JPH02289453A - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition

Info

Publication number
JPH02289453A
JPH02289453A JP10604089A JP10604089A JPH02289453A JP H02289453 A JPH02289453 A JP H02289453A JP 10604089 A JP10604089 A JP 10604089A JP 10604089 A JP10604089 A JP 10604089A JP H02289453 A JPH02289453 A JP H02289453A
Authority
JP
Japan
Prior art keywords
cement
weight
blast furnace
parts
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10604089A
Other languages
Japanese (ja)
Other versions
JPH0735272B2 (en
Inventor
Hitoshi Moriyama
等 森山
Yoshiharu Watanabe
芳春 渡辺
Hisayuki Shimizu
清水 久行
Mineo Ito
伊藤 峯雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10604089A priority Critical patent/JPH0735272B2/en
Publication of JPH02289453A publication Critical patent/JPH02289453A/en
Publication of JPH0735272B2 publication Critical patent/JPH0735272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a cement admixture enabling the production of concrete having freezing-thawing resistance, salt resistance and high durability by using specified fine powder of blast furnace slag and specified II-type anhydrous gypsum in combination. CONSTITUTION:A cement admixture is composed essentially of 100 pts.wt. fine powder (A) of blast furnace slag contg. >=60%, preferably >=80% particles of <=12mum particle size and having >=1.4, preferably >=1.7 basicity and >=50%, preferably >=90% rate of vitrification and 10-750 pts.wt. II-type anhydrous gypsum (B) having >=3,000cm<2>/g, preferably 4,000-7,500cm<2>/g Blaine value. A cement compsn. is obtd. by adding the cement admixture to cement by 4-35 pts.wt. per 100 pts.wt. cement so that the components A, B are preferably contained by 2-20 pts.wt. and 2-15 pts.wt., respectively.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はセメント混和材及びそれを含有したセメント組
成物、詳しくは、高強度や、例えば、凍結融解耐久性、
耐塩性、中性化及び耐蝕性などの高耐久性を有するセメ
ント混和材及びそれを含有したセメント組成物に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to cement admixtures and cement compositions containing the same.
The present invention relates to a cement admixture having high durability such as salt resistance, carbonation resistance, and corrosion resistance, and a cement composition containing the same.

〈従来技術とその課題〉 従来、パイル、ポール及びヒユーム管等、常圧蒸気養生
を行なって製造するコンクリート成形体の高強度化を計
る方法として、セラコラ類を比較的多量に添加すれば良
いことが、−Cに知られている(特公昭56−4010
4号公報)。
<Prior art and its problems> Conventionally, as a method of increasing the strength of concrete molded bodies manufactured by atmospheric pressure steam curing, such as piles, poles, and humid pipes, it was sufficient to add a relatively large amount of Ceracola. is known to -C (Special Publication No. 56-4010)
Publication No. 4).

しかしながら、この方法は高強度化の効果は大きいが、
コンクリート成形体の、例えば、耐塩性等の耐久性につ
いては充分な効果が得らず、凍結融解耐久性についても
、800kgf/cm”以上の高強度を発現させなけれ
ばは向上しない等の課題があった。
However, although this method has a great effect of increasing strength,
For example, sufficient effects cannot be obtained on the durability of concrete molded bodies, such as salt resistance, and problems such as the freeze-thaw durability cannot be improved unless high strength of 800 kgf/cm" or more is developed. there were.

また、コンクリート成形体の強度及び耐久性を同時に改
善する方法として、セメントと、セメントに対して30
〜85重量%とかなり多い量の微粉末高炉スラグ、高炉
スラグの細骨材及び減水剤を配合することが知られてい
る(特開昭61−281057号公報)。
In addition, as a method for simultaneously improving the strength and durability of concrete molded bodies, we have developed
It is known to mix a considerably large amount of pulverized blast furnace slag, fine aggregate of blast furnace slag, and a water reducing agent at ~85% by weight (Japanese Unexamined Patent Publication No. 61-281057).

しかしながら、この方法では、コンクリート成形体を常
圧蒸気養生した後、気乾養生すると、乾燥収縮によると
思われる、半径200Å以上の太きな空隙が生じ、長期
の凍結融解耐久性の低下、中性化の促進、鉄筋の発錆及
び強度低下が予想され、圧縮強度に対する引張り強度の
比率が小さい等の課題があった。
However, with this method, when the concrete molded body is cured with atmospheric steam and then air-dried, large voids with a radius of 200 Å or more are generated, which is thought to be due to drying shrinkage, resulting in a decrease in long-term freeze-thaw durability, and a decrease in long-term freeze-thaw durability. It was expected that this would lead to the promotion of carbonization, rusting of reinforcing bars, and a decrease in strength, and there were problems such as a small ratio of tensile strength to compressive strength.

一方、従来より、高炉スラグは、高炉スラグセメントと
してセメントに多用され、高炉スラグの配合量によって
A種、B種及び0種に分類されている。即ち、高炉スラ
グ混合量が30%以下のA種、30%を越え60%以下
のB種及び60%を超え70%以下の0種である。そし
て、アルカリ−骨材反応防止の面から高炉スラグの混合
量は40%以上とすることが推奨されている。
On the other hand, conventionally, blast furnace slag has been widely used in cement as blast furnace slag cement, and is classified into type A, type B, and type 0 depending on the amount of blast furnace slag blended. That is, Type A has a mixed amount of blast furnace slag of 30% or less, Type B has a mixed amount of more than 30% and less than 60%, and Type 0 has a mixed amount of blast furnace slag of more than 60% and not more than 70%. In order to prevent alkali-aggregate reaction, it is recommended that the amount of blast furnace slag mixed is 40% or more.

しかしながら、通常、高炉セメント用に使用される高炉
スラグの粒度は、ブレーン値で4.0OOcn+”7g
前後、12μ以下の粒子の量が50%にも満たないもの
であり、このような粗い高炉スラグは、■型無水セッコ
ウと併用しても、■型無水セッコウの有する高強度発現
能力をむしろ損う傾向を示すものであった。
However, the particle size of blast furnace slag used for blast furnace cement is usually 4.0OOcn+"7g in Blaine value.
The amount of particles of 12μ or less in the front and back is less than 50%, and even if such coarse blast furnace slag is used in combination with type-type anhydrous gypsum, it will actually impair the ability of type-type anhydrous gypsum to develop high strength. This indicates a tendency toward

本発明者らは、上記課題を解決し、さらに、各種耐久性
を高めるべく鋭意検討した結果、特定の高炉スラグ微粉
末と■型無水セッコウを併用することにより、上記課題
が解決できる知見を得て、本発明を完成するに至った。
The inventors of the present invention have solved the above-mentioned problems and, as a result of intensive studies to improve various durability, have found that the above-mentioned problems can be solved by using a specific pulverized blast furnace slag powder and ■-type anhydrous gypsum together. As a result, the present invention was completed.

〈課題を解決するための手段〉 即ち、本発明は、12μ以下の粒子が60%以上の高炉
スラグ微粉末100重量部と、■型無水セッコウ10〜
750重量部とを主成分とするセメント混和材であり、
セメント100重量部と、該セメント混和材4〜35重
量部とを主成分とするセメントta成物である。
<Means for Solving the Problem> That is, the present invention provides 100 parts by weight of pulverized blast furnace slag powder containing 60% or more of particles of 12 μ or less, and 10 to 10 parts of type anhydrous gypsum.
A cement admixture whose main component is 750 parts by weight,
It is a cement TA composition whose main components are 100 parts by weight of cement and 4 to 35 parts by weight of the cement admixture.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における高炉スラグ微粉末(以下本スラグという
)とは、12μ以下の粒子が60%以上の高炉スラグで
ある。
The pulverized blast furnace slag powder (hereinafter referred to as main slag) in the present invention is blast furnace slag in which 60% or more of particles are 12 μm or less.

本スラグは、高炉より副生ずる溶融スラグを急、冷しガ
ラス化したものを粉砕又は粉砕・分級して得られる微粉
末であり、通常、高炉セメント用み使用されるものも使
用可能である。
This slag is a fine powder obtained by crushing or crushing and classifying molten slag, which is a by-product from a blast furnace, which is rapidly cooled and vitrified. Slag that is normally used for blast furnace cement can also be used.

スラグ粉末の潜在水硬性の度合いを表わすものとして示
される塩基度(CaO+A、1zOs+Mg0)/5i
Ozは、本発明では、1.4以上が好ましく、1.7以
上がより好ましい。
Basicity (CaO+A, 1zOs+Mg0)/5i, which represents the degree of latent hydraulicity of slag powder
In the present invention, Oz is preferably 1.4 or more, more preferably 1.7 or more.

また、本スラグのガラス化率は50%以上が好ましく、
90%以上がより好ましい。
In addition, the vitrification rate of this slag is preferably 50% or more,
More preferably 90% or more.

本スラグの粒度は、12μ以下の粒子が60%以上が好
ましく、80%以上がより好ましい、 12μ以下の粒
子が60未満では■型無水セッコウと併用した場合、強
度発現効果が充分得られないか、場合によっては■型無
水セッコウの強度発現能力を損なう場合もあるもので好
ましくない。
The particle size of this slag is preferably 60% or more, and more preferably 80% or more.If the particle size of 12μ or less is less than 60, sufficient strength development effect may not be obtained when used in combination with ■-type anhydrous gypsum. In some cases, this may impair the strength development ability of the ■-type anhydrous gypsum, which is not preferable.

本スラグは、粒度が細かければ細かい程良く、工業的に
、かつ、経済的に粉砕又は粉砕・分級されて得られる最
小の高炉スラグ粉末の粒度は、通常、lOμ以下でD5
0の値が3μ程度であり、このような超微粉スラグの使
用はより好ましい。
The finer the particle size of this slag, the better.The particle size of the minimum blast furnace slag powder obtained by industrially and economically pulverizing or pulverizing/classifying is usually 1Oμ or less and D5.
The value of 0 is about 3μ, and it is more preferable to use such ultrafine powder slag.

このような微粉の高炉スラグ粉末は■型無水セッコウと
併用した場合、スラグ粉末単独又は■型無水セッコウ単
独使用の場合より著しく高い強度が得られ、かつ、耐久
性の高いセメント成形体が得られる。
When such fine blast furnace slag powder is used in combination with ■-type anhydrous gypsum, significantly higher strength can be obtained than when using slag powder alone or ■-type anhydrous gypsum alone, and a highly durable cement molded body can be obtained. .

このような相乗的効果を発現する理由は不明であるが、
高炉スラグが微粉化することにより、高炉スラグ中に多
量にあるA1元素の熔解速度が速くなり、■型無水セッ
コウの溶解速度とバランスして、液相中により効率的に
エトリンガイトを生成し、空隙を充填し密実化すると同
時に、■型無水セッコウが高炉スラグ中の^1元素の溶
出量を高かめ、高炉スラグ粒子をポーラスにして高炉ス
ラグ全体の水和反応量を高めることによるものと推察さ
れる。
The reason for such a synergistic effect is unknown, but
By pulverizing the blast furnace slag, the dissolution rate of the A1 element, which is present in large amounts in the blast furnace slag, becomes faster, which balances the dissolution rate of the type anhydrous gypsum and more efficiently generates ettringite in the liquid phase, creating voids. It is assumed that this is because, at the same time as filling and compacting the blast furnace slag, type anhydrous gypsum increases the elution amount of the ^1 element in the blast furnace slag, making the blast furnace slag particles porous and increasing the amount of hydration reaction of the entire blast furnace slag. be done.

本発明における■型無水セッコウ(以下本セソコウとい
う)とはX線回折パターンがU  Ca5Oaの形態を
示すものであり、二本、半水及び■型無水セッコウなど
を焼成して得られるものの他、弗酸製造工程より副生ず
るものや、天然無水セラコラも使用可能である。また、
本セッコウは、天然に又は工業的に含まれる不純物には
制限されないものである。
In the present invention, the ■-type anhydrous gypsum (hereinafter referred to as the present gypsum) has an X-ray diffraction pattern in the form of UCa5Oa, and includes those obtained by firing two-type, semi-hydrous, and ■-type anhydrous gypsum, etc. It is also possible to use by-products from the hydrofluoric acid manufacturing process and natural anhydrous ceracola. Also,
The present gypsum is not limited to naturally or industrially contained impurities.

本セッコウの粉末度はブレーン値で3.’000cm”
/g以上が好ましく 、4.000〜7,500cm”
/gがより好ましい。ブレーン値が3.000cm”7
g未満では、蒸気養生を行なっても未反応で残り易く、
これが長期に渡って反応し、セメント成形体の安定性を
欠(傾向にあるので好ましくない。
The fineness of this gypsum is Blaine value 3. '000cm'
/g or more, preferably 4,000 to 7,500 cm"
/g is more preferable. Blaine value is 3.000cm”7
If it is less than g, it tends to remain unreacted even after steam curing,
This is undesirable because it tends to react over a long period of time and cause the cement molded product to lack stability.

本セッコウの使用量は、本スラグ100重量部に対し、
10〜750重量部である。
The amount of this gypsum used is based on 100 parts by weight of this slag.
The amount is 10 to 750 parts by weight.

本スラグと本セッコウを主成分とする本発明のセメント
混和材(以下本混和材という)の使用量は、セメント1
00重量部に対し、4〜35重量部が好ましい。特に、
セメント100重量部に対し、本スラグが2〜20ff
i量部、本セノコウが2〜15重量部となるように使用
することはより好ましい。
The amount of the cement admixture of the present invention (hereinafter referred to as the present admixture) whose main components are the present slag and the present gypsum is as follows:
00 parts by weight, preferably 4 to 35 parts by weight. especially,
This slag is 2 to 20 ff per 100 parts by weight of cement.
It is more preferable to use it in an amount of 2 to 15 parts by weight.

木スラグ又は本セッコウが2重量部未満では、強度発現
性や耐久性を改善する効果は小さく、本スラグが20重
四部を越えるか、本セッコウが15重量部を越えると、
強度発現の伸びは期待できない傾向にある。特に、本ス
ラグが20重量部を超えると、気乾状態で長く養生した
場合、1,000kgf/cm”の高強度が得られても
、セメント成形体表面や深部に向って白く変色し、アル
カリ度が低下し、そのため、中性化、本スラグの酸化及
び鉄筋の発錆等の問題が発生し、さらには、強度低下が
生じ易く好ましくない。
If the wood slag or real gypsum is less than 2 parts by weight, the effect of improving strength development and durability is small; if the wood slag or real gypsum exceeds 20 parts by weight or the real gypsum exceeds 15 parts by weight,
There is a tendency that no increase in strength development can be expected. In particular, if this slag exceeds 20 parts by weight, even if a high strength of 1,000 kgf/cm" is achieved when the slag is left to dry for a long time, it will discolor to white on the surface and deep inside the cement compact, and will become alkali-based. As a result, problems such as neutralization, oxidation of the main slag, and rusting of reinforcing bars occur, and furthermore, a decrease in strength tends to occur, which is undesirable.

最も好ましい本混和材の使用量は、セメント100重量
部に対し、本スラグ5〜16重量部、本セーンコウ3〜
10重量部の範囲で使用するように配合したもの8〜2
6重量部である。この時の本スラグと本セッコウの使用
割合は、本スラグ100重量部に対し、本セッコウ19
〜200重量部に相当する。
The most preferable amount of this admixture to be used is 5 to 16 parts by weight of this slag and 3 to 16 parts by weight of this slag to 100 parts by weight of cement.
8 to 2 formulated to be used in a range of 10 parts by weight
It is 6 parts by weight. The ratio of this slag and this gypsum used at this time is 19 parts of this gypsum to 100 parts by weight of this slag.
This corresponds to ~200 parts by weight.

ここでいうセメントとは、普通・早強・超早強・中庸熱
・白色等の各種ポルトランドセメントなどである。また
、高炉セメントは中性化、酸化及び変色等の問題がある
ので使用できないが、シリカセメントやフライアッシェ
セメントは使用できる。セメントは水硬性係数が大きい
ものほど、また、粉末度が大きいほど高い強度が得られ
、耐久性も向上する。
The cement mentioned here includes various Portland cements such as normal, early strength, super early strength, moderate heat, and white. Further, blast furnace cement cannot be used because it has problems such as carbonation, oxidation, and discoloration, but silica cement and fly ash cement can be used. The greater the cement's hydraulic coefficient and the greater its fineness, the higher its strength and improved durability.

本混和材を用いてセメント成形体を製造するに当り、必
要に応じ、減水剤、促進剤及び遅延剤等の化学混和剤を
併用することができる。特に、減水剤の併用は好ましく
、その減水剤の中でも高性能減水剤の併用はより好まし
いものである。
When producing a cement molded body using this admixture, chemical admixtures such as water reducing agents, accelerators, and retarders can be used in combination, if necessary. In particular, it is preferable to use a water reducing agent in combination, and among these water reducing agents, it is more preferable to use a high performance water reducing agent in combination.

高性能減水剤とは、多量に添加しても凝結の過遅延や過
度の空気連行を伴わない、分散能力の大きな界面活性剤
であって、ナフタレンスルホン酸ホルムアルデヒド縮合
物の塩、メラミンスルホン酸ホルムアルデヒド縮合物の
塩、裔分子量りゲニンスルホン酸塩及びポリカルボン酸
塩などを主成分とするものなどであり、具体的には、例
えば、花王■製商品名[マイティ150]、電気化学工
業■製画品名EFT−500J、ホゾリス物産■製商品
名rNL−4000J等が挙げられる。
A high-performance water reducing agent is a surfactant with a large dispersion ability that does not cause excessive delay in condensation or excessive air entrainment even when added in large amounts, and is a surfactant that does not cause excessive condensation delay or excessive air entrainment even when added in large amounts. These include salts of condensates, salts of molecular weight polygeninsulfonates, polycarboxylate salts, etc. as main components.Specifically, for example, the product name [Mighty 150] manufactured by Kao ■, the product name manufactured by Denki Kagaku Kogyo ■ Examples include the product name EFT-500J and the product name rNL-4000J manufactured by Hozorisu Bussan.

高性能減水剤の使用量は特に限定されるものではないが
、固形分換算でセメント100重量部に対し0.2〜2
重量重量部跡好ましい。
The amount of high-performance water reducing agent used is not particularly limited, but it is 0.2 to 2 parts by weight per 100 parts by weight of cement in terms of solid content.
Parts by weight are preferred.

本混和材とセメント、砂、砂利、適量の水及び減水剤を
配合して、モルタル・コンクリートを混練し、成形し、
常圧蒸気養生してセメント成形体を製造するにあたり、
本混和材は、予じめセメントに混合してセメント組成物
としても良いし、混練時直接ミキサーへ本混和材又は各
々の成分を別々に混合しても良く、さらに、水に分散さ
せスラリー状で混合しても良い。
Mix this admixture with cement, sand, gravel, an appropriate amount of water, and a water reducing agent, knead mortar/concrete, and form it.
When producing cement molded bodies through normal pressure steam curing,
This admixture may be mixed in advance with cement to form a cement composition, or the admixture or each component may be mixed separately into a mixer directly during kneading, or further dispersed in water to form a slurry. You can also mix it with

混練方法としては、特に制限されるものではなく、モル
タル・コンクリートで通常実施される方法が利用できる
The kneading method is not particularly limited, and methods commonly used for mortar and concrete can be used.

セメント成形体の成形方法は遠心力成形、プレス成形、
押し出し成形及び振動成形等の常法が利用できる。
Forming methods for cement compacts include centrifugal force forming, press forming,
Conventional methods such as extrusion molding and vibration molding can be used.

なお、本混和材と高性能減水剤を併用し遠心力成形を行
うと、モルタル・コンクリートの締りが悪く、固形分の
多いドロドロのスラッジが排出されることがある。その
場合、締まりを向上させ、かつ、固形分の分離を少なく
して脱水量を多くする方法として、生石灰・消石灰及び
/又はナトリウム、カリウム及びリチウムの硫酸塩や重
硫酸塩等の無機物を、七メン日00重量部に対し、多く
とも1重量部併用することは好ましく、強度発現向上の
面から、0.05〜0.5重量部併用することは、より
好ましい。
If centrifugal force forming is performed using this admixture and a high-performance water reducer together, the mortar/concrete may not be compacted and a mushy sludge with a high solid content may be discharged. In that case, as a method to improve compaction, reduce solid content separation, and increase dewatering amount, inorganic substances such as quicklime, slaked lime, and/or sodium, potassium, and lithium sulfates and bisulfates can be added to It is preferable to use at most 1 part by weight per 00 parts by weight per day, and from the viewpoint of improving strength development, it is more preferable to use 0.05 to 0.5 parts by weight.

また、本混和材を用いたセメント成形体の常圧蒸気養生
は40〜100°Cの範囲で行なわれ、50〜80°C
の範囲がより好ましい。
In addition, atmospheric pressure steam curing of cement molded bodies using this admixture is carried out in the range of 40 to 100°C, and 50 to 80°C.
The range is more preferable.

以上のように成形されるセメント成形体としては、例え
ば、コンクリートパイル、ポール、ヒユーム管及び鋼管
ライニング等の遠心力成形体、ボックスカルバート、コ
ンクリート枕木、矢板、橋脚及び橋桁等のプレキャスト
成形体などが挙げられる。
Examples of cement compacts formed as described above include centrifugal force compacts such as concrete piles, poles, humid pipes, and steel pipe linings, and precast compacts such as box culverts, concrete sleepers, sheet piles, bridge piers, and bridge girders. Can be mentioned.

〈実施例〉 以下、実施例にて本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

実施例1 表−1に示すコンクリート配合Bを用い、表−2のよう
に、本スラグの使用量を変化させ、本セッコウとの配合
割合い及びセメントへの添加量を変えて、コンクリート
を作製した。
Example 1 Using concrete mix B shown in Table 1, concrete was produced by changing the amount of this slag used, changing the mixing ratio with this gypsum, and changing the amount added to cement as shown in Table 2. did.

なお、本混和材や減水剤などの添加量は、全てセメント
100重量部に対しての重量部であり、常圧蒸気養生は
、前置き養生を4時間行った後、15”C/hで、65
°Cまで界温し、そのまま4時間保持した後、自然放冷
し、翌朝蒸気養生槽より出し各種試験を行なった。
The amounts of the admixture, water reducing agent, etc. are all parts by weight relative to 100 parts by weight of cement, and the atmospheric pressure steam curing is performed at 15"C/h after pre-curing for 4 hours. 65
After bringing the temperature to ambient temperature to °C and holding it there for 4 hours, it was allowed to cool naturally, and the next morning it was taken out from the steam curing tank and various tests were conducted.

表   −1 く使用材料〉 セメント:電気化学工業■製 普通ポルトランドセメン
ト(比重3.16) 水   :地下水 砂   :新潟県姫用産川砂(比重2.65)砂利  
:      砕石(比重2.68)減水剤 :高性能
減水剤、電気化学工業■製画品名rFT−500J (
比重1.20)本セッコウ:新秋田化成■製 弗酸発生
副生セラコラ、ブレーン値6.000cm”/g (1
oシッ40.5)、比重2.93 本スラグ:用鉄すバーメント社製高炉スラグセメント用
スラグ(三水セラコラなし、12μ以下の粒子48%)
を振動ミル又は振動ミルと分級装置を組み合わせ次のよ
うに再調整したもの 比重2.95 α :12μ以下53%、D50が約12μ弱β : 
〃  60     9μ T : 〃  80   〃  6μ δ :〃100〃3μ なお、水・セメント比は単に水量とセメント量の重量%
、本混和材は砂と容積で置きかえ、本混和材の量によっ
て目標スランプ外となるものは、多少、水量のmでスラ
ンプを調節した。
Table-1 Materials used> Cement: Ordinary Portland cement made by Denki Kagaku Kogyo ■ (specific gravity 3.16) Water: Groundwater sand: Niigata prefecture Himeyo river sand (specific gravity 2.65) gravel
: Crushed stone (specific gravity 2.68) Water reducing agent : High performance water reducing agent, Denki Kagaku Kogyo Product name rFT-500J (
Specific gravity 1.20) Genuine gypsum: manufactured by Shin-Akita Kasei, Ceracola, a by-product of hydrofluoric acid generation, Blaine value 6.000 cm”/g (1
oshi 40.5), specific gravity 2.93 This slag: Blast furnace slag cement slag made by Yotetsu Barment Co., Ltd. (no Sansui Ceracola, 48% particles of 12μ or less)
A vibration mill or a vibration mill and a classifier were combined and readjusted as follows: Specific gravity: 2.95 α: 12μ or less 53%, D50: about 12μ or less β:
〃 60 9μ T: 〃 80 〃 6μ δ: 〃100〃3μ The water/cement ratio is simply the weight% of the amount of water and the amount of cement.
The main admixture was replaced by sand by volume, and if the slump was outside the target slump depending on the amount of the main admixture, the slump was adjusted somewhat by the water amount m.

〈試験方法〉 (1)スラグ粒度の測定 シーラス社製レーザー回折式粉体粒度分析計グラニュロ
メーターModel 715 (測定範囲0〜192μ
)を用いエタノールに分散させ行った。
<Test method> (1) Measurement of slag particle size Laser diffraction powder particle size analyzer Granulometer Model 715 manufactured by Cirrus Co., Ltd. (Measurement range 0 to 192μ
) was used to disperse it in ethanol.

(2)強度試験の測定 圧縮強度はφ1010X20の振動詰めの円柱供試体を
用いて求め、引張り強度はφ15X15cmの円柱供試
体を用いて、その割裂によって求めた。
(2) Measurement of Strength Test Compressive strength was determined using a vibrating cylindrical specimen measuring φ1010×20, and tensile strength was determined by splitting the cylindrical specimen measuring φ15×15 cm.

(3)塩素イオンの浸透量の測定 φ10 X 20C11の円柱供試体を材令1日で脱型
し、その後20°C±3、R1160%±5にコントロ
ールした養生箱で28日間養生してから、3%NaC1
水溶液に浸漬し、91日後に供試体中央部をφ10X0
.5cmの寸法で切り出し、300°Cで24時間乾燥
したものを全量粉砕して、蛍光X線分析によって塩素の
浸透量を測定した。
(3) Measurement of the amount of chlorine ion penetration A φ10 x 20C11 cylindrical specimen was demolded after one day of age, and then cured for 28 days in a curing box controlled at 20°C ± 3 and R1 160% ± 5. , 3% NaCl
After 91 days, the central part of the specimen was immersed in an aqueous solution.
.. The pieces were cut out to a size of 5 cm, dried at 300°C for 24 hours, crushed, and the amount of chlorine permeated was measured by fluorescent X-ray analysis.

(4)中性化深さの測定 φ1010X20の円柱供試体を、塩素イオンの浸透量
測定と同様に28日間養生してから、R11100%、
COtガス濃度18容量%の養生箱で91日間養生し、
中央部の円形切断面にフェノールフタレンを塗布し平均
的中性化深さを測定した。
(4) Measurement of carbonation depth A cylindrical specimen of φ1010×20 was cured for 28 days in the same manner as in the measurement of the amount of chlorine ion penetration, and then R11100%.
Cured for 91 days in a curing box with a COt gas concentration of 18% by volume,
Phenolphthalene was applied to the circular cut surface at the center and the average carbonation depth was measured.

(5)凍結融解耐久性の測定 10 X 10 X 40cmの供試体を、翌朝脱型後
、14日間標準養生してから水中急速凍結融解試験を行
い耐久性指数DF値を求めた。
(5) Measurement of freeze-thaw durability A specimen measuring 10 x 10 x 40 cm was demolded the next morning, and after standard curing for 14 days, a rapid freeze-thaw test was conducted in water to determine the durability index DF value.

ここでDF値とは、次の式で示されるものである。Here, the DF value is expressed by the following formula.

DF値(χ’)= P N/M P:Nサイクル時の相対動弾性係数 P=n−/n”  n :試験開始時の一次たわみ振動
数 n目任意のサイクル時の− 次たわみ振動数 NAPが60%になった時又は試験を終わらせる時のサ
イクル数 M:凍結融解試験を終わらせるサイクル数以上の試験結
果を表−2に示す。
DF value (χ') = P N/M P: Relative dynamic elastic modulus at N cycles P = n-/n'' n: Primary deflection frequency at the start of the test - - order deflection frequency at the nth arbitrary cycle Number of cycles M when NAP reaches 60% or ends the test: The test results for the number of cycles at which the freeze-thaw test ends are shown in Table 2.

なお、本混和材はセメント100重量部に対する重量部
で示し、14日強度は標準養生で、28日強度は20°
C±3、RH60%±5で養生し、各々の耐久性試験開
始時の強度を測定して示した。
This admixture is expressed in parts by weight based on 100 parts by weight of cement, and the 14-day strength is standard curing, and the 28-day strength is 20°.
After curing at C±3 and RH60%±5, the strength at the start of each durability test was measured and shown.

表−2から明らかなように、本スラグと本セッコウの単
独使用に比較し、両者を適量併用した本発明例では、特
に強度が相乗的に増大し、各種耐久性も改善される。
As is clear from Table 2, compared to the use of the present slag and the present gypsum alone, in the examples of the present invention in which both are used in appropriate amounts, the strength is increased synergistically and various durability is also improved.

また、高炉スラグの粒度についても、12μ以下の粒子
が60%以上のものと、本セッコウとの組合わせで、強
度や耐久性の改善効果が顕著となり、高炉スラグの粒度
は細かいほど良いこともわかる。
In addition, regarding the particle size of blast furnace slag, the combination of 60% or more particles of 12μ or less and this gypsum has a remarkable effect of improving strength and durability, and it is said that the finer the particle size of blast furnace slag, the better. Recognize.

反対に、12μ以下の粒子が60%未満と高炉スラグの
粒度が粗いと、極端に本セッコウとの併用効果が低下す
ることもわかる。
On the contrary, it can be seen that when the particle size of blast furnace slag is coarse, with less than 60% of particles having a size of 12μ or less, the effect of combined use with this gypsum is extremely reduced.

さらに、本スラグと本セッコウとの組合わせにおいて、
本発明の範囲外の組合わせ(実験N11l−13,1−
19,1−20)では、強度的効果が小さいか、強度の
伸びが殆んど変らないようになっているか、各種耐久性
のいずれかが悪くなる傾向にあることがわかる。
Furthermore, in the combination of this slag and this gypsum,
Combinations outside the scope of the present invention (Experiment N11l-13,1-
19, 1-20), it can be seen that either the strength effect is small, the elongation of strength is almost unchanged, or one of the various durability tends to be worse.

なお、実験NcLl−4,1−9及び1−16のコンク
リートをφ10 X 20C11シリンダーに成形し、
常圧蒸気養生をしないで、翌日まで20°C室内で養生
し、脱型して標準養生したものの、14日圧縮強度は実
験Nα1−4が603kgf/cm”、実験N(11−
9が785kgf/cm”、実験Nα1−16が803
kgf/cm2であり、本発明は常圧蒸気養生で顕著な
効果を示すものであることが判った。
In addition, the concrete of experiments NcLl-4, 1-9 and 1-16 was formed into a φ10 x 20C11 cylinder,
Although the 14-day compressive strength was 603 kgf/cm for experiment Nα1-4 and 603 kgf/cm for experiment Nα1-4,
9 is 785 kgf/cm", experiment Nα1-16 is 803
kgf/cm2, and it was found that the present invention shows remarkable effects in normal pressure steam curing.

実施例2 表−1のA−Dのコンクリート配合で、表−2の実験N
α1−4.1−9及び1−16で示すコンクリートを用
い、実施例1と同様に、φ10 X 20の供試体を成
形し、各材令の圧縮強度を測定した。その結果を表−3
に示す。
Example 2 Experiment N in Table 2 was carried out using the concrete mixes A to D in Table 1.
Using the concrete shown as α1-4.1-9 and 1-16, specimens of φ10×20 were formed in the same manner as in Example 1, and the compressive strength of each material age was measured. Table 3 shows the results.
Shown below.

なお、蒸気養生後、翌朝脱型した供試体の養生は、室温
20°C±3に調節した室内に放置した。
After steam curing, the specimens which were demolded the next morning were left in a room adjusted to a room temperature of 20°C±3.

表 表−3かられかるように単位セメント量が少なくても強
度的効果は顕著で単位セメント量が300kg / m
 ’でも800kgf/cn+”以上の高強度カ得うレ
ル。
As shown in Table 3, even if the unit cement amount is small, the strength effect is remarkable, and the unit cement amount is 300 kg / m
However, it can achieve high strength of over 800kgf/cn+.

実施例3 実施例2、表−3の実験Nα2−4〜6で示すコンクリ
ートに、ガス焼き石灰炉で焼成した生石灰を88μ以下
に粉砕したもの(Q)、さらにそれに水を加え消化させ
たものを乾燥した消石灰(R)、1級試薬の硫酸ナトリ
ウム(S)、硫酸カリウム(T)、硫酸リチウム(IJ
)及び重硫酸ナトリウム(V)の添加量を変えφ20 
X 5 X 30cmの遠心力成形供試体を成形し、ス
ラッジの発生量とそれを乾燥した固形分量、遠心力成形
供試体内面の締まらない部分の厚みであるノロ厚及び蒸
気養生後の1日圧縮強度を測定した。その結果を表−4
に示す。
Example 3 The concrete shown in Experiment Nα2-4 to Nα2-6 in Table 3 in Example 2 was prepared by pulverizing quicklime fired in a gas-fired lime furnace to a size of 88μ or less (Q), and adding water to it for digestion. dried slaked lime (R), primary reagents sodium sulfate (S), potassium sulfate (T), lithium sulfate (IJ
) and the amount of sodium bisulfate (V) added, φ20
A centrifugally formed specimen of X 5 x 30 cm was formed, and the amount of sludge generated, the solid content of the dried sludge, the thickness of the slag (the thickness of the part of the inner surface of the centrifugally formed specimen that did not tighten), and one day after steam curing. Compressive strength was measured. Table 4 shows the results.
Shown below.

なお、遠心力成形は3Gで2分、9Gで4分、30Gで
3分成形し、コンクリートは18kg一定量投入し、中
空部分は分離して来るスラッジが濡れないように蓋をし
た。
The centrifugal force forming was performed for 2 minutes at 3G, 4 minutes at 9G, and 3 minutes at 30G, a fixed amount of 18 kg of concrete was poured, and the hollow part was covered to prevent the separated sludge from getting wet.

表 表−4かられかるように、本混和材を使用したコンクリ
ートの遠心力成形体の成形性を改善するために無機物を
併用することは、有効なことである。
As can be seen from Table 4, it is effective to use inorganic substances in combination to improve the formability of concrete centrifugally formed bodies using this admixture.

なお、無機物は、比較例である実験Nα3−1〜2と併
用しても本発明例はどの顕著な効果はない。
Note that even when inorganic substances are used in combination with Experiments Nα3-1 and Nα3-2, which are comparative examples, there is no significant effect in the examples of the present invention.

実施例4 実施例2の実験Nα2−4〜6のコンクリートを用い外
径300IIIIn×厚さ60In[I+で長さ4m 
(曲げモーメント用)と1m(圧縮用)のPC抗を、常
法により成形し、実施例2と同様の養生条件で養生して
作成した。その後、材令7日で曲げ試験及び圧縮試験を
行った。結果を表−5に示す。
Example 4 Using the concrete of experiment Nα2-4 to 6 in Example 2, the outer diameter was 300IIIn×thickness 60In [I+ length was 4m]
(for bending moment) and 1 m (for compression) were molded by a conventional method and cured under the same curing conditions as in Example 2. Thereafter, a bending test and a compression test were conducted when the material was 7 days old. The results are shown in Table-5.

なお、PC抗の配筋は高周波熱線■製PC鋼棒φ13a
mX4本とφ11論×4本(ストレート筋)、スパイラ
ル筋はφ3mmの鉄線を10cm間隔で入れPC鋼棒の
初期緊張応力は杭断面に対し、160kgf/cm2と
なるようにした。
In addition, the reinforcement of the PC shaft is made of high-frequency hot wire φ13a PC steel rod.
4 mX and 4 φ11 wires (straight bars), spiral bars were made by inserting φ3mm iron wires at 10cm intervals, and the initial tensile stress of the PC steel bars was 160 kgf/cm2 with respect to the pile cross section.

表 表−6 実施例5 実施例4と同じコンクリートで、同様の養生条件を用い
、常法による遠心力成形を行ってヒユーム管を作成し、
材令7日で外圧強度試験を行った。
Table 6 Example 5 Using the same concrete as in Example 4 and using the same curing conditions, centrifugal force forming was performed using a conventional method to create a humm pipe.
An external pressure strength test was conducted when the material was 7 days old.

結果を表−6に示す。The results are shown in Table-6.

なお、ヒユーム管は内径100胴、厚さ82閣、長さ2
、43On+mの寸法で、配筋は、ストレート筋の鉄筋
比0.26%、スパイラル筋はダブルで1.49%のA
型管である。
In addition, the Huyum tube has an inner diameter of 100 mm, a thickness of 82 mm, and a length of 2 mm.
, 43On+m, the reinforcement ratio is 0.26% for straight bars, and 1.49% for double spiral bars.
It is a type tube.

〈発明の効果〉 実施例で示したように、本発明のセメント混和材を使用
することにより、高強度で、かつ、耐久性の高いコンク
リートを製造することができ、さらに、本発明の混和材
を用いたセメント成形体は成形体としての性能も顕著に
向上する。
<Effects of the Invention> As shown in the examples, by using the cement admixture of the present invention, concrete with high strength and high durability can be manufactured. The performance of the cement molded product using this method is also significantly improved.

Claims (2)

【特許請求の範囲】[Claims] (1)12μ以下の粒子が60%以上の高炉スラグ微粉
末100重量部と、II型無水セッコウ10〜750重量
部とを主成分とするセメント混和材。
(1) A cement admixture whose main components are 100 parts by weight of pulverized blast furnace slag powder containing 60% or more of particles of 12 μm or less and 10 to 750 parts by weight of type II anhydrous gypsum.
(2)セメント100重量部と、請求項1記載のセメン
ト混和材4〜35重量部とを主成分とするセメント組成
(2) A cement composition whose main components are 100 parts by weight of cement and 4 to 35 parts by weight of the cement admixture according to claim 1.
JP10604089A 1989-04-27 1989-04-27 Cement admixture and cement composition Expired - Fee Related JPH0735272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10604089A JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10604089A JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JPH02289453A true JPH02289453A (en) 1990-11-29
JPH0735272B2 JPH0735272B2 (en) 1995-04-19

Family

ID=14423526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10604089A Expired - Fee Related JPH0735272B2 (en) 1989-04-27 1989-04-27 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JPH0735272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532540B1 (en) * 2003-06-05 2005-12-01 안기주 Bubble concrete mortar composition and its manufacturing process
JP6155373B1 (en) * 2016-08-22 2017-06-28 国立大学法人 岡山大学 Method for producing composition for mortar or concrete, method for producing molded product obtained by molding the composition, and method for quality control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532540B1 (en) * 2003-06-05 2005-12-01 안기주 Bubble concrete mortar composition and its manufacturing process
JP6155373B1 (en) * 2016-08-22 2017-06-28 国立大学法人 岡山大学 Method for producing composition for mortar or concrete, method for producing molded product obtained by molding the composition, and method for quality control

Also Published As

Publication number Publication date
JPH0735272B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
Ramujee et al. Mechanical properties of geopolymer concrete composites
Li et al. Properties of concrete incorporating fly ash and ground granulated blast-furnace slag
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
JP2581803B2 (en) Cement admixture and cement composition
JP2515397B2 (en) Cement admixture and cement composition
JPH02289453A (en) Cement admixture and cement composition
JP2853989B2 (en) Highly durable cement composition
JPH09295843A (en) High performance water reducing agent and cement composition using the same
JP2612071B2 (en) How to make salt-tolerant poles
JP2622287B2 (en) Cement admixture and cement composition
JP2501638B2 (en) Centrifugal molding single mouth reducing agent and method for producing centrifugal molding using the same
JP4679707B2 (en) High-strength cement admixture and cement composition using the same
JPH04238847A (en) Hydraulic cement
JP2530720B2 (en) Cement admixture and cement composition
JPH01242445A (en) Hydraulic cement composition
JPH0365548A (en) Production of salt-resistant pole
JP3222040B2 (en) Mixing method of concrete for centrifugal force forming
JP2824287B2 (en) Cement admixture
Boukhelkhal et al. Some engineering properties of sustainable self-compacting mortar made with ceramic and glass powders.
Paul et al. Workability and Strength Characteristics of Alkali-Activated Fly ASH/GGBS Concrete Activated with Neutral Grade NaSiO for Various Binder Contents and the Ratio of the Liquid/Binder
JPS6168361A (en) Manufacture of concrete centrifugally molded body
Kishan et al. Influence of mineral and chemical admixtures in ordinary portland cement on physical and mechanical properties
Nada et al. Effect of electric arc furnace slag on sorptivity coefficient, bond strength and corrosion properties of smart concrete
JP2859536B2 (en) Precast concrete formwork and method of manufacturing the same
Moon et al. Study of Strength and Workability of High Volume Fly Ash Concrete

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees