KR100893495B1 - The manufacturing method and composition of low-heat, high-strength concrete for self compaction - Google Patents

The manufacturing method and composition of low-heat, high-strength concrete for self compaction Download PDF

Info

Publication number
KR100893495B1
KR100893495B1 KR20080002368A KR20080002368A KR100893495B1 KR 100893495 B1 KR100893495 B1 KR 100893495B1 KR 20080002368 A KR20080002368 A KR 20080002368A KR 20080002368 A KR20080002368 A KR 20080002368A KR 100893495 B1 KR100893495 B1 KR 100893495B1
Authority
KR
South Korea
Prior art keywords
weight
strength
concrete
self
parts
Prior art date
Application number
KR20080002368A
Other languages
Korean (ko)
Inventor
이주호
전성용
우승민
문형재
김정환
노현승
조성현
배준영
윤기원
최명화
이주헌
전인기
Original Assignee
한일시멘트 (주)
아주산업 주식회사
롯데건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한일시멘트 (주), 아주산업 주식회사, 롯데건설 주식회사 filed Critical 한일시멘트 (주)
Priority to KR20080002368A priority Critical patent/KR100893495B1/en
Application granted granted Critical
Publication of KR100893495B1 publication Critical patent/KR100893495B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00103Self-compacting mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

Provided is a method for preparing a self-compacting concrete composition, which shows high-strength and low-heat generation, for being applied to large-scale mat foundation. A method for preparing a self-compacting concrete composition comprises the 400-550kg of binding materials, the 155-180kg of water, the 600-900kg of fine aggregate, the 700-1000kg of coares aggregate and the 2-8.25kg of superplasticizer. The binding materials are prepared by mixing the 25-55parts of cement, the 25-40parts of fine powder of blast furnace slag, the 15-25parts of fly ash and the 5-10parts of high-strength compound which is obtained by mixing and pulverizing the 40kg of anhydrous gypsum and the 60kg of fine powder of blast furnace slag to have 6000~10000cm^2/g of fineness. The superplasticizer contains the 85-95parts of dispersing agents, the 4-12parts of retarder and the 1-3parts of viscosity modified admixture by weight.

Description

자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법{The manufacturing method and composition of low-heat, high-strength concrete for self compaction}Low heat generation high strength concrete composition for self-filling and its manufacturing method {The manufacturing method and composition of low-heat, high-strength concrete for self compaction}
본 발명은 초고층 구조물의 초대형 매트기초에 콘크리트를 타설하기 위하여 40MPa 이상의 고강도, 슬럼프-플로우 600~750mm, 최대단열온도상승량(K)이 50℃이하를 갖도록 하는 자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법에 관한 것이다. 더욱 상세하게는 보통 포틀랜드 시멘트에 고로슬래그, 플라이 애시, 고강도 혼합재가 적정비율로 혼합된 결합재를 사용하고, 고성능감수제, 증점제 등을 일정량 첨가하여 재료분리 없이 자기충전 할 수 있는 자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법에 관한 것이다. The present invention provides a self-heating low-heat high-strength concrete composition for self-filling to have a high strength of 40MPa or more, slump-flow 600 ~ 750mm, the maximum thermal insulation temperature increase (K) of 50 ℃ or less in order to place concrete on a very large mat base of an ultra high-rise structure and its It relates to a manufacturing method. More specifically, low-heating high strength for self-charging that can be self-filled without any material separation by using a binder in which blast furnace slag, fly ash, and high-strength mixture are mixed at an appropriate ratio in portland cement, and adding a certain amount of a high-performance reducing agent or a thickener. A concrete composition and a method for producing the same.
최근 국내에서는 30층 이상의 초고층 주상복합 구조물이 건립되었으며, 100층 이상 초고층 구조물의 건립도 대형 건설사를 중심으로 적극적으로 추진 또는 계획되고 있다. 따라서 초고층 구조물을 지지하기 위해서는 초대형 매트 기초가 필요 하며, 대규모 매트기초를 시공하기 위한 매스콘크리트 관한 연구도 더불어 활발히 진행되고 있다. Recently in Korea, more than 30 stories of high-rise columnar composite structures have been constructed, and more than 100 stories of high-rise structures are being actively promoted or planned by large construction companies. Therefore, to support ultra high-rise structures, large mat foundations are required, and research on mass concrete for constructing large-scale mat foundations is being actively conducted.
기존 매트 기초와 달리 초고층 구조물의 매트 기초는 높이가 30층 이상 또는 100층 이상까지의 구조물을 지탱하여야 하기 때문에 그 규모가 매우 크다. 따라서 초고층 구조물의 매트 기초에 타설되는 콘크리트는 다양한 성능이 요구된다.Unlike the existing mat foundation, the mat foundation of the high-rise structure is very large because it has to support a structure having a height of 30 or more floors or 100 floors or more. Therefore, concrete that is poured on the mat foundation of a high-rise structure requires a variety of performance.
초고층 구조물의 매트기초 콘크리트는 높이가 기존 구조물보다 2~5배 높은 구조물을 지탱하기 위해서는 고강도가 요구된다. 또한 기존의 일반적인 매트기초와 비교하여 넓이 및 높이 등의 규모면에서 2~5배 이상이 되기 때문에 기존 매트기초 콘크리트 시공방법과 같이 콘크리트의 일괄타설과 다짐이 곤란하다. 따라서 대규모 면적을 타설하기 위해서는 별도의 다짐 없이도 콘크리트 스스로 재료분리 없이 충전할 수 있는 자기충전성도 필요하다. High-strength mat-based concrete requires high strength to support structures that are two to five times higher than existing structures. In addition, since it is more than 2 to 5 times larger than the conventional mat base in terms of size and width, it is difficult to batch and compact concrete in the same way as the existing mat base concrete construction method. Therefore, in order to pour a large area, it is also necessary to have self-filling properties that can be filled without separating the concrete by itself without any additional compaction.
이러한 고강도, 자기 충전성을 갖는 콘크리트를 제조하기 위해서는 단위결합재량이 기존의 매트 타설용 콘크리트보다 많아지게 되기 때문에 고로슬래그 미분말, 석회석 미분말, 플라이애시 등을 일부 치환하는 방법으로는 적정한 선까지 수화열을 저감시키기 곤란하다.In order to manufacture such high-strength, self-filling concrete, the amount of unit bonding material will be higher than that of conventional mat-pouring concrete. Therefore, the method of substituting part of blast furnace slag powder, fine limestone powder, fly ash, etc., provides heat of hydration to an appropriate line. It is difficult to reduce.
국내등록특허공보 등록번호 제10-686350호에는 시멘트에 고로슬래그 미분말, 실리카흄, 무수석고를 적정비율로 혼합된 결합재를 사용하여, 12~15중량%의 나은 물 결합제비로 배합되어 150MPa를 넘는 강도가 발현되는 초고강도 콘크리트 조성물이 공개되어 있고,In Korea Patent Publication No. 10-686350, using a binder mixed with blast furnace slag fine powder, silica fume and anhydrous gypsum in an appropriate ratio, it is formulated with a good water binder ratio of 12 to 15% by weight and exceeds 150 MPa. Ultra high strength concrete composition is disclosed,
동 공보 등록번호 제10-622048호에는 시멘트, 고로슬래그, 메타카올린분말, 무수석고로 조성된 초고강도 조성물이 기술되어 있으며,Publication No. 10-622048 describes an ultra high strength composition composed of cement, blast furnace slag, metakaolin powder, anhydrous gypsum,
동 공보 등록번호 제10-334656호에는 식생용 포러스콘크리트의 제조시 고로슬래그 시멘트 또는 보통 포틀랜드 시멘트와 자갈, 폐콘크리트골재, 플라이애시 및 실리카흄을 혼합한 플라이애시, 실리카흄 및 재생골재를 이용한 식생용 포러스 콘크리트의 제조방법이 기재되어 있고,Korean Patent Publication No. 10-334656 describes vegetation pores using fly ash, silica fume and recycled aggregates in which blast furnace slag cement or ordinary portland cement and gravel, waste concrete aggregate, fly ash, and silica fume are mixed in the production of vegetal forage concrete. Describes how to make concrete,
동 공보 등록번호 제10-196702호에는 플라이애쉬, 실리카흄, 고로슬래그, 시멘트, 물, 잔골재, 굵은 골재, 공기연행제, 고유동화제로 배합된 고품질 시공을 위한 고 내구성 콘크리트의 제조방법이 기술되어 있다.Korean Patent Publication No. 10-196702 describes a method for manufacturing high-durability concrete for high-quality construction with fly ash, silica fume, blast furnace slag, cement, water, fine aggregates, coarse aggregates, air entrainers, and high oiling agents. .
상기와 같은 종래의 기술들은 콘크리트의 강도를 증가시키는데 주안점을 두었기 때문에 초고층 구조물의 초대형 매트기초 타설시에는 콘크리트의 수화열에 의한 균열이 발생할 수 있는 문제점이 있다. 따라서 본 발명의 목적은 초고층 구조물의 초대형 매트기초에 콘크리트를 타설하기 위하여 40MPa 이상의 고강도, 슬럼프-플로우 600~750mm, 최대단열온도상승량(K)이 50℃이하를 갖도록 하는 자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법을 제공하는 것이 해결하고자 하는 과제인 것이다. Since the prior art as described above is focused on increasing the strength of the concrete, there is a problem that cracks may occur due to the heat of hydration of the concrete when the ultra-high mat foundation casting of the high-rise structure. Therefore, an object of the present invention is to provide high strength, slump-flow 600 ~ 750mm, maximum insulation temperature rise (K) of less than 50 ℃ in order to place concrete on the large mat base of the ultra-high-rise structure, low heat-generating high strength concrete It is a problem to be solved to provide a composition and a method for producing the same.
상기와 같은 본 발명은 제철산업의 폐부산물인 고로 슬래그 미분말과 플라이 애시를 이용하여 저가의 고강도를 구현하는 동시에 환경 보호 측면에서도 매우 유용하여 자기충전용 저발열 고강도 콘크리트를 이용하여 초대형 매트기초에 타설하여 건축할 수 있는 효과가 있는 것이다. The present invention as described above is very useful in terms of environmental protection at the same time to implement low-cost high-strength using blast furnace slag fine powder and fly ash, which is a waste by-product of the steel industry, and is placed on a very large mat base using low-heating high-strength concrete for self-charging. The effect is that you can build.
본 발명은 물결합재비(W/B) 30~40%, 잔골재율(S/a) 43~55%, 결합재(B) 400~550kg/m3, 잔골재(S) 600~900kg/m3, 굵은골재(G) 700~1000kg/m3, 결합재(B)에 대한 중량비로 분리저감형 저발열 고유동화제(SP) 0.5~1.5%로 구성되는 자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법에 관한 것이다. The present invention is water binding material ratio (W / B) 30-40%, fine aggregate (S / a) 43-55%, binder (B) 400-550kg / m 3 , fine aggregate (S) 600-900kg / m 3 , Low heating high strength concrete composition for self-charging composed of coarse aggregate (G) 700 ~ 1000kg / m 3 , the weight ratio of the binder (B), low heat-reducing high-heating agent (SP) 0.5 ~ 1.5% and its manufacturing method It is about.
이때 결합재(B)는 보통 포틀랜드 시멘트 25~55중량부, 고로슬래그 미분말 25~40중량부, 플라이애시 10~25중량부, 고강도 혼합재(오메가 2000) 5~10중량부로 조성된다.At this time, the binder (B) is usually composed of 25 to 55 parts by weight of Portland cement, 25 to 40 parts by weight of blast furnace slag powder, 10 to 25 parts by weight of fly ash, and 5 to 10 parts by weight of a high strength mixture (omega 2000).
또한 이때 분리저감형 저발열 고유동화제(SP)는 분산제 85~95중량부, 지연제 4~12중량부, 증점제 1~3중량부로 조성된다. In addition, at this time, the separation reducing type low heat generating fluidizing agent (SP) is composed of 85 to 95 parts by weight of dispersant, 4 to 12 parts by weight of retardant, and 1 to 3 parts by weight of thickener.
분산제는 고유동성이 우수한 폴리카르본산계 화합물, 지연제는 콘크리트 경화후 품질에 영향이 적고 매스콘크리트에서 열응력의 감소가 있는 옥시카본산계 화합물, 증점제는 블리딩 억제효과 좋은 수용성 고분자인 셀룰로오즈계를 사용하였다.The dispersant is a polycarboxylic acid compound having excellent high fluidity, the retardant is an oxycarboxylic acid compound which has little effect on the quality after hardening of concrete and the thermal stress is reduced in mass concrete, and the thickener is a cellulose type which is a water-soluble polymer with good bleeding inhibitory effect. It was.
상세한 자기충전용 저발열 고강도 콘크리트의 배합범위는 하기 표 1과 같다.The mixing range of the low heat generating high strength concrete for self-charging in detail is shown in Table 1 below.
표1 자기충전용 저발열 고강도 콘크리트 배합비Table 1 Mixing ratio of low heat and high strength concrete for self charging
W/B(중량%) W / B (% by weight) S/a(중량%) a=S+G S / a (% by weight) a = S + G 단위중량(kg/m3)Unit weight (kg / m 3 ) SP (B×중량%) SP (B x weight%)
WW BB SS GG
30~4030-40 43~5543-55 155~180155-180 400~550400-550 600~900600-900 700~1000700-1000 0.5~1.50.5-1.5
W/B : 물결합재비, S/a : 잔골재율, W : 단위수량, B : 결합재, S : 잔골재, W / B: water binder, S / a: fine aggregate rate, W: unit quantity, B: binder, S: fine aggregate,
G : 굵은골재, SP : 분리저감형 저발열 고유동화제G: coarse aggregate, SP: low heat separation
(1) 물결합재비(W/B)(1) Water Binder Ratio (W / B)
50MPa 이상의 고강도, 슬럼프-플로우 600~750mm, 최대단열온도상승량(K)이 50℃이하를 갖는 자기충전용 저발열 고강도 콘크리트를 실현하기 위해서는 물결합재비를 30~40중량%를 사용한다. 물결합재비가 30%이하일 경우에는 고강도 실현에는 유리하지만 지나친 점성으로 인해 시공성이 떨어지고, 40중량% 이상으로 사용할 경우에는 고강도 발현과 슬럼프-플로우 600~750mm를 실현하는데 문제가 있다.In order to realize low-heating high-strength concrete for self-filling having a high strength of 50 MPa or more, a slump-flow 600 to 750 mm, and a maximum thermal insulation temperature increase (K) of 50 ° C. or less, a water binder ratio of 30 to 40% by weight is used. If the water-bonding material ratio is less than 30%, it is advantageous to realize high strength, but the workability is poor due to excessive viscosity, and when used at 40% by weight or more, there is a problem in achieving high strength development and slump-flow 600 to 750 mm.
(2) 잔골재율(S/a)(2) Fine aggregate fraction (S / a)
잔골재율은 콘크리트의 고유동성, 자기 충전성, 철근간극 통과성에 영향을 미친다. 잔골재가 적으면 콘크리트내의 굵은 골재들간의 간격이 좁아지기 때문에 콘크리트가 철근간극을 통과시 굵은골재들의 맞물림에 의해 폐색이 되어 자기충전 성 실현이 어렵다. 또한 잔골재가 지나치게 많으면 콘크리트의 건조수축이 커서 균열이 발생될 수 있다. 따라서 본 발명에서는 이러한 문제점과 현재 레미콘에 사용되는 잔골재의 입형, 입도, 조립율 등을 고려하여 43~55중량%로 최적의 잔골재율을 제시하였다.Fine aggregate ratio affects the high fluidity, self-filling and rebar clearance of concrete. If there is less fine aggregate, the gap between the coarse aggregates in the concrete becomes narrow, so it becomes difficult to realize self-charge because the concrete is blocked by the coarse aggregates when passing through the reinforcing bars. In addition, when the excessive aggregate is excessively large, dry shrinkage of the concrete may be large and cracks may occur. Therefore, in the present invention, in consideration of these problems and the aggregate, particle size, assembling rate of the fine aggregate used in the ready-mixed concrete present, the optimum fine aggregate ratio was presented as 43 ~ 55% by weight.
(3) 물(W)(3) water (W)
물은 일반 콘크리트 제조시 사용되는 배합수와 같이 지하수, 수도수 등 유해물질이 포함되어 있지 않은 것을 사용한다. 콘크리트의 고강도, 자기충전성, 고유동성 등을 고려하여 배합수량은 155~180kg/m3으로 제시하였다. 배합수가 너무 낮을 경우에는 콘크리트의 점성 증가와 경과시간에 따른 유동성 저하가 발생할 수 있고, 너무 많을 경우에는 콘크리트의 재료분리, 건조수축 증가, 블리딩량의 발생 등으로 콘크리트의 품질을 저하시킬 수 있다. For water, use the same that does not contain harmful substances such as groundwater and tap water, such as formulated water used in manufacturing concrete. Considering the high strength, self-filling and high fluidity of concrete, the mixing quantity was suggested as 155 ~ 180kg / m 3 . If the blending number is too low, the viscosity of the concrete and fluidity may decrease due to elapsed time. If the blending amount is too high, the quality of the concrete may be degraded due to material separation of the concrete, increase in dry shrinkage, and bleeding amount.
(4) 결합재(B)(4) binder (B)
고강도, 자기충전, 저발열성 특성을 동시에 갖는 콘크리트를 제조하기 위해서는 시멘트 단독으로 결합재를 사용하는 것보다 플라이 애시, 고로슬래그 미분말, 고강도 혼합재 등의 혼화재를 일정비율로 혼합한 결합재를 사용하는 것이 유리하다. 이때의 결합재 단위량은 400~550kg/m3을 확보하여 고강도, 자기충전, 저발열성을 모두 만족하도록 한다.In order to manufacture concrete having high strength, self-charging, and low heat generation properties, it is advantageous to use a binder mixed with a mixture of fly ash, blast furnace slag powder, and high-strength mixture at a constant ratio, rather than using the binder alone as cement. Do. The binder unit amount at this time to ensure 400 ~ 550kg / m 3 to satisfy all high strength, self-charge, low heat generation.
플라이 애시의 용해열은 표 2에서 보는 바와 같이 용해열이 보통 포틀랜드 시멘트 비롯한 기타 결합재 종류들보다 1/2 수준으로 작기 때문에 콘크리트의 수화열 저감효과가 매우 크다. 또한 플라이 애시는 입자가 구형의 형태로 되어있어서 볼베어링 효과에 의한 유동성 기여 및 포졸란 반응에 의한 장기강도 증진에 기여한다.As shown in Table 2, the heat of dissolution of fly ash is significantly lower than that of other types of binders such as Portland cement. In addition, the fly ash particles have a spherical shape, which contributes to fluidity due to the ball bearing effect and to long-term strength enhancement by the pozzolanic reaction.
고로슬래그 미분말의 용해열은 플라이 애시 보다는 커서 수화열 저감효과는 플라이애시 보다는 작지만, 치밀한 조직형성과 잠재수경성에 의한 강도발현에 있어서는 유리하다. The heat of melting of blast furnace slag powder is larger than that of fly ash, so the effect of reducing heat of hydration is smaller than that of fly ash, but it is advantageous in the strength expression due to dense tissue formation and latent hydraulic rigidity.
특히, 고강도 혼합재를 병용하여 사용할 경우 조기강도 및 고강도를 발현하는데 유리하다. 고강도 혼합재는 고로수쇄슬래그, 무수석고, 석회를 혼합하여 마이크로 단위로 미분쇄한 것으로서 조직을 치밀화 시키고 고로슬래그 미분말과 플라이 애시 등의 반응을 촉진시켜준다.In particular, when used in combination with a high-strength mixture is advantageous to express early strength and high strength. The high-strength mixture is pulverized blast furnace slag, anhydrous gypsum, and lime and finely pulverized in micro units, densifying the tissue and promoting the reaction of blast furnace slag fine powder and fly ash.
고강도, 자기충전성, 고유동성, 저발열성을 고려하여 자기충전용 저발열 고강도 결합재의 구성비율을 표 3과 같이 설정하였다. 표 4는 자기충전용 저발열 고강도 결합재의 화학성분을 나타낸 것이다. Considering the high strength, self-charging, high fluidity, and low heat generation, the composition ratio of the low heat-generating high strength binder for self-charging was set as shown in Table 3. Table 4 shows the chemical composition of the low heat high-strength binder for self-charging.
표2. 결합재의 용해열Table 2. Heat of dissolution of binder
종 류Kinds 용해열 (cal/g)Heat of fusion (cal / g)
조강 시멘트Crude steel cement 613613
보통 포틀랜드 시멘트Plain portland cement 603603
중용열 시멘트Medium heat cement 593593
고로슬래그 미분말Blast furnace slag powder 582582
플라이 애시Fly ash 220220
표3. 자기충전용 저발열 고강도 결합재의 구성비율Table 3. Composition ratio of low heat generation high strength binder for self-charging
시멘트cement 고로슬래그 미분말Blast furnace slag powder 플라이 애시Fly ash 고강도 혼합재 (오메가 200)High Strength Blend (Omega 200)
25~55중량%25-55 wt% 25~40중량%25-40 wt% 15~25중량%15-25% by weight 5~10중량%5-10% by weight
표4. 자기충전용 저발열 고강도 결합재의 화학성분Table 4. Chemical Composition of Low Heat High Strength Binder for Self-Charging
화학성분Chemical composition
SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 Ig-lossIg-loss
30~4030-40 10~1510-15 2~42 ~ 4 35~4535-45 3~43 ~ 4 1~21 ~ 2 0.5~1.50.5-1.5
(5) 잔골재(S)(5) fine aggregate (S)
잔골재는 일반 레미콘에서 사용하는 것과 동일한 것으로 사용하고, 단위잔골재량은 600~900kg/m3 범위에서 선택하도록 한다.Fine aggregates are used as the same as those used in general ready-mixed concrete, and the unit fine aggregates should be selected in the range of 600 ~ 900kg / m 3 .
(6) 굵은골재(G)(6) coarse aggregate (G)
굵은 골재는 일반 레미콘에서 사용하는 것과 동일한 것으로 사용하되 굵은 골재의 철근간극 통과성 및 자기충전성을 고려하여 20mm이하의 것을 사용한다. 단위잔골재량은 700~1000kg/m3 범위에서 선택하도록 한다.The coarse aggregate is the same as that used in general ready-mixed concrete, but less than 20mm should be used in consideration of the rebar clearance and coagulation of coarse aggregate. Unit aggregate aggregate should be selected in the range of 700 ~ 1000kg / m 3 .
(7) 분리저감형 저발열 고유동화제(SP)(7) Separation Reduction Low Heat Generating Agent (SP)
콘크리트가 슬럼프 플로우 600~750mm의 고유동성을 갖기 때문에 점성이 부족할 경우 재료분리가 발생할 수 있고, 콘크리트 타설 완료 후에는 굵은 골재의 침하 현상이 발생하여 타설된 콘크리트 상층부 표면에는 굵은 골재가 없는 현상이 발생할 수 있다. 또한 점성부족 하거나 점성이 너무 점성이 강하면 철근간극 통과시 굵은 골재가 철근 간극을 통과하지 못하는 폐색현상이 발생하여 자기충전을 실현할 수 없다. Since concrete has high flowability of 600 ~ 750mm of slump flow, it may cause material separation when viscosity is insufficient, and after the concrete is finished, the coarse aggregate may be settled so that the surface of the upper part of the concrete where there is no coarse aggregate may occur. Can be. In addition, if the viscosity is too low or the viscosity is too viscous, coarse aggregates do not pass through the reinforcing bars when the reinforcing bars pass, so that self-charging cannot be realized.
레미콘 공장에서 슬럼프 플로우 600~750mm로 제조된 자기충전 콘크리트는 현장타설시까지 슬럼프 플로우의 큰 저하 없이 유동성을 유지해야만 한다. 또한 공사현장에서 콘크리트 타설후 콘크리트의 수화열 발생속도를 조절하여 저발열성이 유지되도록 해야만 콘크리트의 내외부 온도차에 의한 균열발생을 줄일 수 있다.Self-filled concrete manufactured in ready-mixed concrete factory with slump flow 600 ~ 750mm must maintain fluidity without significant deterioration of slump flow until site casting. In addition, it is possible to reduce the occurrence of cracks due to temperature difference between the inside and outside of the concrete only if the low heat generation property is maintained by adjusting the generation rate of hydration heat of concrete after the concrete is placed at the construction site.
이러한 문제를 해결하기 위하여 기존에 많이 사용되는 폴리카르본산계 분산제에 슬럼프 플로우 손실 저하와 콘크리트 수화열 조절을 위한 지연제와 콘크리트의 재료분리 저항성을 갖도록 하기 위한 증점제를 일정량 혼합한 분리저감형 저발열 고유동화제를 제조하여 사용하였다. In order to solve this problem, the low heat separation inherent in the polycarboxylic acid-based dispersant is a low heat separation inherent in the polycarboxylic acid-based dispersant is mixed with a certain amount of a thickener to reduce the slump flow loss and to control the heat of hydration of concrete and the material separation resistance of concrete An assimilation agent was prepared and used.
표 5는 아주산업(주)에서 제조한 분리저감형 저발열 고유동화제의 구성비를 나타낸 것이다.Table 5 shows the composition ratio of the separation-reducing low-heating high fluidizing agent manufactured by Aju Industrial Co., Ltd.
분산제는 고유동성이 우수한 폴리카르본산계 화합물, 지연제는 콘크리트 경화후 품질에 영향이 적고 매스콘크리트에서 열응력의 감소가 있는 옥시카본산계 화합물, 증점제는 블리딩 억제효과 좋은 수용성 고분자인 셀룰로오즈계를 사용하였 다.The dispersant is a polycarboxylic acid compound having excellent high fluidity, the retardant is an oxycarboxylic acid compound which has little effect on the quality after hardening of concrete and the thermal stress is reduced in mass concrete, and the thickener is a cellulose type which is a water-soluble polymer with good bleeding inhibitory effect. It was.
이 분리저감형 저발열 고유동화제를 결합재(B) 중량에 대하여 0.5~1.5%를 사용하는 것이 바람직하다.It is preferable to use 0.5-1.5% of this separation reduction type low heat generation fluidizing agent with respect to the binder (B) weight.
표5. 분리저감형 저발열 고유동화제 구성비Table 5. Separation reduction type
분산제Dispersant 지연제Retardant 증점제Thickener
85~95%85-95% 4~12%4-12% 1~3%1-3%
이하 본 발명을 바람직한 실시예를 따라 상세히 설명한다.Hereinafter, the present invention will be described in detail according to preferred embodiments.
실시예 1 내지 11Examples 1-11
제1공정 (고강도 혼합재 제조)First Process (Manufacture of High Strength Mixture)
고로슬래그 미분말 60kg과 무수석고 40kg을 혼합, 분쇄하여 분말도를 6000~10000cm2/g로 제조하여 고강도 혼합재를 제조한 다음,60 kg of blast furnace slag powder and 40 kg of anhydrous gypsum are mixed and pulverized to produce a powder of 6000-10000 cm 2 / g to prepare a high-strength mixture,
제2공정2nd process
보통 포틀랜드 시멘트 45kg, 고로슬래그 미분말 30kg, 플라이애시 20kg과 상기에서 제조된 고강도 혼합재 5kg를 혼합 교반하여 결합재(B)를 제조한 다음,Usually, 45 kg of Portland cement, 30 kg of blast furnace slag powder, 20 kg of fly ash and 5 kg of the high-strength mixture prepared above are mixed and stirred to prepare a binder (B).
제3공정3rd process
상기에서 제조된 결합재(B), 물(W), 잔골재(S), 굵은골재(G) 및 아주산업(주)에서 제조된 폴리카르본산계 분산제 92kg, 옥시카본산계 지연제 6kg, 셀룰로오즈계 증점제 2kg로 조성된 분리저감형 저발열 고유동화제(SP) 2~8.25kg을 하기 표 6에 나타난 양으로 전용 혼합믹서에 투입 프리믹싱하여 자기충전용 저발열 고강도 콘크리트 조성물을 제조하였다. The binder (B), water (W), fine aggregate (S), coarse aggregate (G) and polycarboxylic acid-based dispersant 92 kg manufactured by Aju Industrial Co., Ltd., 6 kg oxycarboxylic acid-based retardant, cellulose thickener 2 to 8.25 kg of the separation-reducing type low heat generating fluidizing agent (SP) composed of 2 kg was premixed in a dedicated mixing mixer in an amount shown in Table 6 to prepare a low heat generating high strength concrete composition for self-charging.
표6. 자기충전용 저발열 고강도 콘크리트 배합Table 6. Low heat generation high strength concrete formulation
실시예 Example W/B (%)W / B (%) S/a (%)S / a (%) 단위중량(kg/m3)Unit weight (kg / m 3 )
WW BB SS GG SPSP
1One 30,030,0 4343 170170 567567 666666 911911 6.0886.088
22 35.035.0 4343 170170 486486 698698 954954 5.0755.075
33 40.040.0 4343 170170 425425 723723 987987 4.3134.313
44 30.030.0 4646 155155 517517 811811 963963 6.4606.460
55 30.030.0 5050 155155 517517 882882 892892 7.4977.497
66 32.032.0 5050 171171 533533 855855 865865 6.6636.663
77 34.034.0 5050 187187 550550 827827 836836 6.0506.050
88 32.532.5 5050 165165 517517 758758 872872 7.4627.462
99 32.532.5 5454 165165 517517 800800 816816 7.7007.700
1010 32.532.5 5656 165165 517517 842842 761761 8.2228.222
1111 32.532.5 5050 168168 517517 813813 822822 4.914.91
W/B : 물결합재비, S/a : 잔골재율, W : 단위수량, B : 결합재, S : 잔골재 W / B: Water binder, S / a: Fine aggregate rate, W: Unit quantity, B: Binder, S: Fine aggregate
G : 굵은골재, SP : 분리저감형 저발열 고유동화제G: coarse aggregate, SP: low heat separation
실험예1Experimental Example 1
본 발명의 실시예에 따라 물리적 성질을 시험하였으며, 표 7은 실험결과를 나타낸 것이다. Physical properties were tested in accordance with the Examples of the present invention, Table 7 shows the experimental results.
실험결과 모든 배합조건에서 슬럼프 플로우 600mm 이상의 고유동성 확보 및 재령 28일에 압축강도 40MPa이상의 고강도 발현이 가능하였다. As a result of the experiment, high flowability of 600mm or higher slump flow was obtained under all mixing conditions and high strength expression of 40MPa or more was achieved on 28 days of age.
표7. 자기충전 저발열 고강도 콘크리트 배합실험 결과Table 7. Self-filling low heat high strength concrete mix test
실시예 Example 슬럼프 플로우 (mm)Slump flow (mm) 공기량(%) Air volume (%) 압축강도 (MPa)Compressive strength (MPa)
3일3 days 7일7 days 28일28 days
실시예1Example 1 620620 1.81.8 28.228.2 35.935.9 62.962.9
실시예2Example 2 613613 1.41.4 22.022.0 31.331.3 54.454.4
실시예3Example 3 605605 1.41.4 17.917.9 26.326.3 46.146.1
실시예4Example 4 705705 1.91.9 18.318.3 28.428.4 43.043.0
실시예5Example 5 700700 2.52.5 18.518.5 32.532.5 46.546.5
실시예6Example 6 750750 3.03.0 18.318.3 27.527.5 42.042.0
실시예7Example 7 760760 2.42.4 17.617.6 26.426.4 41.541.5
실시예8Example 8 710710 2.72.7 21.021.0 34.234.2 49.049.0
실시예9Example 9 675675 1.41.4 22.522.5 38.138.1 50.750.7
실시예10Example 10 640640 4.4 4.4 17.9 17.9 38.3 38.3 50.0 50.0
실험예 2 Experimental Example 2
본 실험은 개발한 자기충전용 저발열 고강도 콘크리트가 타설전까지 고유동성을 확보하면서 재료분리없이 얼마나 철근간극통과성, 자기충전성, 저발열성 등을 평가하기 위한 것이다. 이를 수행하기 위한 자기충전용 저발열 고강도 콘크리트의 배합은 표 8과 같다. The purpose of this experiment is to evaluate how low self-heating high strength concrete developed for self-filling has high fluidity before casting and how rebar clearance, self-charging, low heat generation, etc. without material separation. Formulation of low-heat high-strength concrete for self-charging to perform this is shown in Table 8.
표8. 자기충전용 저발열 고강도 콘크리트 배합Table 8. Low heat generation high strength concrete formulation
구분 division W/B(%) W / B (%) S/a(%) S / a (%) 단위중량 (kg/m3)Unit weight (kg / m 3 )
WW BB SS GG SPSP
실시예11Example 11 32.532.5 5050 168168 517517 813813 822822 4.914.91
W/B : 물결합재비, S/a : 잔골재율, W : 단위수량, B : 결합재, S : 잔골재W / B: Water binder, S / a: Fine aggregate rate, W: Unit quantity, B: Binder, S: Fine aggregate
G : 굵은골재, SP : 분리저감형 저발열 고유동화제G: coarse aggregate, SP: low heat separation
실험결과는 표 9와 같다. 실험결과 비빔직후 슬럼프-플로우 665mm를 확보하였으며 시간이 90분이 지난 후에도 슬럼프-플로우 660mm를 확보하고 있어유동성 손실이 거의 없는 것으로 나타났다. 경과시간 90분에 자기충전용 저발열 고강도 콘크리트의 철근간극통과성과 자기충전성을 평가하기 위하여 V로트 유하시간 및 U형 박스충전성 실험을 한 결과 V로트 유하시간 14초, U형 박스충전성 내외부차 10mm로 나타났다. 이는 「The European Guidelines for Self-Compacting Concrete」에서 제시하고 있는 V로트 유하시간 25초이하, U형 박스충전성 내외부차 30mm이하를 모두 만족하고 있다.The experimental results are shown in Table 9. The experimental results showed that the slump-flow 665mm was secured immediately after the bibeam, and even after 90 minutes, the slump-flow 660mm was secured. In order to evaluate the rebar clearance and self-charging of low-heat high-strength concrete for self-charging at 90 minutes, V lot drop time and U type box filling test were conducted. Internal and external differences were 10mm. This satisfies both the V lot flow time of 25 seconds or less and the U-shaped box filling inside and outside the vehicle of 30mm or less, as suggested in The European Guidelines for Self-Compacting Concrete.
자기충전용 저발열 고강도 콘크리트의 저발열성을 평가하는 단열온도상승시험한 결과는 표 9 및 도 1과 같다. 최대단열온도 상승값은 50℃이하를 만족하고 있으며, 반응속도(α)는 0.525로 나타났다. 콘크리트의 수화열 반응속도가 크면 그만큼 콘크리트 수화열 발생속도가 빠르다는 것으로 수화열이 빠르게 되면 짧은 시간 내에 콘크리트의 온도를 상승시켜 콘크리트 내외부 온도차가 커질 수 있다. 이때 콘크리트 내외부 온도차에 의해 콘크리트에 온도균열이 발생할 확률이 크다. 또한 반응속도가 너무 느리게 되면 양생기간이 길게 되므로 공사기간이 길어지는 문제점이 있다. 일반적으로 반응속도(α)는 0.5~0.7사이가 적당하다. The results of the adiabatic temperature rise test for evaluating the low heat generation properties of the low heat high strength concrete for self-charging are shown in Table 9 and FIG. 1. The maximum thermal insulation temperature rise was less than 50 ℃, the reaction rate (α) was found to be 0.525. If the reaction rate of heat of hydration of concrete is high, the rate of heat of hydration of concrete is faster. If the heat of hydration is faster, the temperature difference between the inside and outside of the concrete may increase by increasing the temperature of the concrete within a short time. At this time, the temperature crack in the concrete is likely to occur due to the temperature difference between the inside and outside of the concrete. In addition, if the reaction rate is too slow, the curing period is long, there is a problem that the construction period is long. In general, the reaction rate (α) is appropriate between 0.5 and 0.7.
표9. 자기충전용 저발열 고강도 콘크리트의 성능평가 실험결과Table 9. Experimental results of low heat, high strength concrete
구분 division 슬럼프 플로우 (mm)Slump flow (mm) 공기량 (%)Air volume (%) 간극통과성 (90분)Clearance (90 minutes) 충전성 (90분)Chargeability (90 minutes) 압축강도(MPa)Compressive strength (MPa) 최대단열온도 상승값 (℃) Maximum Insulation Temperature Rise Value (℃) 반응속도 (α) Reaction rate (α)
초기Early 90분90 minutes 초기Early 90분90 minutes V로트 유하시간(초)V lot dwell time (sec) U형 박스충전성내외부차(mm)U-shaped box filling resistance (mm) 3일3 days 7일7 days 28일28 days
실시예11Example 11 665665 660660 1.71.7 1.81.8 1414 1010 18.318.3 35.335.3 50.650.6 45.2845.28 0.5250.525
실험예3(자기충전용 저발열 고강도 콘크리트의 대규모 Mock-up 실시)Experimental Example 3 (Large Mock-up of Low Heat High Strength Concrete for Magnetic Charging)
(1) Mock-up전 수화열 해석 (1) Analysis of hydration heat before mock-up
본 발명의 자기충전용 저발열 고강도 콘크리트의 수화열을 평가하기 위하여 4x4x4m의 대형 Mock-up을 실시하였다.A large mock-up of 4x4x4m was performed to evaluate the heat of hydration of the low heat and high strength concrete for self-charging of the present invention.
도 2는 4x4x4m Mock-up 실험 전에 콘크리트의 수화열을 예측하기 위하여 수화열 해석프로그램(Midas-Gen)으로 수화열 해석한 결과이다. 해석결과 내부 중심최고 온도가 약 63.98℃로 나타났다.FIG. 2 shows the results of hydration heat analysis using a hydration heat analysis program (Midas-Gen) to predict hydration heat of concrete before the 4x4x4m mock-up experiment. As a result, the internal maximum temperature was about 63.98 ℃.
(2) Mock-up 실험(2) Mock-up Experiment
표 10은 4x4x4m Mock-up 실험위한 배합표이다. 도 3은 Mock-up 실험광경이고, 표 11는 Mock-up 실험결과를 나타낸 것이다. Mock-up 실험결과 슬럼프-플로우 650mm로 고유동성을 확보되었으며, J-ring 플로우는 640mm, 박스충전성 내외부 높이차 10mm로 모두 우수한 간극통과성과 자기 충전성을 만족하는 것으로 나타났다. 또한 Mock-up에 타설한 자기충전용 저발열 고강도 콘크리트는 굵은 골재 침하로 인한 재료분리가 전혀 발생하지 않아 우수한 재료분리저항성을 지닌 것으로 평가되었다. 압축강도는 재령 14일에 50MPa 이상의 고강도를 발현하였으며, 재령 28일과 재령 90일에는 각각 61.0MPa, 70.5MPa의 고강도를 발현하였다.Table 10 is a formulation table for 4x4x4m Mock-up experiments. Figure 3 is a mock-up experiment, Table 11 shows the mock-up experimental results. As a result of mock-up experiment, high flowability was secured with slump-flow 650mm, and J-ring flow was 640mm, box fillability and 10mm difference in height from inside and outside. In addition, low-heating high-strength concrete for self-filling casted on mock-up was evaluated as having excellent material separation resistance because no material separation occurred due to coarse aggregate settlement. The compressive strength was higher than 50MPa at 14 days of age and 61.0MPa and 70.5MPa at 28 and 90 days of age, respectively.
표10. Mock-up 실험 자기충전용 저발열 고강도 콘크리트 배합표Table 10. Low heat generation high strength concrete compound table for mock-up experiment
W/B (%)W / B (%) S/a (%)S / a (%) 단위중량 (kg/m3)Unit weight (kg / m 3 )
WW BB SS GG SPSP
32.532.5 50.050.0 168168 517517 813813 822822 4.914.91
W/B : 물결합재비, S/a : 잔골재율, W : 단위수량, B : 결합재, S : 잔골재, W / B: water binder, S / a: fine aggregate rate, W: unit quantity, B: binder, S: fine aggregate,
G : 굵은골재, SP : 분리저감형 저발열 고유동화제G: coarse aggregate, SP: low heat separation
표11. Mock-up 실험결과Table 11. Mock-up test result
공기량 Air volume 슬럼프 플로우Slump flow J-ring 플로우J-ring flow 박스 충전성 높이차Box filling height difference 압축강도(MPa)Compressive strength (MPa)
7일7 days 14일14 days 28일28 days 56일56 days 90일90 days
2.32.3 650mm650 mm 640mm640 mm 10mm10 mm 387387 520520 610610 654654 705705
도 4는 Mock-up 실험한 콘크리트의 수화열 측정결과의 예를 나타낸 것이다. 온도 측정결과 최고온도는 63.9로 낮게 나타났으며 수화열 해석결과와 유사한 결과로 나타났다. 따라서 Mock-up 실험결과 본 개발품인 자기충전용 저발열 고강도 콘크리트로 대규모 매트기초를 타설할 경우 고강도성, 자기충전성, 저발열성을 모두 만족하는 것으로 나타났다. Figure 4 shows an example of the heat of hydration measurement results of the concrete Mock-up experiment. The maximum temperature was 63.9, which was similar to the hydration analysis. Therefore, the Mock-up test result showed that high-strength, self-filling, and low-heating properties were satisfied when placing large-scale mat foundations with low-heating high-strength concrete for self-charging.
도1 본 발명의 자기충전용 저발열 고강도 콘크리트 조성물 단열온도 상승시험 1 heat insulation temperature rise test of low heat high strength concrete composition for self-charging of the present invention
도2 본 발명의 자기충전용 저발열 고강도 콘크리트 조성물 수화열 해석 그래프2 is a graph of hydration heat analysis low self-heating high strength concrete composition of the present invention
도3 본 발명의 자기충전용 저발열 고강도 콘크리트 조성물 시공 및 실험 공정도Figure 3 Construction and experimental process diagram of low heat generation high strength concrete composition for self-charging of the present invention
도4 본 발명의 자기충전용 저발열 고강도 콘크리트 조성물 수화열 그래프Figure 4 Low heat high strength concrete composition hydration heat graph for self-charging of the present invention

Claims (2)

  1. 자기충전용 저발열 고강도 콘크리트 조성물에 있어서, In the low heat high strength concrete composition for self-charging,
    시멘트 25~55중량부, 고로슬래그 미분말 25~40중량부, 플라이애시 15~25중량부와, 고로슬래그 미분말 60kg과 무수석고 40kg을 혼합, 분쇄하여 분말도를 6000~10000cm2/g로 제조된 분말형태의 고강도 혼합재 5~10중량부로 조성된 결합재(B) 400~550kg; 25 to 55 parts by weight of cement, 25 to 40 parts by weight of blast furnace slag, 15 to 25 parts by weight of fly ash, 60 kg of blast furnace slag powder and 40 kg of anhydrous gypsum were mixed and pulverized to produce a powder of 6000 to 10000 cm 2 / g. 400 to 550 kg of the binder (B) composed of 5 to 10 parts by weight of a high-strength mixture in the form of a powder;
    물(W)155~180kg; 잔골재(S)600~900kg; 굵은골재(G)700~1000kg; Water (W) 155-180 kg; Fine aggregate (S) 600 ~ 900kg; Coarse aggregate (G) 700-1000 kg;
    분산제 85~95중량부, 지연제 4~12중량부, 증점제 1~3중량부로 조성된 분리저감형 저발열 고유동화제(SP) 2~8.25kg;으로 조성되어 있음을 특징으로 하는 자기충전용 저발열 고강도 콘크리트 조성물.Self-filling, characterized in that the composition is composed of 85 ~ 95 parts by weight of dispersant, 4 ~ 12 parts by weight of retardant, 1 ~ 3 parts by weight of thickener, low heat dissipating agent (SP) 2-8.25 kg; Low heat generation high strength concrete composition.
  2. 자기충전용 저발열 고강도 콘크리트 조성물의 제조방법에 있어서,In the method of manufacturing a low heat high strength concrete composition for self-charging,
    제1공정1st process
    고로슬래그 미분말 60kg과 무수석고 40kg을 혼합, 분쇄하여 분말도를 6000~10000cm2/g로 제조하여 고강도 혼합재를 제조한 다음,60 kg of blast furnace slag powder and 40 kg of anhydrous gypsum are mixed and pulverized to produce a powder of 6000-10000 cm 2 / g to prepare a high-strength mixture,
    제2공정2nd process
    시멘트 25~55중량부, 고로슬래그 미분말 25~40중량부, 플라이애시 15~25중량부와, 상기에서 제조된 고강도 혼합재 5~10중량부를 혼합 교반하여 결합재(B)를 제조한 다음,25 to 55 parts by weight of cement, 25 to 40 parts by weight of blast furnace slag powder, 15 to 25 parts by weight of fly ash, and 5 to 10 parts by weight of the high strength mixture prepared above were mixed and stirred to prepare a binder (B).
    제3공정3rd process
    상기에서 제조된 결합재(B) 400~550kg; 물(W)155~180kg; 잔골재(S)600~900kg; 굵은골재(G)700~1000kg; 분산제 85~95중량부, 지연제 4~12중량부, 증점제 1~3중량부로 조성된 분리저감형 저발열 고유동화제(SP) 2~8.25kg;을 전용 혼합믹서에 투입 프리믹싱하여 제조함을 특징으로 하는 자기충전용 저발열 고강도 콘크리트 조성물의 제조방법. 400 to 550 kg of the binder (B) prepared above; Water (W) 155-180 kg; Fine aggregate (S) 600 ~ 900kg; Coarse aggregate (G) 700-1000 kg; Prepared by mixing premixed low-temperature low heat-generating agent (SP) 2-8.25 kg; composed of 85 to 95 parts by weight of dispersant, 4 to 12 parts by weight of retarder, and 1 to 3 parts by weight of thickener; Method for producing a low heat generation high strength concrete composition for self-charging.
KR20080002368A 2008-01-09 2008-01-09 The manufacturing method and composition of low-heat, high-strength concrete for self compaction KR100893495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080002368A KR100893495B1 (en) 2008-01-09 2008-01-09 The manufacturing method and composition of low-heat, high-strength concrete for self compaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080002368A KR100893495B1 (en) 2008-01-09 2008-01-09 The manufacturing method and composition of low-heat, high-strength concrete for self compaction

Publications (1)

Publication Number Publication Date
KR100893495B1 true KR100893495B1 (en) 2009-04-17

Family

ID=40757788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080002368A KR100893495B1 (en) 2008-01-09 2008-01-09 The manufacturing method and composition of low-heat, high-strength concrete for self compaction

Country Status (1)

Country Link
KR (1) KR100893495B1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042657B1 (en) 2008-10-17 2011-06-20 한일시멘트 (주) Composition of compound and cement for marine concrete
RU2442758C1 (en) * 2010-06-22 2012-02-20 Елена Альбертовна Шляхова Bonding material
KR101140561B1 (en) * 2011-07-29 2012-05-02 아세아시멘트주식회사 High flowing-low heating concrete composition for carbon dioxide reduction
KR101247440B1 (en) 2012-10-31 2013-03-25 동양시멘트 주식회사 Concrete composition for phc pile and manufacturing method thereof
KR101333294B1 (en) 2011-11-08 2013-11-27 김재호 Composition for preparing of concrete using dust of fluidized bed boiler
KR101390132B1 (en) 2012-06-22 2014-04-28 주식회사 포스코건설 high strength concrete composition using rapid hardening type portland cement
CN103803843A (en) * 2013-12-30 2014-05-21 广东红墙新材料股份有限公司 Viscosity regulator and preparation method thereof and self-leveling self-compacting concrete
CN104045276A (en) * 2014-06-20 2014-09-17 新疆宇鑫混凝土有限公司 Concrete with dense framework highly doped admixture
CN104724989A (en) * 2015-02-09 2015-06-24 华润水泥技术研发(广西)有限公司 Ground limestone powder full-manufactured sand high-strength recycled self-compacting concrete and application thereof
KR101574472B1 (en) 2015-05-29 2015-12-04 롯데건설 주식회사 Binder Composite and Concrete Composite Using Fine Porous Activated Carbon for Foam Concrete
KR101744325B1 (en) * 2015-11-20 2017-06-20 동서레미콘 (주) Concrete Radiating Far Infrared Ray
CN106904884A (en) * 2017-02-27 2017-06-30 宁夏东方盛达管业有限公司 A kind of concrete formulation suitable for Fang Han
CN107540308A (en) * 2017-08-30 2018-01-05 中交四航工程研究院有限公司 A kind of high-flowing concrete and preparation method thereof
KR101862168B1 (en) 2017-12-13 2018-05-29 주식회사 삼표산업 Self-filling high flowable concrete composition
CN108658547A (en) * 2018-08-09 2018-10-16 平乡县世恒新型建材有限公司 Self-compacting concrete
KR101917513B1 (en) * 2017-05-15 2018-11-09 주식회사 포스코 Ferronickel slag grinding aid, concrete composition for reducing heat of hydration comprising ferronickel slag and method for preparing the same
CN109369114A (en) * 2018-12-18 2019-02-22 中建西部建设(天津)有限公司 A kind of self-compacting concrete
CN109422504A (en) * 2017-08-31 2019-03-05 临安鼎昇建材有限公司 A kind of quasi- self-compacting concrete of premixing and its production method
KR102011377B1 (en) * 2018-12-20 2019-08-16 주식회사 삼표산업 Self compacting concrete using viscosity modifier for common concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200362087Y1 (en) * 2004-06-02 2004-09-21 김영환 Excavating rod of auger machine
KR200403831Y1 (en) * 2005-10-04 2005-12-14 박상은 mildew smell discharge equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200362087Y1 (en) * 2004-06-02 2004-09-21 김영환 Excavating rod of auger machine
KR200403831Y1 (en) * 2005-10-04 2005-12-14 박상은 mildew smell discharge equipment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042657B1 (en) 2008-10-17 2011-06-20 한일시멘트 (주) Composition of compound and cement for marine concrete
RU2442758C1 (en) * 2010-06-22 2012-02-20 Елена Альбертовна Шляхова Bonding material
KR101140561B1 (en) * 2011-07-29 2012-05-02 아세아시멘트주식회사 High flowing-low heating concrete composition for carbon dioxide reduction
KR101333294B1 (en) 2011-11-08 2013-11-27 김재호 Composition for preparing of concrete using dust of fluidized bed boiler
KR101390132B1 (en) 2012-06-22 2014-04-28 주식회사 포스코건설 high strength concrete composition using rapid hardening type portland cement
KR101247440B1 (en) 2012-10-31 2013-03-25 동양시멘트 주식회사 Concrete composition for phc pile and manufacturing method thereof
CN103803843A (en) * 2013-12-30 2014-05-21 广东红墙新材料股份有限公司 Viscosity regulator and preparation method thereof and self-leveling self-compacting concrete
CN103803843B (en) * 2013-12-30 2016-02-10 广东红墙新材料股份有限公司 Viscosity modifier and preparation method thereof and Self-leveling self-compacting concrete
CN104045276A (en) * 2014-06-20 2014-09-17 新疆宇鑫混凝土有限公司 Concrete with dense framework highly doped admixture
CN104724989A (en) * 2015-02-09 2015-06-24 华润水泥技术研发(广西)有限公司 Ground limestone powder full-manufactured sand high-strength recycled self-compacting concrete and application thereof
KR101574472B1 (en) 2015-05-29 2015-12-04 롯데건설 주식회사 Binder Composite and Concrete Composite Using Fine Porous Activated Carbon for Foam Concrete
KR101744325B1 (en) * 2015-11-20 2017-06-20 동서레미콘 (주) Concrete Radiating Far Infrared Ray
CN106904884A (en) * 2017-02-27 2017-06-30 宁夏东方盛达管业有限公司 A kind of concrete formulation suitable for Fang Han
KR101917513B1 (en) * 2017-05-15 2018-11-09 주식회사 포스코 Ferronickel slag grinding aid, concrete composition for reducing heat of hydration comprising ferronickel slag and method for preparing the same
CN107540308A (en) * 2017-08-30 2018-01-05 中交四航工程研究院有限公司 A kind of high-flowing concrete and preparation method thereof
CN107540308B (en) * 2017-08-30 2021-01-26 中交四航工程研究院有限公司 High-fluidity concrete and preparation method thereof
CN109422504A (en) * 2017-08-31 2019-03-05 临安鼎昇建材有限公司 A kind of quasi- self-compacting concrete of premixing and its production method
KR101862168B1 (en) 2017-12-13 2018-05-29 주식회사 삼표산업 Self-filling high flowable concrete composition
CN108658547A (en) * 2018-08-09 2018-10-16 平乡县世恒新型建材有限公司 Self-compacting concrete
CN109369114A (en) * 2018-12-18 2019-02-22 中建西部建设(天津)有限公司 A kind of self-compacting concrete
KR102011377B1 (en) * 2018-12-20 2019-08-16 주식회사 삼표산업 Self compacting concrete using viscosity modifier for common concrete

Similar Documents

Publication Publication Date Title
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
Topçu et al. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete
Melo et al. Effect of Metakaolin’s finesses and content in self-consolidating concrete
JP4384902B2 (en) Manufacturing method of mortar and concrete
Raisi et al. Mechanical performance of self-compacting concrete incorporating rice husk ash
Rashid et al. Properties of higher strength concrete made with crushed brick as coarse aggregate
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP2018162213A (en) High strength cement mortar composition and manufacturing method of high strength cement mortar cured body
JP2018104287A (en) High-strength cement mortar composition
KR100686350B1 (en) Ultra high strength concrete composition
KR100686353B1 (en) High fire resistance and ultra high strength concrete composition
KR101243523B1 (en) High Strength Concrete Composition for High-Rise Building
KR100867250B1 (en) Ultra high strength concrete containing non-sintering binder
KR100873514B1 (en) Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
KR100878551B1 (en) Composition for concrete having superhigh compressive strength and manufactruing method
KR20040084533A (en) Cement admixture composite for high flowability concrete fabrication
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
JP5588612B2 (en) Reinforcing bar joint filler composition, reinforcing bar joint filler using the same, and reinforcing bar joint filling method
JP2012144407A (en) High-strength paste composition
Zaidi et al. Utilisation of glass powder in high strength copper slag concrete
JP6023488B2 (en) Paste composition
JP4797973B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP6031281B2 (en) Paste composition
KR101861228B1 (en) Concrete composition with improved early strength
JP6417891B2 (en) High-strength concrete composition and method for producing high-strength concrete hardened body

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130405

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140402

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170407

Year of fee payment: 9