JP5145842B2 - High strength centrifugal molding concrete composition and method for producing the same - Google Patents

High strength centrifugal molding concrete composition and method for producing the same Download PDF

Info

Publication number
JP5145842B2
JP5145842B2 JP2007244681A JP2007244681A JP5145842B2 JP 5145842 B2 JP5145842 B2 JP 5145842B2 JP 2007244681 A JP2007244681 A JP 2007244681A JP 2007244681 A JP2007244681 A JP 2007244681A JP 5145842 B2 JP5145842 B2 JP 5145842B2
Authority
JP
Japan
Prior art keywords
mass
strength
portland cement
gypsum
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007244681A
Other languages
Japanese (ja)
Other versions
JP2009073700A (en
Inventor
信行 松嶋
真二 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007244681A priority Critical patent/JP5145842B2/en
Publication of JP2009073700A publication Critical patent/JP2009073700A/en
Application granted granted Critical
Publication of JP5145842B2 publication Critical patent/JP5145842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/56Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、遠心力を利用して製造するパイル、ポール、ヒューム管等のコンクリート成形用に適したコンクリート組成物及びそれを使用するコンクリート二次製品の製造方法に関する。特に、特殊な骨材や繊維補強材等を使用することなく、蒸気養生及びその後の気中養生後に130N/mmレベルの極めて高い強度を有する遠心力成形用コンクリート組成物に関する。 The present invention relates to a concrete composition suitable for concrete forming such as piles, poles, and fume pipes manufactured using centrifugal force, and a method for manufacturing a concrete secondary product using the same. In particular, the present invention relates to a centrifugal molding concrete composition having an extremely high strength of 130 N / mm 2 after steam curing and subsequent air curing without using special aggregates or fiber reinforcements.

従来、パイル、ポール又はヒューム管等の円柱形又は円筒形のコンクリート二次製品の製造には遠心力を利用した成形方法が一般に採用されている。この方法では、鉄筋を配した型枠中にコンクリートを打設して遠心力成形し、常温で所定時間前養生を行ったのち常圧で蒸気養生を行い、冷却後脱型し、数週間気中養生して出荷される。   Conventionally, a forming method using centrifugal force is generally employed for manufacturing a columnar or cylindrical concrete secondary product such as a pile, a pole, or a fume tube. In this method, concrete is placed in a formwork with reinforcing bars and molded by centrifugal force, precured at room temperature for a predetermined time, then steam-cured at normal pressure, demolded after cooling, and aired for several weeks. Shipped with medium curing.

最近、コンクリートパイルをはじめとするコンクリート二次製品には、支持力がより高いものが求められる傾向にある。このような要求を満たすために、使用する材料、コンクリートの配合、遠心力成形条件、前養生条件、さらには常圧蒸気養生条件や高温高圧養生の付加等によって最適化する手法がとられているが、必ずしも安定した高強度硬化体を得るには至っていないのが現状である。ちなみに、通常のコンクリート材料を使用した場合、遠心力成形用コンクリート組成物の設計基準強度(圧縮強度)130N/mmレベルのような高強度領域は、技術的にも限界に近く、その高強度を確保することが極めて難しいとされている(特許文献1〜3参照)。
特許第2887561号公報 特開2005−263567号公報 特開2005−179149号公報
Recently, concrete secondary products such as concrete piles tend to be required to have higher support. In order to satisfy these requirements, methods are used to optimize the materials used, the mix of concrete, centrifugal molding conditions, pre-curing conditions, and the addition of atmospheric steam curing conditions and high-temperature high-pressure curing. However, the present situation is that the stable high-strength cured body has not necessarily been obtained. Incidentally, when using ordinary concrete material, the high intensity regions such as the design strength (compressive strength) 130N / mm 2 level centrifugal molding concrete composition is close to a limit to technical, high strength that It is said that it is extremely difficult to ensure (see Patent Documents 1 to 3).
Japanese Patent No. 2887561 JP 2005-263567 A JP 2005-179149 A

このように、従来、遠心力成形コンクリート硬化体では、設計基準強度(圧縮強度)130N/mm以上を満たすことが困難であったことに鑑み、本発明は、遠心力成形用製品において、コンクリートの蒸気養生後の脱型圧縮強度が約115N/mm以上、その後の気中養生後(1〜2週間後)で130N/mmレベルの高強度化を実現する遠心力成形用コンクリート組成物を提供することを目的とする。 As described above, in view of the fact that it has been difficult to satisfy the design standard strength (compressive strength) of 130 N / mm 2 or more in the conventional centrifugally molded concrete cured body, Concrete composition for forming a centrifugal force that has a demolding compression strength of about 115 N / mm 2 or more after steam curing and a high strength of 130 N / mm 2 after subsequent air curing (after 1 to 2 weeks) The purpose is to provide.

本発明はまた、コンクリート材料、配合、練混ぜ、型枠への充填、遠心力成形、前養生及び蒸気養生の最適条件を明らかにして、上記のような高強度の遠心力成形用製品を製造する方法を提供することを目的とする。   The present invention also clarifies the optimum conditions of concrete material, blending, kneading, filling into molds, centrifugal force forming, pre-curing and steam curing, and manufacturing the above-described high-strength centrifugal force forming products. It aims to provide a way to do.

本発明者らは、遠心力成形用製品の高強度化を実現するために鋭意検討した結果、普通ポルトランドセメント、早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、普通ポルトランドセメントの石膏中の半水石膏割合が10〜95質量%、間隙相含有割合が17〜23質量%、ポルトランドセメント総量中の早強ポルトランドセメントの割合が28〜80質量%、ポルトランドセメント総量の単位量が510〜690kg/mであり、高強度混和材は無水石膏と非晶質シリカとを含み、無水石膏/非晶質シリカの質量比が15/85〜85/15であり、ポルトランドセメント総量100質量部に対して高強度混和材を5〜20質量部含み、分散剤がナフタレン系分散剤である高強度遠心力成形用コンクリート組成物を発明するに至った。 As a result of intensive studies to achieve high strength of products for centrifugal force molding, the present inventors have found that high strength containing ordinary Portland cement, early strength Portland cement, high strength admixture, dispersant, aggregate and water. It is a concrete composition for centrifugal force molding, and the proportion of hemihydrate gypsum in gypsum of ordinary Portland cement is 10 to 95% by mass, the content ratio of interstitial phase is 17 to 23% by mass, and the early strength Portland cement in the total amount of Portland cement The proportion is 28 to 80% by mass, the unit amount of the total amount of Portland cement is 510 to 690 kg / m 3 , and the high-strength admixture contains anhydrous gypsum and amorphous silica, and the mass ratio of anhydrous gypsum / amorphous silica Is 15/85 to 85/15, contains 5 to 20 parts by mass of a high-strength admixture with respect to 100 parts by mass of the total amount of Portland cement, and the dispersant is a naphthalene-based dispersant The present inventors have invented a high-strength centrifugal force molding concrete composition.

本発明の高強度遠心力成形用コンクリート組成物は、早強ポルトランドセメントの石膏中の半水石膏割合が10〜90質量%であることが好ましい。また、高強度混和材中の非晶質シリカがシリカフュームであり、高強度混和材が、無水石膏とシリカフュームとを混合粉砕したものである。さらに、普通ポルトランドセメント中のCA含有割合が7〜14質量%であることが好ましい。さらに、ポルトランドセメント総量100質量部に対して、高強度混和材を6〜25質量部及び分散剤を水溶液基準で1.0〜5.5質量部含有することがより好ましい。
また、水/(ポルトランドセメント総量+高強度混和材)質量比が17〜22%であることがより好ましい。
In the high strength centrifugal molding concrete composition of the present invention, the proportion of hemihydrate gypsum in the gypsum of early strong Portland cement is preferably 10 to 90% by mass. The amorphous silica in the high-strength admixture is silica fume , and the high-strength admixture is obtained by mixing and crushing anhydrous gypsum and silica fume . Furthermore, it is preferable that the C 3 A content ratio in ordinary Portland cement is 7 to 14% by mass. Furthermore, it is more preferable to contain 6 to 25 parts by mass of the high-strength admixture and 1.0 to 5.5 parts by mass of the dispersant based on the aqueous solution with respect to 100 parts by mass of the total amount of Portland cement.
The water / (portland cement total amount + high-strength admixture) mass ratio is more preferably 17 to 22%.

本発明はさらに、上記の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生する高強度遠心力成形用製品の製造方法を提供する。   The present invention is further mixed with the above-mentioned high-strength centrifugal force molding concrete composition, filled into a cylindrical formwork with reinforcing bars, and then subjected to centrifugal force molding, precured, then steam cured and then demolded, A method for producing a high-strength centrifugal force molding product that is then cured in air is provided.

本発明の遠心力成形用製品の製造方法により、設計基準強度130N/mmレベルの高強度遠心力成形用製品が製造できる。このため、杭の場合では支持力を大きく取ることができるので、施工本数が低減でき、経済的であるという効果を奏する。また、高強度遠心力成形用コンクリート組成物は組織が緻密になることから、耐久性の向上に貢献するという効果も奏する。 By the method for producing a centrifugal force molding product of the present invention, a high strength centrifugal force molding product having a design standard strength of 130 N / mm 2 can be produced. For this reason, in the case of a pile, since a supporting force can be taken largely, the number of construction can be reduced and there exists an effect that it is economical. Moreover, since the structure of the high-strength centrifugal force forming concrete composition becomes dense, it also has an effect of contributing to improvement in durability.

以下に本発明を詳細に説明する。なお、実施例1〜12、17〜20は参考例である。 先ず、コンクリート組成物に使用する材料の好ましい特性は下記のとおりである。 The present invention is described in detail below. Examples 1 to 12 and 17 to 20 are reference examples. First, the preferable characteristic of the material used for a concrete composition is as follows.

本発明の高強度遠心力成形用コンクリート組成物に使用するセメントは、普通ポルトランドセメント及び早強ポルトランドセメントであり、普通ポルトランドセメントの石膏中の半水石膏割合は10〜95質量%、好ましくは25〜90質量%である。早強ポルトランドセメントの石膏中の半水石膏割合は10〜90質量%、好ましくは20〜80質量%である。普通ポルトランドセメント及び早強ポルトランドセメントの石膏中の半水石膏量は、遠心力成形性(締固め、均質性(内面での波打ち抑制)、ノロ(泥状物)の発生抑制)及び蒸気養生後の強度発現性に極めて重要な役割を果たすため、後述の示差熱熱重量分析方法によって測定するセメントの石膏中の二水石膏と半水石膏との合量に対する半水石膏量の質量比は、普通ポルトランドセメントで上記の10〜95質量%、早強ポルトランドセメントで10〜90質量%の範囲にあることが重要な必須要件の一つである。   The cement used in the high-strength centrifugal molding concrete composition of the present invention is ordinary Portland cement and early-strength Portland cement, and the proportion of hemihydrate gypsum in gypsum of ordinary Portland cement is 10 to 95% by mass, preferably 25. It is -90 mass%. The proportion of hemihydrate gypsum in gypsum of early strong Portland cement is 10 to 90% by mass, preferably 20 to 80% by mass. The amount of hemihydrate gypsum in normal Portland cement and early-strength Portland cement gypsum is centrifugal formability (consolidation, homogeneity (inhibition of undulation on the inner surface), suppression of generation of noro (mud)) and after steam curing In order to play a very important role in the development of strength of the cement, the mass ratio of the amount of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum in the gypsum of the cement measured by the differential thermogravimetric analysis method described below is It is one of the essential essential requirements that the range is 10 to 95% by mass for normal Portland cement and 10 to 90% by mass for early-strength Portland cement.

さらに、普通ポルトランドセメント中のCA含有割合とCAF含有割合との合計量で表される間隙相含有割合は17〜23質量%、好ましくは18〜22質量%である。またCA含有割合は7〜14質量%、好ましくは8〜13質量%である。なお、普通ポルトランドセメント中のCA及びCAFの含有割合(質量比)は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」によって分析したAl及びFeの含有割合(%)定量値を用いて次式(Bogue式)で計算することによって得られる。
A含有割合(質量%)=(2.65×%Al)−(1.69×%Fe
(1)
AF含有割合(質量%)=3.04×%Fe (2)
Furthermore, the interstitial phase content ratio represented by the total amount of the C 3 A content ratio and the C 4 AF content ratio in ordinary Portland cement is 17 to 23 mass%, preferably 18 to 22 mass%. The C 3 A content is 7-14 wt%, preferably from 8 to 13% by weight. The content ratio (mass ratio) of C 3 A and C 4 AF in ordinary Portland cement is the content of Al 2 O 3 and Fe 2 O 3 analyzed by JIS R 5202: 1999 “Chemical analysis method of Portland cement”. It is obtained by calculating with the following formula (Bogue formula) using the ratio (%) quantitative value.
C 3 A content ratio (mass%) = (2.65 ×% Al 2 O 3 ) − (1.69 ×% Fe 2 O 3 )
(1)
C 4 AF content ratio (% by mass) = 3.04 ×% Fe 2 O 3 (2)

さらに、普通ポルトランドセメントの水硬率(H.M.)は2.05〜2.25、より好ましくは2.10〜2.20、セメント中のSO量は1.5〜3.0質量%、より好ましくは1.7〜2.4質量%のものを使用することができる。また、普通ポルトランドセメントの粒度は、粉末度(ブレーン比表面積)が3000〜3800cm/g、エアジェットシーブによる32μm篩残分が12.0〜24.0質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))による体積含有率が50%通過径8〜24μm、より好ましくは12〜20μm、90%通過径/10%通過径比が5〜20、Rosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.10〜1.35、好ましくは1.15〜1.30のものであれば、良好に使用することができる。 Furthermore, the hydraulic modulus (HM) of ordinary Portland cement is 2.05 to 2.25, more preferably 2.10 to 2.20, and the amount of SO 3 in the cement is 1.5 to 3.0 mass. %, More preferably 1.7 to 2.4% by mass. Further, the particle size of ordinary Portland cement is 3000 to 3800 cm 2 / g in fineness (brain specific surface area), 12.0 to 24.0 mass% of 32 μm sieve residue by air jet sieve, laser diffraction particle size distribution measuring device (Volume content by 50% pass diameter 8-24 μm, more preferably 12-20 μm, 90% pass diameter / 10% pass diameter ratio is 5-20. If the n value (particle size distribution uniform number, particle size target range 4 to 32 μm) in the Rosin-Rammler diagram is 1.10 to 1.35, preferably 1.15 to 1.30, it is used well. can do.

さらに、早強ポルトランドセメントの水硬率(H.M.)は2.20〜2.30、より好ましくは2.23〜2.28、セメント中のSO量は2.5〜3.5質量%、より好ましくは2.8〜3.1質量%のものを使用することができる。また、早強ポルトランドセメントの粒度は、粉末度(ブレーン比表面積)が4200〜4800cm/g、エアジェットシーブによる32μm篩残分が3.0〜8.0質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))による体積含有率が50%通過径6〜16μm、より好ましくは8〜12μm、90%通過径/10%通過径比が5〜15、Rosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.10〜1.40、好ましくは1.15〜1.35のものであれば、良好に使用することができる。 Furthermore, the hydraulic strength (HM) of early strong Portland cement is 2.20 to 2.30, more preferably 2.23 to 2.28, and the amount of SO 3 in the cement is 2.5 to 3.5. The thing of the mass%, More preferably, the thing of 2.8-3.1 mass% can be used. In addition, the particle size of early-strength Portland cement is 4200-4800 cm 2 / g in fineness (Blaine specific surface area), 32 μm sieve residue by air jet sieve is 3.0-8.0 mass%, laser diffraction particle size distribution measurement Volume content by apparatus (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) is 50% passage diameter 6-16 μm, more preferably 8-12 μm, 90% passage diameter / 10% passage diameter ratio is 5 15, if n value (Equivalent particle size distribution, particle size target range 4 to 32 μm) in the Rosin-Rammler diagram is 1.10 to 1.40, preferably 1.15 to 1.35 Can be used.

本発明の高強度遠心力成形用コンクリート組成物に使用する高強度混和材は、高強度遠心力成形用製品の製造に不可欠な材料の一つであり、無水石膏と非晶質シリカとを含むものである。非晶質シリカとしては、シリカフュームや微粉フライアッシュ(平均粒径10μm以下)等が使用でき、特にシリカ含有割合が90質量%以上のシリカフュームがより好ましく、その一次粒子が凝集又は焼結されることによって形成された二次粒子が十分解砕・分散されていることが好ましい。これを実現するための方法として、無水石膏とシリカフュームとを混合粉砕することも有効である。高強度混和材中の無水石膏及び非晶質シリカの好ましい含有割合(無水石膏/非晶質シリカ質量比)は15/85〜85/15、より好ましくは20/80〜65/35である。高強度混和材の粉末度(ブレーン比表面積)は、構成成分の割合あるいは特に非晶質シリカ粒子の分散状態によって影響されるが、より好ましい配合割合においては、4000〜15000cm/g、好ましくは5000〜13000cm/gの範囲である。 The high-strength admixture used in the high-strength centrifugal force molding concrete composition of the present invention is one of the indispensable materials for producing a high-strength centrifugal force-forming product, and contains anhydrous gypsum and amorphous silica. It is a waste. As the amorphous silica, silica fume, fine powder fly ash (average particle size of 10 μm or less) and the like can be used. In particular, silica fume having a silica content of 90% by mass or more is more preferable, and the primary particles are aggregated or sintered. It is preferable that the secondary particles formed by the above are sufficiently crushed and dispersed. As a method for realizing this, it is also effective to pulverize anhydrous gypsum and silica fume. A preferable content ratio (anhydrous gypsum / amorphous silica mass ratio) of anhydrous gypsum and amorphous silica in the high-strength admixture is 15/85 to 85/15, more preferably 20/80 to 65/35. The fineness (brain specific surface area) of the high-strength admixture is influenced by the ratio of the constituent components or particularly the dispersed state of the amorphous silica particles, but in a more preferable blending ratio, it is 4000 to 15000 cm 2 / g, preferably It is the range of 5000-13000 cm < 2 > / g.

また、高強度混和材は、無水石膏と非晶質シリカとを混合粉砕した混合物を使用することがより好ましい。非晶質シリカは製造時に高温状態にさらされるため一次粒子が塊状の二次粒子を形成しており、混合粉砕することにより解膠され、コンクリートに使用した際の分散状態が良くなる。また、蒸気養生用混和材として一般に市販されているものも好適に使用することができる。この例としては、デンカΣ1000、デンカΣ2000(電気化学工業(株)製)、ノンクレーブ、スーパーノンクレーブ(住友大阪セメント(株)製)、ダイミックス(昭和KDE(株)製)、太平洋ウルトラスーパーミックス(太平洋マテリアル(株)製)等を挙げることができる。これらの中で、デンカΣ2000、スーパーノンクレーブの使用がより好ましい。   The high-strength admixture is more preferably a mixture obtained by mixing and grinding anhydrous gypsum and amorphous silica. Since amorphous silica is exposed to a high temperature state during production, primary particles form agglomerated secondary particles, which are peptized by mixing and pulverization, and the dispersion state when used in concrete is improved. Moreover, what is generally marketed as an admixture for steam curing can also be used conveniently. Examples include Denka Σ1000, Denka Σ2000 (manufactured by Denki Kagaku Kogyo Co., Ltd.), nonclave, super nonclave (manufactured by Sumitomo Osaka Cement Co., Ltd.), die mix (manufactured by Showa KDE Co., Ltd.), Taiheiyo Ultra Supermix. (Manufactured by Taiheiyo Material Co., Ltd.). Among these, use of Denka Σ2000 and super nonclave is more preferable.

本発明の高強度遠心力成形用コンクリート組成物に使用する分散剤は、比較的多量に添加しても遅延性がなく、空気連行性もない減水率の高い高性能減水剤である。高性能減水剤としては、ポリアルキルアリルスルホン酸塩系または芳香族アミノスルホン酸塩系のいずれかを主成分とするものが使用できる。より好ましくはポリアルキルアリルスルホン酸塩系高性能減水剤である。この例として、メチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物及びアントラセンスルホン酸ホルマリン縮合物等が挙げられる。形態としては、粉末状又は水溶液タイプのもののいずれも使用できるが、扱いやすさから後者(水溶液)の使用がより好ましい。水溶液中の固形分含有量(溶質含有量)は約25〜45質量%の範囲のものが多い。分散剤の水分量は、コンクリート配合設計上、練り混ぜ水に加算するので、その使用に際しては水分量を予め求めておく必要がある。分散剤の市場品の具体例としては、マイティHS(花王(株)製)、マイティ150(花王(株)製)、セルフロー(第一工業製薬(株))、レオビルド8000H(BASFポゾリス(株)製)、ポールファイン510−AN(竹本油脂(株)製)、フローリックPS((株)フローリック製)等を挙げることができる。
代表的なポリアルキルアリルスルホン酸塩系分散剤の赤外線吸収スペクトルを図1に示す。赤外線吸収スペクトルは日本分光社製のFT/IR−4000(測定精度:4cm−1)を用いて測定した。分散剤はNaCl板に原液のまま塗布して110℃で乾固し透過法により測定した。測定範囲は400〜4000cm−1、積算回数は16回とした。
The dispersant used in the concrete composition for high strength centrifugal force molding according to the present invention is a high performance water reducing agent having a high water reduction rate that is not delayed and does not entrain air even when added in a relatively large amount. As the high-performance water reducing agent, one having a polyalkylallyl sulfonate or aromatic amino sulfonate as a main component can be used. More preferred is a polyalkylallyl sulfonate high-performance water reducing agent. Examples thereof include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate and anthracene sulfonic acid formalin condensate. As the form, either powdered or aqueous solution type can be used, but the latter (aqueous solution) is more preferable from the viewpoint of ease of handling. The solid content (solute content) in the aqueous solution is often in the range of about 25 to 45% by mass. Since the water content of the dispersant is added to the kneaded water in the concrete blending design, it is necessary to obtain the water content in advance for its use. Specific examples of marketed dispersants are Mighty HS (manufactured by Kao Corporation), Mighty 150 (manufactured by Kao Corporation), Cellflow (Daiichi Kogyo Seiyaku Co., Ltd.), Leo Build 8000H (BASF Pozzolith Co., Ltd.) Product), Pole Fine 510-AN (manufactured by Takemoto Yushi Co., Ltd.), Floric PS (manufactured by Floric Co., Ltd.), and the like.
FIG. 1 shows an infrared absorption spectrum of a typical polyalkylallyl sulfonate dispersant. The infrared absorption spectrum was measured using FT / IR-4000 (measurement accuracy: 4 cm −1 ) manufactured by JASCO Corporation. The dispersant was applied as it was on the NaCl plate, dried at 110 ° C., and measured by the transmission method. The measurement range was 400 to 4000 cm −1 and the number of integrations was 16 times.

本発明の高強度遠心力成形用コンクリート組成物に使用する骨材は、種類は特に限定されず、通常、遠心力成形用製品に使用されているものを使用することができる。粗骨材の最大寸法は、より好ましくは15mmのものを使用し、細骨材率(s/a)は30〜45質量%の範囲から選択される。   The type of the aggregate used in the high-strength centrifugal force molding concrete composition of the present invention is not particularly limited, and those usually used in centrifugal force molding products can be used. The maximum size of the coarse aggregate is more preferably 15 mm, and the fine aggregate rate (s / a) is selected from the range of 30 to 45% by mass.

次に、本発明の高強度遠心力成形用コンクリート組成物におけるコンクリート配合は以下のとおりである。
まず、普通ポルトランドセメント及び早強ポルトランドセメントとの総量(以下ポルトランドセメント総量と略記する)の単位量は510〜690kg/mである。ポルトランドセメント総量の単位量が510kg/m未満では十分な強度が得られず、690kg/mを超えると水セメント比は小さくできるが、骨材間間隙に対するセメントペーストの容積比が過大となって遠心成形による締め固めが不充分となり、結果として高強度を得ることができない。
また、ポルトランドセメント総量中の早強ポルトランドセメントの割合は28〜80質量%、好ましくは30〜70質量%である。28質量%未満では、十分な強度が得られず、80質量%を超えると遠心成形性が悪くなる。
Next, the concrete composition in the high strength centrifugal molding concrete composition of the present invention is as follows.
First, the unit amount of the total amount of normal Portland cement and early-strength Portland cement (hereinafter abbreviated as “Portland cement total amount”) is 510 to 690 kg / m 3 . If the unit amount of the total amount of Portland cement is less than 510 kg / m 3 , sufficient strength cannot be obtained, and if it exceeds 690 kg / m 3 , the water cement ratio can be reduced, but the volume ratio of the cement paste to the gap between the aggregates becomes excessive. Therefore, compaction by centrifugal molding becomes insufficient, and as a result, high strength cannot be obtained.
Moreover, the ratio of the early strong Portland cement in the total amount of Portland cement is 28-80 mass%, Preferably it is 30-70 mass%. If it is less than 28% by mass, sufficient strength cannot be obtained, and if it exceeds 80% by mass, the centrifugal moldability deteriorates.

高強度混和材は、ポルトランドセメント総量100質量部に対して、6〜25質量部が好ましく、8〜18質量部がより好ましい。高強度混和材の含有量が5質量部未満では強度向上効果が期待できず、20質量部を越えると、遠心力成形性が低下し、強度が低下する場合もあり好ましくない。   The high-strength admixture is preferably 6 to 25 parts by mass and more preferably 8 to 18 parts by mass with respect to 100 parts by mass of the total amount of Portland cement. If the content of the high-strength admixture is less than 5 parts by mass, an effect of improving the strength cannot be expected, and if it exceeds 20 parts by mass, the centrifugal force moldability is lowered and the strength may be lowered.

ナフタレン系の分散剤は、ポルトランドセメント総量100質量部に対して、水溶液基準で1.0〜5.5質量部が好ましく、経済性をも踏まえると2.0〜4.5質量部がより好ましい。すなわち、分散剤が水溶液基準で1.0質量部未満では減水性が不十分で、5.0質量部を超えて添加してもその増量分に見合う程の大きな減水効果が得られ難いため不経済となる。   The naphthalene-based dispersant is preferably 1.0 to 5.5 parts by mass on the basis of an aqueous solution with respect to 100 parts by mass of the total amount of Portland cement, and more preferably 2.0 to 4.5 parts by mass in view of economy. . That is, if the dispersant is less than 1.0 part by mass based on the aqueous solution, water reduction is insufficient, and even if it is added in excess of 5.0 parts by mass, it is difficult to obtain a large water reduction effect commensurate with the increased amount. It becomes economy.

また、本発明の遠心力成形用コンクリート組成物の高強度化は、高強度混和材と分散剤との間の相互作用が起こるなかで達せられるものであり、これらの混和材(剤)は単に多ければ良いというものでなく、適正添加量が存在する。   Further, the high strength of the centrifugal force-forming concrete composition of the present invention can be achieved while the interaction between the high-strength admixture and the dispersant occurs, and these admixtures (agents) are simply used. It is not a good thing if there is much, but there exists a proper addition amount.

水/(ポルトランドセメント総量+高強度混和材)、すなわち水/結合材の適正質量比は、使用する各種コンクリート材料及び単位量(配合)によっても変化するが、17〜22質量%、好ましくは18〜21質量%の範囲である。17質量%未満ではコンクリートの粘性が上がり、ハンドリング性が悪化するとともに、硬すぎて型枠への投入が困難となり、また、22質量%を超えるとコンクリートが流動化し遠心力による締固めが不十分となり、高強度が得られ難くなるため好ましくない。   The appropriate mass ratio of water / (portland cement total amount + high-strength admixture), that is, water / binder, varies depending on the various concrete materials used and the unit amount (mixing), but is 17-22 mass%, preferably 18 It is in the range of ˜21% by mass. If it is less than 17% by mass, the viscosity of the concrete will be increased, the handling property will be deteriorated, and it will be too hard to be put into the mold, and if it exceeds 22% by mass, the concrete will be fluidized and insufficiently compacted by centrifugal force. Therefore, it is difficult to obtain high strength, which is not preferable.

なお、遠心力成形で高強度の鋼管パイルを製造する場合には、上記のコンクリート配合として、高強度混和材に加えて膨張材を併用するのが好ましい。膨張材はアウィン−石灰−石膏系又は石灰−石膏系のものであり、ポルトランドセメント総量100質量部に対し、膨張材と高強度混和材との合量を基準に18質量部以内で使用するのが好ましい。この場合、膨張材としては、市販のデンカCSA20(電気化学工業(株)製)、太平洋エクスパン又は太平洋ジプカル(太平洋マテリアル(株))等が使用でき、この膨張材単体分の配合量は概ね5〜8質量部が好ましい。 In addition, when manufacturing a high intensity | strength steel pipe pile by centrifugal force shaping | molding, it is preferable to use an expansion material together with a high intensity | strength admixture as said concrete mixing | blending. The expansion material is of Awin-lime-gypsum system or lime-gypsum system, and is used within 18 parts by mass based on the total amount of the expansion material and high-strength admixture with respect to 100 parts by mass of the total amount of Portland cement. Is preferred. In this case, as the expansion material, commercially available Denka CSA # 20 (manufactured by Denki Kagaku Kogyo Co., Ltd.), Taiheiyo Expan or Taiheiyo Gypcal (Pacific Material Co., Ltd.) can be used. Approximately 5 to 8 parts by mass is preferable.

コンクリート使用材料の投入順序、使用するミキサ、練混ぜ時間等は特に限定されず、遠心力成形用製品の製造で通常行われている条件を採用することができる。練混ぜられた適正なコンクリートの流動性は、スランプで10cm以下、好ましくは1〜4cm、鋼管パイルでは6〜12cm程度である。このコンクリートは、配筋された型枠内に打設し、コンクリートの型枠軸方向での均質化を行なう工程(1〜4G)、型枠内面への貼り付けを行なう工程(低速5〜14G、高速15〜20G)、粗骨材の型枠内面方向への濃集と締固めを行を行なう工程(20G以上)の4工程で遠心成形する。それぞれの遠心力付加時間は1〜5分間の範囲で選択される。   There are no particular limitations on the order in which the concrete materials are used, the mixer to be used, the kneading time, etc., and the conditions normally used in the production of centrifugal force forming products can be employed. The fluidity of the proper mixed concrete is 10 cm or less, preferably 1 to 4 cm with slump, and about 6 to 12 cm with steel pipe pile. This concrete is placed in a placed formwork, homogenizing the concrete in the axial direction of the formwork (1-4G), and attaching to the inner surface of the formwork (low speed 5-14G) , High speed 15 to 20G), centrifugal molding is performed in four steps (20G or more) in which the coarse aggregate is concentrated and compacted toward the inner surface of the mold. Each centrifugal force application time is selected in the range of 1 to 5 minutes.

遠心力成形された成形体は、常温、例えば、5〜35℃の温度範囲で4〜6時間前養生を行ったのち、蒸気養生を行う。蒸気養生は15〜22℃/hの昇温速度で最高温度60〜100℃、好ましくは70〜90℃まで昇温し、最高温度で3〜6時間保持したのち、8〜12時間かけて冷却する。冷却後脱型し、1週間以上気中で養生を行う。   The molded body formed by centrifugal force is precured for 4 to 6 hours at room temperature, for example, a temperature range of 5 to 35 ° C., and then steam-cured. Steam curing is performed at a temperature rising rate of 15 to 22 ° C./h, a maximum temperature of 60 to 100 ° C., preferably 70 to 90 ° C., held at the maximum temperature for 3 to 6 hours, and then cooled for 8 to 12 hours. To do. After cooling, the mold is removed, and curing is performed in the air for one week or longer.

[使用材料]
[1]普通ポルトランドセメント(NC):
普通ポルトランドセメントは、水硬率(H.M.)が2.11〜2.20、セメント中のSO量が1.76〜2.01質量%、粉末度(ブレーン比表面積)が3170〜3520cm/g、エアジェットシーブによる32μm篩残分が14.6〜21.6質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))によるRosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.19〜1.26のもので、CA含有割合(質量%)、CAF含有割合(質量%)、間隙相含有割合(質量%)及び半水石膏割合(質量%)がそれぞれ異なる、表1に示す11種類を使用した。
[Materials used]
[1] Normal Portland cement (NC):
Ordinary Portland cement has a hydraulic modulus (HM) of 2.11 to 2.20, an amount of SO 3 in the cement of 1.76 to 2.01% by mass, and a fineness (brain specific surface area) of 3170 to 3520 cm 2 / g, 32 μm sieve residue by air jet sieve is 14.6 to 21.6% by mass, Rosin- by laser diffraction type particle size distribution analyzer (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) N value (particle size distribution equal number, particle size target range 4 to 32 μm) in Rammler diagram is 1.19 to 1.26, C 3 A content ratio (mass%), C 4 AF content ratio (mass% ), 11 types shown in Table 1 having different interphase content (mass%) and hemihydrate gypsum ratio (mass%) were used.

普通ポルトランドセメントの鉱物組成及びSO量は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」及びJIS R 5204:2002「セメントの蛍光X線分析方法」により測定した。RO含有割合(質量%)は、NaO含有割合(質量%)とKO含有割合(質量%)から式(3)により算出した。
O含有割合(質量比)=NaO(質量比)+0.658KO(質量比)(3)


The mineral composition and SO 3 amount of ordinary Portland cement were measured by JIS R 5202: 1999 “Chemical analysis method of Portland cement” and JIS R 5204: 2002 “Fluorescence X-ray analysis method of cement”. The R 2 O content ratio (mass%) was calculated by the formula (3) from the Na 2 O content ratio (mass%) and the K 2 O content ratio (mass%).
R 2 O content ratio (mass ratio) = Na 2 O (mass ratio) +0.658 K 2 O (mass ratio) (3)


Figure 0005145842
Figure 0005145842

[2]早強ポルトランドセメント(HC):
早強ポルトランドセメントは、水硬率(H.M.)が2.23〜2.28、セメント中のSO量が2.80〜3.11質量%、粉末度(ブレーン比表面積)が4450〜4640cm/g、エアジェットシーブによる32μm篩残分が5.1〜7.7質量%、レーザー回折式粒度分布測定装置(セイシン企業製、LMS−30(レーザー・マイクロ・サイザー))によるRosin−Rammler線図におけるn値(粒度分布均等数、粒径対象範囲4〜32μm)が1.16〜1.35のもので、半水石膏割合(質量%)がそれぞれ異なる、表2に示す5種類を使用した。
[2] Early strong Portland cement (HC):
The early strength Portland cement has a hydraulic modulus (HM) of 2.23 to 2.28, an amount of SO 3 in the cement of 2.80 to 3.11% by mass, and a fineness (Brain specific surface area) of 4450. ˜4640 cm 2 / g, 32 μm sieve residue by air jet sieve is 5.1 to 7.7% by mass, Rosin by laser diffraction type particle size distribution measuring device (manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)) -As shown in Table 2, the n value (particle size distribution equal number, particle size target range 4 to 32 μm) in the Rammel diagram is 1.16 to 1.35, and the ratio of hemihydrate gypsum (% by mass) is different. Used the type.

Figure 0005145842
Figure 0005145842

なお、半水石膏割合は、以下の方法より求めた。
まず、半水石膏量及び二水石膏量を、示差熱重量分析(TG−DTA)によって定量した。具体的には、示差熱熱重量分析装置TG−DTA6200(セイコーインスツルメンツ(株)製)を用いて、直径20μmの孔を有する容量30μLのセル(アルミ製)に、試料を約30mg入れ、昇温速度5℃/minで室温から300℃まで昇温した。図2に示すように、まず、重量減少曲線(図2のTG)を微分した曲線(図2のDTG)から、DTGピークAの立ち上がり温度(約125℃)、半水石膏の脱水に伴うDTGピークBの立ち上がり温度(約155℃)、ピークBの終局点(約195℃)を求めた。次に、二水石膏の脱水に伴う125〜155℃附近の減量(a質量%)と、半水石膏の脱水に伴う155〜195℃附近の減量(b質量%)を求め、式(4)及び式(5)を用いて、セメントの石膏中の二水石膏量(質量%)及び半水石膏量(質量%)を算出した。これらより、半水石膏の割合(質量%)は式(6)を用いて算出した。なお、リファレンスとして、アルミ板を用いた。
In addition, the hemihydrate gypsum ratio was calculated | required with the following method.
First, the amount of hemihydrate gypsum and the amount of dihydrate gypsum were quantified by differential thermogravimetric analysis (TG-DTA). Specifically, using a differential thermothermal gravimetric analyzer TG-DTA6200 (manufactured by Seiko Instruments Inc.), about 30 mg of the sample is put into a cell (made of aluminum) having a hole of 20 μm in diameter and having a capacity of 30 μL. The temperature was raised from room temperature to 300 ° C. at a rate of 5 ° C./min. As shown in FIG. 2, first, from the curve (DTG in FIG. 2) obtained by differentiating the weight loss curve (TG in FIG. 2), the DTG peak A rising temperature (about 125 ° C.), DTG accompanying dehydration of hemihydrate gypsum The rise temperature of peak B (about 155 ° C.) and the end point of peak B (about 195 ° C.) were determined. Next, the weight loss around 125 to 155 ° C. accompanying dehydration of dihydrate gypsum (a mass%) and the weight loss around 155 to 195 ° C. due to dehydration of hemihydrate gypsum (b mass%) are obtained, and the formula (4) And the amount of dihydrate gypsum (mass%) and the amount of hemihydrate gypsum (mass%) in the gypsum of cement were computed using Formula (5). From these, the ratio (mass%) of the hemihydrate gypsum was computed using Formula (6). An aluminum plate was used as a reference.

二水石膏量(質量%)=減量a(質量%)×172(二水石膏の分子量)÷(1.5×18(HOの分子量)) (4)半水石膏量(質量%)=(減量b(質量%)−減量a(質量%)÷3)×145(半水石膏の分子量)÷(0.5×18(HOの分子量)) (5)半水石膏割合(質量%)=半水石膏量÷(半水石膏量+二水石膏量)×100 (6) Dihydrate gypsum amount (mass%) = weight loss a (mass%) × 172 (molecular weight of dihydrate gypsum) ÷ (1.5 × 18 (molecular weight of H 2 O)) (4) hemihydrate gypsum amount (mass%) = (Weight loss b (mass%)-weight loss a (mass%) ÷ 3) x 145 (molecular weight of hemihydrate gypsum) ÷ (0.5 x 18 (molecular weight of H 2 O)) (5) hemihydrate gypsum ratio ( (Mass%) = hemihydrate gypsum amount ÷ (half water gypsum amount + dihydrate gypsum amount) x 100 (6)

[3]高強度混和材(A):
調製品:II型無水石膏粉末(フッ酸無水石膏)とシリカフューム(エルケム社製)との配合割合(石膏/シリカフューム質量比)を、10/90、20/80、30/70、65/35、80/20、90/10に変え、試験ボールミル(Φ30×30cm)によりブレーン比表面積が5500〜11000cm/gになるように混合粉砕した。また、無水石膏/シリカフュームの質量比が20/80については、混合粉砕することなく、無水石膏粉末とシリカフュームとをV型混合機で単に混合したものも使用した。
[3] High strength admixture (A):
Preparation: Type II anhydrous gypsum powder (hydrofluoric acid anhydrous gypsum) and silica fume (manufactured by Elchem Co.) were mixed at a ratio of gypsum / silica fume mass ratio of 10/90, 20/80, 30/70, 65/35, It changed to 80/20 and 90/10, and mixed and ground by a test ball mill (Φ30 × 30 cm) so that the Blaine specific surface area was 5500 to 11000 cm 2 / g. Further, when the mass ratio of anhydrous gypsum / silica fume was 20/80, a mixture obtained by simply mixing anhydrous gypsum powder and silica fume with a V-type mixer was used without mixing and grinding.

また、市販品として、デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製)、ダイミックス(無水石膏/非晶質シリカ質量比:60/40、昭和鉱業(株)製)、スーパーノンクレーブ(無水石膏/非晶質シリカ質量比:50/50、住友大阪セメント(株)製)、ノンクレーブ(無水石膏/非晶質シリカ質量比:98/1、住友大阪セメント(株)製)を使用した。なお、記載した無水石膏/非晶質シリカ質量比は、JIS M8852:1998「セラミック用高シリカ質原料の化学分析方法」に準じて、SO及びSiOを定量し、SO量をCaSO(無水石膏)に換算、またSiO量は全て非晶質シリカ量とみなした。 As commercial products, Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo Co., Ltd.), Dymix (anhydrous gypsum / amorphous silica mass ratio: 60/40, Showa Mining Co., Ltd.), super nonclave (anhydrous gypsum / amorphous silica mass ratio: 50/50, manufactured by Sumitomo Osaka Cement Co., Ltd.), nonclave (anhydrous gypsum / amorphous silica mass ratio: 98/1, Sumitomo Osaka Cement Co., Ltd.) was used. The mass ratio of anhydrous gypsum / amorphous silica described was determined according to JIS M8852: 1998 “Chemical analysis method of high siliceous raw material for ceramics”, and SO 3 and SiO 2 were quantified, and the amount of SO 3 was CaSO 4 In terms of (anhydrous gypsum), the amount of SiO 2 was regarded as the amount of amorphous silica.

[4]分散剤:
市販品のナフタレン系の高性能減水剤マイティHS(花王(株)製)を使用した。
[4] Dispersant:
A commercially available naphthalene-based high-performance water reducing agent Mighty HS (manufactured by Kao Corporation) was used.

[5]骨材
粗骨材は、硬質砂岩砕石(JIS A 5005:1993「コンクリート用砕石及び砕砂」による粒の大きさによる区分が砕石1505、JIS A 1110:1999「粗骨材の密度及び吸水率試験方法」による密度が2.68g/cm及び吸水率が0.68%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が6.22)を使用した。
[5] Aggregate Coarse aggregate is classified into hard sandstone crushed stone (JIS A 5005: 1993 “crushed stone for concrete and crushed sand” is classified according to grain size 1505, JIS A 1110: 1999 “rough aggregate density and water absorption The density according to “rate test method” was 2.68 g / cm 3, the water absorption was 0.68%, and the coarse particle rate according to JIS A 1102: 1999 “aggregate screening test method” was used.

また、細骨材としては砕砂(JIS A 1109:1999「細骨材の密度及び吸水率試験方法」による密度が2.60g/cm及び吸水率が1.08%、JIS A 1102:1999「骨材のふるい分け試験方法」による粗粒率が2.98)を使用した。 The fine aggregate is crushed sand (JIS A 1109: 1999 “Density and water absorption test method of fine aggregate” has a density of 2.60 g / cm 3 and a water absorption of 1.08%, JIS A 1102: 1999 “ The coarse particle ratio according to “Aggregate screening test method” was 2.98).

〔コンクリートの練混ぜ〕
セメント、混和材、細骨材及び粗骨材を二軸強制練りミキサ(容量:50リットル)に投入し、30秒間攪拌した後、練混ぜ水及び混和剤を投入し、4分間練混ぜ、コンクリートを作製した。このうち、単位水量には練混ぜ水量(水道水)に分散剤(水溶液タイプ)に由来する水量が加算されている。
[Mixing concrete]
Cement, admixture, fine aggregate and coarse aggregate are put into a biaxial forced kneading mixer (capacity: 50 liters), stirred for 30 seconds, then mixed with water and admixture, mixed for 4 minutes, concrete Was made. Of these, the amount of water derived from the dispersant (aqueous solution type) is added to the amount of mixing water (tap water).

〔供試体の作製〕
強度試験用円柱供試体は内径Φ10×長さ20cmの型枠にコンクリートを充填し、テーブルバイブレータにより振動締固めを行った。一方、遠心力成形体(外径Φ20×長さ30×厚さ4cm)はその型枠に所定量のコンクリートを投入し、2G−3min、10G−1min、20G−1min及び30G−5minの条件下で遠心力成形を行った。
成形状況は供試体断面における締固め性状、空洞部(円筒)内面の平滑性(例:波打ちの有無)及びスラッジ発生状況等で判断し、一部の遠心力成形供試体については圧縮強度の試験に供した。
[Preparation of specimen]
The strength test column specimen was filled with concrete in a mold having an inner diameter of Φ10 × length of 20 cm, and subjected to vibration compaction by a table vibrator. On the other hand, the centrifugal force molded body (outer diameter Φ20 × length 30 × thickness 4 cm) is charged with a predetermined amount of concrete into the mold, and the conditions are 2G-3min, 10G-1min, 20G-1min and 30G-5min. Was subjected to centrifugal force molding.
The molding condition is judged by the compaction properties in the cross section of the specimen, the smoothness of the inner surface of the cavity (cylindrical) (eg, the presence or absence of undulations), the sludge generation situation, etc., and the compressive strength test of some centrifugally molded specimens It was used for.

〔前養生及び蒸気養生〕
強度試験用円柱供試体及び遠心力成形供試体は、20℃で4時間前養生を行い、20℃/hの昇温速度(3時間)で80℃まで加熱し、80℃で3時間保持したのち、降温速度10℃/h(6時間)で冷却した。
[Pre-curing and steam curing]
The cylindrical specimen for strength test and the centrifugal molded specimen were pre-cured at 20 ° C. for 4 hours, heated to 80 ° C. at a heating rate of 20 ° C./h (3 hours), and held at 80 ° C. for 3 hours. After that, it was cooled at a temperature drop rate of 10 ° C./h (6 hours).

〔圧縮強度試験〕
脱型直後及び引き続き7日間気中養生後の強度試験用円柱供試体はJIS A 1108:1999「コンクリートの圧縮強度試験方法」、遠心力成形供試体はJIS A 1136:1993「遠心力締固めコンクリートの圧縮試験方法」に準じ、圧縮強度試験を行った。
[Compressive strength test]
JIS A 1108: 1999 “Compression strength test method for concrete” is used for the strength test column specimens immediately after demolding and subsequently for 7 days in the air. Centrifugal molding specimens are JIS A 1136: 1993 “centrifugal compacted concrete. The compressive strength test was performed according to the “compression test method”.

なお、特記しない限り、下記条件を基準条件とした。なお、実施例及び比較例のコンクリート組成物単位量(kg/m)を表3に示す。
































Unless otherwise specified, the following conditions were used as reference conditions. In addition, Table 3 shows concrete composition unit amounts (kg / m 3 ) of Examples and Comparative Examples.
































Figure 0005145842
Figure 0005145842

[1]普通ポルトランドセメント(3):密度3.16g/cm、ブレーン比表面積3340cm/g、CA含有割合10質量%、CAF含有割合9質量%、間隙相含有割合19質量%、半水石膏割合67質量%
[2]早強ポルトランドセメント(3):密度3.14g/cm、ブレーン比表面積4580cm/g、半水石膏割合51質量%
[3]高強度混和材(A):デンカΣ2000(無水石膏/非晶質シリカ質量比:20/80、電気化学工業(株)製、ブレーン比表面積4900cm/g)
[4]分散剤:マイティHS(花王(株)製、固形分量35質量%)
[5]骨材:粗骨材の最大寸法(GMAX)15mm、細骨材率(s/a)35質量%
[6]配合(単位量):単位水量125kg/m、普通ポルトランドセメント300kg/m、早強ポルトランドセメント300kg/m、高強度混和材72kg/m
[1] Ordinary Portland cement (3): density 3.16 g / cm 3 , Blaine specific surface area 3340 cm 2 / g, C 3 A content 10 mass%, C 4 AF content 9 mass%, pore phase content 19 mass %, Hemihydrate gypsum ratio 67% by mass
[2] Early strength Portland cement (3): density 3.14 g / cm 3 , Blaine specific surface area 4580 cm 2 / g, hemihydrate gypsum ratio 51% by mass
[3] High-strength admixture (A): Denka Σ2000 (anhydrous gypsum / amorphous silica mass ratio: 20/80, manufactured by Denki Kagaku Kogyo Co., Ltd., Blaine specific surface area 4900 cm 2 / g)
[4] Dispersant: Mighty HS (manufactured by Kao Corporation, solid content 35% by mass)
[5] Aggregate: Maximum size of coarse aggregate (G MAX ) 15 mm, fine aggregate rate (s / a) 35% by mass
[6] Formulation (unit amount): unit water amount 125 kg / m 3 , ordinary Portland cement 300 kg / m 3 , early strength Portland cement 300 kg / m 3 , high-strength admixture 72 kg / m 3

[実施例1〜5、比較例1〜4]
普通ポルトランドセメント、早強ポルトランドセメントおよび市販の高強度混和材を使用し、その単位量と、ポルトランドセメント総量中の早強ポルトランドセメントの割合を変えた場合の振動締固め成形品の圧縮強度,遠心成形供試体の圧縮強度および遠心成形性を表4に示す。なお、この場合、高強度混和材の添加割合も変えて試験し、所要水/結合材比(W/(C+A))との関係も評価した。
[Examples 1 to 5, Comparative Examples 1 to 4]
Compressive strength and centrifugal force of vibration compacted molded products when normal Portland cement, early strength Portland cement and commercially available high-strength admixture are used, and the unit amount and the proportion of early strength Portland cement in the total amount of Portland cement are changed. Table 4 shows the compression strength and centrifugal moldability of the molded specimen. In this case, the addition ratio of the high-strength admixture was also changed, and the relationship with the required water / binding material ratio (W / (C + A)) was also evaluated.

比較例1(ポルトランドセメント総量の単位量500kg/m)は振動締固め成形品の強度発現性が低かった。また、比較例4(ポルトランドセメント総量の単位量700kg/m)では振動締固め成形品の強度発現性は良いものの、遠心成形性は良くなかった。
比較例2(早強ポルトランドセメントの割合は27質量%)は遠心成形体の強度が130N/mmに達しなかった。また、比較例3(早強ポルトランドセメントの割合は85質量%)では振動締固め成形品の強度発現性は良いものの、遠心成形体の圧縮強度が130N/mmに達しなく、また遠心成形性も良くなかった。
また、単位セメント量と水/結合材比(W/(C+A))との関係において、高強度混和材の添加割合(A/C)を増加させることにより水/結合材比(W/(C+A))は低減できる(実施例2〜4)。
実施例5(単位水量125kg/m、ポルトランドセメント総量の単位量650kg/m,水/結合材比17.5%)は、分散剤が標準添加量の上限値ではあるものの,振動締固め成形品の強度発現性も良好であり,遠心成形供試体の成形も可能である。
In Comparative Example 1 (unit amount 500 kg / m 3 of the total amount of Portland cement), the strength expression of the vibration compacted molded product was low. Moreover, in Comparative Example 4 (unit amount 700 kg / m 3 of the total amount of Portland cement), although the strength development of the vibration compacted molded article was good, the centrifugal moldability was not good.
In Comparative Example 2 (the ratio of early strong Portland cement was 27% by mass), the strength of the centrifugal molded body did not reach 130 N / mm 2 . In Comparative Example 3 (the ratio of early strong Portland cement is 85% by mass), the strength of the vibration compacted molded product is good, but the compressive strength of the centrifugal molded body does not reach 130 N / mm 2 , and the centrifugal moldability is good. Was not good either.
Further, in the relationship between the unit cement amount and the water / binder ratio (W / (C + A)), the water / binder ratio (W / (C + A) is increased by increasing the addition ratio (A / C) of the high-strength admixture. )) Can be reduced (Examples 2 to 4).
Example 5 (unit amount of water 125 kg / m 3 , unit amount of Portland cement total amount 650 kg / m 3 , water / binder ratio 17.5%), although the dispersant is the upper limit of the standard addition amount, vibration compaction The strength of the molded product is good, and it is possible to mold a centrifugal molded specimen.

Figure 0005145842
Figure 0005145842

[実施例6〜8、比較例5、6]
普通ポルトランドセメントおよび早強ポルトランドセメントの石膏中の半水化割合の異なるセメントを使用した場合の供試体の圧縮強度及び遠心成形性を表5に示す。
比較例5(普通ポルトランドセメントの半水石膏割合が5質量%)では振動締固め成形及び遠心力成形品ともに強度発現性が低く、比較例6(普通ポルトランドセメントの半水石膏割合が98質量%以上)になると締固め性状及び圧縮強度ともに低下した。
[Examples 6 to 8, Comparative Examples 5 and 6]
Table 5 shows the compressive strength and centrifugal moldability of the specimens when cements having different half-water ratios in gypsum of normal Portland cement and early-strength Portland cement are used.
Comparative Example 5 (ordinary Portland cement hemihydrate gypsum ratio is 5% by mass) has low strength development in both vibration compaction molding and centrifugal force molded product, and Comparative Example 6 (ordinary Portland cement hemihydrate gypsum ratio is 98% by mass). As described above, both compaction properties and compressive strength decreased.

Figure 0005145842
Figure 0005145842

[実施例9〜12、比較例7、8]
普通ポルトランドセメント中の間隙相量の異なるセメントを使用した場合の供試体の圧縮強度及び遠心成形性を表6に示す。比較例7(間隙相含有割合24質量%)では振動締固め成形品は強度発現性に優れるものの、遠心力成形品の成形性が悪く、強度も130N/mmに達しなかった。比較例8(間隙相含有割合16質量%)になると振動締固め成形品及び遠心成形品ともに圧縮強度が低下した。
[Examples 9 to 12, Comparative Examples 7 and 8]
Table 6 shows the compressive strength and centrifugal moldability of the specimens when cements having different interstitial phase amounts in ordinary Portland cement are used. In Comparative Example 7 (gap phase content ratio 24 mass%), the vibration compacted molded product was excellent in strength development, but the centrifugal molded product was poor in moldability and the strength did not reach 130 N / mm 2 . In Comparative Example 8 (gap phase content ratio 16% by mass), the compressive strength decreased in both the vibration compacted molded product and the centrifugal molded product.

Figure 0005145842
Figure 0005145842

[実施例13〜17、比較例9、10]
高強度混和材のII型無水石膏(AH)とシリカフューム(SF)との割合を変えて、混合粉砕した場合についての振動成形品の圧縮強度を表7に示す。なお、実施例17は、II型無水石膏粉末(3840cm/g)とシリカフューム(BET比表面積:16m/g)をV型混合器で混合したものであり、混合粉砕していない場合である。
[Examples 13 to 17, Comparative Examples 9 and 10]
Table 7 shows the compression strength of the vibration molded product when the ratio of the high-strength admixture type II anhydrous gypsum (AH) and silica fume (SF) was changed and mixed and pulverized. In Example 17, type II anhydrous gypsum powder (3840 cm 2 / g) and silica fume (BET specific surface area: 16 m 2 / g) were mixed with a V-type mixer and were not mixed and pulverized. .

無水石膏とシリカフュームとの質量比が10/90或は90/10の比較例10、比較例11は圧縮強度が低く、高強度混和材の無水石膏とシリカフュームとの質量比の適正領域は15/85〜85/15であることが判る。また、この質量比は、20/80〜65/35の範囲のものが、圧縮強度をより高くすることができた。また、実施例17は、無水石膏とシリカフュームとの質量比が20/80であっても、混合粉砕したものではないため、混合粉砕した実施例13よりも、圧縮強度が若干低い。   Comparative Example 10 and Comparative Example 11 in which the mass ratio of anhydrous gypsum to silica fume is 10/90 or 90/10 have a low compressive strength, and the appropriate range of the mass ratio of anhydrous gypsum and silica fume of high strength admixture is 15 / It turns out that it is 85-85 / 15. In addition, this mass ratio in the range of 20/80 to 65/35 was able to increase the compressive strength. Moreover, even if the mass ratio of anhydrous gypsum and silica fume is 20/80 in Example 17, since it is not mixed and pulverized, the compressive strength is slightly lower than that of Example 13 that was mixed and pulverized.

Figure 0005145842
Figure 0005145842

[実施例18〜20、比較例11]
市販の高強度混和材を使用した場合の振動成形供試体の圧縮強度を表8に示す。高強度混和材銘柄としてはデンカΣ2000、スーパーノンクレーブ及びダイミックス(実施例18〜20)が好ましく、換言すれば無水石膏/非晶質シリカの質量比が大き過ぎるノンクレーブ(比較例11)は好ましくなかった。
[Examples 18 to 20, Comparative Example 11]
Table 8 shows the compressive strength of the vibration molded specimen when a commercially available high-strength admixture is used. Denka Σ2000, super nonclave and die mix (Examples 18 to 20) are preferable as the high-strength admixture brand, in other words, nonclave (Comparative Example 11) in which the mass ratio of anhydrous gypsum / amorphous silica is too large is preferable. There wasn't.

Figure 0005145842
Figure 0005145842

代表的な分散剤の赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of a typical dispersing agent. 半水石膏量及び二水石膏量の示差熱重量分析結果を示す図である。It is a figure which shows the differential thermogravimetric analysis result of the amount of hemihydrate gypsum and the amount of dihydrate gypsum.

Claims (2)

普通ポルトランドセメント、早強ポルトランドセメント、高強度混和材、分散剤、骨材及び水を含む高強度遠心力成形用コンクリート組成物であって、
普通ポルトランドセメントの石膏中の半水石膏割合が10〜95質量%、間隙相含有割合が18〜22質量%及びC A含有割合が7〜14質量%であり
早強ポルトランドセメントの石膏中の半水石膏割合が10〜90質量%であり、
ポルトランドセメント総量中の早強ポルトランドセメントの割合が28〜80質量%、ポルトランドセメント総量の単位量が510〜690kg/mであり、
高強度混和材は無水石膏とシリカフュームとを含み、無水石膏/シリカフュームの質量比が15/85〜85/15であり、かつ、無水石膏とシリカフュームとを混合粉砕したものであり、ポルトランドセメント総量100質量部に対して高強度混和材を6〜25質量部含み、
分散剤がナフタレン系分散剤であり、ポルトランドセメント総量100質量部に対して水溶液基準で1.0〜5.5質量部含有し
水/(ポルトランドセメント総量+高強度混和材)質量比が17〜22%であることを特徴とする高強度遠心力成形用コンクリート組成物。
A high-strength centrifugal molding concrete composition comprising ordinary Portland cement, early-strength Portland cement, high-strength admixture, dispersant, aggregate and water,
The proportion of hemihydrate gypsum in gypsum of ordinary Portland cement is 10 to 95% by mass, the content ratio of the interstitial phase is 18 to 22% by mass, and the content ratio of C 3 A is 7 to 14% by mass ,
The proportion of hemihydrate gypsum in gypsum of early strong Portland cement is 10 to 90% by mass,
The proportion of early strong Portland cement in the total amount of Portland cement is 28 to 80% by mass, the unit amount of the total amount of Portland cement is 510 to 690 kg / m 3 ,
The high-strength admixture contains anhydrous gypsum and silica fume, the mass ratio of anhydrous gypsum / silica fume is 15/85 to 85/15, and is obtained by mixing and crushing anhydrous gypsum and silica fume. 6 to 25 parts by mass of high-strength admixture with respect to parts by mass,
The dispersant is a naphthalene-based dispersant, containing 1.0 to 5.5 parts by mass on an aqueous solution basis with respect to 100 parts by mass of the total amount of Portland cement ,
A high-strength centrifugal molding concrete composition characterized by having a water / (portland cement total amount + high-strength admixture) mass ratio of 17 to 22%.
請求項1記載の高強度遠心力成形用コンクリート組成物を練混ぜ、鉄筋を配した円筒形型枠に充填したのち遠心力成形し、前養生、続いて蒸気養生したのち脱型し、その後気中で養生する高強度遠心力成形用コンクリート組成物の製造方法。 The concrete composition for forming high-strength centrifugal force according to claim 1 is kneaded, filled into a cylindrical formwork with reinforcing bars, formed by centrifugal force, precured, then steam-cured and then demolded, then The manufacturing method of the concrete composition for high intensity | strength centrifugal force shaping | molding cured inside.
JP2007244681A 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same Active JP5145842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244681A JP5145842B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244681A JP5145842B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009073700A JP2009073700A (en) 2009-04-09
JP5145842B2 true JP5145842B2 (en) 2013-02-20

Family

ID=40609066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244681A Active JP5145842B2 (en) 2007-09-21 2007-09-21 High strength centrifugal molding concrete composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5145842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578468B2 (en) * 2010-05-26 2014-08-27 日本ヒューム株式会社 Centrifugal reinforced concrete propulsion pipe for internal pressure used in propulsion method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128616A (en) * 1998-10-16 2000-05-09 Sumitomo Osaka Cement Co Ltd Production of cement composition
JP2001064047A (en) * 1999-08-30 2001-03-13 Taiheiyo Cement Corp Cement
JP4514074B2 (en) * 2000-06-16 2010-07-28 電気化学工業株式会社 Cement admixture, cement composition, and high flow cement concrete
JP2005289657A (en) * 2004-03-31 2005-10-20 Denki Kagaku Kogyo Kk Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby
JP2005324985A (en) * 2004-05-13 2005-11-24 Mitsubishi Materials Corp Sulfuric acid-resistant cement composition and its hardened body
JP5089873B2 (en) * 2005-09-05 2012-12-05 電気化学工業株式会社 Method for producing fine particle silica slurry for cement composition and fine particle silica slurry for cement composition
JP4593412B2 (en) * 2005-09-14 2010-12-08 電気化学工業株式会社 Centrifugal concrete product and manufacturing method thereof
JP4775058B2 (en) * 2006-03-24 2011-09-21 宇部興産株式会社 Centrifugal force forming concrete composition and method for producing the same
JP5061664B2 (en) * 2007-03-12 2012-10-31 宇部興産株式会社 High strength centrifugal molding concrete composition and method for producing the same
JP5488776B2 (en) * 2007-09-21 2014-05-14 宇部興産株式会社 High strength centrifugal molding concrete composition and method for producing the same

Also Published As

Publication number Publication date
JP2009073700A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
JP2008254963A (en) Admixture for cement/concrete and low shrinkage high strength concrete, and high strength cement composition
JP5493259B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP5488776B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP4775058B2 (en) Centrifugal force forming concrete composition and method for producing the same
JP2004203733A (en) Method of producing mortar/concrete, and cement used for producing mortar/concrete
JP4797973B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP5440905B2 (en) Ultra-early strong cement composition and manufacturing method thereof
Lima et al. Evaluation of the effect of nanosilica and recycled fine aggregate in Portland cement rendering mortars
JP5061664B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP5145842B2 (en) High strength centrifugal molding concrete composition and method for producing the same
JP2010100505A (en) High-strength concrete composition for centrifugal molding and method for producing high-strength centrifugal-molded concrete
JP4889549B2 (en) Centrifugal concrete products
JPH06199549A (en) Cement composition for high strength concrete
JP5284820B2 (en) Cement admixture and cement binder
JPH01242445A (en) Hydraulic cement composition
JP2008195588A (en) Spun concrete product
Mutuk et al. High performance cement composites with nano-SiO2 and nano-Al2O3 powders
JP5919940B2 (en) High water retention block and method for producing high water retention block
dos Santos Limaa et al. Evaluation of the effect of nanosilica and recycled fine aggregate in Portland cement rendering mortars
JP5582901B2 (en) Method for producing finely divided cement and method for producing cement composition
JP5206626B2 (en) Immediate demolding concrete product and manufacturing method thereof
KR20170105975A (en) Admixture for High Strength Concrete, and Concrete Containing the Same
JP2008007351A (en) Hydraulic composition for centrifugally molded hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5145842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250