の障害を識別し、それから生じる狭窄に等級を付けるための検査方法も含む。この検査方法は、コントラスト・エージェントを患者に注入し、ボーラスが患者を通過するときに、流れに対して増感させる双極傾斜波形を有する傾斜エコー撮像パルス・シーケンスを使用して一連の第1のMR画像を獲得することを含む。次にこの方法は、一連の第1のMR画像中で疑わしい狭窄を検出して局所化ことを含む。狭窄が識別されて局所化された場合、検査は、疑わしい狭窄が検出されて局所化された領域中で第1のMR画像よりも高い分解能の第2のMR画像を獲得することに進み、次いで、疑わしい狭窄が等級を付けられる。反対に、狭窄が検出されず局所化されなかった場合は、時間のかかる画像獲得をさらに行うことなく検査が終了する。
【0057】
第2のMR画像は、疑わしい狭窄を分離して等級を付けるために、低い位相相殺および高い分解能で獲得することができる。これは、疑わしい狭窄の長さに沿って血管の直径を比較するか、あるいは疑わしい狭窄の長さに沿って速度傾斜を比較することによって達成される。リアルタイムの位相コントラスト撮像パルス・シーケンスを血管に加えて、第2のMR画像を獲得するときのVENC値のユーザ制御を可能にすること、および、VENC値を流速エイリアシングの開始に相関させることによって狭窄にわたるピーク流速を決定することにより、第2のMR画像を獲得して狭窄にわたるピーク流速を決定するのが好ましい。リアルタイムの位相コントラスト撮像パルス・シーケンスは、流れに対して増感させる傾斜をユーザがリアルタイムで回転させることができるように、相対的に時間が一致した、流れに対して増感させる傾斜を有する。VENC値の振幅もまた、流れに関係するエイリアシングが検出されるまでリアルタイムで調節することができる。狭窄の地点に沿った、流れに関係するエイリアシングの開始時のVENC値を獲得し、それらのVENC値を比較することにより、狭窄の重傷度を正確に決定することができる。
【0058】
前述の方法がMRI装置に組み込まれて、時間効率の高い、広い血管系区域のMR狭窄スクリーニングが行われ、必要ならば個々の狭窄血管セグメントが等級を付けられる。この装置は、分極磁場を印加するために磁石の内腔周辺に配置された複数の傾斜コイルと、RF送受信機システムと、RF信号をRFコイル・アセンブリに送信してMR画像を獲得するようにパルス・モジュールによって制御されるRFスイッチとを有するMRIシステムを含む。コンピュータが、MRIシステムを2つのモードで動作して患者の末梢動脈血管系にわたる狭窄検査を効率的に行うようにプログラムされる。第1のモードは、患者の末梢動脈血管系にわたり分解能の低い一連の第1のMR画像を獲得する間に、患者の末梢動脈血管系を通るコントラスト・ボーラスの通過を追跡するようにプログラムされる。第1のモードはまた、狭窄検査を終了するための入力、または第1のMR画像中に狭窄の標識があれば第2のモードに切り替えるための入力を受け取ることも可能にする。第2のモードは、FOVを局所化して、疑わしい狭窄をターゲットにし、次いで一連の第1のMR画像よりも分解能の高い第2のMR画像を少なくとも1つ獲得するようにプログラムされる。狭窄は、第2のMR画像を2つ以上使用して判定することもできる。
【0059】
MRI装置のコンピュータはまた、一連の第1のMR画像を獲得するために第1のパルス・シーケンスを使用するようにもプログラムされる。第1のパルス・シーケンスは、流れに対して増感させる双極傾斜波形を有する。次いで、第2のMR画像を獲得するために第2のパルス・シーケンスが使用される。第2のパルス・シーケンスは、第1のパルス・シーケンスよりも低い位相相殺を提供する。第1のパルス・シーケンスはまた、第2のパルス・シーケンスよりもおおむね低い、公称で低い値に設定された、流れに対して増感させる双極傾斜波形の第1モーメントのVENC値も含む。
【0060】
一連の第1のMR画像は、各ボクセル中で2よりも大きいエンコード化速度分散となることが好ましい。コンピュータは、ボクセル・サイズを大きくして速度ベクトルをより大きく分散させることにより、あるいは前述のように双極傾斜波形を使用することにより、一連の画像におけるフロー・ディフェージングを増大させるようにプログラムされる。
【0061】
本発明はまた、命令を有するコンピュータ・プログラムを記憶したコンピュータ可読記憶媒体も含み、このプログラムは、コンピュータによって実行されたとき、患者の末梢動脈血管系の一連の第1のMR画像をコンピュータに獲得させる。一連の第1のMR画像は、可能性ある血管障害があるかどうか患者をスクリーニングするために、高い位相相殺を有する。一連の第1のMR画像中の、各第1のMR画像は、コントラスト・ボーラスが走査ステーションを通って移動するときに、その走査ステーション内で獲得されることが好ましい。このプログラムはまた、コンピュータに、患者の末梢動脈血管系内のターゲット領域で血管障害が突き止められた場合にFOVをその領域内に限定させ、次いで、ターゲットにした領域の第2のMR画像を獲得させる。第2のMR画像は、一連の第1のMR画像よりも分解能が高い。第1のMR画像は、位相相殺を際立たせるための双極傾斜を有するパルス・シーケンスと、速度ベクトルをより大きく分散させるために増大されたボクセル・サイズのいずれかを使用して獲得されて、それぞれフロー・ディフェージングが増大する。第2のMR画像は、一連の第1のMR画像で突き止められた疑わしい狭窄を分離して等級を付けるために、低い位相相殺および高い分解能で獲得される。このように抜き出して等級を付けることは、疑わしい狭窄の長さに沿って血管の直径を比較するか、あるいは疑わしい狭窄の長さに沿って速度傾斜を比較することによって達成される。
【0062】
本発明を好ましい実施形態に関して述べたが、特に述べたものとは別に、均等物、代替形態、および修正形態も可能であり、添付の特許請求の範囲内であることを理解されたい。
【0063】
本発明を好ましい実施形態に関して述べたが、特に述べたものとは別に、均等物、代替形態、および修正形態も可能であり、添付の特許請求の範囲内であることを理解されたい。
【図面の簡単な説明】
【図1】本発明で使用するMR撮像システムの概略ブロック図である。
【図2】本発明が突き止めるようになされた、ヒトの患者の中の例示的な狭窄血管の概略図である。
【図3】本発明の一実施形態を示すフロー・チャートである。
【図4】本発明で使用されるMR撮像パルス・シーケンスのタイミング図である。
【図5】本発明による、狭窄が検出された後でその重症度を判定する一技術を示すフロー・チャートである。
【図6】図5のフロー・チャートに使用されるMR撮像パルス・シーケンスのタイミング図である。
【図7】図5および6に示す技術による、血流速度エイリアシングを示す血管の横断面の概略図である。
【図8】本発明による、末梢MR血管造影検査を行って狭窄を突き止め判定するための構成を示す概略図である。
【図9】図8の構成で使用するための、本発明の一実施形態を示すフロー・チャートである。
【図10】図8の構成で使用するための、本発明の一実施形態を示すフロー・チャートである。
【図11】図1〜10に示す本発明を組み込む、本発明の一実施形態のブロック図である。
【符号の説明】
10 MRI装置
12 オペレータ・コンソール
13 入力デバイス
14 制御パネル
16 表示装置
18 リンク
20 コンピュータ
22 画像プロセッサ
24 CPU
26 メモリ
28 ディスク記憶装置
30 テープ・ドライブ
32 システム・コントロール
36 CPU
38 パルス発生器
40 シリアル・リンク
42 傾斜増幅器
44 生理獲得コントローラ
46 走査室インタフェース
48 患者位置決めシステム
50 傾斜コイル
52 磁石
54 分極磁石
56 FRコイル
58 RF送受信機システム
60 RF増幅器
62 送信/受信スイッチ
64 前置増幅器
66 メモリ
68 アレイ・プロセッサ

Claims (16)

  1. MR狭窄スクリーニングを行い、必要なら狭窄血管に等級を付けるためのMRI装置(10)であって、
    分極磁場を印加するために磁石(52)の内腔付近に配置された複数の傾斜コイル(50)と、RF送受信機システム(58)と、RF信号をRFコイル・アセンブリ(56)に送ってMR画像を獲得するようにパルス・モジュール(36)によって制御されるRFスイッチ(62)とを有する磁気共鳴撮影(MRI)システム、ならびに
    MRIシステムを2つのモードで操作して、患者の末梢動脈血管系にわたる狭窄検査を効率的に行うようにプログラムされたコンピュータ(20)を備え、
    第1のモード(120)は、
    患者の末梢動脈血管系を通してコントラスト・ボーラスの通過を追跡し(312)、
    患者の末梢動脈血管系にわたり、分解能の低い一連の第1のMR画像を獲得し(126)、
    狭窄検査を終了する(132、134)ための入力、または一連の第1のMR画像中で狭窄が識別された場合(136)に第2のモード(140、200)に切り替えるための入力を受け取るようにプログラムされ、
    第2のモード(140、200)は、
    狭窄をターゲットにするように視野を局所化し(138)、
    一連の第1のMR画像よりも高い分解能で、局所化した視野の第2のMR画像を少なくとも1つ獲得して(140)狭窄の重症度を判定する(142)ようにプログラムされ
    コンピュータ(20)がさらに、
    一連の第1のMR画像を獲得するために第1のパルス・シーケンス(160)を使用するようにプログラムされ、第1のパルス・シーケンス(160)が、流れに対して増感させる双極傾斜波形を有し、流れに対して増感させる双極傾斜波形の第1モーメントのVENC値が公称で低い値に設定され、コンピュータ(20)がさらに、
    第2のMR画像を少なくとも1つ獲得する(140)ために第2のパルス・シーケンス(240)を使用するようにプログラムされ、第2のパルス・シーケンス(240)が、第1のパルス・シーケンスよりも低い位相相殺を提供し、第1のパルス・シーケンスのVENC値よりもおおむね高く設定されたVENC値を有する(212)MRI装置。
  2. 一連の第1のMR画像中の各ボクセル内で、速度分散が2πよりも大きい請求項に記載のMRI装置。
  3. 第2のMR画像を少なくとも1つ獲得することが、
    (a)リアルタイムの位相コントラスト・パルス・シーケンス(240)を疑わしい狭窄血管(100)に加えること(206)であって、パルス・シーケンスが、相対的に時間が一致した、流れに対して増感させる傾斜(242、244、246)を有すること、
    (b)速度エンコーディング傾斜のVENC値をユーザが調節できるようにすること(212)、
    (c)ユーザによって調節されたVENC値を有するパルス・シーケンスを加えること(214)、
    (d)流れに関係するエイリアシングが明白であるかどうかを判定すること(216)、および
    (e)流れに関係する判定可能なエイリアシング、したがって疑わしい狭窄にわたるピーク流速に対応するエイリアシングをVENC値が提供するまで(220)、動作(b)〜(d)を繰り返すことを含む請求項に記載のMRI装置。
  4. コンピュータ(20)がさらに、流れに関係するエイリアシングが観測されるまで(220)VENC値の振幅を増加させる(212)ようにプログラムされる請求項に記載の装置。
  5. コンピュータ(20)がさらに、
    テスト・ボーラスを患者の末梢血管系に流し(322)、
    患者の末梢血管系を通してテスト・ボーラスを追跡し(324)、
    テスト・ボーラスが患者の末梢血管系の所望の部分を通って移動するのにかかる移動時間を決定し(342)、
    試験ボーラスを患者の末梢血管系に所定の流速で流し(352)、
    前記決定された移動時間を用いて、患者の末梢血管系を通して試験ボーラスの通過を追跡する(366)ようにプログラムされる請求項に記載のMRI装置。
  6. コンピュータ(20)がさらに、
    (a)患者テーブル(282)が、MRI装置(10)内、かつ所与の数の走査ステーション(286、288、290)の第1の走査ステーション(286)内に確実に配置されるようにし、
    (b)テスト・ボーラスが所与の走査ステーションに入ったことが示されたときに、前記所与の走査ステーションを通してテスト・ボーラスを追跡し(324)、
    (c)第1の走査ステーションを通したテスト・ボーラスの移動時間を記録し(322)、
    (d)患者テーブル(282)後続の走査ステーション(288への移動(334)を開始し、
    (e)後続の各走査ステーション(290)について(b)、(c)、および(d)を繰り返し、
    (f)第1の走査ステーション(286)に患者テーブル(282)を戻し、
    (g)検査ボーラスが患者に注入されたことが示されたときに(352)、MRI装置(10)を起動させて、各走査ステーション内で、その走査ステーションに対して前に記録された各テスト・ボーラス移動時間にわたり、少なくとも患者の中央k空間MRIデータを獲得する(364)ようにプログラムされる請求項に記載のMRI装置。
  7. 命令を含むコンピュータ・プログラムを記憶したコンピュータ可読記憶媒体であって、前記命令が、コンピュータ(20)によって実行されるとき、コンピュータ(20)に、
    患者(286)の末梢動脈血管系の一連の第1のMR画像を獲得させ(126)、第1のMR画像が、可能性ある動脈障害があるかどうか患者をスクリーニングするために高い位相相殺を有し、一連の第1のMR画像中の、各第1のMR画像が、コントラスト・ボーラスが走査ステーション(286、288、290)を通って移動するときに走査ステーション内で獲得され(352)、さらに前記命令がコンピュータに(20)、
    狭窄が患者の末梢動脈血管系で突き止められた場合にFOVを患者の末梢血管系内のターゲット領域に限定させ(138)、次いで、
    ターゲットにした領域の第2のMR画像を獲得させ(140)、第2のMR画像が、第1のMR画像よりも分解能が高一連の第1のMR画像を獲得するために第1のパルス・シーケンス(160)を使用し、第1のパルス・シーケンス(160)が、流れに対して増感させる双極傾斜波形を有し、流れに対して増感させる双極傾斜波形の第1モーメントのVENC値が公称で低い値に設定され、第2のMR画像を少なくとも1つ獲得する(140)ために第2のパルス・シーケンス(240)を使用し、第2のパルス・シーケンス(240)が、第1のパルス・シーケンスよりも低い位相相殺を提供し、第1のパルス・シーケンスのVENC値よりもおおむね高く設定されたVENC値を有する(212)コンピュータ可読記憶媒体。
  8. 一連の第1のMR画像が高い位相相殺で獲得されて、
    (1)双極傾斜(162、164、166)を有するパルス・シーケンス(160)を加えて位相相殺を際立たせること、および
    (2)ボクセル・サイズを大きくして速度ベクトルをより大きく分散させること
    のうち少なくとも一方を用いてフロー・ディフェージングが増大される請求項に記載のコンピュータ可読記憶媒体。
  9. コンピュータ(20)がさらに、
    一連の第1のMR画像を獲得するために第1のパルス・シーケンス(160)を使用するようにプログラムされ、第1のパルス・シーケンス(160)が、流れに対して増感させる双極傾斜波形を有し、コンピュータ(20)がさらに、 少なくとも1つの第2のMR画像を獲得するために第2のパルス・シーケンスを使用するようにプログラムされ、第2のパルス・シーケンスが、第1のパルス・シーケンスよりも低い位相相殺を提供する請求項に記載のコンピュータ可読記憶媒体。
  10. コンピュータ(20)がさらに、
    流れに対して増感させる双極傾斜を少なくとも1つ有するパルス・シーケンス(160)を加え、
    流れに対して増感させる少なくとも1つの双極傾斜の第1モーメントの速度エンコーディング傾斜(VENC)値を最初に公称で低い値に設定して、各ボクセル内で2πよりも大きい速度分散を確定し(208)、
    いずれかの狭窄の標識として、一連の第1のMR画像中でフロー・ボイドを検出する(216)ようにプログラムされる請求項に記載のコンピュータ可読記憶媒体。
  11. コンピュータ(20)がさらに、
    (1)疑わしい狭窄の長さに沿って血管の直径を比較すること(142)、および
    (2)疑わしい狭窄の長さに沿って速度傾斜を比較すること(230)
    のうち少なくとも一方によって疑わしい狭窄(108)を分離して等級を付けるために、低い位相相殺および高い分解能の第2のMR画像を獲得するようにプログラムされる請求項に記載のコンピュータ可読記憶媒体。
  12. コンピュータ(20)がさらに、
    第2のMR画像を獲得するときに、リアルタイムの位相コントラスト撮像パルス・シーケンス(240)を血管に加えて、フロー・エンコーディング傾斜値をユーザが制御できるようにすること(212)、および
    フロー・エンコーディング傾斜値を流速エイリアシングの開始に相関させることで狭窄にわたるピーク流速を決定すること(216、220)によって、第2のMR画像を獲得するようにプログラムされる請求項に記載のコンピュータ可読記憶媒体。
  13. リアルタイムの位相コントラスト撮像パルス・シーケンス(240)が、流れに対して増感させる傾斜(242、244、246)を有し、傾斜は相対的に時間が一致しており、したがって、流れに対して増感させる傾斜をユーザがリアルタイムで回転させる(206)ことができる請求項12に記載のコンピュータ可読記憶媒体。
  14. コンピュータ(20)がさらに、流れに関係するエイリアシングが検出されるまで(216、220)フロー・エンコーディング傾斜値の振幅を増大させる(212)ようにプログラムされる請求項12に記載のコンピュータ可読記憶媒体。
  15. 命令を含むコンピュータ・プログラムを記憶したコンピュータ可読記憶媒体であって、前記命令が、コンピュータ(20)によって実行されるとき、コンピュータ(20)に、
    疑わしい狭窄の第1の場所を識別すること(204)、
    リアルタイムのユーザ制御式VENC値を有する位相コントラストMR撮像パルス・シーケンス(240)を、疑わしい狭窄の第1の場所に加えること(208)、
    リアルタイムのユーザ制御式VENC値を増加させ(212)、流れに関係するエイリアシングをユーザが観測するまで(216、220)パルス・シーケンスを再度加えること(214)、
    疑わしい狭窄の第1の場所にわたるピーク流速の標識としてリアルタイムのユーザ制御式VENC値を記録すること(222)、
    リアルタイムのユーザ制御式VENC値をリセットすること(208)、
    疑わしい狭窄の第2の場所(224)にパルス・シーケンスを加えること(206)、
    リアルタイムのユーザ制御式VENC値を増加させ(212)、流れに関係するエイリアシングをユーザが観測するまで(220)パルス・シーケンスを再度加えること(214)、
    疑わしい狭窄の第2の場所にわたるピーク流速の標識としてリアルタイムのユーザ制御式VENC値を記録すること(222)、および
    第1の場所のリアルタイムのユーザ制御式VENC値を、第2の場所のVENC値と比較して、疑わしい狭窄の重症度を決定すること(230)によって、狭窄の等級を付けさせる請求項12に記載のコンピュータ可読記憶媒体。
  16. コンピュータ(20)がさらに、
    テスト・ボーラスを患者の末梢血管系に流すこと(322)、
    患者の末梢血管系を通してテスト・ボーラスを追跡すること(324)、
    テスト・ボーラスが患者の末梢血管系の所望の部分を通って移動するのにかかる移動時間を決定すること(332)、
    試験ボーラスを患者の末梢血管系に所定の流速で流すこと(352)、および
    テスト・ボーラス移動時間を用いて、患者の末梢血管系を通して試験ボーラスの通過を追跡すること(366)によって、患者の末梢動脈血管系を通してコントラスト・ボーラスを追跡するようにプログラムされる請求項12に記載のコンピュータ可読記憶媒体。
JP2001175357A 2000-06-09 2001-06-11 Mr撮像を用いて末梢動脈血管系中の狭窄を効率的に識別する装置 Expired - Fee Related JP4814440B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/591300 2000-06-09
US09/591,300 US6408201B1 (en) 2000-06-09 2000-06-09 Method and apparatus for efficient stenosis identification in peripheral arterial vasculature using MR imaging

Publications (2)

Publication Number Publication Date
JP2002095647A JP2002095647A (ja) 2002-04-02
JP4814440B2 true JP4814440B2 (ja) 2011-11-16

Family

ID=24365927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175357A Expired - Fee Related JP4814440B2 (ja) 2000-06-09 2001-06-11 Mr撮像を用いて末梢動脈血管系中の狭窄を効率的に識別する装置

Country Status (3)

Country Link
US (1) US6408201B1 (ja)
JP (1) JP4814440B2 (ja)
DE (1) DE10127930A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135105A1 (en) * 2000-04-26 2003-07-17 Jack Clifford R. Alignment of multiple MR images using navigator signals
US6741880B1 (en) * 2000-06-16 2004-05-25 General Electric Company Method and apparatus for efficient stenosis identification and assessment using MR imaging
US7209777B2 (en) 2000-11-30 2007-04-24 General Electric Company Method and apparatus for automated tracking of non-linear vessel movement using MR imaging
US6757417B2 (en) * 2000-12-27 2004-06-29 Ge Medical Systems Global Technology Company, Llc Method and apparatus for defining a three-dimensional imaging section
US6597937B2 (en) * 2001-02-05 2003-07-22 Koninklijke Philips Electronics N.V. Self-adaptive tracking and phase encoding during data collection for contrast-enhanced MRA and dynamic agent uptake studies
US20040092813A1 (en) * 2001-03-01 2004-05-13 Masahiro Takizawa Magnetic resonance imaging apparatus
US6738501B2 (en) * 2001-04-13 2004-05-18 Ge Medical Systems Global Technology Co., Llc Adaptive data differentiation and selection from multi-coil receiver to reduce artifacts in reconstruction
US6546275B2 (en) * 2001-06-25 2003-04-08 Wisconsin Alumni Research Foundation Determination of the arterial input function in dynamic contrast-enhanced MRI
US6763260B2 (en) 2001-10-05 2004-07-13 Ge Medical Systems Information Technologies, Inc. System for acquiring a plurality of images of a patient and a controller for operating the same
US6650115B2 (en) * 2001-10-12 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Variable density fourier velocity encoding MR imaging
US6728569B2 (en) * 2001-10-25 2004-04-27 Evanston Northwestern Healthcare Corp. Scoutless whole-body imaging with fast positioning
DE10203237B4 (de) * 2002-01-28 2006-08-17 Siemens Ag Verfahren zur Magnetresonanz-Bildgebung mit automatischer Anpassung des Messfeldes
US6963768B2 (en) * 2002-05-16 2005-11-08 General Electric Company Whole body MRI scanning with moving table and interactive control
US20040189297A1 (en) * 2002-12-13 2004-09-30 Michael Bock Imaging arrangement and process for locally-resolved imaging
DE10260372B4 (de) * 2002-12-13 2007-01-04 Schering Ag Kernspintomographievorrichtung und Verfahren zur ortsaufgelösten Bilddarstellung
GB0300922D0 (en) * 2003-01-15 2003-02-12 Mirada Solutions Ltd System for controlling medical data acquistion processes
US7332909B2 (en) * 2003-04-23 2008-02-19 Koninklijke Philips Electronics N.V. MR imaging method
US7310435B2 (en) * 2003-11-25 2007-12-18 General Electric Company Method and apparatus for extracting multi-dimensional structures using dynamic constraints
US7676257B2 (en) * 2003-11-25 2010-03-09 General Electric Company Method and apparatus for segmenting structure in CT angiography
JP4647360B2 (ja) * 2004-04-05 2011-03-09 富士フイルム株式会社 差分画像作成装置、差分画像作成方法、及び、そのプログラム
CN1977182A (zh) * 2004-04-28 2007-06-06 皇家飞利浦电子股份有限公司 涉及对比度处理和扫描参数更新的连续移动平台的磁共振成像
US20080004507A1 (en) * 2004-10-27 2008-01-03 E-Z-Em, Inc. Data collection device, system, method, and computer program product for collecting data related to the dispensing of contrast media
PL1805683T3 (pl) * 2004-10-27 2019-07-31 Acist Medical Systems, Inc. Zbierające dane urządzenie, system, sposób oraz produkt będący oprogramowaniem komputerowym do zbierania danych dotyczących podawania środków cieniujących
DE102005018327A1 (de) * 2005-04-20 2006-10-26 Siemens Ag Betriebsverfahren für einen Rechner, Betriebsverfahren für eine bildgebende medizintechnische Anlage und hiermit korrespondierende Gegenstände
JP4711732B2 (ja) * 2005-05-12 2011-06-29 株式会社日立メディコ 磁気共鳴撮影装置
US20070055138A1 (en) * 2005-08-22 2007-03-08 Edelman Robert R Accelerated whole body imaging with spatially non-selective radio frequency pulses
JP2007090001A (ja) * 2005-09-30 2007-04-12 Ge Medical Systems Global Technology Co Llc Mrスキャン方法およびmri装置
US7711168B2 (en) * 2005-10-19 2010-05-04 Siemens Medical Solutions Usa, Inc. Method for tracking blood vessels
US7515742B2 (en) * 2006-06-29 2009-04-07 Vassol. Inc. Automatic segmentation of stationary tissue in PCMR imaging
US7940977B2 (en) * 2006-10-25 2011-05-10 Rcadia Medical Imaging Ltd. Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies
US7983459B2 (en) 2006-10-25 2011-07-19 Rcadia Medical Imaging Ltd. Creating a blood vessel tree from imaging data
US7940970B2 (en) * 2006-10-25 2011-05-10 Rcadia Medical Imaging, Ltd Method and system for automatic quality control used in computerized analysis of CT angiography
US7873194B2 (en) * 2006-10-25 2011-01-18 Rcadia Medical Imaging Ltd. Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure
US7860283B2 (en) 2006-10-25 2010-12-28 Rcadia Medical Imaging Ltd. Method and system for the presentation of blood vessel structures and identified pathologies
DE102006050887A1 (de) * 2006-10-27 2008-05-29 Siemens Ag Verfahren zur Erstellung eines Bildes bei einer kontrastmittelgestützten MR-Angiographie und Magnet-Resonanz-Gerät
JP4945220B2 (ja) * 2006-11-20 2012-06-06 株式会社東芝 血管狭窄部位探索装置、プログラム、及び画像診断装置
DE102006058316B4 (de) * 2006-12-11 2010-10-14 Siemens Ag Verfahren zur Aufnahme von Bilddaten einer Gefäßwand und Magnet-Resonanz-Gerät hierzu
US8457711B2 (en) * 2007-02-01 2013-06-04 Beth Israel Deaconess Medical Center, Inc. Magnetic resonance imaging of coronary venous structures
DE102007009185A1 (de) * 2007-02-26 2008-08-28 Siemens Ag Verfahren zur Planung einer angiographischen Messung
CN101680938A (zh) * 2007-05-31 2010-03-24 皇家飞利浦电子股份有限公司 自动采集磁共振图像数据的方法
US8472690B2 (en) * 2007-11-30 2013-06-25 Vassol Inc. Deriving a velocity encoding anti-aliasing limit to prevent aliasing and achieve an adequate signal-to-noise ratio in phase contrast magnetic resonance imaging
DE102008016892A1 (de) * 2008-04-02 2009-10-15 Siemens Aktiengesellschaft Betriebsverfahren für eine Bildgebungsanlage zur zeitaufgelösten Abbildung eines sich iterativ bewegenden Untersuchungsobjekts
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
JP5305785B2 (ja) * 2008-08-25 2013-10-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置および磁気共鳴イメージング装置の制御方法
US8582854B2 (en) * 2008-09-15 2013-11-12 Siemens Aktiengesellschaft Method and system for automatic coronary artery detection
US9761004B2 (en) * 2008-09-22 2017-09-12 Siemens Healthcare Gmbh Method and system for automatic detection of coronary stenosis in cardiac computed tomography data
US7833829B2 (en) * 2008-10-28 2010-11-16 Honeywell International Inc. MEMS devices and methods of assembling micro electromechanical systems (MEMS)
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
DE102009017778A1 (de) * 2009-04-20 2010-11-18 Siemens Aktiengesellschaft Verfahren, Magnetresonanzgerät und Computerprogramm für eine Akquisition von Messdaten eines Untersuchungsbereichs eines Untersuchungsobjekts während einer kontinuierlichen Fahrt des Untersuchungsbereichs durch ein Magnetresonanzgerät
DE102009055122B4 (de) * 2009-12-22 2012-03-22 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur phasensensitiven Flussmessung mittels einer Magnetresonanzanlage
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8738113B2 (en) 2010-09-30 2014-05-27 University Of Utah Research Foundation Retrospectively correlated turbo spin echo imaging
JP2012157458A (ja) * 2011-01-31 2012-08-23 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
JP5971682B2 (ja) * 2011-03-02 2016-08-17 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
DE102011007847B4 (de) * 2011-04-21 2013-02-21 Siemens Aktiengesellschaft Dynamische Anpassung eines Dephasierungsgradientenpaares
CN104434159B (zh) * 2013-09-16 2017-04-12 上海西门子医疗器械有限公司 延迟时间测量方法、系统及ct机
KR101643286B1 (ko) 2014-09-04 2016-07-29 삼성전자주식회사 의료 영상 장치 및 그 제어방법
US10349909B2 (en) * 2015-06-30 2019-07-16 General Electric Company Systems and methods for flow rate compensated acquisition parameters for medical imaging
JP6953121B2 (ja) * 2016-09-23 2021-10-27 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
US10568587B2 (en) * 2017-03-28 2020-02-25 Canon Medical Systems Corporation X-ray diagnostic apparatus, image processing apparatus, and image processing method
CN108652624A (zh) * 2017-03-31 2018-10-16 西门子(深圳)磁共振有限公司 一种前瞻性心电触发方法和装置
US10522253B2 (en) * 2017-10-30 2019-12-31 Siemens Healthcare Gmbh Machine-learnt prediction of uncertainty or sensitivity for hemodynamic quantification in medical imaging
WO2021084916A1 (ja) * 2019-10-28 2021-05-06 富士フイルム株式会社 領域同定装置、方法およびプログラム
EP4186417A1 (en) * 2021-11-24 2023-05-31 Siemens Healthcare GmbH Coronary artery stenosis quantification using 3d flow mri

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590654A (en) * 1993-06-07 1997-01-07 Prince; Martin R. Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
FR2708166A1 (fr) * 1993-07-22 1995-01-27 Philips Laboratoire Electroniq Procédé de traitement d'images numérisées pour la détection automatique de sténoses.
US6249694B1 (en) * 1998-07-17 2001-06-19 General Electric Company Method for peripheral MR angiography
US6259940B1 (en) * 1999-04-28 2001-07-10 Mayo Foundation For Medical Education And Research Method of performing magnetic resonance angiography using two-dimensional imaging and de-rated gradients
US6317620B1 (en) * 2000-05-04 2001-11-13 General Electric Company Method and apparatus for rapid assessment of stenosis severity

Also Published As

Publication number Publication date
DE10127930A1 (de) 2002-01-24
JP2002095647A (ja) 2002-04-02
US6408201B1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
JP4814440B2 (ja) Mr撮像を用いて末梢動脈血管系中の狭窄を効率的に識別する装置
JP5079191B2 (ja) Mr撮像を用いて効率的に狭窄を識別し判定するための方法および装置
US7583992B2 (en) Magnetic resonance angiography with automated vessel segmentation
US6195579B1 (en) Contrast detection and guided reconstruction in contrast-enhanced magnetic resonance angiography
US6556856B1 (en) Dual resolution acquisition of magnetic resonance angiography data with vessel segmentation
US8441257B2 (en) Time resolved spin labeled MRI cineangiography
JP4059670B2 (ja) マルチステーション検査において遠位動脈視覚化を強調した末梢血管系の最適撮影方法
JP2003528663A (ja) マイクロコイルを用いた磁気共鳴撮像方法及びシステム
CN102652671A (zh) 磁共振成像装置
US8315450B2 (en) Method and system for display of medical image data
US6259940B1 (en) Method of performing magnetic resonance angiography using two-dimensional imaging and de-rated gradients
US6317620B1 (en) Method and apparatus for rapid assessment of stenosis severity
Ohno et al. Unenhanced and contrast-enhanced MR angiography and perfusion imaging for suspected pulmonary thromboembolism
Sakuma et al. Fast magnetic resonance imaging of the heart
Yzet et al. Dynamic measurements of total hepatic blood flow with Phase Contrast MRI
Botnar et al. Cardiovascular magnetic resonance imaging in small animals
Macgowan et al. Real‐time Fourier velocity encoding: An in vivo evaluation
US20120314909A1 (en) System and method for magnetic resonance angiography coordinated to cardiac phase using spin labeling
US11478159B2 (en) Inflow-based pulse wave velocity profiling along the aorta using magnetic resonance imaging
WO2001075469A1 (en) Magnetic resonance angiography with automated vessel segmentation
Fink et al. Pulmonary MRA
Weishaupt et al. Cardiovascular imaging
Parczyk In vivo NMR-methods to study effects of atherosclerosis in mice
Eggen et al. Cardiovascular magnetic resonance imaging
Rossum et al. To which extent can the coronary artery tree be imaged and quantified with the current MR technology?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees