JP3020962B2 - Highly durable cement composition - Google Patents
Highly durable cement compositionInfo
- Publication number
- JP3020962B2 JP3020962B2 JP1157882A JP15788289A JP3020962B2 JP 3020962 B2 JP3020962 B2 JP 3020962B2 JP 1157882 A JP1157882 A JP 1157882A JP 15788289 A JP15788289 A JP 15788289A JP 3020962 B2 JP3020962 B2 JP 3020962B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- weight
- parts
- amount
- highly durable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高耐久性セメント組成物に関し、詳しくはモ
ルタルやコンクリートのアルカリ骨材反応の低減又は防
止、耐塩性や耐硫酸塩性等の耐久性の向上が図れる高耐
久性セメント組成物に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a highly durable cement composition, and more specifically, to reduce or prevent alkali-aggregate reaction of mortar and concrete, and to improve durability such as salt resistance and sulfate resistance. The present invention relates to a highly durable cement composition capable of improving the durability.
〈従来の技術とその課題〉 近年、良質のセメント原料の枯渇、セメントの焼成方
法の変遷及び焼成燃料の微粉炭への変更等によって、セ
メント中のアルカリ量が増加する一方、骨材の枯渇によ
る品質の低下と相まってアルカリ骨材反応が発生すると
いう課題があった。<Conventional technology and its problems> In recent years, the amount of alkali in cement has increased due to the depletion of high-quality cement raw materials, changes in the firing method of cement, and the change to pulverized coal for firing fuel, etc. There has been a problem that an alkali-aggregate reaction occurs in combination with the deterioration in quality.
また、モルタルやコンクリートの耐塩性や耐硫酸塩性
等の耐久性も海洋開発が進むことによって重要視され始
めているが、単に、水・セメント比を低下し、高強度化
しただけでは著しい改善は認められないという課題があ
った。Also, the durability of mortar and concrete, such as salt resistance and sulfate resistance, has begun to be emphasized as ocean development progresses.However, simply reducing the water / cement ratio and increasing the strength will not significantly improve the durability. There was a problem that it was not recognized.
これら課題を一挙に解決する方法として高炉スラグセ
メントの使用が推奨されている。The use of blast-furnace slag cement has been recommended as a method of solving these problems at once.
高炉スラグセメントがアルカリ骨材反応を低減又は防
止する理由は明確ではないが、実験室的に防止効果のあ
ることが認められている。また、耐塩性や耐硫酸塩性等
の耐久性については、浸透してくる塩素イオンや硫酸イ
オンを高炉スラグ中のAl成分が化学吸着し、フリーデル
塩(3CaO・Al2O3・CaCl2・10H2O)やエトリンガイト(3
CaO・Al2O3・3CaSO4・32H2O)の形で固定し、それ以上
の浸透をくいとめる性質を利用するものである。Although the reason why blast furnace slag cement reduces or prevents the alkali-aggregate reaction is not clear, it has been recognized in the laboratory that it has a preventive effect. As for the durability such as salt resistance and sulfate resistance, the Al component in the blast furnace slag chemically absorbs the infiltrating chlorine ions and sulfate ions, and the Friedel salt (3CaO.Al 2 O 3 .CaCl 2・ 10H 2 O) and ettringite (3
It is fixed in the form of CaO ・ Al 2 O 3・ 3CaSO 4・ 32H 2 O) and utilizes the property of preventing further penetration.
そして、高炉スラグの使用量としては、アルカリ反応
を抑制する場合や、耐塩性や耐硫酸塩性等を改善する場
合も、セメントと高炉スラグの合計100重量部に対し、4
0重量部以上が推奨され、従来、高炉スラグB種セメン
トのスラグ配合率は30〜35重量%が一般的であったが、
最近では40〜55重量%に引き上げられるに至っている。The amount of blast furnace slag used is 4 parts by weight based on the total of 100 parts by weight of cement and blast furnace slag, even when suppressing alkali reaction or improving salt resistance and sulfate resistance.
0 parts by weight or more is recommended. Conventionally, the slag mixing ratio of blast furnace slag B type cement is generally 30 to 35% by weight,
Recently, it has been raised to 40-55% by weight.
また、高炉スラグセメントに使用されるスラグの粉末
度(ブレーン値)は4,000cm2/g前後と粗いのに対し、最
近では高強度や、例えば、耐塩性やアルカリ骨材反応防
止等の、さらなる高耐久性を目的として、粉末度で10,0
00cm2/g前後、最大粒径が10μ程度の超微粉スラグを用
いることが提案されている(特開昭61−281057号公報
等)。In addition, the fineness (Brain value) of slag used in blast furnace slag cement is as coarse as about 4,000 cm 2 / g, but recently, it has become more difficult to use high strength and, for example, salt resistance and alkali-aggregate reaction prevention. Fineness of 10,000 for high durability
It has been proposed to use an ultrafine slag having a particle size of about 00 cm 2 / g and a maximum particle size of about 10 μm (Japanese Patent Laid-Open No. 281057/1986).
しかしながら、高炉スラグは還元雰囲気から副生して
くるためか、各成分を化学分析して酸化物として換算す
ると、合計でかなりの重量増があり、酸素不足となって
いると考えられる。このような高炉スラグをセメント又
は消石灰と水和反応させると、高炉スラグの中に多量の
Al成分を含むにも拘らずX線回析では殆んどカルシウム
アルミネート水和物が検出されない。しかしながら、そ
こに塩素イオンや硫酸イオンが浸透してくると、速やか
にフリーデル塩やエトリンガイトを生成させて浸透をく
い止める反面、炭酸ガスや酸素を吸着しやすく、中性化
や酸化による硬化体の劣化や鉄筋の発錆を招きやすく、
総合的に考えた場合、長期の耐久性に課題が残るもので
ある。However, if the blast furnace slag is produced as a by-product from the reducing atmosphere, when each component is chemically analyzed and converted as an oxide, it is considered that there is a considerable weight increase in total and oxygen deficiency. When such blast furnace slag undergoes a hydration reaction with cement or slaked lime, a large amount of
Almost no calcium aluminate hydrate is detected by X-ray diffraction despite the presence of the Al component. However, when chlorine ions or sulfate ions penetrate there, it quickly generates Friedel salts and ettringite to stop the penetration, but easily adsorbs carbon dioxide and oxygen, causing the cured product to become neutralized or oxidized. It is easy to cause deterioration and rust of the reinforcing steel,
When considered comprehensively, there remains a problem in long-term durability.
本発明者らは、前記課題を解消すべく、鋭意検討した
結果、非晶質の水酸化アルミニウムを使用すれば、常温
又は常圧蒸気養生条件下で反応し、アルカリ骨材反応の
低減又は防止、耐塩性や耐硫酸塩性等の耐久性の向上等
が図れる知見を得て本発明を完成するに至った。Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result of using the amorphous aluminum hydroxide, the amorphous aluminum hydroxide reacts under normal temperature or normal pressure steam curing conditions to reduce or prevent the alkali-aggregate reaction. The present invention has been completed by obtaining knowledge that can improve durability such as salt resistance and sulfate resistance.
〈課題を解決するための手段〉 即ち、本発明は、(1)セメント100重量部に対し
て、非晶質の水酸化アルミニウム2〜20重量部、および
高性能減水剤0.2〜2重量部を含有するアルカリ骨材反
応の低減、耐塩性や耐硫酸塩性用高耐久性セメント組成
物、(2)更に膨張材を併用してなる(1)記載の高耐
久性セメント組成物である。<Means for Solving the Problems> That is, the present invention provides (1) 2 to 20 parts by weight of amorphous aluminum hydroxide and 0.2 to 2 parts by weight of a high-performance water reducing agent per 100 parts by weight of cement. A highly durable cement composition according to (1), further comprising a highly durable cement composition for reducing alkali-aggregate reaction, salt resistance and sulfate resistance, and (2) further comprising an expanding material.
以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
本発明に用いる非晶質の水酸化アルミニウムとは、ア
ルミニュウムを加工する際に排出されるアルミスラッジ
や、アルミナゲル等の製造時の中間体などが挙げられ
る。Examples of the amorphous aluminum hydroxide used in the present invention include aluminum sludge discharged during processing of aluminum and intermediates during the production of alumina gel and the like.
非晶質の水酸化アルミニウムは、通常、多量の水分を
含んだウェットケーキ状又はゾル状のものであり、これ
を添加する場合は、少し水を加えてスラリー状として添
加するか、スラリー状のものを湿式粉砕して添加する方
が乾燥して添加するより経済的であり好ましい。Amorphous aluminum hydroxide is usually in the form of a wet cake or sol containing a large amount of water, and when it is added, it may be added as a slurry by adding a little water, or in the form of a slurry. It is more economical and preferable to add the product by wet grinding than to dry it.
非晶質の水酸化アルミニウムの使用量は多ければ多い
ほど、その使用効果が大きいものであるが、コンクリー
ト中のセメン量100重量部に対して、5重量部を超える
と結晶性のカルシウムアルミネートの水和物の量が増加
するためか、強度が徐々に低下してくるので、2〜20重
量部が特に好ましい。The greater the amount of amorphous aluminum hydroxide used, the greater the effect of its use. However, if it exceeds 5 parts by weight with respect to 100 parts by weight of cement in concrete, crystalline calcium aluminate will be used. 2 to 20 parts by weight is particularly preferable because the strength gradually decreases, probably because the amount of hydrate increases.
本発明の高耐久性セメント組成物に使用されるセメン
トは普通・早強・超早強・中庸熱・白色等の各種ポルト
ランドセメントの他、フライアッシュセメントやシリカ
セメントの混合セメントである。The cement used in the high-durability cement composition of the present invention is a mixed cement of fly ash cement and silica cement, in addition to various portland cements such as ordinary / early high / super early / moderate heat / white.
また、モルタルやコンクリートの製造時、通常使用さ
れる市販の各種減水剤、AE剤、遅延剤、促進剤及び膨張
材等が併用できる。特に、高性能減水剤の併用は好まし
く、水・セメント比を低下させ密実化することにより、
アルカリ骨材反応の低減又は防止、耐塩性や耐硫酸塩性
等の耐久性の向上効果を助長する。In the production of mortar or concrete, various commercially available water reducing agents, AE agents, retarders, accelerators, expanders and the like which are usually used can be used in combination. In particular, it is preferable to use a high-performance water reducing agent in combination.
It promotes reduction or prevention of alkali-aggregate reaction and improvement of durability such as salt resistance and sulfate resistance.
高性能減水剤とは、多量に添加しても凝結の過遅延や
過度の空気連行を伴わない、分散能力の大きな界面活性
剤であって、ナフタレンスルホン酸ホルムアルデヒド縮
合物の塩、メラミンスルホン酸ホルムアルデヒド縮合物
の塩、高分子量リグニンスルホン酸塩及びポリカルボン
酸塩等を主成分とするものなどであり、具体的には、例
えば、花王(株)製商品名「マイティ150」、電気化学
工業(株)製商品名「FT−500」、ボゾリス物産(株)
製商品名「NL−4000」等が挙げられる。High-performance water reducing agents are surfactants with a large dispersing ability that do not accompany excessive delay in coagulation or excessive air entrainment even when added in large amounts, and include salts of naphthalenesulfonic acid formaldehyde condensate and melaminesulfonic acid formaldehyde. Examples thereof include salts of condensates, high molecular weight lignin sulfonates and polycarboxylates as main components. Specifically, for example, Kao Corporation's trade name “Mighty 150”; FT-500, Bozoris Bussan Co., Ltd.
Product name "NL-4000" and the like.
高性能減水剤の使用量は、固形分換算でセメント100
重量部に対し、0.2〜2重量部とする。The amount of high-performance water reducing agent used is 100 cement
0.2 to 2 parts by weight based on parts by weight.
また、膨張材を使用したモルタルやコンクリートで
は、膨張することにより、マイクロポアー量が増大し、
塩素イオンや硫酸イオンが浸透しやすくなるので、本発
明のセメント混和材を併用することは特に好ましい。In addition, in mortar and concrete using an expanding material, the amount of micropores increases by expanding,
It is particularly preferable to use the cement admixture of the present invention in combination, since chloride ions and sulfate ions can easily penetrate.
膨張材は、電気化学工業(株)製商品名「デンカCSA
#20」などのエトリンガイト系と小野田セメント(株)
製商品名「小野田エクスパン」などの石灰系に大別され
る。The expanding material is Denka CSA (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.)
# 20 ”and other ettringites and Onoda Cement Co., Ltd.
It is roughly divided into lime-based products such as the product name “Onoda Expan”.
本発明の高耐久性セメント組成物の添加方法として
は、特に限定されるものではなく、モルタルやコンクリ
ート混練時、粉体のまま投入する、非晶質の水酸化アル
ミニウムや高性能減水剤を混練水に分散させ投入する及
び予じめセメントに混合しておく等のいずれの方法も使
用でき、混練水に分散させ投入する方法が好ましい。The method for adding the highly durable cement composition of the present invention is not particularly limited. When kneading mortar or concrete, knead with amorphous aluminum hydroxide or a high-performance water reducing agent, which is charged as powder. Any method such as dispersing in water and mixing in advance with the cement can be used, and a method of dispersing and mixing in kneading water is preferable.
〈実施例〉 以下、実施例にて本発明を説明する。<Example> Hereinafter, the present invention will be described with reference to examples.
実施例1 セメント800重量部、砂1,600重量部、減水剤8重量部
及び水320重量部のモルタル配合を用い、非晶質の水酸
化アルミニウムとして、アルミスラッジを同重量の水と
混合し、磁製ポットミルで湿式粉砕を行い、非晶質の水
酸化アルミニウム固形分7.25重量%として計算し、セメ
ント100重量部に対する添加量をかえてセメントにスラ
リー状で添加し、モルタルを混練し、4×4×16cmの供
試体を成形した。そして、成形から約5時間後、キャッ
ピングして、15℃/hrの速度で65℃まで昇温し、そのま
ま4時間保持し、蒸気バルブを止め蒸気養生槽中で自然
放冷した。翌日脱型し、3%NaCl水溶液に浸漬して各材
令毎の塩素浸透量を定量した。結果を表−1に示す。Example 1 Using a mortar composition of 800 parts by weight of cement, 1,600 parts by weight of sand, 8 parts by weight of a water reducing agent and 320 parts by weight of water, aluminum sludge was mixed with the same weight of water as amorphous aluminum hydroxide, Wet pulverization was performed with a pot mill made of aluminum, calculated as a solid content of amorphous aluminum hydroxide of 7.25% by weight, and added to the cement in a slurry form by changing the addition amount to 100 parts by weight of cement, kneading the mortar, and mixing 4 × 4 A specimen of × 16 cm was formed. Then, after about 5 hours from the molding, capping was performed, the temperature was raised to 65 ° C. at a rate of 15 ° C./hr, and the temperature was maintained for 4 hours, and the steam valve was stopped to allow natural cooling in a steam curing tank. The next day, it was demolded and immersed in a 3% NaCl aqueous solution to determine the amount of chlorine permeated for each material age. The results are shown in Table 1.
塩素の定量は材令に達した供試体の中央部を4×4×
1cmに切り出し300℃で乾燥して全量微粉砕したものを蛍
光X線分析で行なった。また、参考までに材令1日の圧
縮強度も測定して併記した <使用材料> セメント :電気化学工業(株)製普通ポルトランド
セメント 砂 :天然砂、新潟県姫川産川砂 減水剤 :電気化学工業(株)製、商品名「デンカ
FT−500」 水 :飲料水 非晶質水酸化アルミニウム:アルミスラッジ、揮発性
液体85重量%、不揮発性液体5重量%、Al2O39.5重量% Al(OH)3として14.5重量%である。For the determination of chlorine, 4 × 4 ×
One cm was cut out, dried at 300 ° C., and the whole was finely pulverized and subjected to X-ray fluorescence analysis. In addition, the compressive strength of one day of material age was also measured for reference. <Material> Cement: Ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd. Sand: Natural sand, Himekawa river sand from Niigata Prefecture Water reducer: Electrochemical industry Product name "DENKA"
FT-500 ”Water: Drinking water Amorphous aluminum hydroxide: Aluminum sludge, 85% by weight of volatile liquid, 5% by weight of non-volatile liquid, 9.5% by weight of Al 2 O 3 14.5% by weight of Al (OH) 3 .
水酸化アルミニュウムの添加量はセメント100重量部
に対する重量部 表−1から明らかなように、非晶質の水酸化アルミニ
ウムを添加することにより、塩素イオンの浸透をくいと
める効果が認められ、さらに、添加量を増加するに従
い、その効果が顕著となることが認められる。 The amount of aluminum hydroxide added is 100 parts by weight of cement. As is clear from Table 1, the addition of amorphous aluminum hydroxide has the effect of suppressing the penetration of chloride ions. It can be seen that the effect becomes significant as the amount is increased.
実施例2 実験No.1−1〜1−9で作成した材令1日のモルタル
をブラウンクラッシャーにより粉砕し、250μのふるい
下を50g、3%NaSO4水溶液1に72時間浸漬し、濾過・
水洗を繰り返した後、200℃で乾燥し、微粉砕し、螢光
X線分析によって吸着された硫酸イオン量を求めた。な
お、セメント中の硫酸イオンは、浸漬前の250μ下のサ
ンプルでブランクを求めておき、その分差し引いた。結
果を表−2に示す。Example 2 The mortar of 1 day old prepared in Experiment Nos. 1-1 to 1-9 was pulverized with a brown crusher, immersed under a 250 μ sieve in 50 g, 3% NaSO 4 aqueous solution 1 for 72 hours, and filtered.
After repeated washing with water, the mixture was dried at 200 ° C., finely ground, and the amount of adsorbed sulfate ions was determined by X-ray fluorescence analysis. The sulfate ion in the cement was obtained by obtaining a blank in a sample 250 μm below before immersion, and subtracting that amount. Table 2 shows the results.
表−2から明らかなように、非晶質の水酸化アルミニ
ウムの添加量を増加するに従って、硫酸イオンの吸着量
が多くなり、浸透してくる硫酸イオンをくい止める作用
があることを示すものであり、耐硫酸塩性を示唆するも
のである。 As is apparent from Table 2, as the amount of amorphous aluminum hydroxide added increases, the amount of sulfate ion adsorbed increases, indicating that there is an action of blocking the permeating sulfate ion. , Suggests sulfate resistance.
実施例3 表−3に示す粒度の砂及び硅石を用い、セメント800
重量部、砂と硅石1,800重量部及び1規定のNaOH水溶液4
00重量部のモルタル配合を用い、実施例1と同様にアル
ミスタラッジのセメントに対する添加量をかえ、アルカ
リ骨材反応試験を行なった。Example 3 Using sand and silica having the particle sizes shown in Table 3, cement 800
Parts by weight, 1,800 parts by weight of sand and silica and 1N NaOH aqueous solution 4
Alkali-aggregate reaction test was carried out using 00 parts by weight of mortar and changing the amount of aluminum sturdge added to cement in the same manner as in Example 1.
供試体は4×4×16cmの3連型枠で、両端に長さ変化
測定用のゲージプラグを埋め込めるようにしてモルタル
を成形し、20℃±3、RH80%以上の室内で24時間養生し
て、脱型し、JIS A 1129にしたがって基長してから、40
℃±2、RH95%以上の恒温恒湿箱で養生し、3ケ月、6
ケ月材令の膨張量を測定した。結果を表−4に示す。The test specimen is a 4 × 4 × 16 cm triple mold, and mortar is molded at both ends so that a gauge plug for length change measurement can be embedded, and cured for 24 hours in a room at 20 ° C ± 3 and RH 80% or more. And remove it from the mold.
Cured in a thermo-hygrostat at ℃ ± 2, RH95% or more, 3 months, 6 months
The amount of swelling of the lunar age was measured. The results are shown in Table-4.
表−4から明らかなように、非晶質の水酸化アルミニ
ウムを使用することにより、膨張を押える効果が示さ
れ、使用量を増加するに従ってその効果が顕著である。 As is clear from Table 4, the effect of suppressing the expansion is shown by using amorphous aluminum hydroxide, and the effect is more remarkable as the amount used is increased.
なお、アルミスラッジはセメント100重量部に対する
重量部とし、モルタルに対し外割で添加した。The aluminum sludge was added in parts by weight with respect to 100 parts by weight of cement, and was added to the mortar on an outer basis.
硅石は硫黄島産のオパール質硅石を、NaOHは特級試薬
を使用した。The silica used was opal silica from Iwo Jima, and NaOH used a special grade reagent.
実施例4 セメント、水、砂、砕石及び減水剤の各単位量が各々
480、140、813、1,005及び7.2(kg/m3)で、Gmaxが15m
m、s/aが45%、空気量が2.0%、スランプ値が8±2cmの
コンクリート配合を用い、表−5のように、アルミスラ
ッジと膨張材を併用し、Φ10×20cmのコンクリート供試
体を作成した。Example 4 Each unit amount of cement, water, sand, crushed stone, and water reducing agent was respectively
Gmax is 15m at 480, 140, 813, 1,005 and 7.2 (kg / m 3 )
m, s / a is 45%, air volume is 2.0%, slump value is 8 ± 2cm, and concrete mix of aluminum sludge and expander is used as shown in Table-5. It was created.
実施例1と同様の養生方法で、翌日脱型した供試体
(養生1)と、蒸気養生しないで、室温で翌日まで養生
してから、型枠にいれたまま28日間標準養生した供試体
(養生2)とを、3%NaCl水溶液に浸漬し、材令3か月
で取り出し、供試材の中央部をΦ10×2cmに切断し、実
施例1と同様に塩素イオンの浸透量を求めた。その結果
を表−5に併記する。In the same curing method as in Example 1, the specimen (curing 1) which had been demolded the next day was cured with room temperature at room temperature without steam curing until the next day, and then subjected to standard curing for 28 days in a mold ( Curing 2) was immersed in a 3% NaCl aqueous solution, taken out after 3 months of age, the central part of the test material was cut into Φ10 × 2 cm, and the permeation amount of chloride ions was determined in the same manner as in Example 1. . The results are shown in Table-5.
<使用材料> 膨張材 :小野田セメント(株)製商品名「小野
田エクスパン」 拘束膨張測定時の基長は、コンクリート成形前の一軸
拘束の鋼棒をダイヤルゲージで測定 表−5から明らかなように、膨張材を単独で使用する
と、塩素イオンの浸透量は無添加のものに比べ、大幅に
増加するが、非晶質の水酸化アルミニュウムを併用する
ことにより、その浸透をくいとめる効果が大きく、膨張
材の膨張量にも影響を与えないことがわかる。<Materials> Intumescent material: "Onoda Expan" (trade name, manufactured by Onoda Cement Co., Ltd.) The base length at the time of measurement of constrained expansion is measured using a uniaxially constrained steel rod before concrete molding with a dial gauge. As is clear from Table 5, when the intumescent material is used alone, the permeation amount of chlorine ions is not added. However, it can be seen that the use of amorphous aluminum hydroxide has a large effect of suppressing the penetration and does not affect the expansion amount of the expanding material.
〈発明の効果〉 本発明の高耐久性セメント組成物を用いることによ
り、アルカリ骨材反応を低減し、かつ、耐塩性や耐硫酸
塩性などの耐久性を改善したモルタルやコンクリートを
製造することができる。<Effect of the Invention> By using the highly durable cement composition of the present invention, it is possible to reduce the alkali-aggregate reaction and produce mortar or concrete with improved durability such as salt resistance and sulfate resistance. Can be.
───────────────────────────────────────────────────── フロントページの続き 合議体 審判長 石井 勝徳 審判官 森竹 義昭 審判官 野田 直人 (56)参考文献 特開 昭58−69759(JP,A) 特開 昭56−54265(JP,A) ──────────────────────────────────────────────────の Continuing from the front page Judge, Katsutoshi Ishii Judge Yoshiaki Moritake Judge Naoto Noda (56) References JP-A-58-69759 (JP, A) JP-A-56-54265 (JP, A)
Claims (2)
酸化アルミニウム2〜20重量部、および高性能減水剤0.
2〜2重量部を含有するアルカリ骨材反応の低減、耐塩
性や耐硫酸塩性用高耐久性セメント組成物。(1) 100 parts by weight of cement, 2 to 20 parts by weight of amorphous aluminum hydroxide, and 0.
A highly durable cement composition containing 2 to 2 parts by weight for reducing alkali-aggregate reaction, salt resistance and sulfate resistance.
高耐久性セメント組成物。2. The highly durable cement composition according to claim 1, further comprising an expanding material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1157882A JP3020962B2 (en) | 1989-06-20 | 1989-06-20 | Highly durable cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1157882A JP3020962B2 (en) | 1989-06-20 | 1989-06-20 | Highly durable cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0323246A JPH0323246A (en) | 1991-01-31 |
JP3020962B2 true JP3020962B2 (en) | 2000-03-15 |
Family
ID=15659477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1157882A Expired - Fee Related JP3020962B2 (en) | 1989-06-20 | 1989-06-20 | Highly durable cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3020962B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156196A (en) * | 2006-12-26 | 2008-07-10 | Osaka-Hyogo Ready-Mixed Concrete Industrial Association | Method for inhibiting alkali aggregate reaction, and cement composition |
CN105153352B (en) * | 2015-08-09 | 2019-02-19 | 深圳市嘉达高科产业发展有限公司 | Inorganic modified acrylic resin and preparation method thereof, cement prefabricated component |
-
1989
- 1989-06-20 JP JP1157882A patent/JP3020962B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0323246A (en) | 1991-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Manmohan et al. | Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes | |
EP2441738B1 (en) | Expansive admixture and method for producing same | |
JP2003306359A (en) | Cement composition and hydrated hardened body | |
JPWO2007097435A1 (en) | Hardened concrete and concrete composition | |
Yum et al. | Prevention of potential strength degradation due to conversion of C2AH8 formed in CaO-Ca (HCOO) 2-activated GGBFS binder using CaSO4 | |
JP3020962B2 (en) | Highly durable cement composition | |
JP2515397B2 (en) | Cement admixture and cement composition | |
JP2001122650A (en) | Cement admixture and cement composition | |
Ma et al. | Effect of rice husk ash on the thaumasite form of sulfate attack of cement-based materials | |
JPH0813695B2 (en) | Cement admixture | |
JP3549645B2 (en) | Cement admixture and cement composition | |
JP2622287B2 (en) | Cement admixture and cement composition | |
JP2002226243A (en) | Expansive admixture and cement composition | |
JP2001019529A (en) | Cement hardened product | |
JP2530720B2 (en) | Cement admixture and cement composition | |
JP7415834B2 (en) | Cement composition and method for producing cement composition | |
KR100658965B1 (en) | Cement admixture and cement composition using thereof | |
JP4338884B2 (en) | Cement admixture and cement composition | |
JP2824287B2 (en) | Cement admixture | |
Zhang et al. | Hydration, Microstructure and Compressive Strength Development of Seawater-mixed Calcium Sulphoaluminate Cement-based Systems | |
Gonçalves et al. | Evaluation of magnesium sulphate attack in mortar-metakaolin system by thermal analysis | |
JP2009126717A (en) | Calcium silicate hydrate-based material and calcium silicate hydrate-based building material | |
EP3750857A1 (en) | Method for the kinetic regulation of cementitious binders | |
Singh | Indian Institute of Technology Roorkee, Roorkee, India | |
JP4574817B2 (en) | Cement admixture and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |