JP4761140B2 - 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ - Google Patents
高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ Download PDFInfo
- Publication number
- JP4761140B2 JP4761140B2 JP2006072543A JP2006072543A JP4761140B2 JP 4761140 B2 JP4761140 B2 JP 4761140B2 JP 2006072543 A JP2006072543 A JP 2006072543A JP 2006072543 A JP2006072543 A JP 2006072543A JP 4761140 B2 JP4761140 B2 JP 4761140B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- constituent
- cutting
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
(1)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム(以下、Al2O3で示す)層、
以上(1)および(2)で構成された硬質被覆層を形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
さらに、上記の被覆切削チップの硬質被覆層の上部層を構成するAl2O3層の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
(a−1)従来被覆切削チップの硬質被覆層において、下部層を構成するTi化合物層のうちのTiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl4:2〜10%、CH3CN:0.6〜5%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、
反応ガス組成:容量%で、TiCl4:2〜10%、CrCl3:0.01〜0.5%、CH3CN:1〜4%、N2:20〜40%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件における反応ガスにCrCl3ガスをきわめて少量加えた条件で蒸着形成して、
組成式:(Ti1−ACrA)C1−BNB(ただし、原子比で、A:0.005〜0.05、B:0.45〜0.55)、
を満足する複合炭窒化物層を形成すると、この結果の複合炭窒化物層(以下、「改質(Ti,Cr)CN層」という)も、上記の図2に示されるTiCN層と同様の結晶構造、すなわち図1(a)に模式図で示される通り、格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有すること。
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図3(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点に、前記従来TiCN層ではTi、炭素(C)、および窒素(N)、前記改質(Ti,Cr)CN層ではTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、前記改質(Ti,Cr)CN層および従来TiCN層のいずれにも、Σ3に最高ピークが存在するが、前記従来TiCN層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Ti,Cr)CN層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、前記改質(Ti,Cr)CN層におけるCrの含有割合を調整することにより変化すること。
(b−2−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW 、
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(b−2−2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
N2:4〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−2−3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、すなわち、
組成式:TiOX 、
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(b−2−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記下側研磨材層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
上記(b−1)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射すると、前記窒酸化チタン層および酸化チタン層は、前記Al2O3微粒によって粉砕微粒化し、窒酸化チタン微粒および酸化チタン微粒となって前記Al2O3微粒の共存下で研磨材として作用し、図14に概略斜視図で例示される通り、硬質被覆層の上部層を構成するAl2O3層の表面を研磨することになり、この結果研磨後の前記Al2O3層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、前記Al2O3層の表面がRa:0.2μm以下の表面粗さに平滑化されると、耐チッピング性に顕著な向上効果が現れるようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(a)WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、化学蒸着形成された硬質被覆層を、
(a−1)TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上と、2.5〜15μmの平均層厚を有し、
組成式:(Ti1−ACrA)C1−BNB(ただし、原子比で、A:0.005〜0.05、B:0.45〜0.55)、を満足すると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Cr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Ti,Cr)CN層、
からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層の下部層と、
(a−2)1〜15μmの平均層厚を有するAl2O3層の上部層、
以上(a−1)および(a−2)で構成し、
(b)上記硬質被覆層の上部層であるAl2O3層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記Ti酸化物層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としてのAl2O3微粒の共存下で、上記硬質被覆層の上部層を構成するAl2O3層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下とし、
(c)さらに、上記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆切削チップに特徴を有するものである。
(a)硬質被覆層
(a−1)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、チップ基体と上部層であるAl2O3層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
硬質被覆層のTi化合物層を構成する改質(Ti,Cr)CN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り層中のCr含有割合(A値)をTiとの合量に占める原子比で、0.005〜0.5とすることによって60%以上とすることができるが、その含有割合が0.005未満でも、0.05を越えても、Σ3の分布割合は60%未満となってしまい、高硬度鋼の250m/min.以上の切削速度での高速切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。
また、改質(Ti,Cr)CN層におけるC成分には層の硬さを向上させ、一方N成分には強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合(B値)がC成分との合量に占める原子比で0.45未満では所望の強度を確保することができず、一方その含有割合(B値)が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、B値を原子比で0.45〜0.55と定めた。
さらに、上記改質(Ti,Cr)CN層は、上記の通りTiCN層自体のもつ高温強度に加えて、さらに少量含有するCr成分によって一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
Al2O3層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をTiに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合もAl2O3層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
研磨液のAl2O3微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と共存した状態で、Al2O3層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(b)ついで、上記硬質被覆層の上部層を構成するAl2O3層の全面に、研磨材層の下側層形成用酸化チタン層[TiOW(1)〜(6)のいずれか]を表4に示される条件で形成した後、上側層形成用窒化チタン層(TiN層)を同じく表4に示される条件で、表7に示される目標層厚で蒸着形成して、同じく表7に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表7に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図13参照)、
(c)引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表7に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記Al2O3層の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表7に示される表面粗さに研磨し(図14参照)、
(d)さらに、レーザービーム照射装置を用い、上記表面研磨の硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.8mmの円形、
硬質被覆層残留応力低減模様:図6〜12に示される実施模様のうちのいずれかを表7に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表7に硬質被覆層の全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削チップ1〜13をそれぞれ製造した。
(b)引き続いて、上記研磨材層の形成を行なうことなく、表5に示されるブラスト条件で、かつ表8に示される組み合わせでウエットブラストを施して、前記Al2O3層の切刃稜線部を含むすくい面および逃げ面を、同じく表8に示される表面粗さに研磨することにより従来被覆切削チップ1〜13をそれぞれ製造した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Ti,Cr)CN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
なお、図4は、本発明被覆切削チップ3の改質(Ti,Cr)CN層の構成原子共有格子点分布グラフ、図5は、従来被覆切削チップ5の従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
被削材:JIS・SKD11の焼入れ材(硬さHRC:54)丸棒、
切削速度:260m/min、
切り込み:0.7mm、
送り:0.13mm/rev、
の条件(切削条件Aという)での合金工具鋼の湿式連続高速切削試験(通常の切削速度は130m/min)、
被削材:JIS・SUJ2の焼入れ材(硬さHRC:55)丸棒、
切削速度:270m/min、
切り込み:0.5mm、
送り:0.11mm/rev、
の条件(切削条件Bという)での軸受け鋼の湿式連続高速切削試験(通常の切削速度は120m/min)、さらに、
被削材:JIS・SKD61の焼入れ材(硬さHRC:55)丸棒、
切削速度:255m/min、
切り込み:0.6mm、
送り:0.12
mm/rev、
の条件(切削条件Cという)での合金工具鋼の湿式連続高速切削試験(通常の切削速度は140m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表9に示した。
Claims (1)
- 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の切刃稜線部を含むすくい面および逃げ面の全面に、化学蒸着形成された硬質被覆層を、
(a−1)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上と、2.5〜15μmの平均層厚を有し、
組成式:(Ti1−ACrA)C1−BNB(ただし、原子比で、A:0.005〜0.05、B:0.45〜0.55)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質Ti系炭窒化物層、からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層の下部層と、
(a−2)1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層の上部層、
以上(a−1)および(a−2)で構成し、
(b)上記硬質被覆層の上部層である酸化アルミニウム層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する酸化アルミニウム層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下とし、
(c)さらに、上記酸化アルミニウム層研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072543A JP4761140B2 (ja) | 2006-03-16 | 2006-03-16 | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072543A JP4761140B2 (ja) | 2006-03-16 | 2006-03-16 | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007245292A JP2007245292A (ja) | 2007-09-27 |
JP4761140B2 true JP4761140B2 (ja) | 2011-08-31 |
Family
ID=38590110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006072543A Expired - Fee Related JP4761140B2 (ja) | 2006-03-16 | 2006-03-16 | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761140B2 (ja) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE509201C2 (sv) * | 1994-07-20 | 1998-12-14 | Sandvik Ab | Aluminiumoxidbelagt verktyg |
JP3724170B2 (ja) * | 1998-02-12 | 2005-12-07 | 住友電気工業株式会社 | 被覆超硬合金製切削工具 |
JP4019246B2 (ja) * | 2000-09-04 | 2007-12-12 | 三菱マテリアル株式会社 | 耐チッピング性のすぐれた表面被覆超硬合金製切削工具 |
JP3768136B2 (ja) * | 2001-10-04 | 2006-04-19 | 日立ツール株式会社 | 被覆工具 |
-
2006
- 2006-03-16 JP JP2006072543A patent/JP4761140B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007245292A (ja) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518258B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4716251B2 (ja) | 高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2006015426A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4716252B2 (ja) | 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2006231433A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4518259B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4863053B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具の製造方法 | |
JP4984513B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具の製造方法 | |
JP4716250B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4761138B2 (ja) | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP4844873B2 (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削スローアウエイチップの製造方法 | |
JP2008080476A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP2006341320A (ja) | 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4849376B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具の製造方法 | |
JP4761140B2 (ja) | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP4756471B2 (ja) | 高硬度鋼の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP5257184B2 (ja) | 表面被覆切削工具 | |
JP4844872B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの製造方法 | |
JP5088477B2 (ja) | 表面被覆切削工具 | |
JP4753076B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP4730656B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4756469B2 (ja) | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP4761141B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ | |
JP4730651B2 (ja) | 耐熱合金の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4483510B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110525 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |