WO2012077164A1 - 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 - Google Patents

多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 Download PDF

Info

Publication number
WO2012077164A1
WO2012077164A1 PCT/JP2010/007149 JP2010007149W WO2012077164A1 WO 2012077164 A1 WO2012077164 A1 WO 2012077164A1 JP 2010007149 W JP2010007149 W JP 2010007149W WO 2012077164 A1 WO2012077164 A1 WO 2012077164A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
fuel ratio
air
cylinder
variation
Prior art date
Application number
PCT/JP2010/007149
Other languages
English (en)
French (fr)
Inventor
角岡 卓
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/319,613 priority Critical patent/US8417438B2/en
Priority to JP2011525345A priority patent/JP5067509B2/ja
Priority to PCT/JP2010/007149 priority patent/WO2012077164A1/ja
Priority to CN201080020459.8A priority patent/CN103228892B/zh
Publication of WO2012077164A1 publication Critical patent/WO2012077164A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an apparatus for detecting an abnormal variation in the air-fuel ratio between cylinders in a multi-cylinder internal combustion engine, and more particularly to an apparatus for detecting that the air-fuel ratio between cylinders varies relatively greatly in a multi-cylinder internal combustion engine. .
  • a mixture ratio of air and fuel in an air-fuel mixture burned in the internal combustion engine that is, an air-fuel ratio
  • Control is essential.
  • an air-fuel ratio sensor is provided in the exhaust passage of the internal combustion engine, and feedback control is performed so that the air-fuel ratio detected thereby coincides with a predetermined target air-fuel ratio.
  • an imbalance ratio value which is a degree of variation in air-fuel ratio between cylinders, is obtained from a locus length or locus area of an output of an air-fuel ratio sensor using a predetermined map or function. ing.
  • an object of the present invention is to provide an inter-cylinder air-fuel ratio variation abnormality detecting device for a multi-cylinder internal combustion engine that can improve detection accuracy and prevent erroneous detection.
  • a turbocharger installed in connection with a multi-cylinder internal combustion engine; A wastegate passage that bypasses the turbocharger turbine; A wastegate valve that opens and closes the wastegate passageway; An air-fuel ratio sensor installed in the exhaust passage downstream from the outlet of the waste gate passage; An abnormality detecting means for detecting a variation in the air-fuel ratio between cylinders by comparing the value of a parameter correlated with the degree of fluctuation in the output of the air-fuel ratio sensor with a predetermined abnormality threshold; An exhaust speed increasing means for increasing the exhaust flow;
  • a controller for controlling the wastegate valve and the exhaust speed increasing means; The controller is configured to open the waste gate valve and increase the exhaust flow by the exhaust speed increasing means when detecting an abnormality in the air-fuel ratio variation between the cylinders. It is a variation abnormality detection device.
  • the exhaust speed increasing means detects an abnormality in the air-fuel ratio variation between cylinders. Make the opening timing of the exhaust valve earlier than during normal operation, At least one of setting the opening timing of the exhaust valve during the exhaust stroke and making the opening degree of the exhaust valve smaller than that during normal operation is executed.
  • the multi-cylinder internal combustion engine has a plurality of exhaust valves per single combustion chamber,
  • the exhaust acceleration means stops a part of the plurality of exhaust valves in a closed state when detecting an abnormality in the variation in air-fuel ratio between cylinders.
  • the present invention it is possible to improve the detection accuracy by suppressing the influence of the exhaust agitation by the turbine and to prevent an erroneous detection.
  • FIG. 1 is a schematic view of an internal combustion engine according to a first embodiment of the present invention. It is a graph which shows the output characteristic of a pre-catalyst sensor and a post-catalyst sensor. It is a graph which shows the fluctuation
  • FIG. 4 is an enlarged view corresponding to a part IV in FIG. 3. It is a flowchart which shows the routine for the abnormality detection of the air-fuel ratio variation between cylinders in 1st Embodiment. It is a timing chart which shows the opening time of an exhaust valve. It is a flowchart which shows the routine for the abnormality detection of the air-fuel ratio variation between cylinders in 2nd Embodiment. It is a timing chart which shows the opening time of an exhaust valve. It is a flowchart which shows the routine for the abnormality detection of the air-fuel ratio variation between cylinders in 3rd Embodiment.
  • FIG. 1 is a schematic view of an internal combustion engine according to this embodiment.
  • an internal combustion engine (engine) 1 is powered by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston in the combustion chamber 3. Is generated.
  • the internal combustion engine 1 of the present embodiment is a multi-cylinder internal combustion engine mounted on an automobile, more specifically, an in-line 4-cylinder spark ignition internal combustion engine, that is, a gasoline engine.
  • the internal combustion engine to which the present invention is applicable is not limited to this, and the number of cylinders, the type, and the like are not particularly limited as long as it is a multi-cylinder internal combustion engine.
  • the cylinder head of the internal combustion engine 1 is provided with an intake valve that opens and closes an intake port and an exhaust valve that opens and closes an exhaust port for each cylinder, and each intake valve and each exhaust valve is a camshaft or It is opened and closed by a solenoid actuator.
  • a spark plug for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.
  • the intake port of each cylinder is connected via a branch pipe 4 for each cylinder to a surge tank 8 that is an intake manifold.
  • An intake pipe 13 is connected to the upstream side of the surge tank 8, and the intake pipe 13 is connected to the outlet of the compressor 25 a of the supercharger 25.
  • the inlet of the compressor 25 a is connected to the air cleaner 9.
  • the intake pipe 13 incorporates an air flow meter 5 for detecting the amount of intake air (the amount of intake air per unit time, that is, the intake flow rate), and an electronically controlled throttle valve 10.
  • An intake passage is formed by the intake port, the branch pipe 4, the surge tank 8 and the intake pipe 13.
  • An intercooler 26 for cooling the intake air flowing through the intake pipe 13 is disposed around the intake pipe 13.
  • the engine cooling water is guided into the intercooler 26, and the intake air is cooled by the engine cooling water.
  • An air bypass passage 20 and an electronically controlled air bypass valve (ABV) 21 that opens and closes the air bypass passage 20 are installed so as to bypass the compressor 25a of the supercharger 25.
  • the ABV 21 prevents the pressure on the upstream side of the throttle valve 10 from rising suddenly when the throttle valve 10 is suddenly closed, thereby preventing the generation of a surge noise from the supercharger 25.
  • the fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture.
  • the air-fuel mixture is sucked into the combustion chamber 3 when the intake valve is opened, compressed by the piston, and ignited and burned by the spark plug 7.
  • each cylinder is connected to the exhaust manifold 14.
  • the exhaust manifold 14 includes a branch pipe for each cylinder that forms the upstream portion thereof, and an exhaust collecting portion that forms the downstream portion thereof. The downstream side of the exhaust collecting portion is connected to the inlet of the exhaust turbine 25 b of the supercharger 25.
  • the outlet of the exhaust turbine 25 b is connected to the exhaust pipe 6.
  • An exhaust passage is formed by the exhaust port, the exhaust manifold 14 and the exhaust pipe 6.
  • the exhaust pipe 6 is provided with a waste gate passage 26 and an electronically controlled waste gate valve (WGV) 27 that opens and closes the exhaust gate 25 so as to bypass the exhaust turbine 25 b of the supercharger 25.
  • WUV electronically controlled waste gate valve
  • a catalyst composed of a three-way catalyst that is, an upstream catalyst 11 and a downstream catalyst 19 are attached in series.
  • a pre-catalyst sensor 17 and a post-catalyst sensor 18 for detecting the air-fuel ratio of the exhaust gas are respectively installed on the upstream side and the downstream side of the upstream catalyst 11.
  • the pre-catalyst sensor 17 and the post-catalyst sensor 18 are installed at positions immediately before and immediately after the upstream catalyst 11, and detect the air-fuel ratio based on the oxygen concentration in the exhaust gas.
  • the pre-catalyst sensor 17 corresponds to the “air-fuel ratio sensor” referred to in the present invention, and is installed in the exhaust pipe 6 on the downstream side of the outlet of the waste gate passage 26.
  • the above-mentioned spark plug 7, throttle valve 10, injector 12 and the like are electrically connected to an electronic control unit (hereinafter referred to as ECU) 22 as a controller.
  • the ECU 22 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown.
  • the ECU 22 includes a crank angle sensor 16 that detects the crank angle of the internal combustion engine 1 and an accelerator that detects the accelerator opening, as shown in the figure.
  • the opening sensor 15, the water temperature sensor 23 for detecting the temperature of the cooling water of the internal combustion engine 1, and other various sensors are electrically connected via an A / D converter or the like (not shown).
  • the ECU 22 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, throttle opening, fuel injection amount, fuel injection Control time etc.
  • the throttle opening is normally controlled to an opening corresponding to the accelerator opening.
  • the ECU 22 also controls the ABV 21 and the WGV 27 to bypass intake air and exhaust gas as necessary.
  • the pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, and can continuously detect a relatively wide air-fuel ratio.
  • FIG. 2 shows the output characteristics of the pre-catalyst sensor 17. As shown in the figure, the pre-catalyst sensor 17 outputs a voltage signal Vf having a magnitude proportional to the detected exhaust air-fuel ratio (pre-catalyst air-fuel ratio A / Ff).
  • the output voltage when the exhaust air-fuel ratio is stoichiometric (theoretical air-fuel ratio, for example, A / F 14.6) is Vreff (for example, about 3.3 V).
  • the post-catalyst sensor 18 is a so-called O 2 sensor, and has a characteristic that the output value changes suddenly with the stoichiometric boundary.
  • FIG. 2 shows the output characteristics of the post-catalyst sensor 18.
  • the output voltage when the exhaust air-fuel ratio (post-catalyst air-fuel ratio A / Fr) is stoichiometric that is, the stoichiometric equivalent value is Vrefr (for example, 0.45 V).
  • the output voltage of the post-catalyst sensor 18 changes within a predetermined range (for example, 0 to 1 (V)).
  • the output voltage of the post-catalyst sensor becomes lower than the stoichiometric equivalent value Vrefr, and when the exhaust air-fuel ratio is richer than stoichiometric, the output voltage of the post-catalyst sensor becomes higher than the stoichiometric equivalent value Vrefr.
  • the upstream catalyst 11 and the downstream catalyst 19 simultaneously purify NOx, HC and CO, which are harmful components in the exhaust gas, when the air-fuel ratio A / F of the exhaust gas flowing into each of them is close to the stoichiometry.
  • the air-fuel ratio width (window) that can simultaneously purify these three with high efficiency is relatively narrow.
  • the ECU 22 executes air-fuel ratio control (stoichiometric control) so that the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 11 is controlled in the vicinity of the stoichiometric.
  • This air-fuel ratio control is detected by a main air-fuel ratio control (main air-fuel ratio feedback control) that makes the exhaust air-fuel ratio detected by the pre-catalyst sensor 17 coincide with a stoichiometry that is a predetermined target air-fuel ratio, and detected by the post-catalyst sensor 18.
  • the auxiliary air-fuel ratio control (auxiliary air-fuel ratio feedback control) is performed so that the exhaust air-fuel ratio thus made coincides with the stoichiometry.
  • the injectors 12 of some cylinders out of all the cylinders have failed and an air-fuel ratio variation (imbalance) occurs between the cylinders.
  • the # 1 cylinder has a larger fuel injection amount than the other # 2, # 3, and # 4 cylinders, and its air-fuel ratio is greatly shifted to the rich side.
  • the air-fuel ratio of the total gas supplied to the pre-catalyst sensor 17 may sometimes be stoichiometrically controlled.
  • the present embodiment is equipped with a device that detects such a variation in air-fuel ratio between cylinders.
  • the air-fuel ratio diagram a in (B) shows the case where the WGV 27 is closed, and b shows the case where the WGV 27 is opened.
  • FIG. 3 is schematically shown for easy understanding.
  • the imbalance ratio (%) is a parameter representing the degree of variation in the air-fuel ratio between cylinders.
  • the imbalance ratio is the amount of fuel injection in a cylinder (imbalance cylinder) causing the fuel injection amount deviation when only one of the cylinders has caused the fuel injection amount deviation.
  • the ratio is a value indicating whether the fuel injection amount is not deviated from the fuel injection amount of the cylinder (balance cylinder) that has not caused the fuel injection amount deviation, that is, the reference injection amount.
  • the imbalance ratio is IB
  • the fuel injection amount of the imbalance cylinder is Qib
  • the fuel injection amount of the balance cylinder that is, the reference injection amount is Qs
  • IB (Qib ⁇ Qs) / Qs.
  • the greater the imbalance ratio IB the greater the fuel injection amount deviation between the imbalance cylinder and the balance cylinder, and the greater the air-fuel ratio variation.
  • FIG. 4 is an enlarged view corresponding to the IV part of FIG. 3, and particularly shows fluctuations in the sensor output before the catalyst within one engine cycle.
  • the pre-catalyst sensor output a value obtained by converting the output voltage Vf of the pre-catalyst sensor 17 into an air-fuel ratio A / F is used.
  • the output voltage Vf of the pre-catalyst sensor 17 can be directly used.
  • the ECU 22 acquires the value of the pre-catalyst sensor output A / F at every predetermined sample period ⁇ (unit time, for example, 4 ms) within one engine cycle.
  • This difference ⁇ A / F n can be restated as a differential value or a slope at the current timing.
  • this difference ⁇ A / F n represents the fluctuation of the sensor output before the catalyst. This is because as the degree of fluctuation increases, the slope of the air-fuel ratio diagram increases in absolute value, and the difference ⁇ A / F n increases in absolute value. Therefore the value of the difference .DELTA.A / F n at the predetermined first timing may be fluctuation parameter.
  • the difference ⁇ A / F n is integrated at each timing within one engine cycle, the final integrated value is divided by the number of samples N, and the average value of the differences ⁇ A / F n within one engine cycle is obtained.
  • the final integrated value is divided by the number of cycles M, the average value of the difference .DELTA.A / F n in the M engine cycles Ask for.
  • the average value of the difference .DELTA.A / F n in the M engine cycles becomes large in absolute value. Therefore, if the average value is an absolute value or more than a predetermined abnormality determination value, it is determined that there is a variation abnormality, and if the average value is smaller than the abnormality determination value, it is determined that there is no variation abnormality, that is, normal.
  • the pre-catalyst sensor output A / F may increase or decrease, the difference ⁇ A / F n or the average value thereof may be obtained for only one of these cases and used as a variation parameter. it can.
  • the pre-catalyst sensor receives the exhaust gas corresponding to that one cylinder, its output rapidly changes to the rich side (that is, rapidly decreases). (Rich imbalance determination).
  • the lower right region in the graph of FIG. 4B is used for rich shift detection.
  • the transition from lean to rich is often performed more steeply than the transition from rich to lean. Therefore, according to this method, it can be expected to detect a rich shift with high accuracy.
  • the present invention is not limited thereto, it is used only the value of the increase side, or by integrating the absolute value of using both the value of the increase side and a decrease side (difference .DELTA.A / F n, threshold the integrated value Can also be compared).
  • any value that correlates with the degree of fluctuation of the pre-catalyst sensor output can be used as the fluctuation parameter.
  • the fluctuation parameter can be calculated based on the difference between the maximum value and the minimum value of the sensor output before the catalyst within one engine cycle (so-called peak-to-peak). This is because the difference increases as the degree of fluctuation of the pre-catalyst sensor output increases.
  • step S101 it is determined whether a predetermined precondition suitable for detecting an abnormality is satisfied.
  • This precondition is satisfied when the following conditions are satisfied.
  • the engine has been warmed up. For example, the warm-up is terminated when the water temperature detected by the water temperature sensor 23 is equal to or higher than a predetermined value.
  • At least the pre-catalyst sensor 17 is activated.
  • the engine is in steady operation.
  • the stoichiometric control is in progress.
  • the engine is operating in the detection region.
  • the output A / F of the pre-catalyst sensor 17 is decreasing.
  • (6) indicates that this routine is based on the above-described rich imbalance determination (a method in which only the value on the decrease side is used for rich shift detection). If the precondition is not satisfied, the routine is terminated.
  • the WGV 27 is set to the open state (S102). As a result, the exhaust flowing through the waste gate passage 26 without passing through the exhaust turbine 25 b is supplied to the pre-catalyst sensor 17.
  • the opening timing of the exhaust valve is advanced (S103).
  • S103 an open period B whose start is advanced compared to the open period A during normal operation is adopted and applied to the exhaust valve.
  • the exhaust valve is opened in a state where the in-cylinder pressure is high, so that the exhaust flow velocity increases, and the exhaust mixture of each cylinder in the exhaust port is suppressed. That is, since the exhaust gas is quickly discharged to the downstream side due to inertia, the phenomenon that the exhaust gas from one cylinder enters the exhaust port connected to the other cylinders is suppressed.
  • the air-fuel ratio fluctuation is detected (S104).
  • the output A / F n of the pre-catalyst sensor 17 (air-fuel ratio sensor) at the current timing is acquired, and the output difference ⁇ A / F n at the current timing is calculated and stored from the previous equation (1).
  • These processes are repeatedly executed until 100 cycles are completed. If 100 cycles are completed, so far calculated average value .DELTA.A / F AV output difference .DELTA.A / F n is, for example, an integrated value of the difference .DELTA.A / F n as described above by the number of samples N and the number of engine cycles M It is calculated by dividing.
  • This average value ⁇ A / F AV represents the air-fuel ratio fluctuation.
  • the absolute value of the average value .DELTA.A / F AV of the difference .DELTA.A / F n is, whether it is large is determined than a predetermined abnormality threshold ⁇ (S105).
  • a predetermined abnormality threshold ⁇ S105.
  • the process proceeds to step S106, where it is determined that there is no variation abnormality, that is, normal, and the routine is terminated.
  • step S107 it is determined that variation abnormality i.e. abnormal, the routine ends.
  • a check lamp or the like is used to notify the user of the abnormality when the abnormality determination is performed simultaneously or when the abnormality determination is continuously issued for two trips (that is, one trip from the engine start to the stop twice).
  • the warning device is activated and the abnormality information is stored in a predetermined diagnosis memory in a manner that can be called by a maintenance worker.
  • the WGV 27 is set to the open state (S102) and the exhaust valve opening timing is advanced (S103), so that an abnormality in the air-fuel ratio variation between the cylinders is detected. Is done. As a result, the leveling of the air-fuel ratio due to the influence of the turbine is suppressed, and the exhaust mixing of each cylinder in the exhaust port is suppressed, so that the detection accuracy can be improved.
  • the start period may be advanced while making the open period A and the end period equal.
  • the opening timing of the exhaust valve is set during the exhaust stroke in order to increase the exhaust gas when detecting an abnormality in the air-fuel ratio variation between the cylinders. Since the mechanical configuration of the second embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
  • steps S201 and S202 are the same as those in steps S101 and S102 in the first embodiment.
  • step S203 the opening timing of the exhaust valve is set during the exhaust stroke (S203).
  • the start period that is, the open timing is delayed compared to the open period A during normal operation, and the open period D set during the exhaust stroke is adopted and applied to the exhaust valve.
  • the exhaust valve is opened in a state where the in-cylinder pressure is high and the scavenging effect is provided by the piston, so that the exhaust flow velocity increases and the exhaust mixing of each cylinder in the exhaust port is suppressed. That is, since the exhaust gas is quickly discharged to the downstream side due to inertia, the phenomenon that the exhaust gas from one cylinder enters the exhaust port connected to the other cylinders is suppressed.
  • step S204 to S207 is the same as that in steps S104 and S107 in the first embodiment.
  • the leveling of the air-fuel ratio due to the influence of the turbine is suppressed, and the exhaust mixing of each cylinder in the exhaust port is suppressed, Detection accuracy can be improved.
  • a third embodiment of the present invention in a mechanical configuration having a plurality of exhaust valves per single combustion chamber, in order to increase the exhaust gas when detecting an abnormality in the air-fuel ratio variation between cylinders, Among the exhaust valves, a part of the exhaust valves is stopped in a closed state.
  • a single combustion chamber has two exhaust valves, but more may be used.
  • a plurality of exhaust valves in a single combustion chamber can be individually opened and closed and are controlled by the ECU 22. Since the remaining mechanical configuration of the third embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
  • steps S301 and S302 are the same as those in steps S101 and S102 in the first embodiment.
  • step S302 After completion of the processing in step S302, some of the exhaust valves in each combustion chamber are stopped in a closed state (S303). As a result, only the other exhaust valves are opened during the exhaust stroke. Since the opening cross-sectional area of the combustion chamber is narrower than that during normal operation, the exhaust flow velocity is increased, and the exhaust mixing of each cylinder in the exhaust port is suppressed. That is, since the exhaust gas is quickly discharged to the downstream side due to inertia, the phenomenon that the exhaust gas from one cylinder enters the exhaust port connected to the other cylinders is suppressed.
  • step S304 to S307 is the same as that in steps S104 and S107 in the first embodiment.
  • the leveling of the air-fuel ratio due to the influence of the turbine is suppressed, and the exhaust mixing of each cylinder in the exhaust port is suppressed, Detection accuracy can be improved.
  • the means for increasing the flow rate of exhaust gas may be, for example, making the opening degree of the exhaust valve smaller than that during normal operation, in addition to those disclosed in the above embodiments.
  • the opening cross-sectional area of the combustion chamber is narrower than that during normal operation, the exhaust gas flow rate increases, and thereby the same effect as when other exhaust speed increasing means is used can be obtained.
  • the narrowing of the opening of the exhaust valve may be combined with other exhaust speed increasing means.
  • the rich deviation abnormality is detected using the air-fuel ratio sensor output only when decreasing (when changing to the rich side).
  • a mode of using the air-fuel ratio sensor output only at the time of increase (when changing to the lean side) or a mode of using both the air-fuel ratio sensor output at the time of decrease and increase is possible.

Abstract

 過給機(25)のタービン(25b)をバイパスするウエストゲート通路(26)と、前記ウエストゲート通路(26)を開閉するウエストゲートバルブ(27)と、前記ウエストゲート通路(26)の出口よりも下流側の排気通路に設置された空燃比センサ(17)と、前記空燃比センサ(17)の出力の変動度合いに相関するパラメータの値を所定の異常しきい値と比較して気筒間空燃比ばらつき異常を検出する異常検出手段と、排気流を増速させる排気増速手段と、を備えた多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。装置は前記ウエストゲートバルブ(27)及び前記排気増速手段を制御するコントローラ(22)を更に備え、前記コントローラ(22)は、気筒間空燃比ばらつき異常を検出する場合に、ウエストゲートバルブ(27)を開状態とし、且つ排気増速手段により排気流を増速させる。

Description

多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
 本発明は、多気筒内燃機関の気筒間空燃比のばらつき異常を検出するための装置に係り、特に、多気筒内燃機関において気筒間の空燃比が比較的大きくばらついていることを検出する装置に関する。
 一般に、触媒を利用した排気浄化システムを備える内燃機関では、排気中有害成分の触媒による浄化を高効率で行うため、内燃機関で燃焼される混合気の空気と燃料との混合割合、すなわち空燃比のコントロールが欠かせない。こうした空燃比の制御を行うため、内燃機関の排気通路に空燃比センサを設け、これによって検出された空燃比を所定の目標空燃比に一致させるようフィードバック制御を実施している。
 一方、多気筒内燃機関においては、通常全気筒に対し同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても実際の空燃比が気筒間でばらつくことがある。このときばらつきの程度が小さければ、空燃比フィードバック制御で吸収可能であり、また触媒でも排気中有害成分を浄化処理可能なので、排気エミッションに影響を与えず、特に問題とならない。
 しかし、例えば一部の気筒の燃料噴射系が故障するなどして、気筒間の空燃比が大きくばらつくと、排気エミッションを悪化させてしまい、問題となる。このような排気エミッションを悪化させる程の大きな空燃比ばらつきは異常として検出するのが望ましい。特に自動車用内燃機関の場合、排気エミッションの悪化した車両の走行を未然に防止するため、気筒間空燃比ばらつき異常を車載状態(オンボード)で検出することが要請されており、最近ではこれを法規制化する動きもある。
 例えば特許文献1に記載の装置では、空燃比センサの出力の軌跡長又は軌跡面積から、予め定められたマップ又は関数を用いて、気筒間空燃比ばらつきの度合いであるインバランス割合の値を求めている。
特開2009-209747号公報 特開2008-208740号公報 特開2002-242637号公報
 しかし、過給機を有する内燃機関において、過給機のタービンよりも下流側に空燃比センサが配置されている場合には、各気筒から排出される排気がタービンを通過することで排気が攪拌され、精度よくインバランスを検出できないおそれがある。
 特許文献2に開示された装置では、過給機のウエストゲートバルブを閉状態として排気を攪拌させることで、気筒間で空燃比にばらつきが生じている場合にも空燃比を均一にしている。しかし、ウエストゲートバルブを開状態とした場合の空燃比センサ出力を利用するとの着想は開示も示唆もされていない。
 特許文献3に開示された装置では、排気弁の開き時期を進角させることで排気流速を増大している。しかし、排気流速を空燃比の検出に利用するとの着想は開示も示唆もされていない。
 そこで本発明は、以上の事情に鑑みて創案され、その目的は、検出精度を向上し、誤検出を防止し得る多気筒内燃機関の気筒間空燃比ばらつき異常検出装置を提供することにある。
 本発明の一の態様は、
 多気筒内燃機関に関連して設置された過給機と、
 前記過給機のタービンをバイパスするウエストゲート通路と、
 前記ウエストゲート通路を開閉するウエストゲートバルブと、
 前記ウエストゲート通路の出口よりも下流側の前記排気通路に設置された空燃比センサと、
 前記空燃比センサの出力の変動度合いに相関するパラメータの値を所定の異常しきい値と比較して気筒間空燃比ばらつき異常を検出する異常検出手段と、
 排気流を増速させる排気増速手段と、
 を備えた多気筒内燃機関の気筒間空燃比ばらつき異常検出装置において、
 前記ウエストゲートバルブ及び前記排気増速手段を制御するコントローラを更に備え、
 前記コントローラは、気筒間空燃比ばらつき異常を検出する場合に、ウエストゲートバルブを開状態とし、且つ排気増速手段により排気流を増速させることを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置である。
 好ましくは、前記排気増速手段は、気筒間空燃比ばらつき異常を検出する場合に、
 排気弁の開時期を通常運転時よりも早期化すること、
 排気弁の開時期を排気行程中に設定すること、及び
 排気弁の開度を通常運転時よりも小さくすること
 のうちの少なくともいずれか1つを実行する。
 好ましくは、前記多気筒内燃機関は単一の燃焼室につき複数の排気弁を有し、
 前記排気増速手段は、気筒間空燃比ばらつき異常を検出する場合に、前記複数の排気弁のうちの一部の排気弁を閉状態で停止させる。
 本発明によれば、タービンによる排気の攪拌の影響を抑制して検出精度を向上し、誤検出を防止することができるという、優れた効果が発揮される。
本発明の第1実施形態に係る内燃機関の概略図である。 触媒前センサおよび触媒後センサの出力特性を示すグラフである。 大気圧に応じた空燃比センサ出力の変動を示すグラフである。 図3のIV部に相当する拡大図である。 第1実施形態における気筒間空燃比ばらつき異常検出のためのルーチンを示すフローチャートである。 排気弁の開時期を示すタイミングチャートである。 第2実施形態における気筒間空燃比ばらつき異常検出のためのルーチンを示すフローチャートである。 排気弁の開時期を示すタイミングチャートである。 第3実施形態における気筒間空燃比ばらつき異常検出のためのルーチンを示すフローチャートである。
 以下、本発明の実施形態を添付図面に基づき説明する。
 図1は、本実施形態に係る内燃機関の概略図である。図示されるように、内燃機関(エンジン)1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストンを往復移動させることにより動力を発生する。本実施形態の内燃機関1は、自動車に搭載された多気筒内燃機関であり、より具体的には直列4気筒の火花点火式内燃機関即ちガソリンエンジンである。但し本発明が適用可能な内燃機関はこのようなものに限られず、多気筒内燃機関であれば気筒数、形式等は特に限定されない。
 図示しないが、内燃機関1のシリンダヘッドには吸気ポートを開閉する吸気弁と、排気ポートを開閉する排気弁とが気筒ごとに配設されており、各吸気弁および各排気弁はカムシャフト又はソレノイドアクチュエータによって開閉させられる。シリンダヘッドの頂部には、燃焼室3内の混合気を点火するための点火プラグが気筒ごとに取り付けられている。
 各気筒の吸気ポートは、気筒毎の枝管4を介して、吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気管13が接続されており、吸気管13は過給機25のコンプレッサ25aの出口に連結されている。コンプレッサ25aの入口は、エアクリーナ9に連結されている。吸気管13には、吸入空気量(単位時間当たりの吸入空気の量すなわち吸気流量)を検出するためのエアフローメータ5と、電子制御式のスロットルバルブ10とが組み込まれている。吸気ポート、枝管4、サージタンク8及び吸気管13により吸気通路が形成される。吸気管13の周りには、吸気管13内を流れる吸入空気を冷却するためのインタークーラ26が配置されている。インタークーラ26内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。過給機25のコンプレッサ25aをバイパスするように、エアバイパス通路20、及びこれを開閉する電子制御式のエアバイパスバルブ(ABV)21が設置されている。このABV21は、スロットルバルブ10が急閉された場合に、スロットルバルブ10の上流側の圧力が一時的に急上昇するのを防止し、ひいては過給機25からのサージ音発生を防止する。
 吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁の開弁時に燃焼室3に吸入され、ピストンで圧縮され、点火プラグ7で点火燃焼させられる。
 一方、各気筒の排気ポートは排気マニフォールド14に接続される。排気マニフォールド14は、その上流部をなす気筒毎の枝管と、その下流部をなす排気集合部とからなる。排気集合部の下流側は、過給機25の排気タービン25bの入口に連結されている。排気タービン25bの出口は、排気管6に接続されている。排気ポート、排気マニフォールド14及び排気管6により排気通路が形成される。そして排気管6には、過給機25の排気タービン25bをバイパスするように、ウエストゲート通路26、及びこれを開閉する電子制御式のウエストゲートバルブ(WGV)27が設置されている。
 排気管6には、それぞれ三元触媒からなる触媒、すなわち上流触媒11と下流触媒19が直列に取り付けられている。上流触媒11の上流側及び下流側にそれぞれ排気ガスの空燃比を検出するための触媒前センサ17及び触媒後センサ18が設置されている。これら触媒前センサ17及び触媒後センサ18は、上流触媒11の直前及び直後の位置に設置され、排気中の酸素濃度に基づいて空燃比を検出する。触媒前センサ17が本発明にいう「空燃比センサ」に該当し、ウエストゲート通路26の出口よりも下流側の排気管6に設置される。
 上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、コントローラとしての電子制御ユニット(以下ECUと称す)22に電気的に接続されている。ECU22は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU22には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ16、アクセル開度を検出するアクセル開度センサ15、内燃機関1の冷却水の温度を検出する水温センサ23、その他の各種センサが、図示されないA/D変換器等を介して電気的に接続されている。ECU22は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、スロットル開度、燃料噴射量、燃料噴射時期等を制御する。なおスロットル開度は通常アクセル開度に応じた開度に制御される。ECU22はまた、ABV21及びWGV27を制御し、吸気及び排気を必要に応じてバイパスさせる。
 触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能である。図2に触媒前センサ17の出力特性を示す。図示するように、触媒前センサ17は、検出した排気空燃比(触媒前空燃比A/Ff)に比例した大きさの電圧信号Vfを出力する。排気空燃比がストイキ(理論空燃比、例えばA/F=14.6)であるときの出力電圧はVreff(例えば約3.3V)である。
 他方、触媒後センサ18は所謂O2センサからなり、ストイキを境に出力値が急変する特性を持つ。図2に触媒後センサ18の出力特性を示す。図示するように、排気空燃比(触媒後空燃比A/Fr)がストイキであるときの出力電圧、すなわちストイキ相当値はVrefr(例えば0.45V)である。触媒後センサ18の出力電圧は所定の範囲(例えば0~1(V))内で変化する。排気空燃比がストイキよりリーンのとき、触媒後センサの出力電圧はストイキ相当値Vrefrより低くなり、排気空燃比がストイキよりリッチのとき、触媒後センサの出力電圧はストイキ相当値Vrefrより高くなる。
 上流触媒11及び下流触媒19は、それぞれに流入する排気ガスの空燃比A/Fがストイキ近傍のときに排気中の有害成分であるNOx、HCおよびCOを同時に浄化する。この三者を同時に高効率で浄化できる空燃比の幅(ウィンドウ)は比較的狭い。
 上流触媒11に流入する排気ガスの空燃比がストイキ近傍に制御されるように、空燃比制御(ストイキ制御)がECU22により実行される。この空燃比制御は、触媒前センサ17によって検出された排気空燃比を所定の目標空燃比であるストイキに一致させるような主空燃比制御(主空燃比フィードバック制御)と、触媒後センサ18によって検出された排気空燃比をストイキに一致させるような補助空燃比制御(補助空燃比フィードバック制御)とからなる。
 さて、例えば全気筒のうちの一部の気筒のインジェクタ12が故障し、気筒間に空燃比のばらつき(インバランス:imbalance)が発生したとする。例えば#1気筒が他の#2、#3及び#4気筒よりも燃料噴射量が多くなり、その空燃比が大きくリッチ側にずれる場合等である。このときでも前述の主空燃比フィードバック制御により比較的大きな補正量を与えれば、触媒前センサ17に供給されるトータルガスの空燃比をストイキに制御できる場合がある。しかし、気筒別に見ると、#1気筒がストイキより大きくリッチ、#2、#3及び#4気筒がストイキよりリーンであり、全体のバランスとしてストイキとなっているに過ぎず、エミッション上好ましくないことは明らかである。そこで本実施形態では、かかる気筒間空燃比ばらつき異常を検出する装置が装備されている。
 図3に示すように、触媒前センサ17によって検出される排気空燃比A/Fは、1エンジンサイクル(=720°CA)を1周期として周期的に変動する傾向にある。そして気筒間空燃比ばらつきが発生すると、1エンジンサイクル内での変動が大きくなる。(B)の空燃比線図aはWGV27を閉じている場合、bはWGV27を開いている場合をそれぞれ示す。見られるように、WGV27を閉じている場合には、空燃比変動の振幅が比較的小さくなる。なお、この図3は理解の容易のために模式的に示したものである。
 ここでインバランス割合(%)とは、気筒間空燃比のばらつき度合いを表すパラメータである。即ち、インバランス割合とは、全気筒のうちある1気筒のみが燃料噴射量ズレを起こしている場合に、その燃料噴射量ズレを起こしている気筒(インバランス気筒)の燃料噴射量がどれくらいの割合で、燃料噴射量ズレを起こしていない気筒(バランス気筒)の燃料噴射量即ち基準噴射量からズレているかを示す値である。インバランス割合をIB、インバランス気筒の燃料噴射量をQib、バランス気筒の燃料噴射量即ち基準噴射量をQsとすると、IB=(Qib-Qs)/Qsで表される。インバランス割合IBが大きいほど、インバランス気筒のバランス気筒に対する燃料噴射量ズレが大きく、空燃比ばらつき度合いは大きい。
[気筒間空燃比ばらつき異常検出]
 上記の説明から理解されるように、空燃比ばらつき異常が発生すると触媒前センサ出力の変動が大きくなる。そこでこの変動度合いをモニタすることで、空燃比ばらつき異常を検出することが可能である。本実施形態では、触媒前センサ出力の変動度合いに相関するパラメータである変動パラメータを算出すると共に、この変動パラメータを所定の異常判定値と比較してばらつき異常を検出する。
 ここで変動パラメータの算出方法について説明する。図4は、図3のIV部に相当する拡大図であり、特に1エンジンサイクル内の触媒前センサ出力の変動を示す。ここで触媒前センサ出力としては、触媒前センサ17の出力電圧Vfを空燃比A/Fに換算した値を用いる。但し触媒前センサ17の出力電圧Vfを直接用いることも可能である。
 (B)図に示すように、ECU22は、1エンジンサイクル内において、所定のサンプル周期τ(単位時間、例えば4ms)毎に、触媒前センサ出力A/Fの値を取得する。そして今回のタイミング(第2のタイミング)で取得した値A/Fと、前回のタイミング(第1のタイミング)で取得した値A/Fn-1との差ΔA/Fを、次式(1)により求める。この差ΔA/Fは今回のタイミングにおける微分値あるいは傾きと言い換えることができる。
Figure JPOXMLDOC01-appb-M000001
 最も単純には、この差ΔA/Fが触媒前センサ出力の変動を表す。変動度合いが大きくなるほど空燃比線図の傾きが絶対値で大きくなり、差ΔA/Fが絶対値で大きくなるからである。そこで所定の1タイミングにおける差ΔA/Fの値を変動パラメータとすることができる。
 但し、本実施形態では精度向上のため、複数の差ΔA/Fの平均値を変動パラメータとする。本実施形態では、1エンジンサイクル内において、各タイミング毎に差ΔA/Fを積算し、最終積算値をサンプル数Nで除し、1エンジンサイクル内の差ΔA/Fの平均値を求める。そしてさらに、Mエンジンサイクル分(例えばM=100)だけ差ΔA/Fの平均値を積算し、最終積算値をサイクル数Mで除し、Mエンジンサイクル内の差ΔA/Fの平均値を求める。
 触媒前センサ出力の変動度合いが大きいほど、Mエンジンサイクル内の差ΔA/Fの平均値も絶対値で大きくなる。そこで当該平均値が絶対値で所定の異常判定値以上であればばらつき異常ありと判定され、当該平均値が異常判定値より小さければばらつき異常なし、即ち正常と判定される。
 なお、触媒前センサ出力A/Fは増加する場合と減少する場合とがあるので、これら各場合の一方についてだけ上記差ΔA/Fあるいはその平均値を求め、これを変動パラメータとすることができる。特に1気筒のみリッチずれの場合、当該1気筒に対応した排気ガスを触媒前センサが受けた時にその出力が急速にリッチ側に変化(すなわち急減)するので、減少側のみの値をリッチずれ検出のために用いることも可能である(リッチインバランス判定)。この場合には、図4の(B)のグラフにおける右下がりの領域のみを、リッチずれ検出のために利用することになる。一般にリーンからリッチへの移行は、リッチからリーンへの移行よりも急峻に行われる場合が多いため、この方法によればリッチずれを精度よく検出することが期待できる。もっとも、これに限定されず、増加側の値のみを用いること、あるいは、減少側と増加側の双方の値を用いる(差ΔA/Fの絶対値を積算し、この積算値をしきい値と比較することで)ことも可能である。
 また、触媒前センサ出力の変動度合いに相関する如何なる値をも変動パラメータとすることができる。例えば、1エンジンサイクル内の触媒前センサ出力の最大値と最小値の差(所謂ピークトゥピーク; peak to peak)に基づいて、変動パラメータを算出することもできる。触媒前センサ出力の変動度合いが大きいほど当該差も大きくなるからである。
 ところで、過給機を有する内燃機関において、過給機のタービンよりも下流側に空燃比センサが配置されている場合には、各気筒から排出される排気がタービンを通過することで排気が攪拌され、精度よくインバランスを検出できないおそれがある。例えば、上述したとおり、図3に示すように、WGV27を開いた状態で測定(曲線b)した場合に、A/Fの値のばらつきが顕著であるエンジンでも、WGV27を閉じた状態で測定(曲線a)した場合には、A/Fの値のばらつきは顕著でなくなる。このため、WGV27の動作状態に関わらず空燃比ばらつき異常を検出すると、検出精度が低下し、誤検出が発生する虞もある。このような現象を考慮して、本実施形態では次の異常検出ルーチンにより、検出精度の低下を抑制している。
[気筒間空燃比ばらつき異常検出ルーチン]
 次に、図5を用いて、気筒間空燃比ばらつき異常検出ルーチンについて説明する。
 まずステップS101では、異常検出を行うのに適した所定の前提条件が成立しているか否かが判断される。この前提条件は、次の各条件が成立したときに成立する。
(1)エンジンの暖機が終了している。例えば水温センサ23で検出された水温が所定値以上であるとき暖機終了とされる。
(2)少なくとも触媒前センサ17が活性化している。
(3)エンジンが定常運転中である。
(4)ストイキ制御中である。
(5)エンジンが検出領域内で運転している。
(6)触媒前センサ17の出力A/Fが減少中である。
 これらのうち(6)は、このルーチンが上述したリッチインバランス判定(減少側の値のみをリッチずれ検出のために用いる方法)によっていることを示す。前提条件が成立していない場合にはルーチンが終了される。
 他方、前提条件が成立している場合には、WGV27が開状態に設定される(S102)。その結果、排気タービン25bを通過せずウエストゲート通路26を通じて流れる排気が、触媒前センサ17に供給されることになる。
 また、排気弁の開時期が早期化される(S103)。この場合には、図6に示されるように、通常運転時の開期間Aに比べて始期が早期化された開期間Bが採用され、排気弁に適用される。その結果、筒内圧が高い状態で排気弁が開かれるため、排気流速が上昇し、排気ポート内における各気筒の排気混合が抑制される。すなわち、排気が慣性により下流側に速やかに排出されるので、一の気筒からの排気が他の気筒に連なる排気ポートに進入する現象が抑制される。
 次に、空燃比変動が検出される(S104)。ここでは、今回のタイミングにおける触媒前センサ17(空燃比センサ)の出力A/Fが取得され、今回のタイミングにおける出力差ΔA/Fが、前式(1)より算出され記憶される。そして、これらの処理が100サイクルについて終了するまで繰返し実行される。100サイクルが終了すると、これまでに算出された出力差ΔA/Fの平均値ΔA/FAVが、例えば上述のように差ΔA/Fの積算値をサンプル数N及びエンジンサイクル数Mで除することによって算出される。この平均値ΔA/FAVが空燃比変動を表す。
 そして、差ΔA/Fの平均値ΔA/FAVの絶対値が、予め定められた異常しきい値αよりも大であるかが判定される(S105)。平均値ΔA/FAVの絶対値が異常しきい値αよりも小さい場合、ステップS106に進んで、ばらつき異常無しすなわち正常と判定され、ルーチンが終了される。
 他方、平均値ΔA/FAVの絶対値が異常しきい値α以上であるときは、ステップS107に進んで、ばらつき異常有りすなわち異常と判定され、ルーチンが終了される。なお、異常判定と同時に、あるいは異常判定が2トリップ(すなわち、エンジン始動から停止までの1トリップを2回連続で)続けて出された場合に、異常の事実をユーザに知らせるべくチェックランプ等の警告装置を起動させ、且つ所定のダイアグノーシスメモリに異常情報を、整備作業者による呼び出しが可能な態様で記憶させるのが好ましい。
 このような一連の処理の結果、本実施形態では、WGV27が開状態に設定され(S102)、且つ排気弁の開時期が早期化(S103)された状態で、気筒間空燃比ばらつき異常が検出される。その結果、タービンの影響による空燃比の平準化が抑制され、且つ排気ポート内における各気筒の排気混合が抑制され、検出精度を向上することができる。
 なお、本実施形態では、図6に示される開期間Bは、その長さ(クランク角)が開期間Aと等しい。しかしながら、開期間Cのように、開期間Aと終期を等しくしつつ始期を早期化してもよい。
 次に、本発明の第2実施形態について説明する。図7及び図8に示される第2実施形態は、気筒間空燃比ばらつき異常を検出する場合に、排気を増速するために、排気弁の開時期を排気行程中に設定するものである。第2実施形態の機械的構成は上記第1実施形態と同様であるため、その詳細の説明を省略する。
 第2実施形態のECU22における処理について説明する。図7において、ステップS201及びS202の処理は、上記第1実施形態におけるステップS101及びS102におけるものと同様である。
 ステップS202の処理の終了後に、排気弁の開時期が、排気行程中に設定される(S203)。この場合には、図8に示されるように、通常運転時の開期間Aに比べて始期すなわち開時期が遅延化され排気行程中に設定された開期間Dが採用され、排気弁に適用される。その結果、筒内圧が高く且つピストンによる掃気効果もある状態で排気弁が開かれるため、排気流速が上昇し、排気ポート内における各気筒の排気混合が抑制される。すなわち、排気が慣性により下流側に速やかに排出されるので、一の気筒からの排気が他の気筒に連なる排気ポートに進入する現象が抑制される。
 ステップS204からS207までの処理は、上記第1実施形態におけるステップS104及びS107におけるものと同様である。
 このような一連の処理の結果、本実施形態では、上記第1実施形態と同様に、タービンの影響による空燃比の平準化が抑制され、且つ排気ポート内における各気筒の排気混合が抑制され、検出精度を向上することができる。
 次に、本発明の第3実施形態について説明する。図9に示される第3実施形態は、単一の燃焼室につき複数の排気弁を有する機械的構成において、気筒間空燃比ばらつき異常を検出する場合に、排気を増速するために、前記複数の排気弁のうちの一部の排気弁を閉状態で停止させるものである。好ましくは、単一の燃焼室は2つの排気弁を有するが、これより多くてもよい。単一の燃焼室における複数の排気弁は個別に開閉可能であり、ECU22によって制御される。第3実施形態の残余の機械的構成は上記第1実施形態と同様であるため、その詳細の説明を省略する。
 第3実施形態のECU22における処理について説明する。図9において、ステップS301及びS302の処理は、上記第1実施形態におけるステップS101及びS102におけるものと同様である。
 ステップS302の処理の終了後に、各燃焼室の複数の排気弁のうちの一部の排気弁が閉状態で停止させられる(S303)。その結果、排気行程では他の排気弁のみが開くことになる。燃焼室の開口断面積が通常運転時よりも狭小化されることから、排気流速が上昇し、排気ポート内における各気筒の排気混合が抑制される。すなわち、排気が慣性により下流側に速やかに排出されるので、一の気筒からの排気が他の気筒に連なる排気ポートに進入する現象が抑制される。
 ステップS304からS307までの処理は、上記第1実施形態におけるステップS104及びS107におけるものと同様である。
 このような一連の処理の結果、本実施形態では、上記第1実施形態と同様に、タービンの影響による空燃比の平準化が抑制され、且つ排気ポート内における各気筒の排気混合が抑制され、検出精度を向上することができる。
 本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。本発明における課題を解決するための手段は、可能な限り相互に組み合わせて用いることができる。
 例えば、排気の流速を増大するための手段は、上記各実施形態で開示したもののほか、例えば、排気弁の開度を通常運転時よりも小さくすることであってもよい。この場合には、燃焼室の開口断面積が通常運転時よりも狭小化されることから、排気流速が上昇し、これによって他の排気増速手段を用いる場合と同様の効果を得ることができる。排気弁の開度の狭小化は、他の排気増速手段と組み合わせてもよい。
 前記各実施形態では減少時(リッチ側への変化時)のみの空燃比センサ出力を利用してリッチずれ異常を検出した。しかしながら、増大時(リーン側への変化時)のみの空燃比センサ出力を利用する態様や、減少時および増大時の両者の空燃比センサ出力を利用する態様も可能である。またリッチずれ異常のみならず、リーンずれ異常をも検出することが可能であるし、これらリッチずれ及びリーンずれを区別せず、広く空燃比ばらつき異常を検出するようにしてもよい。
1 内燃機関
3 燃焼室
5 エアフローメータ
6 排気管
11 上流触媒
12 インジェクタ
14 排気マニフォールド
17 触媒前センサ
18 触媒後センサ
20 電子制御ユニット(ECU)
26 ウエストゲート通路
27 ウエストゲートバルブ(WGV)

Claims (3)

  1.  多気筒内燃機関に関連して設置された過給機と、
     前記過給機のタービンをバイパスするウエストゲート通路と、
     前記ウエストゲート通路を開閉するウエストゲートバルブと、
     前記ウエストゲート通路の出口よりも下流側の前記排気通路に設置された空燃比センサと、
     前記空燃比センサの出力の変動度合いに相関するパラメータの値を所定の異常しきい値と比較して気筒間空燃比ばらつき異常を検出する異常検出手段と、
     排気流を増速させる排気増速手段と、
     を備えた多気筒内燃機関の気筒間空燃比ばらつき異常検出装置において、
     前記ウエストゲートバルブ及び前記排気増速手段を制御するコントローラを更に備え、
     前記コントローラは、気筒間空燃比ばらつき異常を検出する場合に、ウエストゲートバルブを開状態とし、且つ排気増速手段により排気流を増速させることを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。
  2.  前記排気増速手段は、気筒間空燃比ばらつき異常を検出する場合に、
     排気弁の開時期を通常運転時よりも早期化すること、
     排気弁の開時期を排気行程中に設定すること、及び
     排気弁の開度を通常運転時よりも小さくすること
     のうちの少なくともいずれか1つを実行することを特徴とする請求項1記載の装置。
  3.  前記多気筒内燃機関は単一の燃焼室につき複数の排気弁を有し、
     前記排気増速手段は、気筒間空燃比ばらつき異常を検出する場合に、前記複数の排気弁のうちの一部の排気弁を閉状態で停止させることを特徴とする請求項1記載の装置。
PCT/JP2010/007149 2010-12-08 2010-12-08 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 WO2012077164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/319,613 US8417438B2 (en) 2010-12-08 2010-12-08 Apparatus for detecting air-fuel ratio dispersion abnormality between cylinders of multiple-cylinder internal combustion engine
JP2011525345A JP5067509B2 (ja) 2010-12-08 2010-12-08 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
PCT/JP2010/007149 WO2012077164A1 (ja) 2010-12-08 2010-12-08 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
CN201080020459.8A CN103228892B (zh) 2010-12-08 2010-12-08 多气缸内燃机的气缸间空燃比偏差异常检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007149 WO2012077164A1 (ja) 2010-12-08 2010-12-08 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Publications (1)

Publication Number Publication Date
WO2012077164A1 true WO2012077164A1 (ja) 2012-06-14

Family

ID=46206686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007149 WO2012077164A1 (ja) 2010-12-08 2010-12-08 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Country Status (4)

Country Link
US (1) US8417438B2 (ja)
JP (1) JP5067509B2 (ja)
CN (1) CN103228892B (ja)
WO (1) WO2012077164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202163A (ja) * 2013-04-08 2014-10-27 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置
US10006382B2 (en) 2013-02-04 2018-06-26 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469059B1 (en) * 2009-12-22 2018-07-11 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2011185159A (ja) * 2010-03-09 2011-09-22 Denso Corp 過給機付き内燃機関の異常診断装置
US9103270B2 (en) * 2011-03-16 2015-08-11 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10385794B2 (en) 2015-09-24 2019-08-20 Ai Alpine Us Bidco Inc. Method and engine controller for diagnosing waste gate valve malfunction and related power generation system
DE102017214448B4 (de) 2017-08-18 2022-10-06 Vitesco Technologies GmbH Verfahren zum Betreiben einer Abgasnachbehandlungsanlage eines einen Vor-Dreiwegekatalysator aufweisenden Verbrennungsmotors und Abgasnachbehandlungsanlage
JP6484314B1 (ja) * 2017-09-28 2019-03-13 株式会社Subaru エンジン制御装置
JP6531222B1 (ja) * 2017-12-27 2019-06-12 三菱重工エンジン&ターボチャージャ株式会社 エンジン異常検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023865A (ja) * 2003-07-03 2005-01-27 Honda Motor Co Ltd 内燃機関の吸入空気量制御装置
JP2009128273A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 空燃比センサ及び内燃機関の制御装置
JP2009209747A (ja) * 2008-03-03 2009-09-17 Toyota Motor Corp 空燃比センサの異常診断装置
JP2010024977A (ja) * 2008-07-18 2010-02-04 Hitachi Ltd 内燃機関の診断制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242637A (ja) 2001-02-15 2002-08-28 Toyota Motor Corp 蓄熱装置を備えた内燃機関
JP4188158B2 (ja) * 2003-07-03 2008-11-26 本田技研工業株式会社 内燃機関の制御装置
JP2008095542A (ja) * 2006-10-06 2008-04-24 Toyota Motor Corp 内燃機関の制御装置
JP4375387B2 (ja) * 2006-11-10 2009-12-02 トヨタ自動車株式会社 内燃機関
JP2008208740A (ja) 2007-02-23 2008-09-11 Toyota Motor Corp 過給機付き内燃機関の空燃比制御装置
US8640458B2 (en) * 2009-10-28 2014-02-04 Eaton Corporation Control strategy for an engine
US8091359B2 (en) * 2010-06-03 2012-01-10 Ford Global Technologies, Llc Exhaust heat recovery for engine heating and exhaust cooling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023865A (ja) * 2003-07-03 2005-01-27 Honda Motor Co Ltd 内燃機関の吸入空気量制御装置
JP2009128273A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 空燃比センサ及び内燃機関の制御装置
JP2009209747A (ja) * 2008-03-03 2009-09-17 Toyota Motor Corp 空燃比センサの異常診断装置
JP2010024977A (ja) * 2008-07-18 2010-02-04 Hitachi Ltd 内燃機関の診断制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006382B2 (en) 2013-02-04 2018-06-26 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
JP2014202163A (ja) * 2013-04-08 2014-10-27 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置

Also Published As

Publication number Publication date
US20120185157A1 (en) 2012-07-19
US8417438B2 (en) 2013-04-09
JPWO2012077164A1 (ja) 2014-05-19
CN103228892B (zh) 2014-09-03
JP5067509B2 (ja) 2012-11-07
CN103228892A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
JP5348190B2 (ja) 内燃機関の制御装置
US9043121B2 (en) Air-fuel ratio variation abnormality detecting device and air-fuel ratio variation abnormality detecting method
US8949001B2 (en) Control apparatus and control method for internal combustion engine
US20110219861A1 (en) Abnormality diagnostic device of internal combustion engine with turbocharger
US10006382B2 (en) Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
US9027535B2 (en) Control apparatus for internal combustion engine
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
US20110231084A1 (en) Rotational fluctuation malfunction detection device and rotational fluctuation malfunction detection method for internal combustion engine
US9026341B2 (en) Apparatus for and method of detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
US8620564B2 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
JP2014013032A (ja) 気筒間空燃比ばらつき異常検出装置
JP5999008B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JP2012137050A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP6160035B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US20120116644A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine
JP2014152761A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2022083541A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011525345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13319613

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860540

Country of ref document: EP

Kind code of ref document: A1