JP4775058B2 - Centrifugal force forming concrete composition and method for producing the same - Google Patents

Centrifugal force forming concrete composition and method for producing the same Download PDF

Info

Publication number
JP4775058B2
JP4775058B2 JP2006082144A JP2006082144A JP4775058B2 JP 4775058 B2 JP4775058 B2 JP 4775058B2 JP 2006082144 A JP2006082144 A JP 2006082144A JP 2006082144 A JP2006082144 A JP 2006082144A JP 4775058 B2 JP4775058 B2 JP 4775058B2
Authority
JP
Japan
Prior art keywords
strength
mass
centrifugal force
admixture
concrete composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082144A
Other languages
Japanese (ja)
Other versions
JP2007254221A (en
Inventor
信行 松嶋
浩司 玉滝
利勝 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006082144A priority Critical patent/JP4775058B2/en
Publication of JP2007254221A publication Critical patent/JP2007254221A/en
Application granted granted Critical
Publication of JP4775058B2 publication Critical patent/JP4775058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/05Materials having an early high strength, e.g. allowing fast demoulding or formless casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、遠心力を利用して製造するパイル、ポール、ヒューム管等のコンクリート成形用に適したコンクリート組成物及びそれを使用するコンクリート二次製品の製造方法に関する。特に、特殊な骨材や繊維補強材等を使用することなく、蒸気養生及びその後の気中養生後に130N/mm以上の極めて高い強度を有する遠心力成形用コンクリート組成物に関する。 The present invention relates to a concrete composition suitable for concrete forming such as piles, poles, and fume pipes manufactured using centrifugal force, and a method for manufacturing a concrete secondary product using the same. In particular, the present invention relates to a centrifugal molding concrete composition having an extremely high strength of 130 N / mm 2 or more after steam curing and subsequent air curing without using special aggregates or fiber reinforcements.

従来、パイル、ポール又はヒューム管等の円柱形又は円筒形のコンクリート二次製品の製造には遠心力を利用した成形方法が一般に採用されている。この方法では、鉄筋を配した型枠中にコンクリートを打設して遠心力成形し、常温で所定時間前養生を行ったのち常圧で蒸気養生を行い、冷却後脱型し、数週間気中養生して出荷される。   Conventionally, a forming method using centrifugal force is generally employed for manufacturing a columnar or cylindrical concrete secondary product such as a pile, a pole, or a fume tube. In this method, concrete is placed in a formwork with reinforcing bars and molded by centrifugal force, precured at room temperature for a predetermined time, then steam-cured at normal pressure, demolded after cooling, and aired for several weeks. Shipped with medium curing.

最近、コンクリートパイルをはじめとするコンクリート二次製品には、支持力がより高いものが求められる傾向にある。このような要求を満たすために、使用する材料、コンクリートの配合、遠心力成形条件、前養生条件、さらには常圧蒸気養生条件や高温高圧養生の付加等によって最適化する手法がとられているが、必ずしも安定した高強度硬化体を得るには至っていないのが現状である。ちなみに、通常のコンクリート材料を使用した場合、遠心力成形用コンクリート組成物の設計基準強度(圧縮強度)130N/mm以上のような高強度領域は、技術的にも限界に近く、その高強度を確保することが極めて難しいとされている(特許文献1〜3)。
特許第2887561号 特許第2865567号 特開2005−179149号
Recently, concrete secondary products such as concrete piles tend to be required to have higher support. In order to satisfy these requirements, methods are used to optimize the materials used, the mix of concrete, centrifugal molding conditions, pre-curing conditions, and the addition of atmospheric steam curing conditions and high-temperature high-pressure curing. However, the present situation is that the stable high-strength cured body has not necessarily been obtained. Incidentally, when using ordinary concrete material, the high intensity regions such as the design strength (compressive strength) 130N / mm 2 or more centrifugal molding concrete composition is close to a limit to technical, its high strength It is said that it is extremely difficult to ensure (Patent Documents 1 to 3).
Japanese Patent No. 2887561 Japanese Patent No. 2865567 JP-A-2005-179149

このように、従来、遠心力成形コンクリート硬化体では、設計基準強度(圧縮強度)130N/mm以上を満たすことが困難であったことに鑑み、本発明は、遠心力成形用製品において、コンクリートの蒸気養生後の脱型圧縮強度が115N/mm以上、その後の気中養生後(1〜2週間後)で130N/mm以上の高強度化を実現する遠心力成形用コンクリート組成物を提供することを目的とする。 As described above, in view of the fact that it has been difficult to satisfy the design standard strength (compressive strength) of 130 N / mm 2 or more in the conventional centrifugally molded concrete cured body, A concrete composition for forming a centrifugal force that has a demolding compressive strength after steam curing of 115 N / mm 2 or more and a high strength of 130 N / mm 2 or more after subsequent air curing (after 1 to 2 weeks). The purpose is to provide.

本発明はまた、コンクリート材料、配合、練混ぜ、型枠への充填、遠心力成形、前養生及び蒸気養生の最適条件を明らかにして、上記のような高強度の遠心力成形用製品を製造する方法を提供することを目的とする。   The present invention also clarifies the optimum conditions of concrete material, blending, kneading, filling into molds, centrifugal force forming, pre-curing and steam curing, and manufacturing the above-described high-strength centrifugal force forming products. It aims to provide a way to do.

本発明者らは、遠心力成形用製品の高強度化を実現するために鋭意検討した結果、早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、早強ポルトランドセメント中の半水石膏割合が20〜80質量%であり、高強度混和材は無水石膏と非晶質シリカとを含み、該高強度混和材中の無水石膏/非晶質シリカの質量比が15/85〜80/20であり、分散剤がポリカルボン酸系分散剤である、高強度遠心力成形用コンクリート組成物を発明するに至った。   As a result of intensive studies to achieve high strength of centrifugal force molding products, the present inventors have found that high strength centrifugal force molding containing early strength Portland cement, high strength admixture, dispersant, aggregate and water. The ratio of hemihydrate gypsum in the early-strength Portland cement is 20 to 80% by mass, and the high-strength admixture contains anhydrous gypsum and amorphous silica. The inventors have invented a high-strength centrifugal molding concrete composition in which the mass ratio of gypsum / amorphous silica is 15/85 to 80/20 and the dispersant is a polycarboxylic acid-based dispersant.

本発明の高強度遠心力成形用コンクリート組成物は、高強度混和材中の非晶質シリカがシリカフュームであり、高強度混和材が、無水石膏とシリカフュームとを混合粉砕したものがより好ましい。さらに、早強ポルトランドセメント100質量部に対して、高強度混和材を5〜20質量部及び水溶液タイプの分散剤を水溶液基準で1.0〜2.0質量部含有し、早強ポルトランドセメントの単位セメント量が500〜600kg/m 、水/(セメント+高強度混和材)質量比が18〜24%である。また、早強ポルトランドセメント100質量部に対して、高強度混和材を8〜15質量部含有することがより好ましい。これにより、コンクリート組成物の水/(セメント+高強度混和材)質量比(以下、W/(C+A)又は水/結合材比と呼称)は十分な遠心力成形性を確保することができる。 High strength centrifugal molding concrete composition of the present invention, the amorphous silica in a high strength admixture is Ri Ah with silica fume, high strength admixture is, it is more preferable that mixing and grinding the anhydrite and silica fume. Furthermore, 5 to 20 parts by mass of a high-strength admixture and 1.0 to 2.0 parts by mass of an aqueous solution type dispersant are added to 100 parts by mass of early-strength Portland cement. unit cement content is 500~600kg / m 3, water / (cement + high strength admixture) mass ratio of Ru 18-24% der. Moreover, it is more preferable to contain 8-15 mass parts of high strength admixtures with respect to 100 mass parts of early strong Portland cement. Thereby, the water / (cement + high-strength admixture) mass ratio of the concrete composition (hereinafter referred to as W / (C + A) or water / binder ratio) can ensure sufficient centrifugal force formability.

本発明はさらに、上記の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生してなる、高強度遠心力成形コンクリート硬化体を提供する。 The present invention is further mixed with the above-mentioned high-strength centrifugal force molding concrete composition, filled into a cylindrical formwork with reinforcing bars, and then subjected to centrifugal force molding, precured, then steam cured and then demolded, Thereafter, a high-strength centrifugal force- molded concrete cured body obtained by curing in the air is provided.

以下に本発明を詳細に説明する。
先ず、コンクリート組成物に使用する材料の好ましい特性は下記のとおりである。
The present invention is described in detail below.
First, the preferable characteristic of the material used for a concrete composition is as follows.

本発明の高強度遠心力成形用コンクリート組成物に使用するセメントは、早強ポルトランドセメントであり、半水石膏割合は20〜80質量%である。早強ポルトランドセメント中の半水石膏量は、遠心力成形性(締固め、均質性(内面での波打ち抑制)、ノロ(泥状物)の発生抑制)及び蒸気養生後の強度発現性に極めて重要な役割を果たすため、セメント中の二水石膏と半水石膏との合量に対する半水石膏量の質量比は、上記の20〜80質量%の範囲にあることが重要な必須要件の一つである。早強ポルトランドセメントの水硬率(H.M.)は2.20〜2.30、より好ましくは2.23〜2.28、セメント中のSO量は2.5〜3.5質量%、より好ましくは2.8〜3.1質量%のものを使用することができる。また、早強ポルトランドセメントの粒度は特に限定されるものではなく、粉末度(ブレーン比表面積)が4200〜4800cm/g、エアジェットシーブによる32μm篩残分が3.0〜8.0質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))による体積含有率が50%通過径6〜16μm、より好ましくは8〜12μm、90%通過径/10%通過経比が5〜15、Rosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.15〜1.35のものであれば、良好に使用することができる。 The cement used for the concrete composition for high-strength centrifugal force molding of the present invention is early-strength Portland cement, and the ratio of hemihydrate gypsum is 20 to 80% by mass. The amount of hemihydrate gypsum in early-strength Portland cement is extremely high in centrifugal formability (consolidation, homogeneity (inhibition of undulations on the inner surface), noro (mud)), and strength development after steam curing. In order to play an important role, it is important that the mass ratio of the amount of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum in the cement is in the range of 20 to 80% by mass. One. The hydraulic strength (HM) of early strong Portland cement is 2.20 to 2.30, more preferably 2.23 to 2.28, and the amount of SO 3 in the cement is 2.5 to 3.5% by mass. More preferably, 2.8 to 3.1% by mass can be used. Further, the particle size of the early strong Portland cement is not particularly limited, the fineness (Brain specific surface area) is 4200 to 4800 cm 2 / g, and the 32 μm sieve residue by air jet sieve is 3.0 to 8.0 mass%. The volume content measured by a laser diffraction particle size distribution measuring device (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) is 50% passage diameter 6-16 μm, more preferably 8-12 μm, 90% passage diameter / 10. % Pass through ratio is 5 to 15 and n value (equivalent particle size distribution, particle size target range 4 to 32 μm) in the Rosin-Rammler diagram is 1.15 to 1.35. Can do.

本発明の高強度遠心力成形用コンクリート組成物に使用する高強度混和材は、高強度遠心力成形用製品の製造に不可欠な材料の一つであり、無水石膏と非晶質シリカとを含むものである。非晶質シリカとしては、シリカフュームや微粉フライアッシュ(平均粒径10μm以下)等が使用でき、特にシリカ含有率が90質量%以上のシリカフュームがより好ましく、その一次粒子が凝集又は焼結されることによって形成された二次粒子が十分解砕・分散されていることが好ましい。これを実現するための方法として、無水石膏とシリカフュームとを混合粉砕することも有効である。高強度混和材中の無水石膏及び非晶質シリカの好ましい含有割合(無水石膏/非晶質シリカ質量比)は15/85〜80/20、より好ましくは20/80〜60/40である。高強度混和材の粉末度(ブレーン比表面積)は、構成成分の割合あるいは特に非晶質シリカ粒子の分散状態によって影響されるが、より好ましい配合割合においては、概ね4000〜15000cm/gの範囲となる。また、高強度混和材は上記のようにより好ましくは無水石膏と非晶質シリカとを混合粉砕した混合物を使用するが、蒸気養生用混和材として一般に市販されているものも好適に使用することができる。この例としては、デンカΣ1000、デンカΣ2000(電気化学工業(株)製)、ノンクレーブ、スーパーノンクレーブ(住友大阪セメント(株)製)、ダイミックス(昭和鉱業(株)製)、太平洋ウルトラスーパーミックス(太平洋マテリアル(株)製)等を挙げることができる。これらの中で、デンカΣ2000、スーパーノンクレーブ、ダイミックスをより好ましく使用できる。 The high-strength admixture used in the high-strength centrifugal force molding concrete composition of the present invention is one of the indispensable materials for producing a high-strength centrifugal force-forming product, and contains anhydrous gypsum and amorphous silica. It is a waste. As the amorphous silica, silica fume, fine powder fly ash (average particle size of 10 μm or less) and the like can be used. In particular, silica fume having a silica content of 90% by mass or more is more preferable, and the primary particles are aggregated or sintered. It is preferable that the secondary particles formed by the above are sufficiently crushed and dispersed. As a method for realizing this, it is also effective to pulverize anhydrous gypsum and silica fume. The preferable content ratio (anhydrous gypsum / amorphous silica mass ratio) of anhydrous gypsum and amorphous silica in the high-strength admixture is 15/85 to 80/20, more preferably 20/80 to 60/40. Fineness of the high strength admixture (Blaine specific surface area) is being affected by the dispersion state of the proportions of the constituents or in particular amorphous silica particles, in a more preferred blending ratio, generally range from 4000~15000cm 2 / g It becomes. Further, the high-strength admixture is preferably a mixture obtained by mixing and crushing anhydrous gypsum and amorphous silica as described above. However, a commercially available admixture for steam curing can be suitably used. it can. Examples of this include Denka Σ1000, Denka Σ2000 (manufactured by Denki Kagaku Kogyo Co., Ltd.), nonclave, super nonclave (manufactured by Sumitomo Osaka Cement Co., Ltd.), die mix (manufactured by Showa Mining Co., Ltd.), Taiheiyo Ultra Supermix (Manufactured by Taiheiyo Material Co., Ltd.). Among these, Denka Σ2000, super nonclave, and die mix can be used more preferably.

本発明の高強度遠心力成形用コンクリート組成物に使用する分散剤は、ポリアルキレン側鎖(通常、−O(CHCHO)n−)を有するポリカルボン酸系分散剤である。この例としては、メタクリル酸系共重合物やメタクリル酸系多元共重合物、マレイン酸系共重合物等が挙げられる。この種の分散剤は、コンクリート用高性能減水剤として多種のものが市販されており、主成分である上記のポリカルボン酸系成分の分子量分布、官能基(ポリカルボキシル及びポリアルキレン)の質量割合等に工夫がなされている他、複数の機能を付加させるために、第二、第三、第四成分が一般に添加されている。形態としては、粉末状又は水溶液タイプのもののいずれも使用できるが、扱いやすさから後者(水溶液)の使用がより好ましい。水溶液中の固形分含有量(溶質含有量)は約25〜45質量%の範囲のものが多い。分散剤の水分量は、コンクリート配合設計上、練り混ぜ水に加算するので、その使用に際しては水分量を予め求めておく必要がある。分散剤の市場品の具体例としては、マイティ21WH(花王(株)製)、レオビルド8000H(ポゾリス物産(株)製)、チューポールNV−G5(竹本油脂(株)製)、フローリックVP−700((株)フローリック製)、シーカメント2200(日本シーカ(株))等を挙げることができる。 Dispersing agent used for high-strength centrifugal force molding concrete composition of the present invention is a polycarboxylic acid dispersant having a polyalkylene side chains (typically, -O (CH 2 CH 2 O ) n-). Examples of this include a methacrylic acid copolymer, a methacrylic acid multi-component copolymer, and a maleic acid copolymer. This type of dispersant is commercially available as a high-performance water reducing agent for concrete, the molecular weight distribution of the above-mentioned polycarboxylic acid component as the main component, the mass ratio of functional groups (polycarboxyl and polyalkylene) In order to add a plurality of functions, second, third, and fourth components are generally added. As the form, either powdered or aqueous solution type can be used, but the latter (aqueous solution) is more preferable from the viewpoint of ease of handling. The solid content (solute content) in the aqueous solution is often in the range of about 25 to 45% by mass. Since the water content of the dispersant is added to the kneaded water in the concrete blending design, it is necessary to obtain the water content in advance for its use. Specific examples of marketed dispersants include Mighty 21WH (manufactured by Kao Corporation), Leo Build 8000H (manufactured by Pozoris Bussan Co., Ltd.), Tupole NV-G5 (manufactured by Takemoto Yushi Co., Ltd.), Floric VP- 700 (manufactured by Floric Co., Ltd.), Seakament 2200 (Nihon Seika Co., Ltd.), and the like.

本発明の高強度遠心力成形用コンクリート組成物に使用する骨材は、種類は特に限定されず、通常、遠心力成形用製品に使用されているものを使用することができる。粗骨材の最大寸法は、より好ましくは15mmのものを使用し、細骨材率(s/a)は30〜45質量%の範囲から選択される。   The type of the aggregate used in the high-strength centrifugal force molding concrete composition of the present invention is not particularly limited, and those usually used in centrifugal force molding products can be used. The maximum size of the coarse aggregate is more preferably 15 mm, and the fine aggregate rate (s / a) is selected from the range of 30 to 45% by mass.

次に、本発明の高強度遠心力成形用コンクリート組成物におけるコンクリート配合は以下のとおりである。早強ポルトランドセメントの単位量は500〜600kg/mであることが好ましい。500kg/m未満では十分な強度が得られず、600kg/mを超えると水セメント比は小さくできるが、骨材間間隙に対するセメントペーストの容積比が過大となって遠心成形による締め固めが不充分となり、結果として高強度を得ることができない。 Next, the concrete composition in the high strength centrifugal molding concrete composition of the present invention is as follows. The unit amount of early strong Portland cement is preferably 500 to 600 kg / m 3 . If it is less than 500 kg / m 3 , sufficient strength cannot be obtained, and if it exceeds 600 kg / m 3 , the water-cement ratio can be reduced. However, the volume ratio of the cement paste to the gap between the aggregates becomes excessive, and compaction by centrifugal molding is not possible. As a result, high strength cannot be obtained.

高強度混和材は、早強ポルトランドセメント100質量部に対して、5〜20質量部が好ましく、8〜15質量部がより好ましい。高強度混和材の含有量が5質量部未満では強度向上効果が期待できず、20質量部を越えると、遠心力成形性が低下し、強度が低下する場合もあり好ましくない。   The high-strength admixture is preferably 5 to 20 parts by mass and more preferably 8 to 15 parts by mass with respect to 100 parts by mass of the early strong Portland cement. If the content of the high-strength admixture is less than 5 parts by mass, an effect of improving the strength cannot be expected, and if it exceeds 20 parts by mass, the centrifugal force moldability is lowered and the strength may be lowered.

ポリカルボン酸系の分散剤は、早強ポルトランドセメント100質量部に対して、水溶液基準で1.0〜2.0質量部が好ましく、経済性をも踏まえると1.2〜1.6質量部がより好ましい。すなわち、分散剤が水溶液基準で1.0質量部未満では減水性が不十分で、2.0質量部を超えて添加してもその増量分に見合う程の大きな減水効果が得られ難いため不経済となる。   The polycarboxylic acid-based dispersant is preferably 1.0 to 2.0 parts by mass on the basis of an aqueous solution with respect to 100 parts by mass of early strong Portland cement, and 1.2 to 1.6 parts by mass in consideration of economy. Is more preferable. That is, if the dispersant is less than 1.0 part by mass based on the aqueous solution, water reduction is insufficient, and even if added in excess of 2.0 parts by mass, it is difficult to obtain a large water reduction effect commensurate with the increased amount. It becomes economy.

また、本発明の遠心力成形用コンクリート組成物の高強度化は、高強度混和材と分散剤との間の相互作用が起こるなかで達せられるものであり、これらの混和材(剤)は単に多ければ良いというものでなく、適正添加量が存在する。   Further, the high strength of the centrifugal force-forming concrete composition of the present invention can be achieved while the interaction between the high-strength admixture and the dispersant occurs, and these admixtures (agents) are simply used. It is not a good thing if there is much, but there exists a proper addition amount.

水/(セメント+高強度混和材)、すなわち水/結合材の適正質量比は、使用する各種コンクリート材料及び単位量(配合)によっても変化するが、18〜24質量%の範囲が好ましい。18質量%未満ではコンクリートの粘性が上がり、ハンドリング性が悪化するとともに、硬すぎて型枠への投入が困難となり、また、24質量%を超えるとコンクリートが流動化し遠心力による締固めが不十分となり、高強度が得られ難くなるため好ましくない。   The appropriate mass ratio of water / (cement + high-strength admixture), that is, water / binder, varies depending on the various concrete materials used and the unit amount (formulation), but is preferably in the range of 18 to 24 mass%. If it is less than 18% by mass, the viscosity of the concrete will be increased, the handling property will be deteriorated, and it will be too hard to be put into the mold, and if it exceeds 24% by mass, the concrete will be fluidized and insufficiently compacted by centrifugal force. Therefore, it is difficult to obtain high strength, which is not preferable.

なお、遠心力成形で高強度の鋼管パイルを製造する場合には、上記のコンクリート配合として、高強度混和材に加えて膨張材を併用するのが好ましい。膨張材はアウィン−石灰−石膏系又は石灰−石膏系のものであり、セメント100質量部に対し、膨張材と高強度混和材との合量を基準に20質量部以内で使用するのが好ましい。この場合、膨張材としては、市販のデンカCSA20(電気化学工業(株)製)、太平洋エクスパン又は太平洋ジプカル(太平洋マテリアル(株))等が使用でき、この膨張材単体分の配合量は概ね5〜8質量部が好ましい。 In addition, when manufacturing a high intensity | strength steel pipe pile by centrifugal force shaping | molding, it is preferable to use an expansion material together with a high intensity | strength admixture as said concrete mixing | blending. The expansion material is of Awin-lime-gypsum system or lime-gypsum system, and is preferably used within 20 parts by mass based on the total amount of the expansion material and the high-strength admixture with respect to 100 parts by mass of cement. . In this case, as the expansion material, commercially available Denka CSA # 20 (manufactured by Denki Kagaku Kogyo Co., Ltd.), Taiheiyo Expan or Taiheiyo Gypcal (Pacific Material Co., Ltd.) can be used. Approximately 5 to 8 parts by mass is preferable.

コンクリート使用材料の投入順序、使用するミキサ、練混ぜ時間等は特に限定されず、遠心力成形用製品の製造で通常行われている条件を採用することができる。練混ぜられた適正なコンクリートの流動性は、スランプで10cm以下、好ましくは1〜4cm、鋼管パイルでは6〜12cm程度である。このコンクリートは、配筋された型枠内に打設し、1〜4G、5〜14G、15〜20G、20G以上等、コンクリートの型枠軸方向での均質化、型枠内面への貼り付け、粗骨材の型枠内面方向への濃集と締固めを行い、それぞれの遠心力付加時間は1〜5分間の範囲で選択される。   There are no particular limitations on the order in which the concrete materials are used, the mixer to be used, the kneading time, etc., and the conditions normally used in the production of centrifugal force forming products can be employed. The fluidity of the proper mixed concrete is 10 cm or less, preferably 1 to 4 cm with slump, and about 6 to 12 cm with steel pipe pile. This concrete is placed in the arranged formwork, homogenized in the axial direction of the concrete, such as 1-4G, 5-14G, 15-20G, 20G or more, and attached to the inner surface of the formwork The coarse aggregate is concentrated and compacted in the direction of the inner surface of the mold, and the respective centrifugal force application time is selected in the range of 1 to 5 minutes.

遠心力成形された成形体は、常温、例えば、5〜35℃の温度範囲で4〜6時間前養生を行ったのち、蒸気養生を行う。蒸気養生は15〜22℃/hの昇温速度で最高温度60〜100℃、好ましくは70〜90℃まで昇温し、最高温度で3〜6時間保持したのち、8〜12時間かけて冷却する。冷却後脱型し、1週間以上気中で養生を行う。   The molded body formed by centrifugal force is precured for 4 to 6 hours at room temperature, for example, a temperature range of 5 to 35 ° C., and then steam-cured. Steam curing is performed at a temperature rising rate of 15 to 22 ° C./h, a maximum temperature of 60 to 100 ° C., preferably 70 to 90 ° C., held at the maximum temperature for 3 to 6 hours, and then cooled for 8 to 12 hours. To do. After cooling, the mold is removed, and curing is performed in the air for one week or longer.

[発明の効果]
本発明の遠心力成形用製品の製造方法により、設計基準強度130N/mm以上の高強度遠心力成形用製品が製造できる。このため、杭の場合では支持力を大きく取ることができるので、施工本数が低減でき、経済的であるという効果を奏する。また、高強度遠心力成形用コンクリート組成物は組織が緻密になることから、耐久性の向上に貢献するという効果も奏する。
[The invention's effect]
According to the method for producing a centrifugal force molding product of the present invention, a high strength centrifugal force molding product having a design standard strength of 130 N / mm 2 or more can be produced. For this reason, in the case of a pile, since a supporting force can be taken largely, the number of construction can be reduced and there exists an effect that it is economical. Moreover, since the structure of the high-strength centrifugal force forming concrete composition becomes dense, it also has an effect of contributing to improvement in durability.

[使用材料]
[1]早強ポルトランドセメント(C):
早強ポルトランドセメントは、水硬率(H.M.)、セメント中のSO量、半水石膏割合、粉末度(ブレーン比表面積)、エアジェットシーブ32μm篩残分、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))によるRosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)がそれぞれ異なる、以下の5種類を使用した。
[Materials used]
[1] Early strong Portland cement (C):
Early strength Portland cement has hydraulic modulus (HM), SO 3 amount in cement, hemihydrate gypsum ratio, fineness (Brain specific surface area), air jet sieve 32 μm sieve residue, laser diffraction particle size distribution measurement The following five types are used, each with different n values (particle size distribution uniform number, particle size target range: 4 to 32 μm) in the Rosin-Rammler diagram using a device (manufactured by Seishin Corporation, LMS-30 (Laser Micro Sizer)) did.

早強ポルトランドセメント(1):水硬率(H.M.)2.24、SO量2.80質量%、半水石膏割合5質量%、ブレーン比表面積4520cm/g、32μm篩残分6.6質量%、Rosin−Rammler線図n値1.28
早強ポルトランドセメント(2):水硬率(H.M.)2.28、SO量3.11質量%、半水石膏割合20質量%、ブレーン比表面積4640cm/g、32μm篩残分7.7質量%、Rosin−Rammler線図n値1.16
早強ポルトランドセメント(3):水硬率(H.M.)2.25、SO量2.98質量%、半水石膏割合51質量%、ブレーン比表面積4580cm/g、32μm篩残分6.9質量%、Rosin−Rammler線図n値1.23
早強ポルトランドセメント(4):水硬率(H.M.)2.23、SO量2.92質量%、半水石膏割合80質量%、ブレーン比表面積4450cm/g、32μm篩残分5.1質量%、Rosin−Rammler線図n値1.35
早強ポルトランドセメント(5):水硬率(H.M.)2.26、SO量3.01質量%、半水石膏割合95質量%、ブレーン比表面積4520cm/g、32μm篩残分6.5質量%、Rosin−Rammler線図n値1.24
Early strength Portland cement (1): hydraulic modulus (HM) 2.24, SO 3 amount 2.80% by mass, hemihydrate gypsum ratio 5% by mass, Blaine specific surface area 4520 cm 2 / g, 32 μm sieve residue 6.6 mass%, Rosin-Rammler diagram n value 1.28
Early strong Portland cement (2): Hydraulic modulus (HM) 2.28, SO 3 amount 3.11% by mass, hemihydrate gypsum ratio 20% by mass, Blaine specific surface area 4640 cm 2 / g, 32 μm sieve residue 7.7 mass%, Rosin-Rammler diagram n value 1.16
Early strength Portland cement (3): Hydraulic modulus (HM) 2.25, SO 3 amount 2.98% by mass, hemihydrate gypsum ratio 51% by mass, Blaine specific surface area 4580 cm 2 / g, 32 μm sieve residue 6.9 mass%, Rosin-Rammler diagram n value 1.23
Early strength Portland cement (4): hydraulic modulus (HM) 2.23, SO 3 amount 2.92% by mass, hemihydrate gypsum ratio 80% by mass, Blaine specific surface area 4450 cm 2 / g, 32 μm sieve residue 5.1 mass%, Rosin-Rammler diagram n value 1.35
Early strength Portland cement (5): hydraulic modulus (HM) 2.26, SO 3 amount 3.01% by mass, hemihydrate gypsum ratio 95% by mass, Blaine specific surface area 4520 cm 2 / g, 32 μm sieve residue 6.5 mass%, Rosin-Rammler diagram n value 1.24

なお、半水石膏割合は、以下の方法より求めた。   In addition, the hemihydrate gypsum ratio was calculated | required with the following method.

まず、半水石膏量及び二水石膏量を、示差熱重量分析(TG−DTA)によって定量した。具体的には、示差熱熱重量分析装置TG−DTA6200(セイコーインスツルメンツ(株)製)を用いて、直径20μmの孔を有する容量30μLのセル(アルミ製)に、試料を約30mg入れ、昇温速度5℃/minで室温から200℃まで昇温した。図1に示すように、二水石膏の脱水に伴う125〜160℃の減量(a質量%)と、半水石膏の脱水に伴う160〜210℃の減量(b質量%)とを測定し、式(1)及び式(2)を用いて、セメント組成物中の二水石膏量(質量%)及び半水石膏量(質量%)を算出した。これらより、半水石膏の割合(質量%)は式(3)を用いて算出した。なお、リファレンスとして、アルミ板を用いた。   First, the amount of hemihydrate gypsum and the amount of dihydrate gypsum were quantified by differential thermogravimetric analysis (TG-DTA). Specifically, using a differential thermothermal gravimetric analyzer TG-DTA6200 (manufactured by Seiko Instruments Inc.), about 30 mg of the sample is put into a cell (made of aluminum) having a hole of 20 μm in diameter and having a capacity of 30 μL. The temperature was raised from room temperature to 200 ° C. at a rate of 5 ° C./min. As shown in FIG. 1, the weight loss (a mass%) of 125 to 160 ° C. accompanying dehydration of dihydrate gypsum and the weight loss (b mass%) of 160 to 210 ° C. associated with dehydration of hemihydrate gypsum are measured. Using formula (1) and formula (2), the amount of dihydrate gypsum (mass%) and the amount of hemihydrate gypsum (mass%) in the cement composition were calculated. From these, the ratio (mass%) of hemihydrate gypsum was computed using Formula (3). An aluminum plate was used as a reference.

二水石膏量(質量%)=減量a(質量%)×172(二水石膏の分子量)÷(1.5×18(HOの分子量)) (1)
半水石膏量(質量%)=(減量b(質量%)−減量a(質量%)÷3)×145(半水石膏の分子量)÷(0.5×18(HOの分子量)) (2)
半水石膏割合(質量%)=半水石膏量÷(半水石膏量+二水石膏量)×100 (3)
Dihydrate gypsum amount (mass%) = weight loss a (mass%) × 172 (molecular weight of dihydrate gypsum) ÷ (1.5 × 18 (molecular weight of H 2 O)) (1)
Hemihydrate gypsum amount (mass%) = (weight loss b (mass%) − weight loss a (mass%) ÷ 3) × 145 (molecular weight of hemihydrate gypsum) ÷ (0.5 × 18 (molecular weight of H 2 O)) (2)
Hemihydrate gypsum ratio (mass%) = hemihydrate gypsum amount ÷ (semihydrate gypsum amount + dihydrate gypsum amount) x 100 (3)

[2]高強度混和材(A):
調製品:II型無水石膏粉末(フッ酸無水石膏)とシリカフューム(エルケム社製)との配合割合(石膏/シリカフューム質量比)を、10/90、20/80、30/70、65/35、80/20、95/5に変え、試験ボールミル(Φ30×30cm)によりブレーン比表面積が5500〜11000cm/gになるように混合粉砕した。また、無水石膏/シリカフュームの質量比が20/80については、混合粉砕することなく、無水石膏粉末とシリカフュームとをV型混合機で単に混合したものも使用した。
[2] High strength admixture (A):
Preparation: Type II anhydrous gypsum powder (hydrofluoric acid anhydrous gypsum) and silica fume (manufactured by Elchem Co.) were mixed at a ratio of gypsum / silica fume mass ratio of 10/90, 20/80, 30/70, 65/35, It changed into 80/20 and 95/5, and mixed and pulverized by a test ball mill (Φ30 × 30 cm) so that the specific surface area of the brain was 5500 to 11000 cm 2 / g. Further, when the mass ratio of anhydrous gypsum / silica fume was 20/80, a mixture obtained by simply mixing anhydrous gypsum powder and silica fume with a V-type mixer was used without mixing and grinding.

また、市販品として、デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製)、ダイミックス(無水石膏/非晶質シリカ質量比:60/40、昭和鉱業(株)製)、スーパーノンクレーブ(無水石膏/非晶質シリカ質量比:50/50、住友大阪セメント(株)製)、デンカΣ1000(無水石膏/非晶質シリカ質量比:71/17、電気化学工業(株)製)、ノンクレーブ(無水石膏/非晶質シリカ質量比:98/1、住友大阪セメント(株)製)を使用した。なお、記載した無水石膏/非晶質シリカ質量比は、JIS M8852:1998「セラミック用高シリカ質原料の化学分析方法」に準じて、SO及びSiOを定量し、SO量をCaSO(無水石膏)に換算、またSiO量は全て非晶質シリカ量とみなした。 As commercial products, Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo Co., Ltd.), Dymix (anhydrous gypsum / amorphous silica mass ratio: 60/40, Showa Mining Co., Ltd.), Super Nonclave (anhydrous gypsum / amorphous silica mass ratio: 50/50, manufactured by Sumitomo Osaka Cement Co., Ltd.), Denka Σ1000 (anhydrous gypsum / amorphous silica mass ratio: 71/17) Non-clave (anhydrous gypsum / amorphous silica mass ratio: 98/1, manufactured by Sumitomo Osaka Cement Co., Ltd.) was used. The mass ratio of anhydrous gypsum / amorphous silica described was determined according to JIS M8852: 1998 “Chemical analysis method of high siliceous raw material for ceramics”, and SO 3 and SiO 2 were quantified, and the amount of SO 3 was CaSO 4 In terms of (anhydrous gypsum), the amount of SiO 2 was regarded as the amount of amorphous silica.

[3]分散剤:
市販品のポリカルボン酸系のマイティ21WH(花王(株)製)、レオビルド8000H(ポゾリス物産(株)製)、チューポールNV−G5(竹本油脂(株)製)、フローリックVP−700((株)フローリック製)、シーカメント2200(日本シーカ(株))を使用した。比較用として、ポリカルボン酸系でなくナフタリンスルホン酸系の高性能減水剤であるマイティHS(花王(株)製)も使用した。
[3] Dispersant:
Commercially available polycarboxylic acid-based mighty 21WH (manufactured by Kao Corporation), Leo Build 8000H (manufactured by Pozoris Bussan Co., Ltd.), Tupole NV-G5 (manufactured by Takemoto Yushi Co., Ltd.), Floric VP-700 (( Sicament 2200 (Nihon Seika Co., Ltd.) was used. For comparison, Mighty HS (manufactured by Kao Corporation), which is a high-performance water reducing agent based on naphthalenesulfonic acid rather than polycarboxylic acid, was also used.

[4]骨材
粗骨材は、硬質砂岩砕石(JIS A 5005:1993「コンクリート用砕石及び砕砂」による粒の大きさによる区分が砕石1505、JIS A 1110:1999「粗骨材の密度及び吸水率試験方法」による密度が2.70g/cm及び吸水率が0.50%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が6.67)を使用した。
[4] Aggregate Coarse aggregate is classified into hard sandstone crushed stone (JIS A 5005: 1993 “crushed stone for concrete and crushed sand” is classified according to the size of the crushed stone 1505, JIS A 1110: 1999 “rough aggregate density and water absorption. The density according to “rate test method” was 2.70 g / cm 3, the water absorption was 0.50%, and the coarse particle rate according to JIS A 1102: 1999 “aggregate screening test method” was 6.67).

また、細骨材としては砕砂(JIS A 1109:1999「細骨材の密度及び吸水率試験方法」による密度が2.66g/cm及び吸水率が1.20%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が2.80)を使用した。 The fine aggregate is crushed sand (JIS A 1109: 1999 “Density and water absorption test method of fine aggregate”, the density is 2.66 g / cm 3 and the water absorption is 1.20%, JIS A 1102: 1999 “ The coarse particle ratio according to “Aggregate screening test method” was 2.80).

〔コンクリートの練混ぜ〕
セメント、混和材、細骨材及び粗骨材を二軸強制練りミキサ(容量:50リットル)に投入し、30秒間攪拌した後、練混ぜ水及び混和剤を投入し、4分間練混ぜ、コンクリートを作製した。このうち、単位水量には練混ぜ水量(水道水)に分散剤(水溶液タイプ)に由来する水量が加算されている。
[Mixing concrete]
Cement, admixture, fine aggregate and coarse aggregate are put into a biaxial forced kneading mixer (capacity: 50 liters), stirred for 30 seconds, then mixed with water and admixture, mixed for 4 minutes, concrete Was made. Of these, the amount of water derived from the dispersant (aqueous solution type) is added to the amount of mixing water (tap water).

〔供試体の作製〕
強度試験用円柱供試体は内径Φ10×長さ20cmの型枠にコンクリートを充填し、テーブルバイブレータにより振動締固めを行った。一方、遠心力成形体(内径Φ20×長さ30×厚さ4cm)はその型枠に所定量のコンクリートを投入し、2G−3min、10G−1min、20G−1min及び30G−5minの条件下で遠心力成形を行った。成形状況は供試体断面における締固め性状、空洞部(円筒)内面の平滑性(例:波打ちの有無)及びスラッジ発生状況等で判断し、一部の遠心力成形供試体については圧縮強度の試験に供した。
[Preparation of specimen]
The strength test column specimen was filled with concrete in a mold having an inner diameter of Φ10 × length of 20 cm, and subjected to vibration compaction by a table vibrator. On the other hand, in the centrifugal force molded body (inner diameter Φ20 × length 30 × thickness 4 cm), a predetermined amount of concrete is put into the mold, and the conditions are 2G-3min, 10G-1min, 20G-1min and 30G-5min. Centrifugal force molding was performed. The molding condition is judged by the compaction properties in the cross section of the specimen, the smoothness of the inner surface of the cavity (cylindrical) (eg, the presence or absence of undulations), the sludge generation situation, etc. It was used for.

〔前養生及び蒸気養生〕
強度試験用円柱供試体及び遠心力成形供試体は、20℃で4時間前養生を行い、20℃/hの昇温速度(3時間)で80℃まで加熱し、80℃で3時間保持したのち、降温速度10℃/h(6時間)で冷却した。
[Pre-curing and steam curing]
The cylindrical specimen for strength test and the centrifugal molded specimen were pre-cured at 20 ° C. for 4 hours, heated to 80 ° C. at a heating rate of 20 ° C./h (3 hours), and held at 80 ° C. for 3 hours. After that, it was cooled at a temperature drop rate of 10 ° C./h (6 hours).

〔圧縮強度試験〕
脱型直後及び引き続き7日間気中養生後の強度試験用円柱供試体はJIS A 1108:1999「コンクリートの圧縮強度試験方法」、遠心力成形供試体はJIS A 1136:1993「遠心力締固めコンクリートの圧縮試験方法」に準じ、圧縮強度試験を行った。
[Compressive strength test]
JIS A 1108: 1999 “Compression strength test method for concrete” is used for the strength test column specimens immediately after demolding and subsequently for 7 days in the air. Centrifugal molding specimens are JIS A 1136: 1993 “centrifugal compacted concrete. The compressive strength test was performed according to the “compression test method”.

なお、特記しない限り、下記条件を基準条件とした。なお、実施例及び比較例のコンクリート組成物単位量(kg/m)を表1に示す。 Unless otherwise specified, the following conditions were used as reference conditions. In addition, Table 1 shows the concrete composition unit amounts (kg / m 3 ) of Examples and Comparative Examples.

Figure 0004775058
Figure 0004775058

[1]早強ポルトランドセメント(3):H.M.2.25、SO量2.98質量%、半水石膏割合51質量%、ブレーン比表面積4580cm/g、32μm篩残分6.9質量%、Rosin−Rammler線図n値1.23
[2]高強度混和材(A):デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製、ブレーン比表面積4900cm/g)
[3]分散剤:マイティ21WH(花王(株)製、固形分量30質量%)
[4]骨材:粗骨材の最大寸法(GMAX)15mm、細骨材率(s/a)35質量%
[5]配合(単位量):早強ポルトランドセメント560kg/m、高強度混和材56kg/m
[1] Early strong Portland cement (3): M.M. 2.25, SO 3 amount 2.98% by mass, hemihydrate gypsum ratio 51% by mass, Blaine specific surface area 4580 cm 2 / g, 32 μm sieve residue 6.9% by mass, Rosen-Rammler diagram n value 1.23
[2] High-strength admixture (A): Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo KK, Blaine specific surface area 4900 cm 2 / g)
[3] Dispersant: Mighty 21WH (manufactured by Kao Corporation, solid content 30% by mass)
[4] Aggregate: Maximum size of coarse aggregate (G MAX ) 15 mm, fine aggregate rate (s / a) 35% by mass
[5] Formulation (unit amount): early-strength Portland cement 560 kg / m 3 , high-strength admixture 56 kg / m 3

[実施例1〜3、比較例1〜4]
早強ポルトランドセメント中の半水化率の異なるセメントを使用した場合の供試体の圧縮強度及び遠心成形性を表2に示す。比較例1(半水石膏割合が5質量%)では振動締固め成形及び遠心力成形品ともに強度発現性が低く、逆に比較例4(半水石膏割合が95質量%)になると締固め性状及び圧縮強度ともに低下し好ましくない。また、比較例2(単位セメント:480kg/m)では、振動締固め成形品及び遠心力成形品ともに強度発現性が低く、逆に比較例3(単位セメント:650kg/m)では、振動締固め性状及び遠心力成形品の強度発現性が低下して好ましくない。
[Examples 1 to 3, Comparative Examples 1 to 4]
Table 2 shows the compressive strength and centrifugal moldability of the specimens when cements having different water hydration ratios in early-strength Portland cement are used. In Comparative Example 1 (the ratio of hemihydrate gypsum is 5% by mass), the strength development is low in both the vibration compaction molding and the centrifugal force molded product, and conversely in the case of Comparative Example 4 (the ratio of hemihydrate gypsum is 95% by mass) In addition, the compressive strength is undesirably lowered. In Comparative Example 2 (unit cement: 480 kg / m 3 ), both the vibration compacted molded product and the centrifugal force molded product have low strength development. On the contrary, in Comparative Example 3 (unit cement: 650 kg / m 3 ), the vibration The compaction properties and the strength development of the centrifugally molded product are unfavorable.

Figure 0004775058
Figure 0004775058

[実施例4〜8、比較例5〜6]
高強度混和材のII型無水石膏(AH)とシリカフューム(SF)との割合を変えて、混合粉砕した場合についての振動成形品の圧縮強度を表3に示す。なお、実施例8は、II型無水石膏粉末(3840cm/g)とシリカフューム(BET比表面積:16m/g)をV型混合器で混合したものであり、混合粉砕していない場合である。
[Examples 4-8, Comparative Examples 5-6]
Table 3 shows the compression strength of the vibration molded article when the ratio of the high-strength admixture type II anhydrous gypsum (AH) and silica fume (SF) was changed and mixed and pulverized. In Example 8, type II anhydrous gypsum powder (3840 cm 2 / g) and silica fume (BET specific surface area: 16 m 2 / g) were mixed in a V-type mixer and were not mixed and pulverized. .

無水石膏とシリカフュームとの質量比が10/90或は95/5の比較例5、比較例6は圧縮強度が低く、高強度混和材の無水石膏とシリカフュームとの質量比の適正領域は15/85〜80/20であることが判る。また、この質量比は、20/80〜60/40の範囲のものが、圧縮強度をより高くすることができるので好ましい。また、実施例8は、無水石膏とシリカフュームとの質量比が20/80であっても、混合粉砕したものではないため、混合粉砕した実施例4よりも、圧縮強度が若干低い。   In Comparative Examples 5 and 6 in which the mass ratio of anhydrous gypsum to silica fume is 10/90 or 95/5, the compressive strength is low, and the appropriate range of the mass ratio of anhydrous gypsum and silica fume of high strength admixture is 15 / It turns out that it is 85-80 / 20. Moreover, this mass ratio is preferably in the range of 20/80 to 60/40 because the compressive strength can be further increased. In Example 8, even if the mass ratio of anhydrous gypsum and silica fume is 20/80, it is not mixed and pulverized, so the compressive strength is slightly lower than Example 4 that was mixed and pulverized.

Figure 0004775058
Figure 0004775058

[実施例9〜18、比較例7〜9]
市販の高強度混和材を使用し、その添加量を変えた場合の振動成形品の圧縮強度を表4に示す。なお、この場合、分散剤の添加量も変えて試験し、高強度混和材量との関係も評価した。
[Examples 9 to 18, Comparative Examples 7 to 9]
Table 4 shows the compressive strength of the vibration molded article when a commercially available high-strength admixture was used and the amount added was changed. In this case, the amount of dispersant added was also tested, and the relationship with the amount of high-strength admixture was also evaluated.

高強度混和材銘柄としてはデンカΣ2000、ダイミックス及びスーパーノンクレーブが好ましく、換言すれば無水石膏/非晶質シリカの質量比が大き過ぎることは好ましくないことを示唆している。また、高強度混和材と高性能分散剤との関係において、分散剤添加量を増量することによる所要水/結合材比(W/(C+A))は低減できるが(比較例7、実施例9〜12)、これによって単にコンクリートの圧縮強度が向上するものではなく、実施例10と実施例12との比較から判るように、圧縮強度は減少する場合がある。   As the high-strength admixture brand, Denka Σ2000, die mix and supernonclave are preferable, in other words, it is suggested that the mass ratio of anhydrous gypsum / amorphous silica is not preferable. Further, in the relationship between the high-strength admixture and the high-performance dispersant, the required water / binder ratio (W / (C + A)) by increasing the amount of dispersant added can be reduced (Comparative Example 7 and Example 9). -12), this does not simply improve the compressive strength of the concrete, and as can be seen from a comparison between Example 10 and Example 12, the compressive strength may decrease.

Figure 0004775058
Figure 0004775058

[実施例19〜23、比較例10]
分散剤として、市販のコンクリート用ポリカルボン酸系高性能減水剤、及び比較用としてβ−ナフタリンスルホン酸ホルマリン縮合物系高性能減水剤(マイティHS)を使用した場合の振動成形供試体の圧縮強度を表5に示す。なお、高強度混和材は無水石膏/シリカフューム質量比20/80の試験ミル調製品を使用し、その単位量は84kg/m、早強ポルトランドセメント100質量部に対して13質量部一定とし、水/結合材(W/(C+A))質量比は何れも19.4%である。
[Examples 19 to 23, Comparative Example 10]
Compressive strength of vibration molded specimen when using commercially available polycarboxylic acid-based high-performance water reducing agent for concrete and β-naphthalenesulfonic acid formalin condensate-based high-performance water reducing agent (Mighty HS) for comparison. Is shown in Table 5. The high-strength admixture used was a test mill preparation having an anhydrous gypsum / silica fume mass ratio of 20/80, the unit amount being 84 kg / m 3 , and 13 parts by mass constant with respect to 100 parts by mass of early strength Portland cement. The water / binding material (W / (C + A)) mass ratio is 19.4%.

ポリカルボン酸系高性能減水剤は良好な強度発現性を示し、このうち特にマイティ21WHが最も優れた強度発現性が得られ、一方ではナフタリン系高性能減水剤(マイティHS)を使用した場合(比較例10)の強度発現性は相対的にかなり低かった。
The polycarboxylic acid-based high-performance water reducing agent exhibits good strength development. Among these, Mighty 21WH has the most excellent strength development, while naphthalene-based high-performance water reducing agent (Mighty HS) is used ( In Comparative Example 10 ), the strength development was relatively low.

Figure 0004775058
Figure 0004775058

半水石膏量及び二水石膏量の示差熱重量分析結果を示す図である。It is a figure which shows the differential thermogravimetric analysis result of the amount of hemihydrate gypsum and the amount of dihydrate gypsum.

Claims (5)

早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、
早強ポルトランドセメント中の半水石膏割合が20〜80質量%であり、高強度混和材は無水石膏とシリカフュームとを含み、該高強度混和材中の無水石膏/シリカフュームの質量比が15/85〜80/20であり、分散剤がポリカルボン酸系分散剤であり、
早強ポルトランドセメント100質量部に対して、高強度混和材を5〜20質量部及び水溶液タイプの分散剤を水溶液基準で1.0〜2.0質量部含有し、早強ポルトランドセメントの単位セメント量が500〜600kg/m 、水/(セメント+高強度混和材)質量比が18〜24%であることを特徴とする高強度遠心力成形用コンクリート組成物。
A high-strength centrifugal force molding concrete composition comprising early-strength Portland cement, high-strength admixture, dispersant, aggregate and water,
The ratio of hemihydrate gypsum in early-strength Portland cement is 20 to 80% by mass, the high-strength admixture contains anhydrous gypsum and silica fume, and the mass ratio of anhydrous gypsum / silica fume in the high-strength admixture is 15/85. 80 / a 20, Ri dispersant is a polycarboxylic acid dispersant der,
Unit cement of early strength Portland cement containing 5 to 20 parts by weight of high-strength admixture and 1.0 to 2.0 parts by weight of aqueous solution type dispersant based on aqueous solution with respect to 100 parts by weight of early strength Portland cement. A high-strength centrifugal molding concrete composition characterized by having an amount of 500-600 kg / m 3 and a water / (cement + high-strength admixture) mass ratio of 18-24% .
高強度混和材が、無水石膏とシリカフュームとを混合粉砕したものである、請求項記載の高強度遠心力成形用コンクリート組成物。 High strength admixture is obtained by mixing and grinding the anhydrite and silica fume, claim 1 high intensity centrifugal force molding concrete composition. 高強度混和材中の無水石膏/シリカフュームの質量比が15/85〜60/40である、請求項1又は2記載の高強度遠心力成形用コンクリート組成物。The concrete composition for high-strength centrifugal molding according to claim 1 or 2, wherein the mass ratio of anhydrous gypsum / silica fume in the high-strength admixture is 15/85 to 60/40. 早強ポルトランドセメント100質量部に対して、高強度混和材を8〜15質量部含有する、請求項1〜3のいずれか1項記載の高強度遠心力成形用コンクリート組成物。 The concrete composition for high-strength centrifugal force molding according to any one of claims 1 to 3 , comprising 8 to 15 parts by mass of a high-strength admixture with respect to 100 parts by mass of early-strength Portland cement. 請求項1〜4のいずれか1項記載の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生してなる、高強度遠心力成形コンクリート硬化体The concrete composition for high-strength centrifugal force molding according to any one of claims 1 to 4 is mixed, filled into a cylindrical formwork with reinforcing bars, and then subjected to centrifugal force molding, followed by pre-curing and subsequently steam curing. later demolded, formed by curing a subsequent aerial, high strength centrifugal ChikaraNaru Katachiko Nkurito cured product.
JP2006082144A 2006-03-24 2006-03-24 Centrifugal force forming concrete composition and method for producing the same Active JP4775058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082144A JP4775058B2 (en) 2006-03-24 2006-03-24 Centrifugal force forming concrete composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082144A JP4775058B2 (en) 2006-03-24 2006-03-24 Centrifugal force forming concrete composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007254221A JP2007254221A (en) 2007-10-04
JP4775058B2 true JP4775058B2 (en) 2011-09-21

Family

ID=38628842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082144A Active JP4775058B2 (en) 2006-03-24 2006-03-24 Centrifugal force forming concrete composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4775058B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145842B2 (en) * 2007-09-21 2013-02-20 宇部興産株式会社 High strength centrifugal molding concrete composition and method for producing the same
JP2010100505A (en) * 2008-10-27 2010-05-06 Ube Ind Ltd High-strength concrete composition for centrifugal molding and method for producing high-strength centrifugal-molded concrete
JP6470116B2 (en) * 2015-06-04 2019-02-13 花王株式会社 Method for producing cured body of hydraulic composition
CN109111193A (en) * 2018-09-07 2019-01-01 江苏宇辉住宅工业有限公司 A kind of strong concrete and preparation method thereof
JP2021020835A (en) * 2019-07-30 2021-02-18 日本コンクリート工業株式会社 Concrete-molded material and method for production thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612071B2 (en) * 1989-09-01 1997-05-21 電気化学工業株式会社 How to make salt-tolerant poles
JP2887561B2 (en) * 1994-05-16 1999-04-26 太平洋セメント株式会社 Method for manufacturing high strength centrifugal concrete compact
JP3382754B2 (en) * 1995-07-05 2003-03-04 電気化学工業株式会社 Cement composition, hardened cement body using the same, and method for producing the same
JP4434330B2 (en) * 1998-04-23 2010-03-17 太平洋セメント株式会社 cement
JP4514074B2 (en) * 2000-06-16 2010-07-28 電気化学工業株式会社 Cement admixture, cement composition, and high flow cement concrete
JP2005179149A (en) * 2003-12-22 2005-07-07 Taiheiyo Cement Corp Method for producing high strength centrifugally formed concrete product
JP2005219404A (en) * 2004-02-06 2005-08-18 Taiheiyo Cement Corp Manufacturing process of high strength spun concrete shaped body
JP2005289657A (en) * 2004-03-31 2005-10-20 Denki Kagaku Kogyo Kk Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby

Also Published As

Publication number Publication date
JP2007254221A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
JP2008254963A (en) Admixture for cement/concrete and low shrinkage high strength concrete, and high strength cement composition
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
JP4775058B2 (en) Centrifugal force forming concrete composition and method for producing the same
JP5488776B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP2004203733A (en) Method of producing mortar/concrete, and cement used for producing mortar/concrete
JP5493259B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP4797973B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP5061664B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP2010275124A (en) Ultrahigh early strength cement composition and method for producing the same
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP2010100505A (en) High-strength concrete composition for centrifugal molding and method for producing high-strength centrifugal-molded concrete
JP5145842B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP4889549B2 (en) Centrifugal concrete products
JPH06219809A (en) Production of self-packing concrete
JP6983522B2 (en) Cement composition
JP5284820B2 (en) Cement admixture and cement binder
JPH01242445A (en) Hydraulic cement composition
JP4342701B2 (en) Hardened cement and method for producing the same
JP5974534B2 (en) Lightweight immediate demolding block and manufacturing method thereof
JP5582901B2 (en) Method for producing finely divided cement and method for producing cement composition
JP6983523B2 (en) Cement composition
JP2007269591A (en) Method of producing concrete product, and concrete product
JP2008007351A (en) Hydraulic composition for centrifugally molded hardened body
JP2004315240A (en) Hydraulic composition and high strength concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4775058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250