JP2612071B2 - How to make salt-tolerant poles - Google Patents
How to make salt-tolerant polesInfo
- Publication number
- JP2612071B2 JP2612071B2 JP22437289A JP22437289A JP2612071B2 JP 2612071 B2 JP2612071 B2 JP 2612071B2 JP 22437289 A JP22437289 A JP 22437289A JP 22437289 A JP22437289 A JP 22437289A JP 2612071 B2 JP2612071 B2 JP 2612071B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- cement
- amount
- blast furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は耐塩性ポールの製法に関する。The present invention relates to a method for producing a salt-resistant pole.
<従来技術とその課題> 従来、ポールの製造を行う際に使用されるコンクリー
トは、材令28日の設計強度500kgf/cm2を越えるように設
計配合されており、具体的には、単位セメント量が460
〜550kg/m3、水セメント比が35%程度のコンクリートが
使用されている。<Conventional technology and its problems> Conventionally, concrete used in the production of poles has been designed and blended to exceed the design strength of 500 kgf / cm 2 on the 28th of material age. 460
Concrete of up to 550 kg / m 3 and a water cement ratio of about 35% is used.
しかしながら、このようなコンクリートを使用して製
造されたポールを、海岸沿いに設置した場合、波しぶ
き、即ち、海水中の塩素イオンの浸透により、鉄筋が発
錆したり、クラックが入り、赤錆が吹き出すなど耐久性
に課題があった。However, when a pole made using such concrete is installed along the coast, the seawater splashes, that is, the penetration of chlorine ions in the seawater causes rusting or cracking of the reinforcing steel, and red rust occurs. There was a problem in durability such as blowing out.
また、蒸気養生して高強度を得る方法として、II型無
水セッコウ100重量部と、例えば、シリカヒューム、ケ
イ酸白土及びフライアッシュ等のシリカ質物質5〜40重
量部を配合したセメント混和材を使用する方法が知られ
ている(特公昭57-49504号公報)。As a method of obtaining high strength by steam curing, 100 parts by weight of type II anhydrous gypsum and, for example, a silica admixture containing 5 to 40 parts by weight of a siliceous substance such as silica fume, silicate clay and fly ash. The method used is known (Japanese Patent Publication No. 57-49504).
しかしながら、この方法では合理的に高強度は得られ
るが、耐久性、特に、塩素イオンの浸透抵抗性(耐塩
性)については、十分な効果が得られないなどの課題が
あった。However, although this method can provide a reasonably high strength, there is a problem that a sufficient effect cannot be obtained with respect to durability, particularly, resistance to permeation of chloride ions (salt resistance).
本発明者らは、前記課題を解決すべく鋭意検討した結
果、II型無水セッコウとポゾラン物、及び高炉スラグを
特定量使用することにより、前記課題が解決できる知見
を得て本発明を完成するに至った。The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a specific amount of type II anhydrous gypsum and pozzolan, and blast furnace slag, the present inventors have obtained the knowledge that can solve the above-mentioned problems, and completed the present invention. Reached.
<課題を解決するための手段> 即ち、本発明は、セメント100重量部に対し、(A)I
I型無水セッコウ100重量部とポゾラン物40重量部を越
え、500重量部以下を主成分とするセメント混和材を6
〜30重量部、及び(B)高炉スラグを2〜15重量部混合
して作製したコンクリートを、遠心力成型することを特
徴とする耐塩性ポールの製法。<Means for Solving the Problems> That is, the present invention relates to (A) I based on 100 parts by weight of cement.
6 types of cement admixture containing more than 100 parts by weight of type I anhydrous gypsum and more than 40 parts by weight of pozzolanic substances and 500 parts by weight or less
A method for producing a salt-resistant pole, wherein a concrete produced by mixing 2 to 15 parts by weight of (B) blast furnace slag with (B) blast furnace slag is subjected to centrifugal force molding.
以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
本発明におけるII型無水セッコウとは、X線回折パタ
ーンがII-CaSO4の形態を示すものであり、二水、半水及
びIII型無水セッコウなどを焼成して得られるものの
他、弗酸製造工程より副生するものや天然無水セッコウ
も使用可能である。また、II型無水セッコウは天然に又
は工業的に含まれる不純物には制限されない。The type II anhydrous gypsum in the present invention is one whose X-ray diffraction pattern shows the form of II-CaSO 4 and obtained by calcining dihydrate, hemihydrate, type III anhydrous gypsum, etc. Those produced as a by-product from the process and natural anhydrous gypsum can also be used. In addition, Type II anhydrous gypsum is not limited to naturally or industrially contained impurities.
II型無水セッコウの粉末度は、ブレーン値で3,000cm2
/g以上が好ましく、4,000〜7,500cm2/gがより好まし
い。ブレーン値が3,000cm2/g未満では、蒸気養生を行っ
ても未反応で残り易く、これが長期にわたって反応し、
コンクリート硬化体の安定性を欠く傾向にあるので好ま
しくない。The fineness of Type II anhydrous gypsum is 3,000 cm 2 in Blaine value.
/ g or more is preferable, and 4,000 to 7,500 cm 2 / g is more preferable. If the Blaine value is less than 3,000 cm 2 / g, it is likely to remain unreacted even after steam curing, and this will react for a long time,
It is not preferable because the stability of the hardened concrete body tends to be lacking.
本発明におけるポゾラン物には種々のものが挙げられ
るが、シリカヒュームとケイソウ土が、強度や耐塩性な
どの特性の他、ポール製造時のコンクリートのハンドリ
ング性の面から好ましい。There are various types of pozzolanic materials in the present invention, and silica fume and diatomaceous earth are preferable in terms of properties such as strength and salt resistance, as well as handling properties of concrete during pole production.
即ち、ポールは、他の遠心成型製品より細いため、二
つ割りにした型枠にコンクリートを盛り込むとき、コン
クリートが山盛りとなる。そのため、コンクリートがプ
ラスチック性を保持していないと、型枠が組立られない
傾向がある。シリカヒュームやケイソウ土は、このコン
クリートのプラスチック性を高め、効率的な生産を促す
重要な要素となるものである。That is, since the pole is thinner than other centrifugally molded products, when the concrete is put into the divided formwork, the concrete is piled up. Therefore, if concrete does not have plasticity, there is a tendency that the formwork cannot be assembled. Silica fume and diatomaceous earth are important factors that enhance the plasticity of this concrete and promote efficient production.
ここでいう、シリカヒュームとは、金属シリコン、フ
ェロシリコンやカルシウムシリコンなどのシリコンアロ
イ等の製造時に副生する非晶質SiO2を主成分とする超微
粉である。Here, the silica fume is an ultrafine powder mainly composed of amorphous SiO 2 by-produced during the production of silicon alloys such as metallic silicon, ferrosilicon and calcium silicon.
また、ケイソウ土とは、ケイソウと呼ばれる単細胞藻
類の遺骸が堆積したもので、特徴は、その多孔性にあ
る。Diatomaceous earth is a deposit of unicellular algae called diatomaceous earth, and is characterized by its porosity.
本発明において、ポゾラン物の使用量は、II型無水セ
ッコウ100重量部に対し、ポゾラン物40重量部を超え、5
00重量部以下である。ポゾラン物が40重量部以下では、
前記耐久性を改善する効果が小さく、500重量部を超え
ると単位水量が増加し、強度が低下したり、スランプド
ロップによる作業性の低下が大きくなる。In the present invention, the used amount of the pozzolanic substance is more than 40 parts by weight of the pozzolanic substance with respect to 100 parts by weight of anhydrous type II gypsum, and 5
00 parts by weight or less. If the pozzolans content is less than 40 parts by weight,
The effect of improving the durability is small, and if it exceeds 500 parts by weight, the unit water volume increases, the strength decreases, and the decrease in workability due to slump drop increases.
本発明のセメント混和材の使用量は、セメント100重
量部に対し、6〜30重量部である。セメント混和材の使
用量が6重量部未満では耐久性改善効果が小さく、30重
量部を超えると単位水量の増加に伴い、強度が低下する
傾向を示し、かつ、スランプドロップによる作業性の低
下が大きくなる。The used amount of the cement admixture of the present invention is 6 to 30 parts by weight based on 100 parts by weight of cement. If the amount of the cement admixture is less than 6 parts by weight, the effect of improving durability is small, and if it exceeds 30 parts by weight, the strength tends to decrease with an increase in the unit water amount, and the workability decreases due to slump drop. growing.
本発明では、さらに、高炉スラグ粉を使用するもので
ある。In the present invention, blast furnace slag powder is further used.
高炉スラグ粉は、高炉より副生する溶融スラグを急冷
しガラス化したものを粉砕又は粉砕・分級して得られる
微粉末であり、その他、通常高炉セメント用に使用され
るものも使用可能である。Blast furnace slag powder is a fine powder obtained by crushing or pulverizing and classifying vitrified molten slag produced as a by-product from a blast furnace, and other powders usually used for blast furnace cement can also be used. .
高炉スラグの潜在水硬性の度合いを表わすものとして
示される塩基度(CaO+Al2O3+MgO)/SiO2は、本発明
では、1.4以上が好ましく、1.7以上がより好ましい。Basicity represented as representing a degree of latent hydraulic blast furnace slag (CaO + Al 2 O 3 + MgO) / SiO 2 , in the present invention, preferably 1.4 or more, more preferably 1.7 or more.
また、高炉スラグ粉のガラス化率は50%以上が好まし
く、90%以上がより好ましい。Further, the vitrification ratio of the blast furnace slag powder is preferably 50% or more, more preferably 90% or more.
高炉スラグ粉は、粉砕又は粉砕・分級して得られる、
ブレーン値で4,000cm2/g以上のものが好ましく、粒度が
細かければ細かい程良い。また、工業的に、かつ、経済
的に粉砕又は粉砕・分級されて得られる最小の高炉スラ
グ粉の粒度は、通常、10μ以下で、D50の値が3〜6μ
程度であり、また、ブレーン値で10,000cm2/g前後であ
る。このような微粉末の高炉スラグ粉の使用はより好ま
しい。Blast furnace slag powder is obtained by crushing or crushing and classification,
A Blaine value of 4,000 cm 2 / g or more is preferable, and the finer the particle size, the better. In addition, the minimum particle size of blast furnace slag powder obtained by industrially and economically pulverizing or pulverizing / classifying is usually 10μ or less, and the value of D50 is 3 to 6μ.
And a Blaine value of about 10,000 cm 2 / g. Use of such a fine blast furnace slag powder is more preferable.
高炉スラグ粉はII型無水セッコウとポゾラン物と併用
した場合、著しく高い強度を発現させ、かつ、耐塩性
も、より改善することが可能である。When blast furnace slag powder is used in combination with type II anhydrous gypsum and pozzolan, it is possible to develop remarkably high strength and further improve salt resistance.
高炉スラグ粉の使用量は、セメント100重量部に対
し、2〜15重量部が好ましく、4〜10重量部がより好ま
しい。高炉スラグ粉が2重量部未満では、II型無水セッ
コウとポゾラン物の強度発現性や耐塩性を助長する効果
が小さく、15重量部を越えると、強度や耐塩性の効果の
伸びが期待できず、不経済となるばかりでなく、ポゾラ
ン物の使用量によっては、コンクリート硬化体中のポル
トランダイトが全くなくなり、アルカリ度の低下によ
る、鉄筋の発錆が懸念され、特に、ポール等のプレスト
レス製品は、鋼棒の緊張による応力腐食も加わるので好
ましくない。The amount of blast furnace slag powder used is preferably 2 to 15 parts by weight, more preferably 4 to 10 parts by weight, based on 100 parts by weight of cement. If the amount of blast furnace slag powder is less than 2 parts by weight, the effect of promoting the strength development and salt resistance of type II anhydrous gypsum and pozzolan is small, and if it exceeds 15 parts by weight, the strength and salt resistance effects cannot be expected to increase. In addition to being uneconomical, depending on the amount of pozzolanic material used, portlandite in the concrete hardened body is completely eliminated, and there is a concern that rusting of reinforcing steel due to a decrease in alkalinity may occur. The product is not preferable because stress corrosion due to the tension of the steel rod is also added.
なお、本発明において、高炉スラグ粉が、このような
相乗的効果を発現する理由は不明であるが、高炉スラグ
を微粉化することにより、高炉スラグ粉中に多量にある
Al成分の溶解速度が速くなり、II型無水セッコウの溶解
速度とバランスして、効率的にエトリンガイト(3CaO・
Al2O3・3CaSO4・32H2O)を生成し、コンクリート中の空
隙を充填し、密実化すること。また、同時に、II型無水
セッコウが高炉スラグ粉中のAl成分の溶出量を高かめ、
高炉スラグ粒子をポーラスにして、高炉スラグ粉全体の
水和反応量を高め、それにより、顕著な強度の増大や耐
塩性の改善が示されるものと思われる。In the present invention, the blast furnace slag powder has a large amount of blast furnace slag powder by pulverizing the blast furnace slag, although the reason for exhibiting such a synergistic effect is unknown.
The dissolution rate of the Al component is increased, and the ettringite (3CaO.
Al 2 O 3・ 3CaSO 4・ 32H 2 O) to fill the voids in concrete and make it more dense. At the same time, type II anhydrous gypsum increases the elution amount of Al component in blast furnace slag powder,
It is considered that the blast furnace slag particles are made porous to increase the hydration reaction amount of the whole blast furnace slag powder, thereby showing a remarkable increase in strength and improvement in salt resistance.
さらに、本発明において、単位セメント量は250〜450
kg/m3の範囲が好ましい。250kg/m3未満では、水セメン
ト比が急に大きくなり、セメント濃度が低下することか
ら、設計強度が得られず、耐塩性も期待できない。単位
セメント量が450kg/m3を越えると、強度は大きくなる
が、耐塩性は、むしろ低下する傾向にあり、かつ、耐候
性が悪くなる傾向があり、屋外で長期間曝露養生した場
合、ひびわれが発生する傾向がある。Further, in the present invention, the unit cement amount is 250 to 450
A range of kg / m 3 is preferred. If it is less than 250 kg / m 3 , the water-cement ratio suddenly increases and the cement concentration decreases, so that the design strength cannot be obtained and the salt resistance cannot be expected. When the amount of the unit cement exceeds 450 kg / m 3, the strength is increased, salt tolerance, tend to decrease rather and tend to weather resistance deteriorate when exposed cured extended period outdoors, cracked Tends to occur.
この、強度が増大するにもかかわらず、耐塩性が低下
する理由は明確ではないが、単位セメント量が多くなる
と、水セメント比も必然的に下がるので、この時のポゾ
ラン物及び高炉スラグ粉の反応量が低下することに起因
するものと思われる。Although the strength is increased, the reason why the salt resistance is reduced is not clear, but when the unit cement amount is increased, the water-cement ratio is inevitably reduced, so that the pozzolanic substance and the blast furnace slag powder at this time are not removed. This is probably due to the decrease in the reaction amount.
本発明に使用するセメントとは、普通・早強・超早強
・中庸熱・白色等の各種ポルトランドセメントなどであ
る。また、高炉セメントは中性化、酸化及び変色等の問
題があるので使用しにくいが、シリカセメントやフライ
アッシュセメントは使用できる。セメントは水硬性係数
が大きいものほど、また、粉末度が大きいほど耐塩性が
向上する。The cement used in the present invention includes various Portland cements such as ordinary, early-strength, ultra-high-strength, moderate heat, and white. Further, blast furnace cement is difficult to use because of problems such as neutralization, oxidation and discoloration, but silica cement and fly ash cement can be used. As the cement has a larger hydraulic coefficient and a higher fineness, the salt resistance is improved.
本発明のセメント混和材を用いて耐塩性ポールを製造
するに当り、必要に応じ、減水剤、AE減水剤、促進剤及
び遅延剤等の化学混和剤を併用することができる。In producing a salt-resistant pole using the cement admixture of the present invention, if necessary, a chemical admixture such as a water reducing agent, an AE water reducing agent, an accelerator and a retarder can be used in combination.
特に、減水剤の併用は好ましく、その減水剤の中でも
高性能減水剤の併用はより好ましいものである。Particularly, the combined use of a water reducing agent is preferable, and among the water reducing agents, the combined use of a high-performance water reducing agent is more preferable.
高性能減水剤とは、多量に添加しても凝結の過遅延や
過度の空気連行を伴わない、分散能力の大きな界面活性
剤であって、ナフタレンスルホン酸ホルムアルデヒド縮
合物の塩、メラミンスルホン酸ホルムアルデヒド縮合物
の塩、高分子量リグニンスルホン酸塩及びポリカルボン
酸塩等を主成分とするものなどであり、具体的には、例
えば、花王(株)製商品名「マイティ150」、電気化学
工業(株)製商品名「FT-500」、ポゾリス物産(株)製
商品名「NL-4000」等が挙げられる。High-performance water reducing agents are surfactants with a large dispersing ability that do not accompany excessive delay in coagulation or excessive air entrainment even when added in large amounts, and include salts of naphthalenesulfonic acid formaldehyde condensate and melaminesulfonic acid formaldehyde. Examples thereof include salts of condensates, high molecular weight lignin sulfonates and polycarboxylates as main components. Specifically, for example, Kao Corporation's trade name “Mighty 150”; Trade name "FT-500" manufactured by Pozoris Bussan Co., Ltd. and "NL-4000" manufactured by Pozoris Bussan Co., Ltd.
高性能減水剤の使用量は特に限定されるものではない
が、固形分換算でセメント100重量部に対し、0.2〜2重
量部程度が好ましい。The amount of the high-performance water reducing agent is not particularly limited, but is preferably about 0.2 to 2 parts by weight based on 100 parts by weight of cement in terms of solid content.
そして、セメントの種類や銘柄、砂などの骨材の変動
に対応して、コンクリートがプラスチック性を保持する
ように、この範囲内で使用量を選定することが好まし
い。Then, it is preferable to select the amount to be used within this range so that the concrete retains plasticity in accordance with the change in the type and brand of cement and the aggregate such as sand.
本発明のセメント混和材とセメント、砂、砂利及び適
量の水、さらに、必要に応じ減水剤等を配合して、モル
タル又はコンクリートを混練し、ポールを製造するにあ
たり、本発明のセメント混和材は、予めセメントに混合
してセメント組成物としても良いし、混練時直接ミキサ
ーへ各々の成分を別々に又は予め混合したものを添加し
ても良く、さらに、水に分散させスラリー状で添加して
も良い。Cement admixture of the present invention and cement, sand, gravel and an appropriate amount of water, further, if necessary, blending a water reducing agent, etc., kneading mortar or concrete, and producing a pole, the cement admixture of the present invention is May be mixed with cement in advance to form a cement composition, or each component may be separately or premixed directly into a mixer during kneading, and further dispersed in water and added in a slurry form. Is also good.
混練方法、成形方法、ポールの配筋方法及びプレスト
レスの導入方法等については、特に制限されるものでは
なく、通常、ポールを製造する際に実施される方法が利
用できる。The kneading method, the molding method, the method of arranging the poles, the method of introducing the prestress, and the like are not particularly limited, and a method usually used for manufacturing a pole can be used.
また、本発明のセメント混和材を用いたポールの常圧
蒸気養生は40〜100℃の範囲で行なわれ、50〜80℃の範
囲がより好ましい。The normal pressure steam curing of the pole using the cement admixture of the present invention is performed at a temperature in the range of 40 to 100 ° C, and more preferably in the range of 50 to 80 ° C.
<実施例> 以下、実施例にて本発明を説明する。<Example> Hereinafter, the present invention will be described with reference to examples.
実施例1 表−1に示すコンクリート配合記号Cを用い、表−2
のように、II型無水セッコウ100重量部に対し、ポゾラ
ン物の量を変化させ、セメント混和材のセメントへの添
加量を変えて、常法でコンクリートを混練し、φ10×20
cmの供試体を成形した。Example 1 Using the concrete mixing symbol C shown in Table 1, Table 2
As in 100 parts by weight of anhydrous type II gypsum, changing the amount of pozzolanic matter, changing the amount of cement admixture added to cement, kneading concrete by a conventional method, φ10 × 20
A cm test piece was molded.
供試体は、前置き養生を4時間行った後、15℃/hの昇
温速度で、65℃まで昇温し、常圧蒸気養生し、そのまま
4時間保持した後、自然放冷し、翌朝蒸気養生槽より取
り出し、各種試験を行なった。結果を表−2に併記す
る。The specimens were pre-cured for 4 hours, then heated to 65 ° C at a rate of 15 ° C / h, steam-cured at normal pressure, held for 4 hours, allowed to cool naturally, and steamed the next morning. It was taken out from the curing tank and various tests were performed. The results are shown in Table-2.
なお、水セメント比は、水量とセメント量の重量比で
あり、セメント混和材は、セメント100重量部に対して
の重量部で、細骨材と容積で置き換えた。セメント混和
材の使用量によって、目標スランプ外となるものは、多
少の水量を加減してスランプを調節した。The water-cement ratio is the weight ratio of the amount of water to the amount of cement, and the cement admixture is replaced by the fine aggregate and the volume in parts by weight based on 100 parts by weight of cement. If the amount of cement admixture used was outside the target slump, the amount of water was adjusted to adjust the slump.
<使用材料> セメント:電気化学工業(株)製、普通ポルトランドセ
メント(比重3.16) 砂 :新潟県姫川産川砂(比重2.65) 砂利 : 〃 砕石(比重2.68) 水 :地下水 減水剤 :高性能減水剤、電気化学工業(株)製商品名
「FT-500」(比重1.20)主成分ナフタレンスルホン酸ホ
ルムアルデヒド縮合物 II型無水セッコウ:新秋田化成(株)製、弗酸発生副生
セッコウ、ブレーン値6,000cm2/g(ポロシティ0.5)、
比重2.96 シリカ :シリカヒューム、日本重化学工業(株)製、比
重2.20 ケイソウ:ケイソウ土、昭和化学工業(株)製商品名
「ラヂオライトSPF」、比重2.10 <試験方法> (1)強度の測定 圧縮強度はφ10×20cmの振動詰めの円柱供試体を用い
て、JIS A 1108に準じて、材令1日で測定を行った。 <Materials> Cement: Made by Denki Kagaku Kogyo Co., Ltd., ordinary Portland cement (specific gravity 3.16) Sand: River sand from Himekawa, Niigata Prefecture (specific gravity 2.65) Gravel: 〃 Crushed stone (specific gravity 2.68) Water: groundwater water reducing agent: high-performance water reducing agent "FT-500" (specific gravity: 1.20), manufactured by Denki Kagaku Kogyo Co., Ltd. Main component: naphthalenesulfonic acid formaldehyde condensate type II Anhydrite: Shin-Akita Chemical Co., Ltd., hydrofluoric acid generation by-product gypsum, Brain value 6,000 cm 2 / g (porosity 0.5),
Specific gravity 2.96 Silica: Silica fume, manufactured by Nippon Heavy Chemical Industry Co., Ltd., specific gravity 2.20 Diatomaceous earth: Diatomaceous earth, Showa Chemical Co., Ltd. product name “Radiolite SPF”, specific gravity 2.10 <Test method> (1) Measurement of strength Compression The strength was measured using a cylindrical specimen of φ10 × 20 cm packed with vibration in accordance with JIS A 1108, with a material age of 1 day.
(2)耐塩性の測定 φ10×20cmの円柱供試体を材令1日で脱型し、その後
20±3℃、RH60±5%コントロールした養生箱で28日間
養生してから、3%NaCl水溶液に浸漬し、材令6か月で
取り出し、供試体中央部をφ10×1cmの寸法で切り出
し、300℃で24時間乾燥したものを全量粉砕して、蛍光
X線分析によって浸透した塩素イオン量を測定した。(2) Measurement of salt resistance A cylindrical specimen of φ10 × 20cm was removed from the mold in one day, and then
After curing in a curing box controlled at 20 ± 3 ° C and RH60 ± 5% for 28 days, immersed in a 3% NaCl aqueous solution, taken out at 6 months of age, cut out the center of the specimen to a size of φ10 × 1cm, The whole dried at 300 ° C. for 24 hours was pulverized, and the amount of permeated chlorine ions was measured by X-ray fluorescence analysis.
(3)作業性の測定 コンクリート混練直後に、JIS A 1101に準じ、スラン
プを測定し、20分後に、再び、同様にスランプを測定し
た。(3) Measurement of workability Immediately after concrete kneading, slump was measured in accordance with JIS A 1101, and after 20 minutes, slump was measured again.
表−2から明らかなように、II型無水セッコウと、シ
リカヒュームやケイソウ土のポゾラン物を適量使用した
実施例は、浸透した塩素イオンの量が大幅に減少してお
り、耐塩性を改善する効果が認められる。 As is clear from Table 2, the examples using an appropriate amount of type II anhydrous gypsum and silica fume or diatomaceous earth pozzolanic material have a significantly reduced amount of permeated chloride ions and improve salt resistance. The effect is recognized.
また、使用量が適当でないと、耐塩性は向上せず、ス
ランプドロップなどの作業性が悪くなる。If the amount is not proper, salt resistance will not be improved, and workability such as slump drop will be deteriorated.
実施例2 実施例1、実験No.1−11に示す配合のコンクリート
に、高炉スラグ粉を表−3のように併用し、実施例1と
同様に供試体を作成し、各種試験とコンクリート硬化体
中のポルトランダイトの測定を行った。結果を表−3に
併記する。Example 2 A blast furnace slag powder was used in combination with the concrete having the composition shown in Example 1 and Experiment Nos. 1-11, as shown in Table 3, and specimens were prepared in the same manner as in Example 1, and various tests and concrete hardening were performed. Portlandite in the body was measured. The results are shown in Table-3.
なお、実験No.2−1と2−2配合の単位水量は140kg/
m3、それ以外は145kg/m3前後で同程度のスランプが得ら
れた。The unit water volume of Experiment Nos. 2-1 and 2-2 was 140 kg /
m 3, otherwise comparable slump was obtained at 145 kg / m 3 before and after.
<使用材料> スラグ粉a:高炉スラグ粉、川鉄リバーメント社製、二水
セッコウなし、粉砕・分級品 ブレーン6,000cm2/g 〃 b: 〃 10,500cm2/g <試験方法> (4)ポルトランダイトの測定 φ10×20cmの円柱供試体を材令1日で脱型し、供試体
中央部をφ10×1cmの寸法で切り出し、300℃で24時間乾
燥したものを全量粉砕して、化学分析を行った。なお、
ポルトランダイトはf-CaOに換算して示した。 <Materials> Slag powder a: Blast furnace slag powder, manufactured by Kawatetsu Reverment Co., Ltd., without water gypsum, crushed / classified product Blaine 6,000 cm 2 / g 〃 b: 〃 10,500 cm 2 / g <Test method> (4) Porto Measurement of landite The cylindrical specimen of φ10 × 20cm was removed from the mold in 1 day, the central part of the specimen was cut out in dimensions of φ10 × 1cm, and the whole dried at 300 ℃ for 24 hours was pulverized and subjected to chemical analysis. Was done. In addition,
Portlandite is shown in terms of f-CaO.
表−3から明らかなように、セメント混和材に高炉ス
ラグ粉を併用すると、強度や耐塩性が著しく向上する。
高炉スラグ粉が2重量部未満では添加効果が小さく、15
重量部を越えて併用しても、強度や耐塩性の伸びが小さ
く、コンクリート硬化体中のポルトランダイトが少なく
なり、鉄筋の発錆などが懸念される。As is clear from Table 3, when blast furnace slag powder is used in combination with the cement admixture, the strength and the salt resistance are significantly improved.
If the amount of blast furnace slag powder is less than 2 parts by weight, the effect of addition is small.
Even when used in excess of parts by weight, the strength and salt resistance elongation are small, the portlandite in the hardened concrete is reduced, and rusting of the reinforcing steel is feared.
実施例3 表−1に示す配合記号A〜Fのコンクリート配合を用
い、表−4に示すように、セメント混和材を添加して、
コンクリートのポールを製造した。Example 3 As shown in Table 4, a cement admixture was added by using a concrete composition of the composition symbols A to F shown in Table 1,
Concrete poles were manufactured.
ポールは、長さ13m、未口径190mm、設計ひびわれ荷重
350kgfのA型ポールで、常法により遠心成型し、実施例
1と同様の条件で蒸気養生を行った後、翌日脱型してプ
レストレスを導入し、そのまま屋外養生を行った。その
後、材令21日で曲げ強さ試験を行い、初ひびわれ荷重と
破壊荷重(設計値700kgf)を測定した。The pole is 13m long, 190mm in diameter, design crack load
Using a 350 kgf A-type pole, centrifugal molding was performed by a conventional method, steam curing was performed under the same conditions as in Example 1, and the next day, demolding was performed to introduce prestress, and outdoor curing was performed as it was. Thereafter, a bending strength test was performed on the 21st of the material age, and the initial crack load and the breaking load (design value: 700 kgf) were measured.
なお、PC鋼棒は高周波熱練(株)製を用い、配筋は緊
張用のPC鋼棒φ7.4mm×8本と補強鋼棒φ7.4mm×4本
(ストレート筋)、らせん筋はφ3mmの鉄線を10cm間隔
で配置し、PC鋼棒の初期緊張応力度は10,150kgf/cm2と
なるようにした。In addition, PC steel rods made by Induction Heating Co., Ltd. are used, and the reinforcement is PC steel rods φ7.4mm × 8 for reinforcement and reinforcement steel rods φ7.4mm × 4 (straight bars), spiral bars are φ3mm Were placed at 10 cm intervals so that the initial tensile stress of the PC steel rod was 10,150 kgf / cm 2 .
また、ポール製造時に採集したコンクリートで、圧縮
強度と浸透した塩素イオン量測定用として、φ20×厚さ
5×長さ30cmの供試体と、耐候性の試験用としてφ10×
20cmの供試体を、ポールと同様に遠心成型して作成し
た。結果を表−4に併記する。In addition, concrete collected at the time of pole production was used to measure the compressive strength and the amount of permeated chlorine ions, φ20 × thickness 5 × length 30cm, and φ10 × for weatherability testing.
A 20 cm specimen was formed by centrifugal molding in the same manner as a pole. The results are shown in Table-4.
圧縮強度は材令21日で測定し、塩素イオンの浸透量
は、材令21日で、中空部に3%NaCl水溶液が入らないよ
うに、両端を塩ビ板で接着し、該水溶液に浸漬し、材令
6か月で1cmの厚さで輪切りにして、実施例1と同様に
測定した。The compressive strength was measured at 21 days of material age, and the permeation amount of chloride ion was adhered at both ends with a PVC plate at 21 days of age to prevent a 3% NaCl aqueous solution from entering the hollow part, and immersed in the aqueous solution. A 6-month old material was cut into a slice of 1 cm thick and measured in the same manner as in Example 1.
<試験方法> (5)耐候性 φ10×20cmの供試体を脱型後屋外曝露養生を行い、1
年後のひびわれを観察した。<Test method> (5) Weather resistance After removing the specimen of φ10 × 20cm, it was cured by exposure to the outdoors.
Years later cracks were observed.
表−4から明らかなように、本発明のセメント混和材
を使用した、単位セメント量250〜450kg/m3のコンクリ
ートのポールは、強度も、耐塩性や耐候性に対する効果
も顕著に改善される。 As is evident from Table 4, the concrete pole using the cement admixture of the present invention and having a unit cement amount of 250 to 450 kg / m 3 has remarkably improved strength, effect on salt resistance and weather resistance. .
<発明の効果> 以上のように、本発明の耐塩性ポールは、高強度で、
耐候性の良い、耐塩性の高いものである。<Effect of the Invention> As described above, the salt-resistant pole of the present invention has a high strength,
It has good weather resistance and high salt resistance.
フロントページの続き (56)参考文献 特開 昭57−67057(JP,A) 笠井、小林編「セメント・コンクリー ト用混和材料」第1版(昭61.5.15) 技術書院P.3及びP.101〜102Continuation of the front page (56) References JP-A-57-67057 (JP, A) Kasai, Kobayashi, ed. 3 and p. 101-102
Claims (1)
水セッコウ100重量部とポゾラン物40重量部を越え、500
重量部以下を主成分とするセメント混和材を6〜30重量
部、及び(B)高炉スラグを2〜15重量部混合して作製
したコンクリートを、遠心力成型することを特徴とする
耐塩性ポールの製法。(1) 100 parts by weight of cement and (A) 100 parts by weight of anhydrous gypsum of type II and more than 40 parts by weight of pozzolan,
A salt resistant pole characterized in that concrete produced by mixing 6 to 30 parts by weight of a cement admixture whose main component is not more than 5 parts by weight and (B) 2 to 15 parts by weight of blast furnace slag is centrifugally molded. Recipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22437289A JP2612071B2 (en) | 1989-09-01 | 1989-09-01 | How to make salt-tolerant poles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22437289A JP2612071B2 (en) | 1989-09-01 | 1989-09-01 | How to make salt-tolerant poles |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7244096A Division JP2853989B2 (en) | 1996-03-27 | 1996-03-27 | Highly durable cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0393659A JPH0393659A (en) | 1991-04-18 |
JP2612071B2 true JP2612071B2 (en) | 1997-05-21 |
Family
ID=16812725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22437289A Expired - Fee Related JP2612071B2 (en) | 1989-09-01 | 1989-09-01 | How to make salt-tolerant poles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2612071B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011252850A (en) * | 2010-06-03 | 2011-12-15 | Nippon Steel Corp | Quantitative analysis method of ettringite in inorganic oxide-based material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2853989B2 (en) * | 1996-03-27 | 1999-02-03 | 電気化学工業株式会社 | Highly durable cement composition |
JP2003013060A (en) * | 2001-06-29 | 2003-01-15 | Mitsubishi Materials Corp | Cement-based setting material for improving seawater- resistant ground |
JP4775058B2 (en) * | 2006-03-24 | 2011-09-21 | 宇部興産株式会社 | Centrifugal force forming concrete composition and method for producing the same |
CN112209687A (en) * | 2020-10-27 | 2021-01-12 | 中铁二十局集团第三工程有限公司 | High-performance marine concrete with excellent durability and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5767057A (en) * | 1980-10-08 | 1982-04-23 | Denki Kagaku Kogyo Kk | Manufacture of centrifugally reinforced concrete moldings |
-
1989
- 1989-09-01 JP JP22437289A patent/JP2612071B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
笠井、小林編「セメント・コンクリート用混和材料」第1版(昭61.5.15)技術書院P.3及びP.101〜102 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011252850A (en) * | 2010-06-03 | 2011-12-15 | Nippon Steel Corp | Quantitative analysis method of ettringite in inorganic oxide-based material |
Also Published As
Publication number | Publication date |
---|---|
JPH0393659A (en) | 1991-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sathyan et al. | Influence of superplasticizer family on the durability characteristics of fly ash incorporated cement concrete | |
Binici et al. | Sulfate resistance of plain and blended cement | |
Ajay et al. | Effect of micro silica on the strength of concrete with ordinary Portland cement | |
EP1876153B1 (en) | Ultrahigh-strength cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement admixture | |
WO2008044361A1 (en) | Filler for reinforcement joint and method of reinforcement joint filling operation using the same | |
Afolayan | Experimental investigation of the effect of partial replacement of cement with eggshell ash on the rheological properties of concrete | |
JP2581803B2 (en) | Cement admixture and cement composition | |
JP2612071B2 (en) | How to make salt-tolerant poles | |
WO2024048364A1 (en) | Hardening accelerator for hydraulic materials, cement composition and hardened body | |
Folagbade et al. | Permeation resistance of sawdust ash blended cement laterized concrete | |
JP2853989B2 (en) | Highly durable cement composition | |
JP2006347814A (en) | Cement clinker, cement composition, concrete composition and method for manufacturing cement clinker | |
JP2515397B2 (en) | Cement admixture and cement composition | |
JP2622287B2 (en) | Cement admixture and cement composition | |
Breesem et al. | Influence of magnesium sulfate on self-compacting alum sludge concrete incorporating with pozzolanic materials | |
Guneyisi et al. | Laboratory investigation of chloride permeability for high performance concrete containing fly ash and silica fume | |
Meziane et al. | Effect of limestone fines on the mechanical properties and durability of mortar made with crushed sand | |
Karim et al. | Ready mixed concrete behavior of granulated blast furnace slag contained cement | |
JP2530720B2 (en) | Cement admixture and cement composition | |
Boukhelkhal et al. | Some engineering properties of sustainable self-compacting mortar made with ceramic and glass powders. | |
Adeshokan et al. | Comparison between the Compressive Strength of Binary and Ternary Alkaline-activated Pozzolanic Concrete | |
Devi et al. | Review on blended concretes | |
Kumar et al. | Studies on strength parameters of blended self cured concrete with natural and manufactured sand on the impact of fly ash and ground granulated blast furnace slag | |
JPH0735272B2 (en) | Cement admixture and cement composition | |
JP2824287B2 (en) | Cement admixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |