JPH0735272B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition

Info

Publication number
JPH0735272B2
JPH0735272B2 JP10604089A JP10604089A JPH0735272B2 JP H0735272 B2 JPH0735272 B2 JP H0735272B2 JP 10604089 A JP10604089 A JP 10604089A JP 10604089 A JP10604089 A JP 10604089A JP H0735272 B2 JPH0735272 B2 JP H0735272B2
Authority
JP
Japan
Prior art keywords
cement
weight
slag
parts
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10604089A
Other languages
Japanese (ja)
Other versions
JPH02289453A (en
Inventor
等 森山
芳春 渡辺
久行 清水
峯雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10604089A priority Critical patent/JPH0735272B2/en
Publication of JPH02289453A publication Critical patent/JPH02289453A/en
Publication of JPH0735272B2 publication Critical patent/JPH0735272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はセメント混和材及びそれを含有したセメント組
成物、詳しくは、高強度や、例えば、凍結融解耐久性、
耐塩性、中性化及び耐蝕性などの高耐久性を有するセメ
ント混和材及びそれを含有したセメント組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a cement admixture and a cement composition containing the same, more specifically, high strength and freeze-thaw durability,
The present invention relates to a cement admixture having high durability such as salt resistance, neutralization and corrosion resistance, and a cement composition containing the same.

<従来技術とその課題> 従来、パイル、ポール及びヒューム管等、常圧蒸気養生
を行なって製造するコンクリート成形体の高強度化を計
る方法として、セッコウ類を比較的多量に添加すれば良
いことが、一般に知られている(特公昭56-40104号公
報)。
<Prior art and its problems> Conventionally, a relatively large amount of gypsum should be added as a method for increasing the strength of a concrete molded body manufactured by performing normal pressure steam curing such as piles, poles and fume tubes. However, it is generally known (Japanese Patent Publication No. 56-40104).

しかしながら、この方法は高強度化の効果は大きいが、
コンクリート成形体の、例えば、耐塩性等の耐久性につ
いては充分な効果が得らず、凍結融解耐久性について
も、800kgf/cm以上の高強度を発現させなければ向上
しない等の課題があった。
However, although this method has a large effect of increasing the strength,
For example, there is a problem that the concrete molded body does not have sufficient effects on durability such as salt resistance, and freeze-thaw durability cannot be improved unless high strength of 800 kgf / cm 2 or more is exhibited. It was

また、コンクリート成形体の強度及び耐久性を同時に改
善する方法として、セメントと、セメントに対して30〜
85重量%とかなり多い量の微粉末高炉スラグ、高炉スラ
グの細骨材及び減水剤を配合することが知られている
(特開昭61-281057号公報)。
In addition, as a method of simultaneously improving the strength and durability of the concrete molded body, with cement, 30 ~
It is known to add a considerably large amount of finely powdered blast furnace slag, fine aggregate of blast furnace slag and water reducing agent to 85% by weight (JP-A-61-281057).

しかしながら、この方法では、コンクリート成形体を常
圧蒸気養生した後、気乾養生すると、乾燥収縮によると
思われる、半径200Å以上の大きな空隙が生じ、長期の
凍結融解耐久性の低下、中性化の促進、鉄筋の発錆及び
強度低下が予想され、圧縮強度に対する引張り強度の比
率が小さい等の課題があった。
However, in this method, when the concrete molded body is subjected to atmospheric pressure steam curing and then air-dried curing, large voids with a radius of 200 Å or more, which are thought to be due to drying shrinkage, are generated, resulting in long-term freeze-thaw durability deterioration and neutralization. However, there were problems such as accelerating the stress, rusting of the reinforcing bar and a decrease in strength, and a small ratio of tensile strength to compressive strength.

一方、従来より、高炉スラグは、高炉スラグセメントと
してセメントに多用され、高炉スラグの配合量によって
A種、B種及びC種に分類されている。即ち、高炉スラ
グ混合量が30%以下のA種、30%を越え60%以下のB種
及び60%を超え70%以下のC種である。そして、アルカ
リ−骨材反応防止の面から高炉スラグの混合量は40%以
上とすることが推奨されている。
On the other hand, conventionally, blast furnace slag is often used as cement as blast furnace slag cement, and is classified into Class A, Class B and Class C depending on the blending amount of blast furnace slag. That is, the A type having a blast furnace slag mixing amount of 30% or less, the B type of more than 30% and 60% and the C type of more than 60% and 70% or less. From the viewpoint of preventing alkali-aggregate reaction, it is recommended that the mixing amount of blast furnace slag be 40% or more.

しかしながら、通常、高炉セメント用に使用される高炉
スラグの粒度は、ブレーン値で4,000cm/g前後、12μ
以下の粒子の量が50%にも満たないものであり、このよ
うな粗い高炉スラグは、II型無水セッコウと併用して
も、II型無水セッコウの有する高強度発現能力をむしろ
損う傾向を示すものであった。
However, the grain size of blast furnace slag normally used for blast furnace cement is about 4,000 cm 2 / g in terms of Blaine value, 12 μm.
The amount of the following particles is less than 50%, such a coarse blast furnace slag, even when used in combination with type II anhydrous gypsum, rather tends to impair the high strength development ability of type II anhydrous gypsum. It was shown.

本発明者らは、上記課題を解決し、さらに、各種耐久性
を高めるべく鋭意検討した結果、特定の高炉スラグ微粉
末とII型無水セッコウを併用することにより、上記課題
が解決できる知見を得て、本発明を完成するに至った。
The present inventors have solved the above problems, and as a result of extensive studies to enhance various durability, by using a specific blast furnace slag fine powder and type II anhydrous gypsum in combination, the knowledge that the above problems can be solved is obtained. As a result, the present invention has been completed.

<課題を解決するための手段> 即ち、本発明は、12μ以下の粒子が60%以上の高炉スラ
グ微粉末100重量部と、II型無水セッコウ10〜750重量部
とを主成分とするセメント混和材であり、セメント100
重量部と、該セメント混和材4〜35重量部とを主成分と
するセメント組成物である。
<Means for Solving the Problems> That is, the present invention is a cement admixture containing 100 parts by weight of fine powder of blast furnace slag having a particle size of 12 μ or less and 60% or more and 10 to 750 parts by weight of type II anhydrous gypsum as a main component. Material and cement 100
A cement composition containing, as a main component, 4 parts by weight and 4 to 35 parts by weight of the cement admixture.

以下、本発明を詳しく説明する。Hereinafter, the present invention will be described in detail.

本発明における高炉スラグ微粉末(以下本スラグとい
う)とは、12μ以下の粒子が60%以上の高炉スラグであ
る。
The blast furnace slag fine powder (hereinafter referred to as the present slag) in the present invention is blast furnace slag in which particles of 12 μ or less are 60% or more.

本スラグは、高炉より副生する溶融スラグを急冷しガラ
ス化したものを粉砕又は粉砕・分級して得られる微粉末
であり、通常、高炉セメント用み使用されるものも使用
可能である。
The present slag is a fine powder obtained by crushing or crushing and classifying the molten slag by-produced from the blast furnace which is rapidly cooled and vitrified, and the one normally used for blast furnace cement can also be used.

スラグ粉末の潜在水硬性の度合いを表わすものとして示
される塩基度(CaO+Al+MgO)/SiOは、本発明
では、1.4以上が好ましく、1.7以上がより好ましい。
In the present invention, the basicity (CaO + Al 2 O 3 + MgO) / SiO 2 shown as indicating the degree of latent hydraulicity of the slag powder is preferably 1.4 or more, more preferably 1.7 or more.

また、本スラグのガラス化率は50%以上が好ましく、90
%以上がより好ましい。
The vitrification rate of this slag is preferably 50% or more,
% Or more is more preferable.

本スラグの粒度は、12μ以下の粒子が60%以上が好まし
く、80%以上がより好ましい。12μ以下の粒子が60未満
ではII型無水セッコウと併用した場合、強度発現効果が
充分得られないか、場合によってはII型無水セッコウの
強度発現能力を損なう場合もあるもので好ましくない。
The particle size of the present slag is preferably 60% or more, and more preferably 80% or more, particles having a particle size of 12 μ or less. When the particles having a particle size of 12 μ or less are less than 60, when used in combination with type II anhydrous gypsum, the strength developing effect may not be sufficiently obtained, or in some cases, the strength expressing ability of type II anhydrous gypsum may be impaired, such being undesirable.

本スラグは、粒度が細かければ細かい程良く、工業的
に、かつ、経済的に粉砕又は粉砕・分級されて得られる
最小の高炉スラグ粉末の粒度は、通常、10μ以下でD50
の値が3μ程度であり、このような超微粉スラグの使用
はより好ましい。
The finer the particle size of the slag, the finer the particle size of the minimum blast furnace slag powder obtained by crushing or crushing / classifying industrially and economically is usually 10 μD or less and D50.
Is about 3 μm, and it is more preferable to use such ultrafine slag.

このような微粉の高炉スラグ粉末はII型無水セッコウと
併用した場合、スラグ粉末単独又はII型無水セッコウ単
独使用の場合より著しく高い強度が得られ、かつ、耐久
性の高いセメント成形体が得られる。
When such fine ground blast furnace slag powder is used in combination with type II anhydrous gypsum, significantly higher strength is obtained than in the case of using slag powder alone or type II anhydrous gypsum alone, and a highly durable cement compact is obtained. .

このような相乗的効果を発現する理由は不明であるが、
高炉スラグが微粉化することにより、高炉スラグ中に多
量にあるAl元素の溶解速度が速くなり、II型無水セッコ
ウの溶解速度とバランスして、液相中により効率的にエ
トリンガイトを生成し、空隙を充填し密実化すると同時
に、II型無水セッコウが高炉スラグ中のAl元素の溶出量
を高かめ、高炉スラグ粒子をポーラスにして高炉スラグ
全体の水和反応量を高めることによるものと推察され
る。
The reason why such a synergistic effect is exhibited is unknown,
By pulverizing the blast furnace slag, the dissolution rate of a large amount of Al element in the blast furnace slag becomes faster, and it balances with the dissolution rate of type II anhydrous gypsum, producing ettringite more efficiently in the liquid phase, and forming voids. At the same time as filling and solidifying, the type II anhydrous gypsum increased the elution amount of Al element in the blast furnace slag, making the blast furnace slag particles porous and increasing the hydration reaction amount of the entire blast furnace slag. It

本発明におけるII型無水セッコウ(以下本セッコウとい
う)とはX線回折パターンがII−CaSOの形態を示すも
のであり、二水、半水及びIII型無水セッコウなどを焼
成して得られるものの他、弗酸製造工程より副生するも
のや、天然無水セッコウも使用可能である。また、本セ
ッコウは、天然に又は工業的に含まれる不純物には制限
されないものである。
The type II anhydrous gypsum (hereinafter referred to as the present gypsum) in the present invention has a form in which the X-ray diffraction pattern is II-CaSO 4 , and is obtained by firing dihydrate, semi-water or type III anhydrous gypsum. In addition, a by-product from the hydrofluoric acid production process or natural anhydrous gypsum can be used. The gypsum is not limited to impurities contained naturally or industrially.

本セッコウの粉末度はプレーン値で3,000cm/g以上が
好ましく、4,000〜7,500cm/gがより好ましい。プレー
ン値が3,000cm/g未満では、蒸気養生を行なっても未
反応で残り易く、これが長期に渡って反応し、セメント
成形体の安定性を欠く傾向にあるので好ましくない。
The fineness of this gypsum is preferably 3,000 cm 2 / g or more as a plain value, and more preferably 4,000 to 7,500 cm 2 / g. When the plain value is less than 3,000 cm 2 / g, it is not preferable because it tends to remain unreacted even when steam curing is performed, and this tends to react for a long period of time, resulting in lack of stability of the cement molded product.

本セッコウの使用量は、本スラグ100重量部に対し、10
〜750重量部である。
The amount of gypsum used is 10 for 100 parts by weight of the slag.
~ 750 parts by weight.

本スラグと本セッコウを主成分とする本発明のセメント
混和材(以下本混和材という)の使用量は、セメント10
0重量部に対し、4〜35重量部が好ましい。特に、セメ
ント100重量部に対し、本スラグが2〜20重量部、本セ
ッコウが2〜15重量部となるように使用することはより
好ましい。
The amount of the cement admixture of the present invention containing the present slag and the present gypsum as a main component (hereinafter referred to as the present admixture) is 10
4 to 35 parts by weight is preferable with respect to 0 parts by weight. In particular, it is more preferable to use 2 to 20 parts by weight of the present slag and 2 to 15 parts by weight of the present gypsum per 100 parts by weight of cement.

本スラグ又は本セッコウが2重量部未満では、強度発現
性や耐久性を改善する効果は小さく、本スラグが20重量
部を越えるか、本セッコウが15重量部を越えると、強度
発現の伸びは期待できない傾向にある。特に、本スラグ
が20重量部を超えると、気乾状態で長く養生した場合、
1.000kgf/cmの高強度が得られても、セメント成形体
表面や深部に向って白く変色し、アルカリ度が低下し、
そのため、中性化、本スラグの酸化及び鉄筋の発錆等の
問題が発生し、さらには、強度低下が生じ易く好ましく
ない。
If this slag or this gypsum is less than 2 parts by weight, the effect of improving strength development and durability is small, and if this slag exceeds 20 parts by weight or this gypsum exceeds 15 parts by weight, the elongation of the strength development will increase. There is a tendency that cannot be expected. Especially, if this slag exceeds 20 parts by weight, if it is cured for a long time in an air-dried state,
Even if a high strength of 1.000 kgf / cm 2 is obtained, the surface of the cement compact and the deep part will turn white and the alkalinity will decrease.
Therefore, problems such as neutralization, oxidation of the present slag, and rusting of reinforcing bars occur, and further, strength reduction easily occurs, which is not preferable.

最も好ましい本混和材の使用量は、セメント100重量部
に対し、本スラグ5〜16重量部、本セッコウ3〜10重量
部の範囲で使用するように配合したもの8〜26重量部で
ある。この時の本スラグと本セッコウの使用割合は、本
スラグ100重量部に対し、本セッコウ19〜200重量部に相
当する。
The most preferable amount of the present admixture is 8 to 26 parts by weight, which is compounded to be used in the range of 5 to 16 parts by weight of the slag and 3 to 10 parts by weight of the gypsum per 100 parts by weight of cement. At this time, the use ratio of the main slag and the main gypsum corresponds to 19 to 200 parts by weight of the main gypsum per 100 parts by weight of the main slag.

ここでいうセメントとは、普通・早強・超早強・中庸熱
・白色等の各種ポルトランドセメントなどである。ま
た、高炉セメントは中性化、酸化及び変色等の問題があ
るので使用できないが、シリカセメントやフライアッシ
ュセメントは使用できる。セメントは水硬性係数が大き
いものほど、また、粉末度が大きいほど高い強度が得ら
れ、耐久性も向上する。
Cement as used herein refers to various types of Portland cement such as normal, early strength, super early strength, moderate heat, and white. Further, blast furnace cement cannot be used because it has problems such as neutralization, oxidation and discoloration, but silica cement and fly ash cement can be used. The higher the hydraulic coefficient of cement and the higher the fineness of the cement, the higher the strength is, and the durability is improved.

本混和材を用いてセメント成形体を製造するに当り、必
要に応じ、減水剤、促進剤及び遅延剤等の化学混和剤を
併用することができる。特に、減水剤の併用は好まし
く、その減水剤の中でも高性能減水剤の併用はより好ま
しいものである。
In producing a cement molded product using this admixture, chemical admixtures such as a water reducing agent, an accelerator and a retarder can be used in combination, if necessary. In particular, the combined use of a water reducing agent is preferable, and among the water reducing agents, the combined use of a high performance water reducing agent is more preferable.

高性能減水剤とは、多量に添加しても凝結の過遅延や過
度の空気連行を伴わない、分散能力の大きな界面活性剤
であって、ナフタレンスルホン酸ホルムアルデヒド縮合
物の塩、メラミンスルホン酸ホルムアルデヒド縮合物の
塩、高分子量リグニンスルホン酸塩及びポリカルボン酸
塩などを主成分とするものなどであり、具体的には、例
えば、花王(株)製商品名「マイティ150」、電気化学
工業(株)製商品名「FT-500」、ポゾリス物産(株)製
商品名「NL-4000」等が挙げられる。
A high-performance water-reducing agent is a surfactant with a large dispersibility that does not cause excessive delay of condensation or excessive air entrainment even when added in a large amount, and is a salt of a naphthalene sulfonic acid formaldehyde condensate or melamine sulfonic acid formaldehyde. Condensate salts, high-molecular-weight lignin sulfonates, polycarboxylates, and the like as main components, and specifically include, for example, trade name "Mighty 150" manufactured by Kao Corporation, Electrochemical Industry ( Product name "FT-500" manufactured by Pozoris Bussan Co., Ltd., product name "NL-4000", etc.

高性能減水剤の使用量は特に限定されるものではない
が、固形分換算でセメント100重量部に対し0.2〜2重量
部程度が好ましい。
The amount of the high-performance water reducing agent used is not particularly limited, but is preferably about 0.2 to 2 parts by weight based on 100 parts by weight of cement in terms of solid content.

本混和材とセメント、砂、砂利、適量の水及び減水剤を
配合して、モルタル・コンクリートを混練し、成形し、
常圧蒸気養生してセメント成形体を製造するにあたり、
本混和材は、予じめセメントに混合してセメント組成物
としても良いし、混練時直接ミキサーへ本混和材又は各
々の成分を別々に混合しても良く、さらに、水に分散さ
せスラリー状で混合しても良い。
Mixing this admixture with cement, sand, gravel, an appropriate amount of water and a water reducing agent, kneading and molding mortar and concrete,
In producing a cement molded product by curing under atmospheric pressure steam,
This admixture may be mixed with preliminarily cemented cement to prepare a cement composition, or the admixture or each component may be mixed separately into a mixer directly at the time of kneading, and further dispersed in water to form a slurry. You may mix with.

混練方法としては、特に制限されるものではなく、モル
タル・コンクリートで通常実施される方法が利用でき
る。
The kneading method is not particularly limited, and a method usually practiced for mortar and concrete can be used.

セメント成形体の成形方法は遠心力成形、プレス成形、
押し出し成形及び振動成形等の常法が利用できる。
Cement molding methods are centrifugal molding, press molding,
Conventional methods such as extrusion molding and vibration molding can be used.

なお、本混和材と高性能減水剤を併用し遠心力成形を行
うと、モルタル・コンクリートの締りが悪く、固形分の
多いドロドロのスラッジが排出されることがある。その
場合、締まりを向上させ、かつ、固形分の分離を少なく
して脱水量を多くする方法として、生石灰・消石灰及び
/又はナトリウム、カリウム及びリチウムの硫酸塩や重
硫酸塩等の無機物を、セメント100重量部に対し、多く
とも1重量部併用することは好ましく、強度発現向上の
面から、0.05〜0.5重量部併用することは、より好まし
い。
If centrifugal mixing is performed using this admixture and a high performance water reducing agent, the mortar / concrete may have poor tightness, and sludge with a high solid content may be discharged. In that case, as a method of improving tightening and reducing the separation of solid content to increase the dehydration amount, quick lime / slaked lime and / or inorganic substances such as sodium, potassium and lithium sulfates and bisulfates are cemented. It is preferable to use at most 1 part by weight with respect to 100 parts by weight, and it is more preferable to use together at 0.05 to 0.5 part by weight from the viewpoint of improving strength development.

また、本混和材を用いたセメント成形体の常圧蒸気養生
は40〜100℃の範囲で行行なわれ、50〜80℃の範囲がよ
り好ましい。
Further, the atmospheric pressure steam curing of the cement molded product using the present admixture is performed in the range of 40 to 100 ° C, more preferably in the range of 50 to 80 ° C.

以上のように成形されるセメント成形体としては、例え
ば、コンクリートパイル、ポール、ヒューム管及び鋼管
ライニング等の遠心力成形体、ボックスカルバート、コ
ンクリート枕木、矢板、橋脚及び橋桁等のプレキャスト
成形体などが挙げられる。
As the cement molded product molded as described above, for example, a concrete pile, a pole, a centrifugal force molded product such as a fume pipe and a steel pipe lining, a box culvert, a concrete sleeper, a sheet pile, a precast molded product such as a bridge pier and a bridge girder. Can be mentioned.

<実施例> 以下、実施例にて本発明を説明する。<Example> Hereinafter, the present invention will be described with reference to Examples.

実施例1 表−1に示すコンクリート配合Bを用い、表−2のよう
に、本スラグの使用量を変化させ、本セッコウとの配合
割合い及びセメントへの添加量を変えて、コンクリート
を作製した。
Example 1 Using concrete mix B shown in Table-1, as shown in Table-2, the amount of this slag used was changed, and the mixing ratio with this gypsum and the addition amount to cement were changed to prepare concrete. did.

なお、本混和材や減水剤などの添加量は、全てセメント
100重量部に対しての重量部であり、常圧蒸気養生は、
前置き養生を4時間行った後、15℃/hで、65℃まで昇温
し、そのまま4時間保持した後、自然放冷し、翌朝蒸気
養生槽より出し各種試験を行なった。
The amount of this admixture and water reducing agent added is all cement.
The weight is 100 parts by weight, and atmospheric pressure steam curing is
After pre-curing for 4 hours, the temperature was raised to 65 ° C. at 15 ° C./h, kept for 4 hours, allowed to cool naturally, and taken out from the steam curing tank the next morning for various tests.

<使用材料> セメント:電気化学工業(株)製 普通ポルトランド セメント(比重3.16) 水:地下水 砂:新潟県姫川産川砂(比重2.65) 砂利: 〃 砕石(比重2.68) 減水剤:高性能減水剤、電気化学工業(株)製商品名
「FT-500」(比重1.20) 本セッコウ:新秋田化成(株)製 弗酸発生副生セッコ
ウ、ブレーン値6,000cm/g(ポロシティ0.5)、比重2.
93 本スラグ:川鉄リバーメント社製高炉スラグセメント用
スラグ(二水セッコウなし、12μ以下の粒子48%)を振
動ミル又は振動ミルと分級装置を組み合わせ次のように
再調整したもの 比重2.95 α:12μ以下53%、D50が約12μ弱 β: 〃 60% 〃 9μ γ: 〃 80 〃 6μ δ: 〃 100 〃 3μ なお、水・セメント比は単に水量とセメント量の重量
%、本混和材は砂と容積で置きかえ、本混合材の量によ
って目標スランプ外となるものは、多少、水量の加減で
スランプを調節した。
<Materials used> Cement: Normal Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd. (specific gravity 3.16) Water: Groundwater Sand: River sand from Himekawa, Niigata (specific gravity 2.65) Gravel: 〃 Crushed stone (specific gravity 2.68) Water reducing agent: High performance water reducing agent , Denki Kagaku Co., Ltd. product name "FT-500" (specific gravity 1.20) This gypsum: Shin-Akita Kasei Co., Ltd. hydrofluoric acid generating by-product gypsum, Blaine value 6,000 cm 2 / g (porosity 0.5), specific gravity 2 .
93 Main slag: Kawatetsu Riverment slag for blast furnace slag cement (no gypsum dihydrate, particles of 12μ or less 48%) re-adjusted as follows with a vibration mill or a vibration mill and a classifier Specific gravity 2.95 α: 12μ or less 53%, D50 is less than 12μ β: 〃 60% 〃 9μ γ: 〃 80 〃 6μ δ: 〃 100 〃 3μ The water / cement ratio is simply water and cement weight%, and this admixture is sand The volume of the mixed material was outside the target slump, and the slump was adjusted by adjusting the amount of water.

<試験方法> (1)スラグ粒度の測定 シーラス社製レーザー回折式粉体粒度分析計グラニュロ
メーターModel 715(測定範囲0〜192μ)を用いエタ
ノールに分散させ行った。
<Test method> (1) Measurement of slag particle size It was dispersed in ethanol using a laser diffraction powder particle size analyzer Granulometer Model 715 (measurement range 0 to 192 µ) manufactured by Cirrus.

(2)強度試験の測定 圧縮強度はφ10×20cmの振動詰めの円柱供試体を用いて
求め、引張り強度はφ15×15cmの円柱供試体を用いて、
その割裂によって求めた。
(2) Measurement of strength test Compressive strength was obtained using a vibration-filled cylindrical specimen of φ10 × 20 cm, and tensile strength was measured using a cylindrical specimen of φ15 × 15 cm.
It was calculated by the split.

(3)塩素イオンの浸透量の測定 φ10×20cmの円柱供試体を材令1日で脱型し、その後20
℃±3、RH60%±5にコントロールした養生箱で28日間
養生してから、3%NaCl水溶液に浸漬し、91日後に供試
体中央部をφ10×0.5cmの寸法で切り出し、300℃で24時
間乾燥したものを全量粉砕して、蛍光X線分析によって
塩素の浸透量を測定した。
(3) Measurement of permeation amount of chloride ion A cylindrical specimen of φ10 × 20 cm was demolded in 1 day of age, then 20
After curing for 28 days in a curing box controlled to ℃ ± 3, RH60% ± 5, soak in 3% NaCl aqueous solution, and 91 days later, cut out the central part of the test piece with a size of φ10 × 0.5cm, and at 24 ℃ at 300 ℃ The whole that had been dried for a period of time was ground and the amount of chlorine permeated was measured by fluorescent X-ray analysis.

(4)中性化深さの測定 φ10×20cmの円柱供試体を、塩素イオンの浸透量測定と
同様に28日間養生してから、RH100%、COガス濃度18
容量%の養生箱で91日間養生し、中央部の円形切断面に
フェノールフタレンを塗布し平均的中性化深さを測定し
た。
(4) Measurement of Neutralization Depth A cylindrical specimen of φ10 × 20 cm was aged for 28 days in the same manner as the chlorine ion permeation measurement, and then 100% RH and a CO 2 gas concentration of 18
It was aged in a volume% curing box for 91 days, and phenolphthalene was applied to the circular cut surface of the central part to measure the average neutralization depth.

(5)凍結融解耐久性の測定 10×10×40cmの供試体を、翌朝脱型後、14日間標準養生
してから水中急速凍結融解試験を行い耐久性指数DF値を
求めた。
(5) Measurement of freeze-thaw durability A sample of 10 × 10 × 40 cm was demolded the next morning, standard-cured for 14 days, and then subjected to a rapid freeze-thaw test in water to obtain a durability index DF value.

ここでDF値とは、次の式で示されるものである。Here, the DF value is represented by the following formula.

DF値(%)=PN/M P:Nサイクル時の相対動弾性係数 P=n /n n:試験開始時の一次たわみ振動数 n:任意のサイクル時の一次たわみ振動数 N:Pが60%になった時又は試験を終わらせる時のサイク
ル数 M:凍結融解試験を終わらせるサイクル数 以上の試験結果を表−2に示す。
DF value (%) = PN / MP: Relative dynamic elastic modulus at N cycles P = n 1 2 / n 2 n: First-order flexural frequency at the start of test n 1 : First-order flexural frequency at any cycle N: Cycle number when P reaches 60% or when the test is terminated M: Cycle number when the freeze-thaw test is terminated Table 2 shows the test results.

なお、本混和材はセメント100重量部に対する重量部で
示し、14日強度は標準養生で、28日強度は20℃±3、RH
60%±5で養生し、各々の耐久性試験開始時の強度を測
定した示した。
This admixture is shown in parts by weight relative to 100 parts by weight of cement, 14 days strength is standard curing, 28 days strength is 20 ℃ ± 3, RH
The strength at the beginning of each durability test was measured after curing at 60% ± 5.

表−2から明らかなように、本スラグと本セッコウの単
独使用に比較し、両者を適量併用した本発明例では、特
に強度が相乗的に増大し、各種耐久性も改善される。
As is clear from Table 2, in comparison with the single use of the present slag and the present gypsum, in the examples of the present invention in which both of them are used in appropriate amounts, the strength is synergistically increased, and various durability is also improved.

また、高炉スラグの粒度についても、12μ以下の粒子が
60%以上のものと、本セッコウとの組合わせで、強度や
耐久性の改善効果が顕著となり、高炉スラグの粒度は細
かいほど良いこともわかる。
Also, regarding the particle size of blast furnace slag, particles of 12μ or less
By combining 60% or more with this gypsum, the effect of improving strength and durability becomes remarkable, and it can be seen that the finer the grain size of the blast furnace slag, the better.

反対に、12μ以下の粒子が60%未満と高炉スラグの粒度
が粗いと、極端に本セッコウとの併用効果が低下するこ
ともわかる。
On the contrary, if the particle size of the blast furnace slag is less than 60% with particles of 12μ or less, the effect of combined use with this gypsum is extremely reduced.

さらに、本スラグと本セッコウとの組合わせにおいて、
本発明の範囲外の組合わせ(実験No.1-13、1-19、1-2
0)では、強度的効果が小さいか、強度の伸びが殆んど
変らないようになっているか、各種耐久性のいずれかが
悪くなる傾向にあることがわかる。
Furthermore, in the combination of this slag and this gypsum,
Combinations outside the scope of the present invention (Experiment No. 1-13, 1-19, 1-2
In 0), it can be seen that the strength effect is small, the elongation of strength is hardly changed, or any of various durability tends to be deteriorated.

なお、実験No.1-4、1-9及び1-16のコンクリートをφ10
×20cmシリンダーに成形し、常圧蒸気養生をしないで、
翌日まで20℃室内で養生し、脱型して標準養生したもの
の、14日圧縮強度は実験No.1-4が603kgf/cm、実験No.
1-9が785kgf/cm、実験No.1-16が803kgf/cmであり、
本発明は常圧蒸気養生で顕著な効果を示すものであるこ
とが判った。
In addition, the concrete of Experiment Nos. 1-4, 1-9 and 1-16 was
Molded in a 20 cm cylinder, without atmospheric steam curing,
Although it was cured in a room at 20 ° C until the next day and demolded for standard curing, the 14-day compressive strength was 603 kgf / cm 2 in Experiment Nos. 1-4 and Experiment No.
1-9 is 785 kgf / cm 2 , Experiment No. 1-16 is 803 kgf / cm 2 ,
It has been found that the present invention shows a remarkable effect in normal pressure steam curing.

実施例2 表−1のA〜Dのコンクリート配合で、表−2の実験N
o.1-4、1-9及び1-16で示すコンクリートを用い、実施例
1と同様に、φ10×20の供試体を成形し、各材令の圧縮
強度を測定した。その結果を表−3に示す。
Example 2 The concrete composition of A to D of Table-1 and the experiment N of Table-2
Using the concrete shown in o.1-4, 1-9 and 1-16, a specimen of φ10 × 20 was molded in the same manner as in Example 1 and the compressive strength of each material was measured. The results are shown in Table-3.

なお、蒸気養生後、翌朝脱型した供試体の養生は、室温
20℃±3に調節した室内に放置した。
After steam curing, the specimen that was demolded the next morning was cured at room temperature.
It was left in a room adjusted to 20 ° C ± 3.

表−3からわかるように単位セメント量が少なくても強
度的効果は顕著で単位セメント量が300kg/mでも800kg
f/cm以上の高強度が得られる。
As can be seen from Table-3, the strength effect is remarkable even when the unit cement amount is small, and 800 kg even when the unit cement amount is 300 kg / m 3.
High strength of f / cm 2 or more can be obtained.

実施例3 実施例2、表−3の実験No.2-4〜6で示すコンクリート
に、ガス焼き石灰炉で焼成した生石灰を88μ以下に粉砕
したもの(Q)、さらにそれに水を加え消化させたもの
を乾燥した消石灰(R)、1級試薬の硫酸ナトリウム
(S)、硫酸カリウム(T)、硫酸リチウム(U)及び
重硫酸ナトリウム(V)の添加量を変えφ20×5×30cm
の遠心力成形供試体を成形し、スラッジの発生量とそれ
を乾燥した固形分量、遠心力成形供試体内面の締まらな
い部分の厚みであるノロ厚及び蒸気養生後の1日圧縮強
度を測定した。その結果を表−4に示す。
Example 3 In Example 2, concrete shown in Experiment Nos. 2-4 to 6 of Table 3 was crushed with quick lime in a gas-fired lime furnace to a size of 88 μ or less (Q), and water was further added to digest it. Dried slaked lime (R), primary reagents sodium sulfate (S), potassium sulfate (T), lithium sulfate (U) and sodium bisulfate (V) were added in different amounts φ20 × 5 × 30 cm
Centrifugal molded specimens are molded, and the amount of sludge generated, the solid content of dried sludge, the thickness of the non-tightened inner surface of the centrifugal molded specimens, and the 1-day compressive strength after steam curing are measured. did. The results are shown in Table-4.

なお、遠心力成形は3Gで2分、9Gで4分、30Gで3分成
形し、コンクリートは18kg一定量投入し、中空部分は分
離して来るスラッジが濡れないように蓋をした。
In addition, centrifugal force molding was performed for 2 minutes with 3G, 4 minutes with 9G, and 3 minutes with 30G, and a constant amount of 18 kg of concrete was added, and the hollow portion was covered with a lid to prevent the sludge coming off from getting wet.

表−4からわかるように、本混和材を使用したコンクリ
ートの遠心力成形体の成形性を改善するために無機物を
併用することは、有効なことである。
As can be seen from Table-4, it is effective to use an inorganic substance together in order to improve the moldability of the centrifugal force molded product of the concrete using this admixture.

なお、無機物は、比較例である実験No.3-1〜2と併用し
ても本発明例ほどの顕著な効果はない。
It should be noted that the inorganic substance does not have the remarkable effect as in the case of the present invention even when used in combination with Experiment Nos. 3-1 to 2 as Comparative Examples.

実施例4 実施例2の実験No.2-4〜6のコンクリートを用い外径30
0mm×厚さ60mmで長さ4m(曲げモーメント用)と1m(圧
縮用)のPC杭を、常法により成形し、実施例2と同様の
養生条件で養生して作成した。その後、材令7日で曲げ
試験及び圧縮試験を行った。結果を表−5に示す。
Example 4 Using the concrete of Experiment Nos. 2-4 to 6 of Example 2, an outer diameter of 30
PC piles having a length of 0 mm × a thickness of 60 mm, a length of 4 m (for bending moment) and a length of 1 m (for compression) were formed by an ordinary method and cured under the same curing conditions as in Example 2. After that, a bending test and a compression test were performed on the 7th day. The results are shown in Table-5.

なお、PC杭の配筋は高周波熱練(株)製PC鋼棒φ13mm×
4本とφ11mm×4本(ストレート筋)、スパイラル筋は
φ3mmの鉄線を10cm間隔で入れPC鋼棒の初期緊張応力は
杭断面に対し、160kgf/cmとなるようにした。
In addition, the reinforcement of the PC pile is a high-frequency heat kneading Co., Ltd. PC steel bar φ13 mm ×
4 pieces and φ11mm × 4 pieces (straight reinforcement), spiral reinforcement was inserted φ3mm iron wire at 10cm intervals so that the initial tensile stress of PC steel bar was 160kgf / cm 2 against the pile cross section.

実施例5 実施例4と同じコンクリートで、同様の養生条件を用
い、常法による遠心力成形を行ってヒューム管を作成
し、材令7日で外圧強度試験を行った。結果を表−6に
示す。
Example 5 Using the same concrete as in Example 4, centrifugal curing was performed by a conventional method under the same curing conditions to prepare a fume tube, and an external pressure strength test was conducted for 7 days. The results are shown in Table-6.

なお、ヒューム管は内径100mm、厚さ82mm、長さ2,430mm
の寸法で、配筋は、ストレート筋の鉄筋比0.2%、スパ
イラル筋はダブルで1.49%のA型管である。
The fume tube has an inner diameter of 100 mm, a thickness of 82 mm, and a length of 2,430 mm.
With the dimensions, the rebar is a type A tube with a straight bar ratio of 0.2% and a spiral bar of double 1.49%.

<発明の効果> 実施例で示したように、本発明のセメント混和材を使用
することにより、高強度で、かつ、耐久性の高いコンク
リートを製造することができ、さらに、本発明の混和材
を用いたセメント成形体は成形体としての性能も顕著に
向上する。
<Effect of the invention> As shown in the examples, by using the cement admixture of the present invention, it is possible to produce a concrete having high strength and high durability, and further, the admixture of the present invention. The cement molded product using is significantly improved in performance as a molded product.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】12μ以下の粒子が60%以上の高炉スラグ微
粉末100重量部と、II型無水セッコウ10〜750重量部とを
主成分とするセメント混和材。
1. A cement admixture mainly comprising 100 parts by weight of blast furnace slag fine powder having a particle size of 12 μ or less and 60% or more and 10 to 750 parts by weight of II type anhydrous gypsum.
【請求項2】セメント100重量部と、請求項1記載のセ
メント混和材4〜35重量部とを主成分とするセメント組
成物
2. A cement composition comprising 100 parts by weight of cement and 4 to 35 parts by weight of the cement admixture according to claim 1.
JP10604089A 1989-04-27 1989-04-27 Cement admixture and cement composition Expired - Fee Related JPH0735272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10604089A JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10604089A JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JPH02289453A JPH02289453A (en) 1990-11-29
JPH0735272B2 true JPH0735272B2 (en) 1995-04-19

Family

ID=14423526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10604089A Expired - Fee Related JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JPH0735272B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532540B1 (en) * 2003-06-05 2005-12-01 안기주 Bubble concrete mortar composition and its manufacturing process
JP6155373B1 (en) * 2016-08-22 2017-06-28 国立大学法人 岡山大学 Method for producing composition for mortar or concrete, method for producing molded product obtained by molding the composition, and method for quality control

Also Published As

Publication number Publication date
JPH02289453A (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US10457603B2 (en) Casting method for making a lightweight concrete product
Meddah et al. Potential use of binary and composite limestone cements in concrete production
Li et al. Properties of concrete incorporating fly ash and ground granulated blast-furnace slag
US8236098B2 (en) Settable building material composition including landfill leachate
Mira et al. Effect of lime putty addition on structural and durability properties of concrete
JP2581803B2 (en) Cement admixture and cement composition
Kaur et al. Reviewing some properties of concrete containing mineral admixtures
JP2515397B2 (en) Cement admixture and cement composition
JP5336881B2 (en) Water reducing agent composition and mortar or concrete using the same
JP2853989B2 (en) Highly durable cement composition
JP2612071B2 (en) How to make salt-tolerant poles
JP2622287B2 (en) Cement admixture and cement composition
JPH0735272B2 (en) Cement admixture and cement composition
JPH09295843A (en) High performance water reducing agent and cement composition using the same
JP2501638B2 (en) Centrifugal molding single mouth reducing agent and method for producing centrifugal molding using the same
JP4679707B2 (en) High-strength cement admixture and cement composition using the same
JP2530720B2 (en) Cement admixture and cement composition
Siddique et al. Metakaolin
JP2003321262A (en) Cement admixture and cement composition using the same
Courard et al. Some effects of limestone fillers as a partial substitute for cement in mortar composition
JP3222040B2 (en) Mixing method of concrete for centrifugal force forming
Boukhelkhal et al. Some engineering properties of sustainable self-compacting mortar made with ceramic and glass powders.
JP2824287B2 (en) Cement admixture
JP3020962B2 (en) Highly durable cement composition
JPH07115894B2 (en) Method for manufacturing salt-resistant pole

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080419

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090419

LAPS Cancellation because of no payment of annual fees