JP4788707B2 - 空燃比センサ及び内燃機関の制御装置 - Google Patents

空燃比センサ及び内燃機関の制御装置 Download PDF

Info

Publication number
JP4788707B2
JP4788707B2 JP2007305443A JP2007305443A JP4788707B2 JP 4788707 B2 JP4788707 B2 JP 4788707B2 JP 2007305443 A JP2007305443 A JP 2007305443A JP 2007305443 A JP2007305443 A JP 2007305443A JP 4788707 B2 JP4788707 B2 JP 4788707B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst layer
side electrode
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007305443A
Other languages
English (en)
Other versions
JP2009128273A (ja
Inventor
圭一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007305443A priority Critical patent/JP4788707B2/ja
Priority to DE112008003323T priority patent/DE112008003323B4/de
Priority to PCT/JP2008/071395 priority patent/WO2009069624A1/ja
Priority to US12/744,942 priority patent/US8131451B2/en
Priority to CN2008801180625A priority patent/CN101878422B/zh
Publication of JP2009128273A publication Critical patent/JP2009128273A/ja
Application granted granted Critical
Publication of JP4788707B2 publication Critical patent/JP4788707B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、空燃比センサ及び内燃機関の制御装置に関する。
内燃機関の空燃比を制御するため、排気ガスの空燃比を検出する空燃比センサを内燃機関の排気系に備えることがある。空燃比センサの一例として、特許文献1に記載のように限界電流式の空燃比センサが開発されている。この限界電流式空燃比センサは、ジルコニア等の酸素イオン導電性固体電解質よりなるセンサ素子と、センサ素子の両面に設けられた一対の白金製の電極と、一方の電極を覆うようにして素子上に設けられた多孔質状の拡散律速層(「拡散抵抗層」という場合もある)とを備えている。この拡散律速層は、センサ素子への排気ガスの拡散を律速する。
このような限界電流式空燃比センサでは、電極間に所定の電圧を印加した状態で拡散律速層を通過した排気ガスが一方の電極に接触すると、センサ素子を介して電極間を酸素イオンがポンピングされることで電極間に電流が流れる。ここで、一方の電極への排気ガスの拡散は拡散律速層によって律速されるため、印加電圧を増加しても電流が一定に飽和する領域が生じる。この電流値(限界電流値)は排気ガスの酸素濃度、空燃比に比例する特性を有しており、限界電流値の大きさを検出することによって空燃比を知ることができる。
ここで、電極間に所定の電圧を印加した場合に排気ガスの空燃比に応じた一定の限界電流値が電極間に流れるのは、拡散律速層を排気が通過する際に拡散律速されるからである。しかしながら、排気ガスに含まれる水素(H2)成分は他の成分、例えば酸素(O2)成分などに比して分子量が小さいため、拡散律速層を通過する際の拡散速度が速いという特性を有する。従って、還元剤であるH2が酸化剤であるO2より多量に一方の電極に到達すれば、該電極付近において還元剤が過多となり、空燃比の検出結果が実際よりもリッチ側に誤検出される場合がある。
これに対して、特許文献1に開示の技術では、拡散律速層の表面を酸化作用を有する触媒層で覆うことにより、拡散律速層を排気ガスが通過する前に、排気ガスに含まれるH2を酸化させることで空燃比の検出精度の向上を図っている。
また、特許文献2には、排気ガスに晒される一方の電極を少なくとも覆うようにして触媒層を形成するとともに、同触媒層の非形成部位に排気の通過できないマスク層を形成する技術が開示されている。
特開平11−237361号公報 特開2003−202316号公報 特開2004−316498号公報 特開2006−337205号公報
しかしながら、上記従来技術のように触媒層を具備する空燃比センサにおいて、空燃比を検出する対象となる全ての排気ガスに触媒層を通過させると、触媒層における反応時間が長くなり、空燃比を検出する際の応答性が悪化する虞があった。
本発明は、上記従来技術に鑑みてなされたものであり、その目的とするところは、被検
出ガスの空燃比を検出する際の検出精度の向上と、応答性の向上とを両立することの可能な空燃比センサを提供することを目的とする。
上記目的を達成するために本発明に係る空燃比センサは以下の手段を採用した。
すなわち、被検出ガスの空燃比に応じた出力信号を出力するセンサ素子と、
前記センサ素子を挟むように配置され、前記被検出ガスが導入される被検出ガス側電極と大気に晒される大気側電極とにより構成される一対の電極と、
前記被検出ガスが流入する流入部から該被検出ガスを前記被検出ガス側電極へと導入させるとともに、前記被検出ガス側電極を覆うように前記センサ素子に設けられる拡散律速層と、
前記流入部の一部に形成される触媒層と、
を備えることを特徴とする。
本発明における拡散律速層には被検出ガス(例えば、排気ガス)が流入する流入部を有しており、この流入部から被検出ガスが拡散律速層内に流入する。つまり、流入部は拡散律速層の表面の少なくとも一部に形成され、被検出ガスに晒されている。拡散律速層に流入した被検出ガスは拡散律速層内を拡散して被検出ガス側電極へと導かれる。本発明における拡散律速層は被検出ガスの拡散を律速する機能を有している。例えば、拡散律速層は、被検出ガス中の種々の成分が適当な拡散速度で拡散できる程度に細孔化、緻密化された多孔質物質で構成されていても良い。
また、拡散抵抗層内を拡散する被検出ガスには、CO、H2、HC等の還元剤と、O2、NOxな
どの酸化剤が含まれている。それらの各成分は、被検出ガス側電極の表面に到達する過程、或いは被検出ガス側電極に到達した後において平衡状態に至るまで反応する。そして、被検出ガスの空燃比において理論空燃比(ストイキ)が実現されている場合は酸化剤と還元剤が共に消滅する。これに対して、空燃比がリッチである場合は還元剤が残存し、空燃比がリーンである場合は酸化剤が残存することになる。
ここで、センサ素子は、被検出ガスの空燃比に応じた出力信号を出力する。たとえば、センサ素子は、酸素イオン導電性固体電解質によって構成されていても良い。この場合、センサ素子を挟んで配置される一対の電極、すなわち被検出ガス側電極及び大気側電極における酸素濃度差に応じて酸素イオンの移動が生じるため、この酸素イオンの移動に起因して生じるセンサ電流を出力することで、被検出ガスの空燃比に応じた出力信号を出力することができる。
上記センサ電流をより詳しく説明すると、被検出ガス側電極の表面に到達した被検出ガス中に酸化剤が残存している場合には、被検出ガス側電極から大気側電極に向かってO2がポンピングされることで、電極間にセンサ電流が流れる。他方、被検出ガス側電極に到達した被検出ガス中に還元剤が残存している場合は、その還元剤を酸化させるのに必要なO2が大気側電極から被検出ガス側電極の方向に向かってポンピングされ、電極間にセンサ電流が流れる。そして、このときのセンサ電流値は被検出ガスの空燃比に比例する特性を有するため、このセンサ電流値を検出することで、被検出ガスの空燃比を検出することができる。
ここで、被検出ガス中のH2は他の成分、特にO2に比して拡散速度が速いという特性を有する。従って、拡散律速層内を拡散している間に被検出ガスに含まれるH2とO2との割合が変化してしまう場合がある。つまり、O2に比べて拡散速度の速いH2がより多く被検出ガス側電極に到達してしまうことになる。H2は還元剤であるため、上記のセンサ電流値は、真の値よりもリッチ側にシフトした値として検出され得る。
本発明においては、拡散律速層における流入部の一部に触媒層が形成される。本発明における触媒層はH2成分の酸化反応を促進する機能を有する。例えば、触媒担体としてのアルミナ等から構成される多孔質層に、白金、ロジウムなどの触媒成分が担持されていても良い。また、触媒層は、H2以外の成分を酸化させることが可能であっても良い。
拡散律速層における流入部のうち、触媒層が形成される部分を触媒層形成流入部と称し、触媒層が形成されない部分を触媒層非形成流入部と称する。触媒層形成流入部から拡散律速層に流入した被検出ガスは、触媒層を通過する過程で殆どのH2が酸化されるので、平衡状態の被検出ガスを被検出ガス側電極に導入させることができる。その結果、触媒層形成流入部から拡散律速層に流入する前と略等しい空燃比の被検出ガスを被検出ガス側電極の表面に到達させることができる。これにより、空燃比センサにおける空燃比の検出精度を担保することができる。
ところで、空燃比センサに求められる性能として、空燃比の検出精度の向上と共に応答性の向上を挙げることができる。つまり、空燃比を検出するのに要する時間を可及的に短くすることが、リアルタイムに被検出ガスの空燃比を検出するために要求される。ここで、上記のように触媒層形成流入部から触媒層を通過して拡散律速層に流入した被検出ガスは、触媒層における反応時間の分だけ空燃比の検出時期が遅れる場合がある。
これに対して、本発明においては、触媒層の形成されていない触媒層非形成流入部からも被検出ガスを拡散律速層に流入させ、被検出ガスを速やかに被検出ガス側電極に到達させることができる。これにより、被検出ガスの空燃比検出にかかる時間を短縮することができる。つまり、本発明においては、触媒層形成流入部と触媒層非形成流入部とから被検出ガスを拡散律速部内に流入させ、両者を被検出ガス側電極付近で合流させることによって、空燃比を検出する際の検出精度の向上と応答性の向上とを両立させることが可能となる。
なお、本発明において、触媒層形成流入部及び触媒層非形成流入部の面積は等しくしても良いし、そうでなくとも良い。つまり、触媒層形成流入部及び触媒層非形成流入部の割合は適宜変更し得ることを意味する。触媒層形成流入部及び触媒層非形成流入部の割合を、本発明の空燃比センサに求める空燃比の検出精度と、応答性能とのバランスに応じて適宜変更すれば好適である。すなわち、空燃比の検出精度をより高めたい場合には触媒層形成流入部の占める割合をより大きくし、応答性をより高めたい場合には触媒層非形成流入部の占める割合をより大きくしても良い。
本発明において「空燃比センサ」とは、内燃機関における空燃比を検出するために、被検出ガスにおける酸素濃度に対応する物理量を出力することの可能な手段を包括する概念であり、例えばリニア空燃比センサや、O2センサ等であっても良い。なお、酸素濃度に対応する物理量とは、例えば電流値や電圧値であっても良い。
ここで、複数の気筒を有する多気筒内燃機関から排出される排気の空燃比を検出する際に上記空燃比センサを適用する場合について説明する。ここで、各気筒に燃料を供給する燃料噴射弁の特性にも個体差があるため、燃料噴射量も気筒間で完全に一致させることは困難となる場合がある。また、吸気マニホールドの長さや形状が各気筒間で完全に同じではないため、吸入空気量が気筒毎に相違してしまう場合がある。その結果、気筒間における空燃比のバラツキが生じ、これに起因して気筒毎に排気ガスのH2濃度が相違してしまう。
ここで、気筒間における空燃比の差の大きさを気筒間の空燃比バラツキ度合いと称する
。気筒間の空燃比バラツキ度合いが過大になると、排気エミッションが悪化したり、気筒間で発生するトルクが異なることでトルク変動の原因となる。
そこで、本発明における内燃機関の制御装置は、
多気筒内燃機関の排気通路に設けられる上記空燃比センサと、
前記センサ素子が出力する出力信号に基づいて前記多気筒内燃機関から排出された排気ガスの空燃比を検出する排気空燃比検出手段と、
所定のサンプリング時間における前記空燃比のバラツキ幅を取得し、該バラツキ幅の大きさに基づいて気筒間の空燃比バラツキ度合いを推定する推定手段と、
を備えることを特徴としても良い。
上記構成によれば、センサ素子が出力する出力信号に基づいて、多気筒内燃機関から排出された排気ガスの空燃比が検出される。ここで、気筒間の空燃比バラツキ度合いが高くなると、各気筒から排出される排気ガス中のH2濃度のバラツキが大きくなるため、空燃比の検出値は上下に変動する。本発明では所定のサンプリング時間における空燃比のバラツキ幅を取得する。このバラツキ幅は、所定のサンプリング時間に検出された空燃比のうち最大値と最小値との差の絶対値によって定義されても良い。或いは、所定のサンプリング時間における空燃比の検出値と目標空燃比との差の絶対値の最大値であっても良い。
また、所定のサンプリング時間とは、上記のバラツキ幅を取得するに当たり空燃比の検出値をモニターする期間を意味しており、予め実験的に求めておいても良い。そして、取得された空燃比のバラツキ幅に基づいて気筒間の空燃比バラツキ度合いが推定される。本発明においては上記バラツキ幅が大きいほど空燃比バラツキ度合いが高い値として推定される。これにより、気筒間の空燃比バラツキ度合いを好適に推定することができる。
また、本発明においては、推定された気筒間の空燃比バラツキ度合いが規定値を超えた場合に、当該空燃比バラツキ度合いが所定のバラツキ過大領域に属していると判断されても良い。所定のバラツキ過大領域とは、気筒間の空燃比バラツキ度合いが高いことに起因して排気エミッションが悪化したり、内燃機関のトルク変動が生じる虞があると判断される領域である。
ここで、気筒間の空燃比バラツキ度合いがちょうど上記の規定値になるときに対応するバラツキ幅を規定バラツキ幅と称すると、バラツキ幅が規定バラツキ幅を超えた場合には、気筒間の空燃比バラツキ度合いが所定のバラツキ過大領域に属すると判断される。その場合には、警告ランプを点灯させる等の報知手段を用いて気筒間の空燃比バラツキ度合いが高くなっていることを運転者に報知すると、好適である。
本発明によれば、被検出ガスの空燃比を検出する際の検出精度の向上と、応答性の向上とを両立することの可能な空燃比センサを提供することができる。
以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。尚、本実施の形態に記載されている構成要素の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は本実施例に係る空燃比センサを適用する内燃機関と、その吸排気系の概略構成を示す図である。図1に示す内燃機関1は4つの気筒2を有するガソリンエンジンである。
内燃機関1は吸気管22及び排気管3に接続されている。吸気管22の途中には該吸気管22を流通する吸気の量に対応した電気信号を出力するエアフローメータ23が設けられる。エアフローメータ23は、後述するECU6と電気的に接続されており、エアフローメータ23の出力信号がECU6に入力されることで、吸入空気量が検出される。
また、排気管3の途中には内燃機関1からの排気を浄化する三元触媒4が設けられている。三元触媒4は、内燃機関1から排出される一酸化炭素(CO)及び炭化水素(HC)を酸化すると共に、窒素酸化物(NOx)を還元することによって排気ガスを浄化することが可
能に構成されている。また、三元触媒4よりも上流の排気管3には、三元触媒4に流入する排気の空燃比を検出する空燃比センサ5が設けられている。空燃比センサ5の詳細については後述する。そして、排気管3は三元触媒4の下流にて図示しないマフラーに接続されている。
内燃機関には、内燃機関及びその排気系を制御するための電子制御ユニット(ECU:Electronic Control Unit)6が併設されている。このECU6は、内燃機関1の運転条
件や運転者の要求に応じてエンジン1の運転状態等を制御する。例えば、空燃比センサ5の出力信号から排気ガスの空燃比を検出し、目標空燃比(例えば、理論空燃比)に一致するように燃料噴射弁(図示省略)からの燃料噴射量をフィードバック制御する。本実施例においては排気ガスが被検出ガスに相当する。
次に、図2及び図3を参照して、空燃比センサ5の詳細な構成について説明する。図2は、図1における空燃比センサ5付近の模式的な拡大断面図である。また、図3は、図2におけるA−A’線視断面図である。図2において、図1と重複する箇所には同一の符号を付してその説明を省略する。
図2において、空燃比センサ5は、後述するセンサ本体10と、該センサ本体10を覆う耐熱性のハウジング部材でありその一部が排気管3の内部に露出している保護カバー8とを含んで構成される。センサ本体10は保護カバー8に覆われることでその機械的強度が担保される。
図3に示すように保護カバー8の表面には複数の通気孔9が形成されており、保護カバー8内外を相互に連通させている。すなわち、空燃比センサ5は、排気管3を流通する排気ガスが、保護カバー8の通気孔9を通過してセンサ本体10に到達するように構成されている。
次に、センサ本体10の概略構成について説明する。センサ本体10は後述する構成要素が積層される積層型のセンサである。センサ本体10は酸素イオン導電性固体電解質からなるセンサ素子11を備える。センサ素子11は例えば酸化ジルコニウム(ジルコニア)によって構成され、図示のような板形状を有している。センサ素子11の両面の一部には、白金など触媒活性の高い金属材料で構成された排気側電極12及び大気側電極13が形成される。センサ素子11の一方の面に排気側電極12が形成され、センサ素子11の他方の面に大気側電極13が形成されることで、センサ素子11は一対の電極によって挟まれる。本実施例においては、排気側電極12及び大気側電極13が本発明における被検出ガス側電極及び大気側電極に相当する。
センサ素子11の他方の面側には、スペーサ部材14とヒータ層15により囲まれた大気室16が形成されている。大気室16は、図示しない大気孔を介して大気に連通されており、空燃比センサ5が排気管3内に配置された状態であっても、大気側電極13は大気に晒された状態に維持される。
また、ヒータ層15にはヒータ17が埋設されている。空燃比センサ5は、所定の活性温度に達することにより排気ガスの空燃比を検出するセンサ機能を実現する。ヒータ17は、外部の電気回路(図示省略)から電力の供給を受けることにより、センサ本体10を所望の活性温度(例えば、700℃)に加熱することができる。なお、この電気回路はECU6と電気的に接続されており、ヒータ17に供給される電力はECU6によって制御される。
センサ素子11の一方の面には、排気側電極12を含み且つセンサ素子11の一方の面における全ての範囲を覆うように拡散律速層18が積層されている。拡散律速層18はセラミクッス等の多孔質物質で構成された部材であり、排気ガスの拡散を律速する機能を有する。すなわち、拡散律速層18は、排気ガス中の種々の成分が、適当な拡散速度で拡散できる程度に細孔化、緻密化されている。また、拡散律速層18は孔径や密度等の特性が略均一となるように形成されており、その外形は厚さ方向を除いてセンサ素子11と略同様となっている。
ここで、拡散律速層18を形成する面のうち、センサ素子11の一方の面を覆っている面を被覆面18aと称し、該被覆面18aと対向する面を被覆対向面18bと称する。拡散律速層18の被覆対向面18bはマスク層19によって覆われている。このマスク層19は、緻密なアルミナ等によって構成された部材であり排気ガスはマスク層19を透過することができない。すなわち、マスク層19が形成されている部分からの拡散律速層18内への排気ガスの侵入は規制される。
拡散律速層18を形成する6面のうち、被覆面18a及び被覆対向面18bを除いた残りの4面において、対向する一対の側面(図中18c、18dにて図示)の一方の面(18c)には触媒層20が形成され、他方の面(18d)は露出している(つまり、18dには触媒層20が形成されていない)。触媒層20は、触媒担体としてのアルミナ等から構成される多孔質層に、白金、ロジウムなどの触媒成分が担持されており、水素(H2)成分の酸化反応を促進する機能を有する。
ここで、触媒層20の形成された面である18cを触媒層形成面と称し、触媒層20の形成されない18dを触媒層非形成面と称することとする。更に、拡散律速層18の側面のうち、触媒層形成面18c及び触媒層非形成面18dと直交する、一対の対向側面には既述のマスク層19が形成されている。上記構成のセンサ本体10によれば、マスク層19が形成される面から拡散律速層18内への排気ガスの流入及び拡散が規制されるため、触媒層形成面18c及び触媒層非形成面18dから拡散律速層18へ排気ガスが流入し、該拡散律速層18内を拡散することになる。本実施例においては、触媒層形成面18c及び触媒層非形成面18dが本発明における流入部に相当する。
ここで、空燃比センサ5によって排気ガスの空燃比を検出する原理について説明する。通気孔9から保護カバー8内部に導入された排気ガスは、触媒層形成面18c及び触媒層非形成面18dから拡散律速層18に流入し、その内部を排気側電極12に向かって拡散しながら進行する。排気ガス中には、CO、H2、HC等の還元剤と、O2、NOxなどの酸化剤が
含まれている。それらの各成分は、排気側電極12の表面に到達する過程、或いは排気側電極12に到達した後において平衡状態に至るまで反応し合う。そして、排気ガスの空燃比において理論空燃比(ストイキ)が実現されている場合は酸化剤と還元剤が共に消滅する。これに対して、空燃比がリッチである場合は還元剤が残存し、空燃比がリーンである場合は酸化剤が残存することになる。
ここで、排気側電極12と、大気側電極13と、これらに挟まれたセンサ素子11とか
らなる領域を「セル25」と称する。本実施例では、排気側電極12及び大気側電極13間には、図示しない電源供給ラインを介して所定の印加電圧が印加される。電極間に印加電圧が印加された状態で、排気側電極12の表面まで到達した排気ガス中に酸化剤が残存している場合には、排気側電極12から大気側電極13側に向かってO2がポンピングされることでセル25にセンサ電流が流れる。他方、排気側電極12側に還元剤が残存している場合は、その還元剤を焼失させるのに必要なO2が大気側電極13側から排気側電極12側に向かってポンピングされ、セル25にセンサ電流が流れる。
拡散律速層18によって排気ガスの拡散速度が律速されると印加電圧を増加してもセンサ電流値が一定に飽和する領域が生じ、そのときのセンサ電流値は排気ガスの空燃比に比例する特性を有する。このセンサ電流値は一般に限界電流値と称される場合がある。このセンサ電流値を検出することで、排気側電極12の表面における酸化剤と還元剤との比率、つまり排気ガスの空燃比を検出することができる。
具体的には、センサ電流値に対応した出力を発するセンサ電流値検出回路(図示省略)が空燃比センサ5に具備される。そして、このセンサ電流値検出回路からの出力はECU6内のAD変換器(図示省略)に入力され、この入力値をAD変換することで排気ガスの空燃比がECU6によって検出される。また、ECU6は、空燃比センサ5におけるセンサ電流値検出回路からの出力値を、適宜平滑化処理(なまし処理)を行うことによって平滑化することができる。
ここで、内燃機関1から排出される排気ガスにはH2が含まれている。H2はガス中の他の成分、特にO2に比して拡散速度が速いという特性を有する。そのため、拡散律速層18内を拡散する排気ガスにH2が含まれる場合、O2に比べて拡散速度の速いH2がより多く排気側電極12に到達する。
すなわち、排気ガス中のH2とO2との割合は、排気ガスが拡散律速層18に侵入したときと排気側電極12に到達したときとでは後者の方が大きくなる。ここでH2は還元剤であるため、セル25に生ずるセンサ電流値は空燃比センサ5を取りまく排気ガスの空燃比に対してリッチ側にシフトした値として検出され得る。そして、このリッチ側へのシフト量は、排気ガス中におけるH2濃度が高いほど増大する傾向がある。
次に、本実施例の空燃比センサ5による空燃比の検出精度及び応答性について詳しく説明する。図4は、空燃比センサ5の拡散律速層18及び排気側電極12周辺の模式図である。排気管3から保護カバー8内に流入した排気ガスは、触媒層20の形成された触媒層形成面18c、及び触媒層20の形成されていない触媒層非形成面18dから拡散律速層18内に流入し、排気側電極12に向かって拡散する。
触媒層形成面18cから拡散律速層18内へと流入した排気ガスの拡散方向を矢印aにて表し、このガスを触媒層側流入ガスと称する。また、触媒層非形成面18dから拡散律速層18内を拡散する排気ガスの拡散方向を矢印bにて表し、このガスを非触媒層側流入ガスと称する。また、通気孔9から該保護カバー8内に流入した排気ガスであって、触媒層非形成面18d及び触媒層20の表面に到達する前の排気ガスを、センサ未到達ガスと称する。
センサ未到達ガスが触媒層形成面18cから拡散律速層18内に流入するためには、必ず触媒層20を通過することになる。従って、触媒層20を通過する過程でこの排気ガスに含まれる殆どのH2は酸化されるので、触媒層側流入ガスは平衡ガスの状態で図中矢印aの方向に拡散する。ここで、排気ガスの空燃比は、触媒層20においてH2が平衡反応に供される前後で変化せず、また触媒層側流入ガスが拡散律速層18内を拡散する過程におい
てもH2成分が既に存在しないことから、酸化剤と還元剤とのバランスは殆ど変化しない。その結果、排気側電極12の表面には、触媒層20に到達する前におけるセンサ未到達ガスの空燃比と殆ど同じ空燃比のガスが到達される。その結果、空燃比センサ5における空燃比の検出精度が担保される。
ここで、空燃比センサ5に求められる性能としては、空燃比の検出精度の向上と共に応答性の向上を挙げることができる。ここで、触媒層側流入ガスは、触媒層20における触媒反応に供された後、拡散律速層18内を拡散するため、僅かではあるが排気側電極12に到達する時期が遅くなることになる。これに対して、本実施例における空燃比センサ5によれば、非触媒層側流入ガスを触媒層非形成面18dから触媒層20を通過させることなく排気側電極12に導くことができる。本実施例では、空燃比の検出精度の良い触媒層側流入ガスと、応答速度の速い非触媒層側流入ガスとを、排気側電極12にて合流させることにより、空燃比検出にかかる検出精度を高めつつ、応答性も良好に維持することができる。
ここで、本実施例における非触媒層側流入ガスにはH2が含まれる。従って、触媒層形成面18cに加えて触媒層非形成面18dに対しても触媒層20を形成させた空燃比センサ、つまり、拡散律速層18に流入する排気ガスの全てに触媒層20を通過させる空燃比センサに比べれば、空燃比の検出精度だけに着目すると該検出精度が劣るとも考えられる。しかしながら、この場合には空燃比検出にかかる応答性が悪化するという背反が生じてしまう。本実施例における空燃比センサ5は、空燃比の検出精度の向上と応答性の向上とを共に両立させることで、空燃比センサとしてのトータル的な性能を向上できる。また、触媒層非形成面18dには触媒層20を形成させないという点で、空燃比センサ5の製造コストの削減を実現することもできる。
なお、拡散律速層18の側面に形成される触媒層20の分布範囲については、本発明の本旨を逸脱しない範囲内において種々の変更を加え得る。すなわち、触媒層を通過させた排気ガスと触媒層を通過させない排気ガスとを、拡散律速層18内を拡散させることができる態様であれば良い。
ここで、図5は、拡散律速層18における触媒層20の形成パターンの変形例を示す図である。図5は、拡散律速層18において上述した被覆対向面18bを覆うマスク層19側からセンサ本体11を見た状態を表している。図示のように、拡散律速層18の側面18c及び18dに対して、触媒層20が形成される触媒層形成部及び触媒層非形成部を設けても良い。また、触媒層形成部及び触媒層非形成部の面積は等しくしても良いし、そうでなくても良い。つまり、触媒層形成部及び触媒層非形成部の面積の割合(以下、「触媒層形成割合」とも称する)は適宜変更し得る。また、触媒層形成割合は、空燃比センサ5に要求する空燃比の検出精度と、応答性能とのバランスに応じて変更すれば好適である。すなわち、空燃比の検出精度をより高めたい場合には触媒層形成割合を大きくし、応答性能をより高めたい場合には触媒層形成割合を小さくすることもできる。
また、触媒層形成面18cに形成された触媒層20は、排気ガスの熱やヒータ17からの加熱によって高温となる。その結果、触媒層20にシンダリングや熱劣化等が発生すると空燃比の検出精度が悪化する場合がある。本実施例では、触媒層形成面18cにおける単位面積当たりの触媒担持量(例えば、単位面積当たりの塗布量あっても良く、以下、「単位担持量」とも称する)を充分に確保することで、触媒層20の劣化に起因する空燃比の検出精度の悪化を抑制できる。
ここで、触媒層20の単位担持量を増加させるほど排気ガス中のH2の反応時間が長くなるとも考えられるが、本実施例にかかる空燃比センサ5では触媒層20を通過せずに拡散
律速層18内を拡散する非触媒層側流入ガスの存在によって、空燃比検出の応答性を好適に確保できる。また、触媒層非形成面18dに触媒層20を形成させない分だけコストを低減できるので、触媒層形成面18cにおける触媒層20の単位担持量を増加させても、拡散律速層18に流入する排気ガスの全てに触媒層20を通過させるタイプの空燃比センサに比べて総コストが増えることもない。
尚、本実施例における空燃比センサ5は、内燃機関1における空燃比を検出するために、被検出ガスにおける酸素濃度に対応する物理量を出力することの可能な手段を包括する概念であり、例えばリニア空燃比センサや、O2センサ等であっても良い。なお、酸素濃度に対応する物理量とは、例えば電流値や電圧値であっても良い。また、本実施例の被検出ガスとして内燃機関1の排気を対象としているがこれに限定される趣旨ではなく、例えば内燃機関1の吸気を被検出ガスとしても良い。
本発明を実施するための実施の形態として、実施例1と異なる例について説明する。本実施例における空燃比センサ5及び、該空燃比センサ5を適用する内燃機関1の概略構成は実施例1の構成と同様であり、説明を省略する。
本実施例の内燃機関1においては、エアフロメータ23によって検出された吸入空気量に基づいて、目標空燃比を実現するための燃料噴射量を算出することができる。更に、空燃比センサ5によって検出された空燃比に基づいて燃料噴射量を調整することにより、空燃比をフィードバック制御することができる。
このような制御によれば、内燃機関1全体としての空燃比(以下、「全体空燃比」と称する)を正確に制御することができる。全体空燃比を制御する場合、通常は、三元触媒4に良好な排気浄化作用を発揮させるべく、全体空燃比が理論空燃比(ストイキ)となるように制御される。以下の説明では、ECU6は、全体空燃比が理論空燃比となるように制御するものとする。
しかしながら、4つの気筒2(1番気筒#1〜4番気筒#4)を有する内燃機関1では、一般に、吸気管22に接続される図示しない吸気マニホールドの長さや形状が各気筒間で完全に同じではないため、吸入空気量を気筒間で完全に一致させることは困難となる。また、各気筒2に燃料を供給する燃料噴射弁(図示省略)の特性にも個体差があるため、燃料噴射量も、気筒間で完全に一致させることは困難となる。その結果、気筒間における空燃比のバラツキが生じ、これに起因して気筒毎に排気ガスのH2濃度が相違してしまう。そのため、全体空燃比が理論空燃比に制御されている場合であっても空燃比センサ5による空燃比の検出値にはバラツキがあるのが普通である。
ここで、気筒間における空燃比の差の大きさを「気筒間の空燃比バラツキ度合い」と称すると、気筒間の空燃比バラツキ度合いが過大になると、排気エミッションが悪化し、或いは気筒間で発生するトルクが異なることでトルク変動の原因となる。そこで、本実施例において、ECU6は気筒間の空燃比バラツキ度合いを推定し、この推定値がバラツキ過大領域に属すると判定された場合には、警告ランプ(図示省略)を点灯させることで運転者に報知することとした。バラツキ過大領域とは、気筒間の空燃比バラツキ度合いが高くなって、排気エミッションが悪化したり、内燃機関1のトルク変動が生じる虞があると判断される領域である。
上述したように、気筒間の空燃比バラツキ度合いが高くなると、各気筒2から排出される排気ガス中のH2濃度にもバラツキが大きくなるため、空燃比センサ5からECU6に入力される生出力値(平滑化処理(なまし処理)が行われていない出力値)は、全体空燃比
が同じであっても変動量が増大する。そこで本実施例では、基準サンプリング期間Δtbsに亘って空燃比の生出力値をモニターし、当該生出力値のバラツキ幅を表す空燃比バラツキ幅ΔAFを取得する。
本実施例における空燃比バラツキ幅ΔAFは、基準サンプリング期間Δtbsに検出された空燃比の生出力値のうち最大値と最小値との差の絶対値によって定義される。また、空燃比バラツキ幅ΔAFは、基準サンプリング期間Δtbsにおいて検出された空燃比の生出力値と目標空燃比との差の絶対値における最大値によって定義されても良い。本実施例においては空燃比バラツキ幅ΔAFが本発明における空燃比のバラツキ幅に相当する。
本実施例では、図6に示すような空燃比バラツキ幅ΔAFと気筒間の空燃比バラツキ度合いとの関係が格納されたマップに空燃比バラツキ幅ΔAFを代入することで気筒間の空燃比バラツキ度合いが推定される。図示のように、空燃比バラツキ幅ΔAFが大きいほど気筒間の空燃比バラツキ度合いが高い値として推定される。そして、気筒間の空燃比バラツキ度合いが規定値LMを超えた場合に、該空燃比バラツキ度合いがバラツキ過大領域に属するものと判断される。
ここで、気筒間の空燃比バラツキ度合いがちょうど規定値LMになるときに対応した空燃比バラツキ幅ΔAFを規定バラツキ幅ΔAFpと称する。この場合、空燃比バラツキ幅ΔAFが規定バラツキ幅ΔAFpを超えた場合には、気筒間の空燃比バラツキ度合いがバラツキ過大領域に属すると判断されることになる。つまり、ここでの規定バラツキ幅ΔAFpは、排気エミッションの悪化及び内燃機関1のトルク変動を抑制するために許容される空燃比バラツキ幅ΔAFの上限値としての意味を持つ。
なお、図6においては、空燃比バラツキ幅ΔAFと気筒間の空燃比バラツキ度合いとの関係は直線的に示されているが、例えば曲線的な相関関係を有しても良いのは勿論である。
以下、ECU6によって実行される制御について、図7のフローチャートを参照しながら説明する。図7は本実施例における制御ルーチンを示すフローチャートである。本ルーチンはECU6内のROMに記憶されたプログラムであり、内燃機関1の稼働中は所定期間毎に実行される。本実施例においては本ルーチンを実行するECU6が本発明における空燃比検出手段及び推定手段に相当する。
本ルーチンが実行されると、先ずステップS101において、内燃機関1が始動されてからの経過時間ΔtがECU6によって読み込まれ、当該経過期間Δtが基準時間Δtb以上であるか否かが判定される。基準時間Δtbとは、内燃機関1の暖機に要する時間、或いは空燃比センサ5のヒータ17によってセンサ本体10を活性温度まで加熱するのに要する時間(つまり、空燃比センサ5の暖機に要する時間)として予め実験的に求めておくことができる。
本ステップにおいて、経過期間Δtが基準時間Δtb以上である場合にはステップS102に進む。一方、経過期間Δtが基準時間Δtb未満である場合には、気筒間の空燃比バラツキ度合いの推定を行うべきではないと判断され、本ルーチンを一旦終了する。
ステップS102では、基準サンプリング期間Δtbsにおける空燃比バラツキ幅ΔAFが取得される。具体的には、基準サンプリング期間Δtbsに亘り、空燃比センサ5の生出力値がモニターされる。ここでの生出力値とは、上述したように空燃比センサ5のセンサ電流値検出回路からの出力値をECU6内のAD変換器によってAD変換したときに得られる値を意味しており、平滑化処理(なまし処理)は行われない。なお、基準サンプ
リング期間Δtbsは、気筒間における空燃比バラツキ幅ΔAFを取得するに当たり生出力値がモニターされる期間であって、予め実験的に求めておくことができる。本実施例においては基準サンプリング期間Δtbsが本発明における所定のサンプリング時間に相当する。
ステップS103では、空燃比バラツキ幅ΔAFが規定バラツキ幅ΔAFpを超えているか否かが判定される。そして、肯定判定(ΔAF>ΔAFp)された場合には、気筒間の空燃比バラツキ度合いがバラツキ過大領域に属していると判断され、ステップS104に進む。一方、否定判定(ΔAF≦ΔAFp)された場合には、気筒間の空燃比バラツキ度合いがバラツキ過大領域に属さないと判断され、本ルーチンを一旦終了する。ステップS104では、警告ランプが点灯されることで、気筒間の空燃比バラツキ度合いが高くなっていることが運転者に報知される。そして、本ステップの処理が終了すると、本ルーチンを一旦終了する。
以上のように、本制御によれば、基準サンプリング期間Δtbsにおける空燃比バラツキ幅ΔAFの大きさに基づいて、気筒間の空燃比バラツキ度合いを推定し、この空燃比バラツキ度合いがバラツキ過大領域に属するか否かを判断できるので、空燃比センサ5の搭載(配置)位置が制約されない。従って、排気管3のより下流側への配置を可能にする。そうすれば、特に内燃機関1の冷間始動時において発生する凝縮水、飛散水によって空燃比センサ5が被水することを好適に抑制できる。また、本制御を実施するに当たり内燃機関1を特定の運転状態等に保持するなどの制約もなく、あらゆる運転状態において気筒間の空燃比バラツキ度合いを推定することができる。
実施例1に係る空燃比センサを適用する内燃機関と、その吸排気系の概略構成を示す図である。 図1における空燃比センサ付近の模式的な拡大断面図である。 図2におけるA−A’線視断面図である。 空燃比センサの拡散律速層及び排気側電極周辺の模式図である。 拡散律速層における触媒層の形成パターンの変形例を示す図である。 空燃比のバラツキ幅ΔAFと気筒間の空燃比バラツキ度合いとの関係が格納されたマップである。 実施例2における制御ルーチンを示すフローチャートである。
符号の説明
1・・・内燃機関
2・・・気筒
3・・・排気管
4・・・三元触媒
5・・・空燃比センサ
6・・・ECU
8・・・保護カバー
9・・・通気孔
10・・センサ本体
11・・センサ素子
12・・排気側電極
13・・大気側電極
15・・ヒータ層
16・・大気室
18・・拡散律速層
19・・マスク層
20・・触媒層

Claims (3)

  1. 被検出ガスの空燃比に応じた出力信号を出力するセンサ素子と、
    前記センサ素子を挟むように配置され、前記被検出ガスが導入される被検出ガス側電極と大気に晒される大気側電極とにより構成される一対の電極と、
    前記被検出ガスが流入する流入部から該被検出ガスを前記被検出ガス側電極へと導入させるとともに、前記被検出ガス側電極を覆うように前記センサ素子に設けられる拡散律速層と、
    前記流入部の一部に形成される触媒層と、
    備え、
    前記流入部は、前記拡散律速層を形成する6面のうち、前記被検出ガス側電極を覆う被覆面及び該被覆面に対向する被覆対向面を除いた残りの4面において対向する一対の面に形成されており、
    前記触媒層は、前記流入部を形成する一対の対向面のうちの一方の面に形成され、他方の面に形成されないことを特徴とする空燃比センサ。
  2. 被検出ガスの空燃比に応じた出力信号を出力するセンサ素子と、
    前記センサ素子を挟むように配置され、前記被検出ガスが導入される被検出ガス側電極と大気に晒される大気側電極とにより構成される一対の電極と、
    前記被検出ガスが流入する流入部から該被検出ガスを前記被検出ガス側電極へと導入させるとともに、前記被検出ガス側電極を覆うように前記センサ素子に設けられる拡散律速層と、
    前記流入部の一部に形成される触媒層と、
    備え、
    前記流入部は、前記拡散律速層を形成する6面のうち、前記被検出ガス側電極を覆う被覆面及び該被覆面に対向する被覆対向面を除いた残りの4面において対向する一対の面に形成されており、
    前記流入部を形成する一対の対向面の各々には、触媒層が形成される触媒層形成部と触媒層が形成されない触媒層非形成部とが設けられることを特徴とする空燃比センサ。
  3. 多気筒内燃機関の排気通路に設けられる請求項1又は請求項2に記載の空燃比センサと、
    前記センサ素子が出力する出力信号に基づいて前記多気筒内燃機関から排出された排気ガスの空燃比を検出する排気空燃比検出手段と、
    所定のサンプリング時間における前記空燃比のバラツキ幅を取得し、該バラツキ幅の大きさに基づいて気筒間の空燃比バラツキ度合いを推定する推定手段と、
    を備えることを特徴とする内燃機関の制御装置。
JP2007305443A 2007-11-27 2007-11-27 空燃比センサ及び内燃機関の制御装置 Expired - Fee Related JP4788707B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007305443A JP4788707B2 (ja) 2007-11-27 2007-11-27 空燃比センサ及び内燃機関の制御装置
DE112008003323T DE112008003323B4 (de) 2007-11-27 2008-11-26 Luftbrennstoffverhältnissensor und Steuergerät für einen Verbrennungsmotor
PCT/JP2008/071395 WO2009069624A1 (ja) 2007-11-27 2008-11-26 空燃比センサ及び内燃機関の制御装置
US12/744,942 US8131451B2 (en) 2007-11-27 2008-11-26 Air-fuel ratio sensor and control apparatus for internal combustion engine
CN2008801180625A CN101878422B (zh) 2007-11-27 2008-11-26 空燃比传感器及内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305443A JP4788707B2 (ja) 2007-11-27 2007-11-27 空燃比センサ及び内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2009128273A JP2009128273A (ja) 2009-06-11
JP4788707B2 true JP4788707B2 (ja) 2011-10-05

Family

ID=40678519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305443A Expired - Fee Related JP4788707B2 (ja) 2007-11-27 2007-11-27 空燃比センサ及び内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8131451B2 (ja)
JP (1) JP4788707B2 (ja)
CN (1) CN101878422B (ja)
DE (1) DE112008003323B4 (ja)
WO (1) WO2009069624A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998828B2 (ja) * 2008-01-31 2012-08-15 トヨタ自動車株式会社 空燃比センサ
JP5310102B2 (ja) * 2009-03-03 2013-10-09 日産自動車株式会社 内燃機関の制御装置
WO2011001539A1 (ja) * 2009-07-02 2011-01-06 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP5170320B2 (ja) * 2009-11-12 2013-03-27 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
US8495996B2 (en) * 2009-12-04 2013-07-30 Ford Global Technologies, Llc Fuel alcohol content detection via an exhaust gas sensor
US8763594B2 (en) * 2009-12-04 2014-07-01 Ford Global Technologies, Llc Humidity and fuel alcohol content estimation
US8522760B2 (en) 2009-12-04 2013-09-03 Ford Global Technologies, Llc Fuel alcohol content detection via an exhaust gas sensor
JP5018902B2 (ja) * 2010-01-18 2012-09-05 トヨタ自動車株式会社 内燃機関装置および内燃機関の制御方法並びに車両
JP5386388B2 (ja) * 2010-01-22 2014-01-15 トヨタ自動車株式会社 異常判定装置
WO2012077164A1 (ja) * 2010-12-08 2012-06-14 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP6507824B2 (ja) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 エンジンの制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321477B2 (ja) * 1993-04-09 2002-09-03 株式会社日立製作所 排気浄化装置の診断装置
US6210641B1 (en) * 1997-07-09 2001-04-03 Denso Corporation Air-fuel ratio control system and gas sensor for engines
JPH11237361A (ja) 1997-12-15 1999-08-31 Nippon Soken Inc ガスセンサ
JP2003107047A (ja) * 2001-10-01 2003-04-09 Denso Corp ガス濃度検出素子
JP2003202316A (ja) 2002-01-08 2003-07-18 Toyota Motor Corp 酸素センサ
JP2004316498A (ja) 2003-04-14 2004-11-11 Toyota Motor Corp 内燃機関の失火検出装置
CN2713146Y (zh) * 2003-07-09 2005-07-27 浙江飞亚电子有限公司 空燃比反馈控制汽油发动机
JP2006052684A (ja) * 2004-08-12 2006-02-23 Hitachi Ltd エンジンの制御装置
JP2006322389A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp 触媒劣化防止装置
JP2006337205A (ja) 2005-06-02 2006-12-14 Toyota Motor Corp ガスセンサ
JP2007211609A (ja) * 2006-02-07 2007-08-23 Denso Corp 内燃機関の気筒別空燃比制御装置
US7356985B2 (en) * 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP4811001B2 (ja) * 2005-12-07 2011-11-09 トヨタ自動車株式会社 排気ガスセンサシステム
JP4363398B2 (ja) 2005-12-08 2009-11-11 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US7597091B2 (en) * 2005-12-08 2009-10-06 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method for an internal combustion engine
JP4779835B2 (ja) * 2006-07-03 2011-09-28 トヨタ自動車株式会社 排気ガスセンサの異常診断装置
CN100487444C (zh) * 2007-04-24 2009-05-13 谢光远 平板式氧传感器芯片的制造方法

Also Published As

Publication number Publication date
JP2009128273A (ja) 2009-06-11
CN101878422B (zh) 2013-03-27
CN101878422A (zh) 2010-11-03
US20100300418A1 (en) 2010-12-02
DE112008003323B4 (de) 2012-07-19
DE112008003323T5 (de) 2011-03-03
US8131451B2 (en) 2012-03-06
WO2009069624A1 (ja) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4788707B2 (ja) 空燃比センサ及び内燃機関の制御装置
US9052280B2 (en) Deterioration diagnosis device for catalyst
EP2594759B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP6816680B2 (ja) 排気センサの診断装置
KR101399192B1 (ko) 내연 기관의 배출 제어 시스템
US20160202210A1 (en) Gas sensor control device
JPWO2002103181A1 (ja) 内燃機関の空燃比制御装置
JP5867357B2 (ja) 内燃機関の排出ガス浄化装置
KR101442391B1 (ko) 내연 기관의 배출 제어 시스템
JP6288011B2 (ja) 内燃機関
US8893473B2 (en) Emission control system for internal combustion engine
WO2020145042A1 (ja) ガス濃度検出装置
US20160290953A1 (en) Oxygen sensor element
JP2016156667A (ja) 排気センサ
US11078858B2 (en) Control apparatus for an internal combustion engine
US20200088665A1 (en) Gas sensor diagnosis device
JP5057240B2 (ja) 内燃機関の触媒劣化診断装置
JP3420932B2 (ja) ガス濃度センサの素子抵抗検出方法
JP6562047B2 (ja) 内燃機関の排気浄化装置
CN109915268B (zh) 催化剂劣化检测装置
US20180363582A1 (en) Apparatus for controlling air fuel ratio
JP7459830B2 (ja) ガス濃度検出システム
JP6442920B2 (ja) ガスセンサ制御装置及び空燃比検出システム
JP2018131993A (ja) 排気センサの診断装置
JP4196794B2 (ja) 内燃機関の空燃比検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees