JP4799440B2 - 冷凍空調装置および冷媒純度の推算方法 - Google Patents

冷凍空調装置および冷媒純度の推算方法 Download PDF

Info

Publication number
JP4799440B2
JP4799440B2 JP2007033728A JP2007033728A JP4799440B2 JP 4799440 B2 JP4799440 B2 JP 4799440B2 JP 2007033728 A JP2007033728 A JP 2007033728A JP 2007033728 A JP2007033728 A JP 2007033728A JP 4799440 B2 JP4799440 B2 JP 4799440B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
purity
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007033728A
Other languages
English (en)
Other versions
JP2008196808A (ja
Inventor
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007033728A priority Critical patent/JP4799440B2/ja
Publication of JP2008196808A publication Critical patent/JP2008196808A/ja
Application granted granted Critical
Publication of JP4799440B2 publication Critical patent/JP4799440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、冷凍空調装置および冷媒純度の推算方法に関するものであり、特に冷媒として超臨界状態で動作する二酸化炭素(CO2)を用いた冷凍空調装置および冷媒純度の推算方法に関するものである。
フロン系冷媒は地球温暖化係数が大きいため、それに代わる冷媒としてCO2が着目されている。CO2は臨界温度が31℃と常温付近にあるため、通常冷凍空調装置の運転を行う場合、高圧(圧縮機の吐出圧力)は臨界圧力以上の圧力で、超臨界状態として作動し、低圧は臨界圧力以下の圧力で動作する。
CO2冷媒は、他の化学物質であるアンモニアや石油精製等から発生する副生物である粗製炭酸ガスを原料とし、原料から水素、酸素、窒素その他の不純物を種々の精製工程で除去し高純度の炭酸ガスを精製している(特許文献1参照)。
また、別の従来の冷凍空調装置では、冷媒以外の不純物成分である不凝縮ガスを抽気タンクに回収し、抽気タンクから外気に放出することで、冷凍空調装置内の冷媒純度を維持する方法が記載されている(特許文献2参照)。
特開平11−209117号公報(段落0008、段落0009〜0015、図1) 特開2006−38346号公報(段落0001、段落0005、段落0019〜0020、図1、図2)
CO2冷媒の純度は精製工程を多くすることによって向上するが、そのため冷媒としての値段は、高純度のものほど高くなる。純度98〜99.5%と称される工業用CO2の価格に対し、純度99.995%の高純度品の価格は10倍程度高くなる。工業用CO2の実際の純度にはばらつきがあり、公称値よりも高く高純度品と同等であり冷凍空調装置の実用上問題の無い純度のものである。
冷凍空調装置を安価に構成しようとした場合、価格の安い工業用CO2の適用は一つの選択肢となる。しかし、特許文献1に記載された従来の冷凍空調装置では、従来冷凍空調装置に純度のばらつきのあるCO2を冷媒として用いた場合の純度の判別方法、および低純度であった場合の対応方法は明示されておらず、そのため高価な高純度品を用いており、冷凍空調装置の値段が高価になるという課題があった。
また冷媒純度が低いにもかかわらず装置に適用した場合には、不純物の多くが通常の冷凍空調装置の運転範囲では液化しない不凝縮ガスであり蒸気圧縮サイクルを構成した場合の効率が低い物質であるため、不純物量が多いほど装置の運転効率が低下するという問題があった。
また、特許文献2に記載された従来の冷凍空調装置では、抽気タンクへ不純物を回収する際の冷媒と不純物の分離に際しては、冷媒が液化することで不純物である不凝縮ガスとを分離する作用を用いており、超臨界状態で動作し、冷媒の液化がなされないCO2冷媒には適用できない手法となる。
この発明は以上の課題に鑑み、CO2冷媒を用いた冷凍空調装置において、充填されたCO2冷媒の純度を判別可能とするとともに、CO2が低純度の場合に、冷媒純度を向上させる、あるいは低純度に対応した運転を実施することで、純度のばらつきがある工業用CO2を適用可能とし、冷凍空調装置を安価に構成することを目的とする。また高純度の冷媒を適用することで、装置の運転効率を向上させることを目的とする。
この発明に係る冷凍空調装置は、圧縮機、放熱器、減圧装置、蒸発器を順次環状に接続して構成される冷媒回路を有し、冷媒として二酸化炭素を用い、冷凍空調装置は、停止時に冷媒の臨界温度以上に保たれて二酸化炭素の臨界温度より高くかつ臨界温度近傍の温度での冷媒の圧力を計測する計測手段と、この計測手段の計測結果と予め設定した基準値に基づいて冷媒に混入している不純物成分の量を推算する不純物量推算手段と、を備えたものである。
この発明は、純度が不明なCO2冷媒が充填されたときに、冷媒の圧力に基づいて冷媒に混入している不純物成分の量を推算することで、冷媒の純度を判別する。安価な工業用CO2を充填した場合にも、判別される冷媒純度が実用上支障のない純度であるならば、そのまま装置を構成でき、冷凍空調装置を安価に構成することができるとともに、低純度による装置の運転効率低下を回避し、高効率の冷凍空調装置を得ることができる。また冷媒純度が問題のある状況であるならば、冷媒純度を向上させる、あるいは、低純度に対応した運転を実施することで、安価にかつ信頼性の高い冷凍空調装置を得ることができる。
実施の形態1.
以下、本発明の実施の形態1を図1に示す。図1は本発明の冷凍空調装置の構成及び冷媒回路図であり、セパレート型の空調機の例を示している。空調装置は室外機1、室内機2、および室外機1と室内機2を接続する液管7、ガス管9で構成されており、室外機1内には圧縮機3、四方弁4、室外熱交換器5、減圧装置である電子膨張弁6が内蔵されている。室内機2内には、室内熱交換器8が内蔵される。室外機1、室内機2と液管7、ガス管9との接続部には、接続用の弁10a、10b、10c、10dが設けられている。また室外機1には冷媒充填用の弁10eが設けられている。
室外機1内には、冷媒状態を計測するために、圧力センサ11a、11b及び温度センサ12a、12b、12c、12dが設けられている。圧力センサ11aは圧縮機3の吸入圧力、11bは圧縮機3の吐出圧力を計測する。温度センサ12aは圧縮機3の吸入温度、12bは圧縮機3の吐出温度、12cは室外熱交換器5と電子膨張弁6の間の冷媒温度を計測する。温度センサ12dは室外機1周囲の空気温度を計測する。計測制御装置13は、圧力センサ11や温度センサ12の情報の入力や装置使用者の指示に基づき冷凍空調装置の運転制御を行い、圧縮機3の回転数や電子膨張弁6の口径(開度)、室外熱交換器5に送風するファンの送風量、弁10a〜10eなどを制御する。
なお、計測制御装置1は、特許請求の範囲における不純物量推算手段、運転制御手段、運転制御変更手段を構成する。
次に、冷凍空調装置の冷媒充填方法、及び装置据え付け方法について説明する。室外機1、室内機2はそれぞれ別工程で製造される。製造完了時に、室内機2には窒素ガスを充填し、計測制御装置13は、弁10b、10cを閉とすることで冷媒回路を閉止する。さらに、計測制御装置13は、室外機1の弁10a、10dを閉止するとともに、弁10eに真空ポンプを接続し、室外機1内の冷媒回路を計測制御装置13の制御によって自動的に、あるいは人介操作により真空引きする。真空引き完了後、冷媒ボンベを弁10eに接続し、冷媒である工業用CO2を充填する。充填完了後、弁10eを閉とし、室外機1内の冷媒回路を閉止する。
冷媒充填完了後、室外機1、室内機2は設置場所に出荷され、設置場所にて液管7、ガス管9を取り付ける。次に室内機2の弁10b、10cを開とし、室内機2、液管7、ガス管9の冷媒回路を導通させた後で、真空ポンプによりこの部分の真空引きを行う。真空引き完了後、室外機1の弁10a、10dを開とし、冷媒回路全体を導通させた後に装置の運転を行う。
次に冷凍空調装置の冷媒純度判定方法について図2のフローに基づいて説明する。純度判定は上記の手順のなかで、冷媒充填時に実施する。まず室外機1を温度が一定である恒温室内に設置する(ステップS21)。恒温室の温度は、CO2冷媒の臨界温度である31℃より若干高い35℃に設定する(ステップS22)。次に真空引き(ステップS23)後の室外機1に冷媒ボンベを接続し、弁10eを開として冷媒を充填する(ステップS24)。このとき冷媒ボンベの重量を計測し、ボンベ重量が規定量低下した段階で弁10eを閉止し、冷媒充填を完了する。冷媒充填時は充填された冷媒の蒸発により、吸熱され室外機冷媒温度が一時低下するので、計測制御装置13は、温度センサ12a、12b、12cなどで計測される室外機1の冷媒温度と恒温室の温度とを比較し、室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置する。
冷媒温度が恒温室の温度と一致した段階で、計測制御装置13は、冷媒圧力を圧力センサ11aもしくは11bで計測させる(ステップS25)。そして、計測制御装置13は、この圧力を純度100%であるCO2の物性と比較し(ステップS26)、充填された冷媒の純度を判定する(ステップS27)。この場合、充填される冷媒の密度は、冷媒の充填量、および室外機1内の冷媒回路部の内容積から求められるので、計測制御装置13は、冷媒密度一定の条件のもとで、冷媒の温度に対する圧力変化の特性を利用して、冷媒の純度を判定する。
図3は密度600kg/m3一定である場合に、CO2冷媒(純度100%)の温度に対する圧力変化と、CO2冷媒99%に工業用CO2に含有される不純物の代表である空気が1%混入したときの温度に対する圧力変化を示した図である。図に示されるように、空気が混入した冷媒の圧力は、純度100%のCO2よりも高くなる。
そこで、計測制御装置13は、測定された圧力と、予め求めておいた純度100%のCO2冷媒の圧力とを比較し、測定される圧力と純度100%のCO2冷媒の圧力との圧力差が、予め定めた既定の圧力差より大きければ、そのときに充填された冷媒は不純物が多いと判定し(ステップS28)、予め定めた既定の圧力差より小さければ、装置に要求される冷媒の純度を確保した冷媒と判定する(ステップS29)。
例えば、装置に要求される冷媒の純度を99.9%、恒温室の温度を35℃とした場合、図3の相関から規定の圧力差は0.07MPaとなるので、測定される圧力と純度100%のCO2冷媒との圧力差が0.07MPaより大きければ、要求純度である99.9以下の純度であり、不純物が多く混入していると判定し、圧力差が0.07MPaより小さければ要求純度である99.9以上の純度を確保していると判定する。
また混入する不純物の量が少ない場合、測定される圧力と純度100%のCO2冷媒との圧力差に不純物量が比例するとして冷媒純度を求めることができる。例えば、前述の条件で恒温室の温度を35℃、冷媒密度600kg/m3である場合に、測定される圧力と純度100%のCO2冷媒との圧力差が0.07MPaあれば、不純物が0.1%混入していることになるので、測定される圧力と純度100%のCO2冷媒との圧力差が倍の0.14MPaであれば不純物が倍の0.2%混入していると判定できる。
なお、判定結果は、図示しない表示手段または音声出力手段に出力してユーザに示すことで対策を講じることが可能になる。また、判定結果を図示しない記憶装置に記憶させておき、必要時に表示手段または音声出力手段あるいは印刷手段に出力させることも可能である。
以上の説明では、純度の判定は、室外機1に設けられた計測制御装置13で行うように記述したが、純度判定用に別途設けられた純度判定装置にて実施するようにしてもよい。
要求純度を確保する冷媒が充填されていると判定された場合は、そのまま空調機を出荷する。要求純度が確保されない場合は、冷媒を再充填する、もしくは純度に対応した運転方法を設定するなどの対策を施して空調機を出荷する。このように、純度にばらつきのある工業用CO2を冷媒として用いても、その純度を測定することで、純度に応じた対策をとることができ、安価に冷凍空調装置を構成するとともに、高効率かつ信頼性の高い冷凍空調装置を提供することができる。
なお、純度100%のCO2冷媒の圧力と不純物が混入した冷媒の圧力偏差は、図3に示されるようにどの温度域でも存在するが、臨界温度31℃より高い温度で測定することが望ましい。図4は、冷媒密度600kg/m3における温度に対する純度100%のCO2冷媒の圧力と不純物である空気が1%混入した冷媒の圧力偏差の変化を表したものである。図4に示されるように、圧力差は臨界温度近傍から急に拡大し、臨界温度より高い温度でより大きくなる。センサの検知精度を考慮すると、純度検知のために必要となる規定の圧力偏差は大きければ大きいほど望ましく、本実施の形態のように、臨界温度より高温での計測とすることで、より高精度に純度判定を行うことができる。
図4に示される圧力偏差の特性は以下の要因で生じる。不純物を代表する空気の成分である、窒素や酸素の臨界温度は−147℃、−119℃と計測時の温度の35℃より低くなる。臨界温度より大幅に高い温度域では、気体の物性変化は理想気体とほぼ同じとなり、密度一定である場合には温度(絶対温度)に比例して圧力が増加する。一方、CO2冷媒の圧力変化は図3に示されるように臨界温度近辺で勾配の変化する特性となる。これは温度が臨界温度に近く、かつ圧力が臨界圧力より高い状況では、より液に近い特性となり、温度変化に対する圧力上昇が大きくなる特性が表れるためである。 従って、不純物である空気の特性は変化しないが、基準となるCO2冷媒の特性が変化することにより、図4に示される圧力変化の特性を示すようになる。
冷媒純度判定において、純度が要求純度以下である場合に運転方法を変更するときは、以下のように実施する。不純物の代表である空気の成分である窒素や酸素が混入したときの冷媒圧力は前述したように高くなる。CO2を冷媒として適用する場合、運転効率が最も高くなる高圧が存在するので、一般にその高圧を実現するように目標高圧を設定して、運転制御を行う。不純物がある場合、冷媒全体の圧力は高くなるが、CO2のみの圧力を考慮すると、分圧となり、センサで測定される高圧よりも低い圧力で動作していることになる。従って、純冷媒として設定した最適高圧で動作させても、実際のCO2冷媒のみで評価される圧力は低い状態で動作していることになり、そのままでは運転効率の高い最適な運転を実施できない。
そこで、冷媒純度判定において、純度が要求純度以下である場合には、運転制御における目標高圧を純冷媒の時よりも高く設定する。この場合、設定量はシステム毎に決めておき、この値を事前に設定しておく。これにより、不純物が混入している場合でもCO2冷媒のみで評価される圧力は最適な高圧で運転することができ、効率の高い冷凍空調装置とすることができる。
なお、冷媒純度の判定は装置完成後の充填時に実施されることになるので、予め運転制御が搭載される基板にディップスイッチなどを設けておき、冷媒純度に対応した制御内容の変更ができるようにしておく。これにより純度に対応した制御変更を行う場合に制御基板の取り換えが不要となり、簡便に制御変更を行うことができる。
また、運転制御手段は、冷凍空調装置の高圧を制御するとともに、不純物量の推算結果が所定値よりも多い場合には、目標とする高圧の値を不純物量の推算結果が所定値よりも少ない場合の設定値より高く設定する。
冷媒純度判定において、純度が要求純度以下である場合の冷媒再充填方法は以下のように行う。まず再充填時には、通常冷媒として用いられる高純度のCO2冷媒を用いる。充填済みの冷媒を全て排出し、高純度のCO2冷媒を充填すると、従来と同様に高価な冷媒を用いることになるので、純度に応じた排出、再充填を実施する。例えば判定された冷媒純度が99.8%である場合に、装置に要求される冷媒の純度の99.9%を実現するには冷媒中の不純物の量を半減することで実現できる。そこで、装置内の冷媒量の1/2に相当する量を排出し、相当量の高純度冷媒を再充填する。このような充填を行うことで、冷媒純度向上のために必要とされ充填される高純度CO2冷媒の量を低減でき、より安価に装置を構成することができる。
CO2に対して不純物である窒素・酸素の分子量は小さいことから、同一圧力での密度はCO2の方が大きくなる。そのため冷媒が存在する空間内では、上方により多くの不純物である窒素・酸素が存在する。そこで冷媒を排出する排出ポートを、室外機1内の冷媒回路の比較的上方に設けることで、不純物である窒素・酸素をより多く排出することができる。冷媒充填用の弁10eを排出口として用いる場合には、弁10eの設置位置、および冷媒回路に接続されるポイント(図1の点A)については、室外機1内の冷媒回路上方に設けることが望ましい。これにより、冷媒を排出する場合に、不純物の割合がCO2冷媒に混入している割合より多く排出できるようにすることができ、再充填に必要となる高純度CO2冷媒の量をより少なくできるので、より安価に装置を構成することができる。
実施の形態2.
冷媒純度の判定を二つの条件で計測された状態量をもとに実施してもよい。この場合の冷媒純度判定方法を図5のフローに基づいて説明する。ここで装置の構成、及び装置の冷媒充填方法、及び装置据え付け方法については実施の形態1と同様に実施する。
まず室外機1を温度が一定である恒温室内に設置し(ステップS21)、恒温室の温度は、CO2冷媒の臨界温度である31℃より若干高い第1の温度である35℃に設定する(ステップS22)。次に真空引き(ステップS23)後の室外機1に冷媒ボンベを接続し、弁10eを開として冷媒を充填する(ステップS24)。このとき冷媒ボンベの重量を計測し、ボンベ重量が規定量低下した段階で弁10eを閉止し、冷媒充填を完了する。冷媒充填時は充填された冷媒の蒸発により、吸熱され室外機冷媒温度が一時低下するので、室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置する。冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12aもしくは12bで計測し、この圧力を第1の圧力とする(ステップS51)。
次に、恒温室の温度を上昇させ、CO2冷媒の臨界温度である31℃より若干高い第2の温度である45℃に設定する(ステップS52)。室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置し、冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12aもしくは12bで計測し、この圧力を第2の圧力とする(ステップS53)。
冷媒純度の判定は第1の圧力に対する第2の圧力の上昇幅、もしくは上昇比率に基づいて判定する(ステップS54〜S56)。この場合の冷媒状態変化は冷媒量一定であるので等密度の状態での圧力変化となる。図6は、密度一定の条件でCO2冷媒、および空気の温度変化に対する圧力上昇幅を示した図である。第1の温度である35℃の条件で計測された第1の圧力がCO2、および空気とも同じ8MPaであった場合、第2の温度である45℃の条件で計測される第2の圧力はCO2が9.53MPa、空気が8.30MPaとなり、第1の圧力に対する第2の圧力上昇幅はCO2で1.53MPa、空気で0.30MPaとなる。CO2冷媒の方が、温度変化に対する圧力上昇が大きいため、圧力上昇幅に基づいて冷媒純度を判定することができる。
まず、第1の温度35℃での様々な第1の圧力に対して、第2の温度での圧力上昇幅を予め求めておく。例えば、第1の圧力が8MPaの場合の圧力上昇幅は、前述したようにCO2冷媒で1.53MPa、空気で0.30MPaとなり、第1の圧力が7.5MPaである場合、CO2冷媒で0.90MPa、空気で0.28MPaとなる。
そして、室外機1で計測される第1の圧力に対する第2の圧力の上昇幅と予め求めておいた各冷媒の圧力上昇幅とを比較する。第1の温度が35℃、第1の圧力が8MPaである場合、圧力上昇幅が1.53MPaであれば、純度100%のCO2冷媒と判定できる。また圧力上昇幅が1.505MPaである場合、圧力上昇幅が低下し、不純物である空気が混入していると判定する。圧力上昇幅の低下は混入する空気の重量比に比例するので、この場合のCO2冷媒の純度は(1.505−0.3)/(1.53−0.3)=98%と判定できる。
判定された純度を装置に要求される冷媒の純度と比較し、要求純度を確保する冷媒が充填されていると判定された場合は、そのまま空調機を出荷し、要求純度が確保されない場合は、冷媒を再充填する、もしくは純度に対応した運転方法を設定するなどの対策を施して空調機を出荷する。このように、純度にばらつきのある工業用CO2を冷媒として用いても、その純度を測定することで、純度に応じた対策をとることができ、安価に冷凍空調装置を構成するとともに、高効率かつ信頼性の高い冷凍空調装置を提供することができる。
実施の形態2では、2つの状態量を比較することで、実施の形態1で必要としていた冷媒量、および装置の内容積の情報が不要となる。従って様々な機器に容易に適用することが可能となり、より汎用的かつ簡易に冷媒純度の判定を実施することができる。
実施の形態3.
冷媒純度の判定にあたり、二つの状態量をもとに実施する方法として以下のような手法を用いてもよい。ここで装置の構成、及び装置の冷媒充填方法、及び装置据え付け方法については実施の形態1と同様に実施する。この場合の冷媒純度判定方法を図7のフローに基づいて説明する。
まず室外機1を温度が一定である恒温室内に設置し(ステップS21)、恒温室の温度は、CO2冷媒の臨界温度である31℃より若干高い第1の温度である35℃に設定する(ステップS22)。次に真空引き(ステップS23)後の室外機1に冷媒ボンベを接続し、弁10eを開として冷媒を充填する。このとき冷媒ボンベの重量を計測し、ボンベ重量が規定量の2/3低下した段階、すなわち規定量の2/3の冷媒量を充填した時点で弁10eを閉止し、冷媒充填を一時停止する。この時点の充填冷媒量を第1の冷媒量とする(ステップS71)。冷媒充填時は充填された冷媒の蒸発により、吸熱され室外機冷媒温度が一時低下するので、室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置する。冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12aもしくは12bで計測し、この圧力を第1の圧力とする(ステップS51)。
第1の圧力計測後、恒温室の温度は第1の温度のままで弁10eを開とし、残りの規定量である1/3の冷媒を充填する。全冷媒量が充填された時点での冷媒量を第2の冷媒量とする(ステップS72)。冷媒充填時は充填された冷媒の蒸発により、吸熱され室外機冷媒温度が一時低下するので、室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置する。冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12aもしくは12bで計測し、この圧力を第2の圧力とする(ステップS53)。
冷媒純度の判定は第1の圧力に対する第2の圧力の上昇幅、もしくは上昇比率に基づいて判定する(ステップS55〜S56)。図8は、温度35℃一定の条件のもとで、CO2冷媒、および空気の冷媒充填量変化に対する圧力上昇幅を示した図である。この場合の冷媒状態変化は温度35℃一定の条件のもとで、冷媒充填量が1.5倍すなわち、冷媒密度が1.5倍となった場合の圧力変化となる。第1の冷媒量である規定量の2/3の冷媒量が充填された時点で計測された第1の圧力がCO2、および空気とも同じ8MPaであった場合、第2の冷媒量である規定量の冷媒量が充填された条件で計測される第2の圧力はCO2が8.63MPa、空気が12.10MPaとなり、第1の圧力に対する第2の圧力上昇幅はCO2で0.63MPa、空気で4.10MPaとなる。CO2冷媒の方が、密度変化に対する圧力上昇が小さいため、圧力上昇幅に基づいて冷媒純度を判定することができる。
まず、第1の温度35℃、第1の冷媒量における様々な第1の圧力に対して、第2の冷媒量での圧力上昇幅を予め求めておく。例えば、第1の圧力が8MPaの場合の圧力上昇幅は、前述したようにCO2冷媒で0.63MPa、空気で4.10MPaとなる。
そして、室外機1で計測される第1の圧力に対する第2の圧力の上昇幅と予め求めておいた各冷媒の圧力上昇幅とを比較する(ステップS55)。第1の温度が35℃、第1の圧力が8MPaである場合、圧力上昇幅が0.63MPaであれば、純度100%のCO2冷媒と判定できる。また圧力上昇幅が0.70MPaである場合、圧力上昇幅が増加し、不純物である空気が混入していると判定する。圧力上昇幅の増加は混入する空気の重量比に比例するので、この場合のCO2冷媒の純度は(0.70−4.1)/(0.63−4.1)=98%と判定できる(ステップS56)。
判定された純度を装置に要求される冷媒の純度と比較し、要求純度を確保する冷媒が充填されていると判定された場合は、そのまま空調機を出荷し、要求純度が確保されない場合は、冷媒を再充填する、もしくは純度に対応した運転方法を設定するなどの対策を施して空調機を出荷する。このように、純度にばらつきのある工業用CO2を冷媒として用いても、その純度を測定することで、純度に応じた対策をとることができ、安価に冷凍空調装置を構成するとともに、高効率かつ信頼性の高い冷凍空調装置を提供することができる。
実施の形態3では、2つの状態量を比較することで、実施の形態1で必要としていた装置の内容積の情報が不要となる。従って様々な機器に容易に適用することが可能となり、より汎用的かつ簡易に冷媒純度の判定を実施することができる。
実施の形態4.
冷媒純度の判定にあたり、二つの状態量をもとに実施する方法として以下のような手法を用いてもよい。ここで装置の構成については実施の形態1と同様に実施する。この場合の冷媒純度判定方法を図9のフローに基づいて説明する。
冷凍空調装置の冷媒充填方法、及び装置据え付け方法については以下のように実施する。室外機1、室内機2はそれぞれ別工程で製造される。製造完了時に、室外機1、室内機2を組み合わせて装置を構成し、動作チェックを行う。動作チェック前後の冷媒状態に基づいて、冷媒純度の判定を実施する。以下純度の判定方法を説明する。
まず、室外機1、室内機2を温度が一定である恒温室内に設置する(ステップS21)。恒温室の温度は、CO2冷媒の臨界温度である31℃より若干高い35℃に設定する(ステップS22)。室外機1、室内機2の間には液管7、ガス管9を接続し、装置を構成する。そして、真空引き(ステップS23)後の室外機1に弁10eを介して冷媒ボンベを接続し、弁10eを開として冷媒を充填する(ステップS24)。このとき冷媒ボンベの重量を計測し、ボンベ重量が規定量低下し、規定量充填された段階で弁10eを閉止し、冷媒充填を完了する。冷媒充填時は充填された冷媒の蒸発により、吸熱され室外機冷媒温度が一時低下するので、室外機1の冷媒温度が恒温室の温度と一致するまで所定時間放置する。
冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12aもしくは12bで計測する。この際、室外機1、室内機2と液管7、ガス管9を接続する弁10a、10b、10c、10dは開とし、各部の圧力が均一になる状態としておく、こうして測定された圧力を第1の圧力とする(ステップS51)。
冷媒充填後、装置を動作させ、動作チェックを行う(ステップS91)。動作チェック終了後、全ての冷媒を室外機1に回収する冷媒回収運転を実施する。冷媒回収運転時は、弁10aを閉止し(ステップS92)、室外熱交換器5を放熱器として動作させながら圧縮機3を駆動するいわゆるポンプダウン運転を行う(ステップS93)。ポンプダウン運転実施中に圧力センサ12aで検知される圧縮機吸入圧力が所定値まで低下した段階で、室内機側の冷媒回収が終了と判断し、弁10dを閉止して、圧縮機3を停止する(ステップS94)。
ポンプダウン運転終了後、装置の温度が安定し、冷媒温度が恒温室の温度と一致した段階で、冷媒圧力を圧力センサ12bで計測する。こうして測定された圧力を第2の圧力とする(ステップS53)。
冷媒純度の判定は第1の圧力に対する第2の圧力の上昇幅、もしくは上昇比率に基づいて判定する(ステップS54〜S56)。第1の圧力が計測される状態と第2の圧力が計測される状態では、装置内に存在する冷媒量は同じであるが、冷媒が存在する部分の容積が異なる。第1の圧力を計測時に冷媒が存在する容積は、室外機1の容積に室内機2、液管7、ガス管9の容積を加えた値となり、第2の圧力計測時に冷媒が存在する容積は室外機1の容積のみとなる。従って、容積変化分、冷媒密度が異なった状態を計測していることになる。例えば、室内機2、液管7、ガス管9の容積の合計値が室外機1の1/2であった場合には、第2の圧力の計測時に冷媒が存在する容積は、第1の圧力の計測時に冷媒が存在する容積の2/3となる。冷媒密度は容積の逆数比となり、第2の圧力計測時の冷媒密度は、第1の圧力計測時の1.5倍となる。
冷媒密度が1.5倍となった場合の、CO2冷媒、および空気の圧力上昇幅は実施の形態3における図8と同様となる。例えば、第1の温度が35℃で、室内機2、液管7、ガス管9が接続された状態で計測された第1の圧力がCO2、および空気とも同じ8MPaであった場合、室内機2、液管7、ガス管9が外され、室外機1のみに冷媒が存在する状態で計測された第2の圧力は、密度が1.5倍となった圧力であり、第2の圧力は純度100%のCO2冷媒の場合、8.63MPa、空気の場合12.10MPaとなる。第1の圧力に対する第2の圧力上昇幅はCO2で0.63MPa、空気で4.10MPaとなる。CO2冷媒の方が、密度変化に対する圧力上昇が空気より小さいため、圧力上昇幅に基づいて冷媒純度を判定することができる。判定の方法は実施の形態3と同様となる。
判定された純度を装置に要求される冷媒の純度と比較し、要求純度を確保する冷媒が充填されていると判定された場合は、そのまま空調機を出荷し、要求純度が確保されない場合は、冷媒を再充填する、もしくは純度に対応した運転方法を設定するなどの対策を施して空調機を出荷する。このように、純度にばらつきのある工業用CO2を冷媒として用いても、その純度を測定することで、純度に応じた対策をとることができ、安価に冷凍空調装置を構成するとともに、高効率かつ信頼性の高い冷凍空調装置を提供することができる。
実施の形態4では、出荷前の動作チェックの前後における冷媒状態を計測し、純度の判定を行うので、比較的短時間に純度判定を完了することができ、簡便に純度判定を実施することができる。
なお、冷媒純度の判定は、出荷前の動作チェックの前後だけでなく、他の状況で行ってもよい。例えば、冷凍空調装置を設置したときの圧力変化から求めることができる。この場合、密度変化の順序が前述した出荷前の動作チェックと反対となる。即ち、装置設置時は冷媒が室外機1内のみに存在するので、この条件で測定される圧力は前述の第2の圧力となる。そして室外機1と室内機2を液管7、ガス管9を介して装置し、冷媒を室内機2側にも行き渡らせた状態で圧力を計測すると、前述の第1の圧力を計測できる。この第1の圧力と第2の圧力の比較を前述した方法と同様に行うことで、冷媒純度の判定を行うことができる。
実施の形態5.
冷媒純度を判定するための装置の構成として、図10に示す構成を用いてもよい。図10において、開閉弁10f、10gは室外熱交換器5と電子膨張弁6との間を接続する冷媒配管の一部を閉区間とできるように設けられる。この閉区間を閉区間Bとする。温度センサ12cは室外熱交換器5出口の冷媒温度を計測する温度センサであるが、前述した閉区間Bの冷媒温度を計測するためにも用いる。圧力センサ11cは閉区間Bでの圧力を計測するために設けられる。ヒータ14は閉区間Bでの冷媒温度を調節するために設けられる。図10のその他の記号については、実施の形態1と同様であるので説明を省略する。
次に、実施の形態5における冷媒純度の判定方法について図11のフローにもとづいて説明する。まず室外機1、室内機2を液管7、ガス管9で接続して装置を構成し(ステップS21)、真空引きした(ステップS23)後で、弁10eより冷媒量を規定量充填する(ステップS24)。この際、弁10a〜10gは開とし、装置各部に冷媒が行き渡るようにする。その後数分放置し、装置内の冷媒状態が均一になった段階で、弁10f、弁10gを閉止し、閉区間Bを形成する(ステップS111)。このように閉区間を形成することで閉区間B内の冷媒純度は、充填された冷媒の純度と等しくなる。
次にヒータ14で閉区間Bを加熱し、温度センサ12cで計測される閉区間Bの冷媒温度がCO2冷媒の臨界温度である31℃より若干高い第1の温度35℃になるように、ヒータ14の加熱量を調整する(ステップS112)。その後、冷媒状態が安定した段階で、圧力センサ11cにより閉区間Bの圧力を計測する。この圧力を第1の圧力とする(ステップS113)。
次に、ヒータ14の加熱量を増加させ、閉区間Bの冷媒温度がCO2冷媒の臨界温度である31℃より若干高い第2の温度である45℃になるように加熱量を調整する(ステップS114)。その後、冷媒状態が安定した段階で、圧力センサ11cにより閉区間Bの圧力を計測する。この圧力を第2の圧力とする(ステップS115)。
冷媒純度の判定は第1の圧力に対する第2の圧力の上昇幅、もしくは上昇比率に基づいて判定する(ステップS54〜56)。この場合の冷媒状態変化は冷媒量一定であるので等密度の状態での圧力変化となり、実施の形態2と同様の方法で冷媒純度の判定を行う。
判定された純度を装置に要求される冷媒の純度と比較し、要求純度を確保する冷媒が充填されていると判定された場合はそのまま装置を構成し、要求純度が確保されない場合は、冷媒を再充填する、もしくは純度に対応した運転方法を設定するなどの対策を施す。
このように、純度にばらつきのある工業用CO2を冷媒として用いても、その純度を測定することで、純度に応じた対策をとることができ、安価に冷凍空調装置を構成するとともに、高効率かつ信頼性の高い冷凍空調装置を提供することができる。また実施の形態5では、冷媒温度を形成するために恒温室などの大規模な装置は必要で無くなるため、より簡易に冷媒純度の判定を行うことができる。
尚、閉区間Bについては、室外熱交換器5と電子膨張弁6の間に設けたが、これに限定されるものではなく、装置の他の部位、例えば圧縮機3と室外熱交換器5との間の冷媒配管や室内機2内の冷媒配管に設けてもよい。また液管7やガス管9を閉区間Bとしてもよい。この場合、液管7もしくはガス管9の代わりに、圧力センサ11、温度センサ12、およびヒータ14が設けられたダミー配管を用意し、この配管での冷媒状態を計測して純度判定を行ってもよい。また回路内に盲腸配管を設けて閉区間Bとしてもよい。この場合閉区間Bを閉止するための弁は1つですみ、より安価な構成とすることができる。
また冷媒充填時は、室外機1と室内機2を組み合わせて装置を構成した後で冷媒充填するとしたが、閉区間Bが室外機1内に存在する場合は、室外機1のみで構成される冷媒回路に冷媒を充填し、純度を判定してもよい。
ヒータ14については、装置に予め備えておいてもよいし、別途用意して、純度判定時のみ閉区間Bに配置してもよい。ヒータ14の加熱量制御や、純度の判定については、温度・圧力の信号を計測制御装置13に取り込み、その信号に基づいてヒータ出力や純度判定を計測制御装置13で行うようにしてもよいし、外部の制御装置を用意し、その制御装置に温度・圧力の信号を入力して、その信号に基づいてヒータ出力や純度判定を行ってもよい。
この発明の実施の形態1を示す冷凍空調装置の回路図である。 この発明の実施の形態1に係わる冷媒純度の判定フロー図である。 この発明の実施の形態1に係わる同一密度でのCO2冷媒の温度と圧力の相関を示す図である。 この発明の実施の形態1に係わる密度一定時の温度と純度100%のCO2冷媒、純度99%のCO2冷媒の圧力差の相関を示す図である。 この発明の実施の形態2に係わる冷媒純度の判定フロー図である。 この発明の実施の形態2に係わる密度一定条件で温度変化した時のCO2冷媒、空気の圧力変化を示す図である。 この発明の実施の形態3に係わる冷媒純度の判定フロー図である。 この発明の実施の形態3に係わる温度一定条件で密度変化した時のCO2冷媒、空気の圧力変化を示す図である。 この発明の実施の形態4に係わる冷媒純度の判定フロー図である。 この発明の実施の形態5を示す冷凍空調装置の回路図である。 この発明の実施の形態5に係わる冷媒純度の判定フロー図である。
符号の説明
1 室外機、2 室内機、3 圧縮機、4 四方弁、5 室外熱交換器、6 電子膨張弁、7 液管、8 室内熱交換器、9 ガス管、10a、10b、10c、10d、10e、10f、10g 弁、11a、11b 圧力センサ、12a、12b、12c、12d 温度センサ、13 計測制御装置、14 ヒータ。

Claims (12)

  1. 圧縮機、放熱器、減圧装置、蒸発器を順次環状に接続して構成される冷媒回路を有し、冷媒として二酸化炭素を用いる冷凍空調装置において、
    この冷凍空調装置は、停止時に冷媒の臨界温度以上に保たれて二酸化炭素の臨界温度より高くかつ臨界温度近傍の温度での前記冷媒の圧力を計測する計測手段と、
    この計測手段による計測結果と予め設定した基準値とに基づいて前記冷媒に混入している不純物成分の量を推算する不純物量推算手段と、を備えたことを特徴とする冷凍空調装置。
  2. 前記不純物量推算手段が判定する不純物成分は、二酸化炭素よりも臨界温度の低い窒素、酸素であることを特徴とする請求項1に記載の冷凍空調装置。
  3. 前記計測手段は、臨界温度より高くかつ臨界温度近傍の第1の温度での冷媒の圧力を第1の圧力として計測し、第1の温度よりも高い第2の温度での冷媒の圧力を第2の圧力として計測し、
    前記不純物量推算手段は、前記第1の圧力と前記第2の圧力との偏差と前記基準値とに基づいて、前記冷媒に混入している不純物成分の量を推算することを特徴とする請求項1又は請求項2に記載の冷凍空調装置。
  4. 臨界温度より高くかつ臨界温度近傍の第1の温度で充填冷媒量が第1の冷媒量である場合の冷媒の圧力を第1の圧力として計測し、第1の温度で充填冷媒量が第2の冷媒量である場合の冷媒の圧力を第2の圧力として計測し、
    前記不純物量推算手段は、前記第1の圧力と前記第2の圧力との偏差と前記基準値とに基づいて、前記に混入している不純物成分の量を推算することを特徴とする請求項1又は請求項2に記載の冷凍空調装置。
  5. 臨界温度より高くかつ臨界温度近傍の第1の温度で冷凍空調装置の各部の冷媒圧力が均等である場合の圧力を第1の圧力として計測し、
    第1の温度で、冷凍空調装置内の冷媒を特定区間に集中させた場合の特定区間の冷媒圧力を第2の圧力として計測し、
    前記不純物量推算手段は、前記第1の圧力と前記第2の圧力との偏差と前記基準値とに基づいて、冷媒に混入している不純物成分の量を推算することを特徴とする請求項1又は請求項2に記載の冷凍空調装置。
  6. 前記不純物量推算手段は、冷凍空調装置内の冷媒を特定区間に集中させる運転として、放熱器と蒸発器の間に設けられた弁を閉止し、圧縮機を動作させるポンプダウン運転を行わせることを特徴とする請求項5に記載の冷凍空調装置。
  7. 前記不純物量推算手段は、不純物量の推算を冷媒の充填時に推算を実施することを特徴とする請求項1〜6のいずれかに記載の冷凍空調装置。
  8. 前記不純物量推算手段における不純物量の推算結果に基づいて、冷凍空調装置の運転制御を実施する運転制御手段を備えたことを特徴とする請求項1〜7のいずれかに記載の冷凍空調装置。
  9. 前記運転制御手段は、圧縮機の回転数または電子膨張弁の開度またはファンの送風量を制御することを特徴とする請求項8に記載の冷凍空調装置。
  10. 前記運転制御手段は、冷凍空調装置の高圧を制御するとともに、不純物量の推算結果が所定値よりも多い場合には、目標とする高圧の値を不純物量の推算結果が所定値よりも少ない場合の設定値より高く設定することを特徴とする請求項8又は請求項9に記載の冷凍空調装置。
  11. 情報を画像出力する表示手段または音声で出力する音声出力手段を備え、
    前記不純物量推算手段は推算した不純物成分の量が所定の値を超えているか否かを判定し、判定結果を前記表示手段または前記音声出力手段に出力することを特徴とする請求項1〜10のいずれかに記載の冷凍空調装置。
  12. 圧縮機、放熱器、減圧装置、蒸発器を順次環状に接続して構成される冷媒回路を有し、冷媒として二酸化炭素を用いる冷凍空調装置に適用され、
    冷媒充填時に、前記冷凍空調装置を停止するとともに二酸化炭素の臨界温度より高くかつ臨界温度近傍の温度での圧力を計測する計測ステップと、前記計測ステップでの計測結果と予め設定した基準値に基づいて冷媒に混入している不純物成分の量を推算する推算ステップと、を備えたことを特徴とする冷媒純度の推算方法。
JP2007033728A 2007-02-14 2007-02-14 冷凍空調装置および冷媒純度の推算方法 Active JP4799440B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033728A JP4799440B2 (ja) 2007-02-14 2007-02-14 冷凍空調装置および冷媒純度の推算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033728A JP4799440B2 (ja) 2007-02-14 2007-02-14 冷凍空調装置および冷媒純度の推算方法

Publications (2)

Publication Number Publication Date
JP2008196808A JP2008196808A (ja) 2008-08-28
JP4799440B2 true JP4799440B2 (ja) 2011-10-26

Family

ID=39755911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033728A Active JP4799440B2 (ja) 2007-02-14 2007-02-14 冷凍空調装置および冷媒純度の推算方法

Country Status (1)

Country Link
JP (1) JP4799440B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512659B2 (ja) * 1972-03-11 1976-01-28
JP2001108257A (ja) * 1999-10-05 2001-04-20 Daikin Ind Ltd 二酸化炭素冷媒を使用するセパレート型空気調和機およびその設置方法
JP4289237B2 (ja) * 2004-07-08 2009-07-01 富士電機リテイルシステムズ株式会社 冷媒冷却回路
JP4953116B2 (ja) * 2004-12-03 2012-06-13 学校法人日本大学 二酸化炭素を作動流体とした冷却または加熱装置の圧縮機用潤滑油
JP2006244953A (ja) * 2005-03-07 2006-09-14 Nissan Motor Co Ltd ガス密度算出システム、燃料電池システム及びガス密度算出方法

Also Published As

Publication number Publication date
JP2008196808A (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4864110B2 (ja) 冷凍空調装置
JP5334909B2 (ja) 冷凍空調装置並びに冷凍空調システム
EP2340404B1 (en) High-side pressure control for transcritical refrigeration system
US20180100677A1 (en) Refrigeration Cycle Device
JP2006010136A (ja) 超臨界式ヒートポンプサイクル装置
US9395112B2 (en) Method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
WO2006087004A1 (en) Control of a refrigeration circuit with an internal heat exchanger
JP6588626B2 (ja) 冷凍装置
JP2006250440A (ja) 空気調和装置
JP6548890B2 (ja) 冷凍サイクルの制御装置、冷凍サイクル、及び冷凍サイクルの制御方法
JPH11344265A (ja) 多段圧縮式ターボ冷凍機
JP2003262385A (ja) 空気調和機
JP4799440B2 (ja) 冷凍空調装置および冷媒純度の推算方法
JP6008416B2 (ja) 冷凍装置及び冷凍装置の冷媒漏れ検知方法
JP2007232259A (ja) ターボ冷凍機及びそのホットガスバイパス方法
US20100131115A1 (en) Controlling method of air conditioner
JP2008096072A (ja) 冷凍サイクル装置
JP6138186B2 (ja) 冷凍装置
EP2801772B1 (en) Refrigeration device and method for detecting filling of wrong refrigerant
JP5200120B2 (ja) 冷凍回路のバルブチェック方法
US20220146165A1 (en) Air conditioning apparatus
WO2021048905A1 (ja) 室外ユニットおよび冷凍サイクル装置
JP2017172923A (ja) 冷凍装置
WO2000068621A1 (fr) Procede de commande de cycle de refrigeration et cycle de refrigeration mettant en oeuvre ce procede
JPH05264135A (ja) 空冷式凝縮器のフィルター目詰まり検知装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4799440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250