JP4751115B2 - Double-side grinding apparatus and double-side grinding method for square substrate - Google Patents

Double-side grinding apparatus and double-side grinding method for square substrate Download PDF

Info

Publication number
JP4751115B2
JP4751115B2 JP2005208002A JP2005208002A JP4751115B2 JP 4751115 B2 JP4751115 B2 JP 4751115B2 JP 2005208002 A JP2005208002 A JP 2005208002A JP 2005208002 A JP2005208002 A JP 2005208002A JP 4751115 B2 JP4751115 B2 JP 4751115B2
Authority
JP
Japan
Prior art keywords
grinding
substrate
square
eccentric
carrier belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005208002A
Other languages
Japanese (ja)
Other versions
JP2007021662A (en
Inventor
一雄 小林
貢 橋本
Original Assignee
株式会社岡本工作機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岡本工作機械製作所 filed Critical 株式会社岡本工作機械製作所
Priority to JP2005208002A priority Critical patent/JP4751115B2/en
Publication of JP2007021662A publication Critical patent/JP2007021662A/en
Application granted granted Critical
Publication of JP4751115B2 publication Critical patent/JP4751115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、ガラス基板、石英基板、サファイア基板、GaAs基板、シリコン基板等の角形状基板の両面を同時に研削して基板を平坦化するとともにその厚みを減少させる両面研削装置および角形状基板の両面平坦化方法に関する。特に、この角形状基板の両面研削装置は、液晶がガラス板間に注入された液晶表示装置用ガラス板、あるいは、ガラス板内面に電極が設けられ、そのガラス板間に液晶が注入された表示装置用ガラス基板の両面を研削する際に使用される。   The present invention provides a double-sided grinding apparatus and a double-sided surface of a square substrate that simultaneously grinds both sides of a square substrate such as a glass substrate, a quartz substrate, a sapphire substrate, a GaAs substrate, and a silicon substrate to flatten the substrate and reduce its thickness. The present invention relates to a planarization method. In particular, this double-sided grinding apparatus for a rectangular substrate is a glass plate for a liquid crystal display device in which liquid crystal is injected between glass plates, or a display in which an electrode is provided on the inner surface of a glass plate and liquid crystal is injected between the glass plates. Used when grinding both sides of a glass substrate for equipment.

液晶がガラス板間に注入された液晶表示装置用ガラス板、あるいは、ガラス板内面に電極が設けられ、そのガラス板間に液晶が注入された表示装置用ガラス基板は知られており、液晶表示板に使用されている。(例えば、特許文献1、特許文献2および特許文献3参照。)。   A glass plate for a liquid crystal display device in which liquid crystal is injected between glass plates, or a glass substrate for a display device in which an electrode is provided on the inner surface of the glass plate and liquid crystal is injected between the glass plates is known. Used on the board. (For example, refer to Patent Document 1, Patent Document 2, and Patent Document 3.)

通常、この液晶表示板に使用される角形状ガラス板は、表面を研削、またはラップ加工して厚みが減少され、さらに、その研削面またはラップ面をエッチングまたは両面研磨加工して平坦化している(例えば、特許文献4、特許文献5、特許文献6、特許文献7および特許文献8参照。)。   Usually, the square glass plate used for this liquid crystal display panel is reduced in thickness by grinding or lapping the surface, and further, the ground surface or lapping surface is flattened by etching or double-side polishing. (For example, see Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8.)

液晶表示装置用ガラス板の用途が携帯電話や携帯液晶テレビ、携帯ゲ−ム機、携帯端末のような1〜6インチと比較的寸法の小さい液晶表示板の場合は厚み分布の振れ幅は小さかったので左程問題とならなかったが、携帯液晶パソコン、デスクトップパソコン、デジタルテレビの液晶表示板のように12インチ、14インチ、17インチと寸法が大きいとガラス板の厚みもより薄く、厚み分布の振れ幅も2〜50μmが要求される。   When the glass plate for the liquid crystal display device is a liquid crystal display plate having a relatively small size of 1 to 6 inches such as a mobile phone, a portable liquid crystal television, a portable game machine, and a portable terminal, the fluctuation width of the thickness distribution is small. However, it was not a problem as much as the left, but as the size of 12 inch, 14 inch, 17 inch is large like the liquid crystal display plate of portable liquid crystal personal computer, desktop personal computer, digital television, the thickness of the glass plate is thinner and the thickness distribution The swing width is required to be 2 to 50 μm.

それゆえ、約1mm厚の12〜17インチ液晶表示装置用ガラス板の積層板を得るために、約1.2mmの液晶表示装置用ガラス板(厚み0.6mmガラス板/5μmの液晶層/厚み0.6mmガラス板の積層体)の両面をそれぞれ0.1mm研削するには特許文献6に記載されるカップホイ−ル型砥石を用いる両面研削装置では中央部がヘこみ、四隅が肉厚の凹レンズ状の厚み分布の表示装置用ガラス基板となり、実用に耐えない。また、ガラス板間にサンドウィッチされた液晶に負荷される砥石圧が偏在するため、液晶筋が研削加工された液晶表示装置用ガラス板に残ることが往々にある。   Therefore, in order to obtain a laminated plate of a glass plate for a 12 to 17 inch liquid crystal display device having a thickness of about 1 mm, a glass plate for a liquid crystal display device of about 1.2 mm (thickness 0.6 mm glass plate / 5 μm liquid crystal layer / thickness). In order to grind both sides of a 0.6 mm glass plate laminate) by 0.1 mm, in a double-sided grinding apparatus using a cup wheel type grindstone described in Patent Document 6, a concave lens having a dent at the center and a thick corner It becomes a glass substrate for a display device having a thick thickness distribution, and cannot be practically used. In addition, since the grindstone pressure applied to the liquid crystal sandwiched between the glass plates is unevenly distributed, the liquid crystal streaks often remain on the ground glass plate for a liquid crystal display device.

特許文献4および特許文献5に記載される直線移動ステンレスキャリアベルトの中央部に設けられたポケット部に液晶表示装置用ガラス板を収納し、このキャリアベルトを左右方向に揺動走行させながら同一の軸心で回転する平砥石間を通過させて両面研削する方法は、液晶表示装置用ガラス板の中央部分にふくらみが残り、厚み分布の振れ幅も75〜100μmと規格外の製品となる。   A glass plate for a liquid crystal display device is housed in a pocket portion provided at the center of a linearly moving stainless steel carrier belt described in Patent Document 4 and Patent Document 5, and the same belt belt is swung in the left-right direction while moving the same. In the method of performing both-side grinding by passing between flat grindstones rotating at the axis, a bulge remains in the central portion of the glass plate for a liquid crystal display device, and the fluctuation width of the thickness distribution is 75 to 100 μm, which is a non-standard product.

さらに、特許文献7に記載される両面ラップ加工は、四隅の厚い表示装置用ガラス基板となるので、ラップ加工前に液晶表示装置用ガラス板のエッジ研削を行う必要がある。
特開2003−255291号公報 特開2004−21016号公報 特開2005−3845号公報 特開平11−123642号公報 特開2001−001241号公報 特開2004−098198号公報 特開2004−243469号公報 特開2000−273443号公報
Furthermore, since the double-sided lapping described in Patent Document 7 becomes a glass substrate for a display device having four thick corners, it is necessary to perform edge grinding of the glass plate for a liquid crystal display device before lapping.
JP 2003-255291 A Japanese Patent Laid-Open No. 2004-21016 JP 2005-3845 A JP-A-11-123642 JP 2001-001241 A JP 2004-098198 A JP 2004-243469 A JP 2000-273443 A

本発明は、直線移動キャリアベルトに角形状基板を保持し、この角形状基板を一対の回転砥石で両面研削する前記特許文献4と特許文献5に記載の両面研削装置の欠点を改良し、必ずしもエッジ処理の前加工を必要としない角形状基板の両面研削装置の提供を目的とする。また、本発明の他の目的は、厚みの振れ幅が50μm以下、厚みが約1.0〜1.26mmの12〜17インチの液晶表示装置用ガラス板を提供するものである。   The present invention improves the drawbacks of the double-sided grinding apparatus described in Patent Document 4 and Patent Document 5 described above, in which a square substrate is held on a linearly moving carrier belt, and this square substrate is ground on both sides with a pair of rotating grindstones. An object of the present invention is to provide a double-side grinding apparatus for a square substrate that does not require pre-processing of edge processing. Another object of the present invention is to provide a glass plate for a 12 to 17 inch liquid crystal display device having a thickness fluctuation width of 50 μm or less and a thickness of about 1.0 to 1.26 mm.

請求項1の発明は、
中央部に基板収納ポケット部が設けられた直線移動キャリアベルト、
該直線移動キャリアベルトの左右移動機構、
回転軸を砥石の中心軸より外した一対の偏心角形状研削平砥石であって、この一対の角形状研削平砥石の研削面を平行にして異なった軸心で回転するよう配置した一対の偏心角形状研削平砥石、
前記偏心角形状研削砥石の昇降機構および回転駆動機構、および
前記基板収納ポケット部に収納された基板と偏心角形状研削平砥石とが接する面に研削液を供給する研削液供給手段、
を備える角形状基板の両面研削装置を提供するものである。
The invention of claim 1
A linearly movable carrier belt provided with a substrate storage pocket in the center,
A lateral movement mechanism of the linearly movable carrier belt;
A pair of eccentric square grinding flat wheels with their rotational axes removed from the central axis of the grindstone, and a pair of eccentricity arranged such that the grinding surfaces of the pair of square grinding flat grinding wheels are parallel and rotate around different axes. Square grinding flat whetstone,
A lifting mechanism and a rotation drive mechanism of the eccentric angular grinding wheel, and a grinding fluid supply means for supplying a grinding fluid to a surface where the substrate accommodated in the substrate storage pocket and the eccentric angular grinding flat grindstone contact each other;
The double-sided grinding apparatus of a square-shaped board | substrate provided with this is provided.

請求項2の発明は、直線移動キャリアベルトに角形状ガラス基板を保持し、この基板を逆方向に回転する一対の偏心角形状研削平砥石の間を通過させて、前記ガラス基板の両面を同時に研削するガラス基板の研削方法において、前記一対の偏心角形状研削平砥石をその研削面を平行にして異なった軸心で回転するよう配置し、前記ガラス基板を前記偏心角形状研削平砥石の間に一定時間留まらせるとともに、前記ガラス基板の研削中に前記直線移動キャリアベルトを間歇的に左右に往復揺動させることにより前記ガラス基板の両面を研削することを特徴とする角形状ガラス基板の研削方法を提供するものである。   According to the second aspect of the present invention, a rectangular glass substrate is held on a linearly moving carrier belt, and the substrate is passed between a pair of eccentric angular grinding grindstones rotating in the opposite direction, so that both surfaces of the glass substrate are simultaneously formed. In the method for grinding a glass substrate to be ground, the pair of eccentric square-shaped grinding grindstones are arranged to rotate with different axes with the grinding surfaces parallel to each other, and the glass substrate is disposed between the eccentric square-shaped grinding grindstones. The glass substrate is ground for a certain period of time, and both sides of the glass substrate are ground by intermittently reciprocating left and right of the linearly moving carrier belt during grinding of the glass substrate. A method is provided.

基板を左右方向に揺動しながらお互いに逆方向に回転する偏心角形状研削平砥石で角形状基板の両表面を研削加工するので、研削された基板の四隅の厚みと他場所の厚みの差が50μm以下の厚み分布の良好な角形状基板が得られる。また、お互いの軸心が同心でなく、離間している軸心の偏心角形状研削平砥石の回転方向が逆方向であるので、研削加工中に角形状基板が直線移動キャリアベルトのポケット部より飛び出すことはない。   Since both surfaces of the square substrate are ground with eccentric square grinding flat grindstones that rotate in opposite directions while swinging the substrate in the left-right direction, the difference in thickness between the four corners of the ground substrate and the thickness at other locations Is a square substrate having a thickness distribution of 50 μm or less. In addition, since the axis of each other is not concentric and the rotation direction of the eccentric angular grinding flat grindstones of the spaced apart axes is opposite, the square substrate is removed from the pocket portion of the linearly moving carrier belt during grinding. Never jump out.

(実施例)
以下、図を用いて本発明をさらに詳細に説明する。
図1は両面平坦化装置を用いて角形状基板を平坦化するフロ−シ−ト図、図2は図1に示す基板両面研削装置の一部分を切り欠いた断面図、図3は基板を両面研削加工しているときの基板と偏心角形状研削平砥石の動きを示す平面図、および図4は図1に示す両面研磨装置の一部分を切り欠いた断面図である。
(Example)
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a flow chart for flattening a square substrate using a double-side flattening device, FIG. 2 is a sectional view of the substrate double-side grinding device shown in FIG. FIG. 4 is a cross-sectional view in which a part of the double-side polishing apparatus shown in FIG. 1 is cut away, and FIG. 4 is a plan view showing the movement of the substrate and the eccentric angular grinding flat grindstone during grinding.

図1において、角形状基板の両面平坦化装置100は、大別すると、基板のローディング機構200、アンローディング機構201、粗研削用の両面研削装置101と仕上研削用の両面研削装置102を備える基板の両面研削装置、基板の両面研磨装置103、洗浄機構300,301,302、基板の搬送機構400、研削液供給手段500、研磨剤供給機構510および、偏心角形状研削平砥石をドレッシング加工するダイヤモンドドレッサ600、研磨布をドレッシング加工するドレッサ601よりなる。   In FIG. 1, a double-sided flattening apparatus 100 for a square substrate is roughly divided into a substrate having a substrate loading mechanism 200, an unloading mechanism 201, a rough grinding double-side grinding device 101, and a finish grinding double-side grinding device 102. Double-side grinding apparatus, substrate double-side polishing apparatus 103, cleaning mechanisms 300, 301, 302, substrate transport mechanism 400, grinding fluid supply means 500, abrasive supply mechanism 510, and diamond for dressing an eccentric square-shaped grinding flat grindstone The dresser 600 includes a dresser 601 for dressing a polishing cloth.

図1、図2および図3において、角形状基板の両面平坦化装置100は、回転軸心が平砥石の中心点から10〜80mm外れた位置にある偏心角形状研削平砥石の軸心が同心とならぬよう20〜160mm離して角形状研削平砥石面が相対向するように設けた回転軸1a,2aで回転する一対の偏心角形状研削平砥石1,2を備える基板両面研削装置装置101,102と、これら偏心角形状研削平砥石1,2の間を被加工物である角形状(長方形状)の基板3を搬送するキャリアベルト4と、加工前の基板3をキャリアベルト4のポケット部4aに保持させるローディング機構200と、研削加工後の角形状基板3をキャリアベルト4から取り出すアンローディング機構201と、研削液供給手段500と、洗浄手段300,301,302を備えている。   1, 2, and 3, the double-sided flattening apparatus 100 for a square substrate has a concentric axis center for an eccentric angular grinding flat grindstone whose rotational axis is located 10 to 80 mm away from the center point of the flat grindstone. Substrate double-sided grinding apparatus 101 comprising a pair of eccentric square grinding flat grindstones 1 and 2 that are rotated by rotating shafts 1a and 2a so that the surfaces of the square grinding flat grindstones face each other 20 to 160 mm apart from each other. , 102 and a carrier belt 4 for transporting a substrate 3 having a square shape (rectangular shape), which is a workpiece, between these eccentric square grinding flat grindstones 1 and 2, and a substrate 3 before processing in a pocket of the carrier belt 4 A loading mechanism 200 to be held by the portion 4a, an unloading mechanism 201 for taking out the square substrate 3 after grinding from the carrier belt 4, a grinding fluid supply means 500, and cleaning means 300, 301, 30. It is equipped with a.

偏心角形状研削平砥石1,2は、その研削面1b,2bを互いに平行にしてキャリアベルト4の両面に直交して近接するように配置され、原動機M、プ−リ−12b、ギア−12a,12cなどを備えた回転駆動装置12により、所定の回転数、例えば10〜180cm−1で互いに反対方向に回転可能である。 The eccentric square grinding flat grindstones 1 and 2 are arranged so that their grinding surfaces 1b and 2b are parallel to each other and are close to each other perpendicular to both surfaces of the carrier belt 4, and the prime mover M 1 , pulley 12b, gear The rotary drive device 12 provided with 12a, 12c and the like can be rotated in opposite directions at a predetermined rotational speed, for example, 10 to 180 cm −1 .

また、偏心角形状研削平砥石1,2は、原動機M、スライダ−13a、ガイドレ−ルなどを備えた昇降装置13により、所定速度で上昇・下降でき、しかも所定の精度で研削代を設定できるよう構成されている。加工前の偏心角形状研削平砥石1,2の間隔(原位置)は、加工されるガラス基板3の厚みにより調整される。偏心角形状研削平砥石1,2の大きさは、被研削物である角形状基板に相似形で1.3〜2.0倍の寸法が好ましい。 The eccentric square grinding flat grindstones 1 and 2 can be raised and lowered at a predetermined speed by a lifting device 13 equipped with a prime mover M 2 , a slider 13 a, a guide rail, etc., and a grinding allowance is set with a predetermined accuracy. It is configured to be able to. The interval (original position) between the eccentric square-shaped grinding grindstones 1 and 2 before processing is adjusted by the thickness of the glass substrate 3 to be processed. The size of the eccentric square-shaped grinding flat grindstones 1 and 2 is preferably 1.3 to 2.0 times similar to that of the square-shaped substrate that is the object to be ground.

前記偏心角形状研削平砥石1と偏心角形状研削平砥石2は、同一寸法の長方形形状なので偏心角形状研削平砥石1について説明する。偏心角形状研削平砥石1は、図4に示すように、逆皿状の砥石支持座金部1aを介して中空スピンドル21に砥石層の平たい面が基板側に相対向するよう固定されている。偏心角形状研削平砥石1と逆皿状の砥石支持座金部1aとで形成する空間部は研削液貯槽室1cを形成している。偏心角形状研削平砥石1は、その対角線交点(中心点)から10〜80mm外した位置が回転軸となるよう前記中空スピンドル21に逆皿状の砥石支持座金部1aを介して固定している。これら一対の偏心角形状研削平砥石1,2は、その研削面を平行にしてキャリアベルト4に対し点対称となるよう設置される。よって、これら一対の偏心角形状研削平砥石1,2の回転軸間距離は、20〜160mmとなる。偏心角形状研削平砥石1,2は、お互いに逆方向に10〜180min−1で回転する。 Since the eccentric angle-shaped grinding flat grindstone 1 and the eccentric angle-shaped grinding flat grindstone 2 are rectangular shapes having the same dimensions, the eccentric angle-shaped grinding flat grindstone 1 will be described. As shown in FIG. 4, the eccentric square grinding flat grindstone 1 is fixed to the hollow spindle 21 via an inverted dish-shaped grindstone support washer 1 a so that the flat surface of the grindstone layer faces the substrate side. A space formed by the eccentric square-shaped grinding flat grindstone 1 and the inverted dish-shaped grindstone support washer portion 1a forms a grinding fluid storage chamber 1c. The eccentric angular grinding flat grindstone 1 is fixed to the hollow spindle 21 via an inverted dish-shaped grindstone support washer 1a so that the position 10 to 80 mm away from the diagonal intersection (center point) is the rotation axis. . The pair of eccentric square grinding flat grindstones 1 and 2 are installed so as to be point-symmetric with respect to the carrier belt 4 with their grinding surfaces parallel. Therefore, the distance between the rotation axes of the pair of eccentric square-shaped grinding flat grindstones 1 and 2 is 20 to 160 mm. The eccentric square-shaped grinding flat grindstones 1 and 2 rotate in opposite directions to each other at 10 to 180 min −1 .

偏心角形状研削平砥石1は、その厚み方向に研削液を送る貫通孔1dが複数設けられている。貯槽501内の研削液は、ポンプPにより配管502、ロ−タリ−ジョイント503を経て中空スピンドルの中空軸内に設けられた管504に供給され前記研削液貯槽室1cへと導かれる。研削液貯槽室1c内の研削液は貫通孔1dを経て基板3と偏心角形状研削平砥石1間へと導かれる。   The eccentric square-shaped grinding flat grindstone 1 is provided with a plurality of through-holes 1d through which the grinding liquid is fed in the thickness direction. The grinding liquid in the storage tank 501 is supplied by the pump P to the pipe 504 provided in the hollow shaft of the hollow spindle through the pipe 502 and the rotary joint 503 and guided to the grinding liquid storage chamber 1c. The grinding fluid in the grinding fluid storage chamber 1c is guided between the substrate 3 and the eccentric angular grinding flat grindstone 1 through the through hole 1d.

研削ヘッドHおよび前記スライダ13a等は、取付フレ−ム16に支持され、この取付フレ−ム16の下部に設けられたスライダ−17bは、コラム15に設けられたガイドレ−ル17a上を前後方向に移動可能となっており、研削ヘッドHをキャリアベルト4の左右送り方向に対し直交する方向へ前進後退できる構造となっている。砥石ドレッサ600は、回転ア−ムに固定され、研削ヘッドHがガイドレ−ル17a上を滑走してキャリアベルトから後退する際に偏心角形状研削平砥石1,2表面1b,2bを擦る位置に固定されている。研削開始点は、角形状研削平砥石1と角形状研削平砥石2の間隔が、キャリアベルト4により搬送される角形状基板3の厚みよりも、0.05mm〜0.1mm程度大きく設定するのが好ましい。   The grinding head H, the slider 13a, and the like are supported by the mounting frame 16, and a slider 17b provided at the lower portion of the mounting frame 16 moves on the guide rail 17a provided in the column 15 in the front-rear direction. The grinding head H can be moved forward and backward in a direction orthogonal to the left-right feed direction of the carrier belt 4. The grindstone dresser 600 is fixed to a rotating arm, and rubs the eccentric square grinding flat grindstones 1 and 2 and the surfaces 1b and 2b when the grinding head H slides on the guide rail 17a and retracts from the carrier belt. It is fixed. The grinding start point is set such that the distance between the square grinding flat grindstone 1 and the square grinding flat grindstone 2 is 0.05 mm to 0.1 mm larger than the thickness of the square substrate 3 conveyed by the carrier belt 4. Is preferred.

ガラス基板の研削を効率よく行うためには、粗研削、仕上研削、あるいは、粗研削、中仕上研削、仕上研削のように複数回の研削を行うのが好ましい。砥石の番手、集中度、ボンド硬さは、基板の種類、必要な面粗さなどにより選択される。例えば、偏心角形状研削平砥石1として、2段研削のときは、粗研削用の砥石に#100〜#325のダイヤモンド砥粒を備えたレジノイドボンド砥石を、仕上研削用の砥石に#600〜#2000のダイヤモンド砥粒を備えたメタルボンド砥石または#600〜#1500のダイヤモンド砥粒を備えたレジノイドボンド砥石を用いる。あるいは、3段研削のときは、粗研削用の砥石に#100〜#325のダイヤモンド砥粒を備えたレジノイドボンド砥石を、中仕上研削用の砥石に#600〜#2000のダイヤモンド砥粒を備えたレジノイドボンド砥石を、仕上研削用の砥石に#4000〜#8000のダイヤモンド砥粒を備えたメタルボンド砥石とする。   In order to efficiently grind the glass substrate, it is preferable to perform multiple times of grinding such as rough grinding, finish grinding, or rough grinding, intermediate finish grinding, and finish grinding. The count, concentration, and bond hardness of the grindstone are selected depending on the type of substrate and the required surface roughness. For example, in the case of two-stage grinding as the eccentric angular grinding flat grindstone 1, a resinoid bond grindstone having diamond abrasive grains of # 100 to # 325 on a grindstone for rough grinding, and # 600 to a grindstone for finish grinding. A metal bond grindstone with # 2000 diamond abrasive grains or a resinoid bond grindstone with # 600 to # 1500 diamond abrasive grains is used. Alternatively, in the case of three-stage grinding, a resinoid bond grindstone provided with diamond abrasive grains of # 100 to # 325 is provided on a grindstone for rough grinding, and a diamond abrasive grain of # 600 to # 2000 is provided on a grindstone for intermediate finish grinding. The resinoid bond grindstone is a metal bond grindstone provided with # 4000 to # 8000 diamond abrasive grains on a grindstone for finishing grinding.

二段の研削においては、粗研削における研削取り代量は、全体の研削取り代量の60〜95%とするのが、研削速度のバランスを確保し、かつガラス表面のクラック等の表面欠陥を生じさせることなく全体として短時間で研削を完了する上で好ましく、75〜85%とするのがさらに好ましい。三段で研削をする場合は、全体の研削厚み量の配分を粗研削を60〜85%、中仕上研削を35〜13%、精密研削を5〜2%とするのが好ましい。0.5mm厚のガラス板から0.3mm厚のガラス基板とするとき(0.2mmの研削取り代量)は、2段研削の場合、粗研削で0.1.2mm以上とし、3段研削では組研削で0.12〜0.18mm、中仕上研削で0.026〜0.07mmとし、仕上研削で0.05mm以下とするのが好ましい。   In two-stage grinding, the grinding allowance in rough grinding should be 60 to 95% of the total grinding allowance to ensure the balance of grinding speed and to eliminate surface defects such as cracks on the glass surface. It is preferable to complete grinding in a short time as a whole without causing it to occur, and more preferably 75 to 85%. In the case of grinding in three stages, it is preferable that the distribution of the total grinding thickness is 60 to 85% for rough grinding, 35 to 13% for intermediate finish grinding, and 5 to 2% for precision grinding. When changing from a 0.5 mm thick glass plate to a 0.3 mm thick glass substrate (0.2 mm grinding allowance), in the case of two-stage grinding, it is set to 0.12 mm or more by rough grinding and three-stage grinding. Then, it is preferable to set it to 0.12-0.18 mm by group grinding, 0.026-0.07 mm by medium finish grinding, and 0.05 mm or less by finish grinding.

基板の搬送機構400は、ステンレス、ガラス繊維補強樹脂等の帯状ベルト材で形成した無端ベルト状キャリア(キャリアベルト)4、駆動ロール401,402、テンションロ−ル403,404、補助ロ−ル405,406、キャリアベルト4を所望の位置で停止可能、および所望の速度で走行できるよう駆動ロール401,402を回転駆動させる原動機M、ブレ−キ制御装置(図示されてない)などを備える。無端のキャリアベルト4は、駆動ロ−ル、テンションロ−ル、補助ロ−ルに張り巡らされ、駆動ロールの回転により右方向または左方向に走行する。そして、ガラス基板3を搬送する場合に、キャリアベルト4は所望の位置で停止でき、および所望の速度で走行できる。 The substrate transport mechanism 400 includes an endless belt-like carrier (carrier belt) 4 formed of a belt-like belt material such as stainless steel and glass fiber reinforced resin, driving rolls 401 and 402, tension rolls 403 and 404, and an auxiliary roll 405. , 406, a prime mover M 3 that rotates the drive rolls 401, 402 so that the carrier belt 4 can be stopped at a desired position and can travel at a desired speed, a brake control device (not shown), and the like. The endless carrier belt 4 is stretched around a drive roll, a tension roll, and an auxiliary roll, and travels in the right direction or the left direction by the rotation of the drive roll. And when conveying the glass substrate 3, the carrier belt 4 can be stopped at a desired position and can run at a desired speed.

回転する一対の偏心研削平砥石1,2間を通過する角形状基板3を収納するキャリアベルト4の走行速度は、用いるガラス基板3の厚みと得ようとする角形状基板の厚みの差(研削厚み量)および研削後の必要とする表面凹凸の状態により設定される。たとえば、積層厚みが0.6mm程度の14インチ用液晶表示用ガラス積層板を研削して両面合計の研削厚み量を0.2mmとして厚み約0.4mmの液晶表示用ガラス積層基板とするには、20インチの長方形状偏心研削平砥石を粗研削装置では100〜180min−1で、仕上砥石を20〜50min−1程度で回転させ、キャリアベルト4の揺動時の走行スピードを約80〜200cm/分とし、ロ−ディングまたはアンロ−ディングするまでの送りは約1分間隔とする。一対の偏心角形状研削平砥石1,2の回転軸間距離は、40〜100mmが好ましい。また、粗研削装置101での偏心角形状研削平砥石1の基板の切り込み量は2.5〜5μm/秒、仕上粗研削装置102での偏心角形状研削平砥石1の切り込み量は0.5〜2μm/秒程度でよい。 The traveling speed of the carrier belt 4 that accommodates the square substrate 3 passing between the pair of rotating eccentric grinding flat grindstones 1 and 2 is the difference between the thickness of the glass substrate 3 to be used and the thickness of the square substrate to be obtained (grinding). (Thickness amount) and the required surface roughness after grinding. For example, to grind a 14-inch liquid crystal display glass laminate having a laminate thickness of about 0.6 mm to obtain a glass laminate substrate for a liquid crystal display having a thickness of about 0.4 mm, with the total grinding thickness amount on both sides being 0.2 mm. , a rectangular shape eccentric grinding flat grindstone 20 inch 100~180Min -1 in rough grinding device, by rotating the finishing grinding wheel at about 20~50Min -1, about the running speed at the time of swinging of the carrier belt 4 80~200Cm / Min, and the feed until loading or unloading is about 1 minute interval. The distance between the rotation axes of the pair of eccentric square-shaped grinding flat grindstones 1 and 2 is preferably 40 to 100 mm. Further, the cutting amount of the substrate of the eccentric square grinding flat grindstone 1 in the rough grinding device 101 is 2.5 to 5 μm / second, and the cutting amount of the eccentric square grinding flat grindstone 1 in the finishing rough grinding device 102 is 0.5. It may be about ˜2 μm / second.

また、キャリアベルト4は、前記駆動ロール401,402の正逆転駆動により、所定位置を中心にして所定の振幅(25〜100mm)、所定の周期(2〜20回/分)で、左右方向に前進・後退の揺動ができる。なお、矢印はガラス基板3が搬送される時の走行方向を示している。このキャリアベルト4には、その幅方向中央部で、且つ長さ方向に所定の間隔0.5〜1mmを保って角形状基板3の外形よりも若干大きいポケット部4aが複数形成されている。なお、基板3をポケット部4aに嵌合した際に、基板3の両面が、夫々キャリアベルト4の両面から研削代分を超えて突出するように、基板3の厚みはキャリアベルト4の厚みより大きくしている。   The carrier belt 4 is driven in the left-right direction with a predetermined amplitude (25 to 100 mm) and a predetermined cycle (2 to 20 times / min) centered on a predetermined position by forward and reverse driving of the drive rolls 401 and 402. Can swing forward and backward. In addition, the arrow has shown the traveling direction when the glass substrate 3 is conveyed. The carrier belt 4 is formed with a plurality of pocket portions 4a that are slightly larger than the outer shape of the rectangular substrate 3 at a central portion in the width direction and at a predetermined interval of 0.5 to 1 mm in the length direction. Note that the thickness of the substrate 3 is larger than the thickness of the carrier belt 4 so that when the substrate 3 is fitted into the pocket portion 4 a, both surfaces of the substrate 3 protrude from both surfaces of the carrier belt 4 beyond the grinding allowance. It is getting bigger.

このようにキャリアベルト4を間歇的に揺動させながら偏心軸で回転する研削平砥石1,2で角形状基板3の両面を研削するので、研削平砥石1,2が局所的に磨耗することが抑制されて砥石寿命の向上が図れると共に、砥石の磨耗による表面の平坦形状の崩れが抑制されて基板3の平坦度の向上、厚みの均一性の向上が図れる。所望の厚みまで基板3が粗研削されると、キャリアベルト4は揺動を停止し、研削平砥石1,2は夫々角形状基板3の面から、0.05mm〜0.1mm程度離れるよう後退する。   Since both surfaces of the square substrate 3 are ground with the grinding flat grindstones 1 and 2 rotating on the eccentric shaft while the carrier belt 4 is intermittently swung in this way, the grinding flat grindstones 1 and 2 are locally worn. As a result, the life of the grindstone can be improved, and the flat shape of the surface due to wear of the grindstone can be prevented from being deformed, so that the flatness of the substrate 3 and the uniformity of the thickness can be improved. When the substrate 3 is roughly ground to a desired thickness, the carrier belt 4 stops swinging, and the ground grindstones 1 and 2 are retracted from the surface of the square substrate 3 by about 0.05 mm to 0.1 mm, respectively. To do.

洗浄機構300,301,302は、粗研削装置101と仕上研削装置102との間、仕上研削装置102と研磨装置103との間、および研磨装置103の後に、基板3の表面に付着した微粒のガラス粉および砥粒を除去するためにそれぞれ設置される。基板研削加工後の洗浄機構300,301および研磨加工後の洗浄機構302は、加圧された水流を基板3に両側から吹き付けるT−ダイ、複数の吹き付けノズル等の手段が採用され得る。なお、基板を研磨加工後の洗浄機構302の前に基板をロ−ルブラシ洗浄する機構を設けてもよい。 The cleaning mechanisms 300, 301, and 302 are used to remove fine particles attached to the surface of the substrate 3 between the rough grinding apparatus 101 and the finish grinding apparatus 102, between the finish grinding apparatus 102 and the polishing apparatus 103, and after the polishing apparatus 103. Installed respectively to remove glass powder and abrasive grains. As the cleaning mechanisms 300 and 301 after the substrate grinding process and the cleaning mechanism 302 after the polishing process, means such as a T-die for spraying a pressurized water flow onto the substrate 3 from both sides and a plurality of spray nozzles may be employed. Note that a mechanism for cleaning the substrate with a roll brush may be provided before the cleaning mechanism 302 after polishing the substrate.

ローディング機構200とアンローディング機構201は、基板3を収納するスタッカ−とこのスタッカ−を上下に昇降させる昇降機構を備える。ローディング機構200は、粗研削用の両面研削装置101に対しキャリアベルト4の走行方向基準で上流側直前でガラス基板3をスタッカ−で上昇させキャリアベルト4のポケット部4aにはめ込む。アンローディング機構201は研磨装置103の後方の洗浄機構302の後のキャリアベルト4の走行方向基準で下流側に設け、角形状基板3をスタッカ−で下降させてキャリアベルト4のポケット部4aから取り外す。 The loading mechanism 200 and the unloading mechanism 201 include a stacker for storing the substrate 3 and an elevating mechanism for moving the stacker up and down. The loading mechanism 200 raises the glass substrate 3 with a stacker just before the upstream side of the carrier belt 4 with respect to the traveling direction of the carrier belt 4 with respect to the double-side grinding apparatus 101 for rough grinding, and fits it into the pocket portion 4 a of the carrier belt 4. The unloading mechanism 201 is provided on the downstream side with respect to the traveling direction of the carrier belt 4 after the cleaning mechanism 302 behind the polishing apparatus 103, and the square substrate 3 is lowered by a stacker and removed from the pocket portion 4a of the carrier belt 4. .

図4に示すように、研磨装置103は、円盤状支持体の表面に研磨布を貼付した研磨定盤103a,103bの一対を同心軸上にキャリアベルト4を挟んで上下方向に配置する。定盤103a,103bは中空回転軸103c,103dに軸承されている。研磨剤は、ポンプPにより配管602、ロ−タリ−ジョイント603を経て中空回転軸103c,103d内に設けられた管604へと供給され前記研磨定盤の研磨布を湿潤する。研磨定盤は、取付フレ−ム160に支持され、この取付フレ−ム160の下部に設けられたスライダ−170bは、コラム150に設けられたガイドレ−ル170a上を前後方向に移動可能となっており、研磨定盤をキャリアベルト4の左右送り方向に対し直交する方向へ前進後退できる構造となっている。研磨布ドレッサ610は、回転ア−ム611に固定され、研磨定盤がガイドレ−ル170a上を滑走してキャリアベルト4から後退する際に研磨定盤の研磨布表面を擦る位置に固定されている。   As shown in FIG. 4, the polishing apparatus 103 arranges a pair of polishing surface plates 103a and 103b each having a polishing cloth affixed to the surface of a disk-like support body in a vertical direction with a carrier belt 4 sandwiched between concentric axes. The surface plates 103a and 103b are supported by hollow rotary shafts 103c and 103d. The abrasive is supplied to the pipe 604 provided in the hollow rotary shafts 103c and 103d via the pipe 602 and the rotary joint 603 by the pump P to wet the polishing cloth of the polishing surface plate. The polishing surface plate is supported by a mounting frame 160, and a slider 170b provided at the lower portion of the mounting frame 160 can move in the front-rear direction on a guide rail 170a provided in the column 150. The polishing surface plate can be moved forward and backward in a direction perpendicular to the left and right feed direction of the carrier belt 4. The polishing cloth dresser 610 is fixed to the rotary arm 611 and fixed to a position where the polishing surface plate rubs on the polishing cloth surface of the polishing surface plate when the polishing surface plate slides on the guide rail 170a and retreats from the carrier belt 4. Yes.

研磨剤は、研磨剤としては、セリア、アルミナ、ダイヤモンド、シリカ系の研磨剤スラリ−が用いられる。研磨剤は、被研磨物の基板の種類により異なるが、ガラス基板にはセリア系研磨剤スラリ−、シリコン基板にはコロイダルシリカ系スラリ−、サファイア基板には、アルミナ系スラリ−とダイヤモンド系スラリ−が好ましい。   As the abrasive, ceria, alumina, diamond, or silica-based abrasive slurry is used as the abrasive. The polishing agent varies depending on the type of substrate of the object to be polished, but the glass substrate is a ceria-based abrasive slurry, the silicon substrate is a colloidal silica-based slurry, the sapphire substrate is an alumina-based slurry and a diamond-based slurry. Is preferred.

一対の研磨定盤103a,103bの回転軸は同心が好ましい。回転方向は、逆方向が好ましく、かつ、キャリアベルト4の上側研磨定盤103aと、研削装置の上側研削平砥石1との回転方向は同一回転方向,および下側の研磨定盤103aと下側研削平砥石2との回転方向は同一回転方向が好ましい。研磨定盤の回転数は、50〜300min−1、研磨定盤の基板3に対する加圧力は、20〜100g/cmが好ましい。基板の研磨時、キャリアベルト4は左右に間歇的に揺動されている。キャリアベルト4の揺動の振幅と周期は研削時と同じである。基板3の研磨取り代は、2〜10μmが好ましい。 The rotation axes of the pair of polishing surface plates 103a and 103b are preferably concentric. The rotation direction is preferably the reverse direction, and the rotation direction of the upper polishing surface plate 103a of the carrier belt 4 and the upper grinding flat grindstone 1 of the grinding device is the same rotation direction, and the lower polishing surface plate 103a and lower side The rotation direction with the grinding flat grindstone 2 is preferably the same rotation direction. The number of rotations of the polishing surface plate is preferably 50 to 300 min −1 , and the pressure applied to the substrate 3 of the polishing surface plate is preferably 20 to 100 g / cm 2 . When polishing the substrate, the carrier belt 4 is intermittently swung from side to side. The amplitude and cycle of the swing of the carrier belt 4 are the same as during grinding. The removal allowance for the substrate 3 is preferably 2 to 10 μm.

角形状基板3への研磨切り込み量の調整は、エア−シリンダ−180の昇降により行われる。ガラス基板3が研磨定盤の間に留まる時間は、基板3が所望の厚みまで研磨されるのに要する時間は、10秒〜30秒程度で、所定量研磨されたら研磨定盤をキャリアベルト4より遠ざける。研磨時間は粗研削に要する時間より短いので、研磨定盤をキャリアベルト4より遠ざけても、粗研削用偏心研削平砥石1,2による基板の粗研削は続行される。基板の研磨加工後、基板3はキャリアベルト4の前進走行によりアンローディング位置に決めされる。その走行の間に研磨された基板3は洗浄される。   The amount of polishing cut into the rectangular substrate 3 is adjusted by raising and lowering the air cylinder 180. The time required for the glass substrate 3 to remain between the polishing surface plates is about 10 seconds to 30 seconds for the substrate 3 to be polished to a desired thickness. Keep away. Since the polishing time is shorter than the time required for rough grinding, even if the polishing surface plate is moved away from the carrier belt 4, the rough grinding of the substrate by the rough grinding eccentric grindstones 1 and 2 is continued. After the substrate is polished, the substrate 3 is determined at the unloading position by the forward traveling of the carrier belt 4. The substrate 3 polished during the running is cleaned.

アンローディング位置では、アンローディング機構201のスタッカ−を下降させることにより角形状基板3はキャリアベルト4のポケット部4aから取り出される。   At the unloading position, the rectangular substrate 3 is taken out from the pocket portion 4 a of the carrier belt 4 by lowering the stacker of the unloading mechanism 201.

以上で、角形状基板3の平坦化作業の1サイクルが終了する。   Thus, one cycle of the flattening operation of the square substrate 3 is completed.

角形状基板3としては、ソーダ石灰シリカ系ガラス、ホウ珪酸系ガラス、アルミノ珪酸系ガラス、アルミノホウ酸系ガラス、無アルカリ低膨張ガラス、高歪点高膨張珪酸ガラス、結晶化ガラス等のガラス基板の他、石英基板、サファイア基板、GaAs基板、シリコン基板等の角形状基板が被加工物となる。   As the square substrate 3, glass substrates such as soda lime silica glass, borosilicate glass, aluminosilicate glass, aluminoborate glass, non-alkali low expansion glass, high strain point high expansion silicate glass, crystallized glass, etc. In addition, a rectangular substrate such as a quartz substrate, a sapphire substrate, a GaAs substrate, or a silicon substrate is a workpiece.

次に、液晶表示板用積層体を例として平坦化の実施例を説明する。使用した14インチ液晶表示板用積層体3は、加工前の厚み1.005mm(ガラス板0.5mm/液晶膜0.005mm/ガラス板0.5mmの積層体)で、取り代は片面それぞれ0.2mm、両面合計で0.4mmとし、平坦加工後の厚みの振れ幅が50μm以下なら合格とする。   Next, an example of planarization will be described by taking a liquid crystal display panel laminate as an example. The 14-inch liquid crystal display panel laminate 3 used had a thickness of 1.005 mm before processing (a laminate of glass plate 0.5 mm / liquid crystal film 0.005 mm / glass plate 0.5 mm), and the allowance was 0 on each side. .2 mm, 0.4 mm in total on both sides, and pass if the thickness fluctuation width after flat processing is 50 μm or less.

実施例1
液晶表示板用積層体3の偏心研削平砥石1,2への搬入時における偏心研削平砥石1,2の間隔は、1.0mm、偏心研削平砥石中心からスピンドル軸心の距離は25mm(スピンドル軸間の距離は50mm)とし、キャリアベルト4の揺動幅は150mm、揺動回数は12回/分、揺動送り速度は、360mm/秒とした。基板3の偏心研削平砥石1,2への搬入時における20インチ寸法の偏心研削平砥石1,2の間隔は、1.0mmとし、粗研削用の#320のレジノイドダイヤモンド偏心研削平砥石1,2の回転速度は120min−1、仕上研削用の#800のメタルボンドダイヤモンド偏心研削平砥石1,2の回転速度は50min−1とした。偏心研削平砥石1,2の回転方向は、逆方向とした。粗研削時間は、50秒、仕上研削時間は30秒とした。
Example 1
When the liquid crystal display panel laminate 3 is carried into the eccentric grinding flat grindstones 1 and 2, the distance between the eccentric grinding flat grindstones 1 and 2 is 1.0 mm, and the distance from the center of the eccentric grinding flat grindstone to the spindle axis is 25 mm (spindle The distance between the shafts was 50 mm), the rocking width of the carrier belt 4 was 150 mm, the rocking frequency was 12 times / minute, and the rocking feed speed was 360 mm / second. When the substrate 3 is loaded into the eccentric grinding flat grindstones 1 and 2, the interval between the 20 inch eccentric grinding flat grindstones 1 and 2 is 1.0 mm, and the # 320 resinoid diamond eccentric grinding flat grindstone 1 for rough grinding is used. The rotational speed of No. 2 was 120 min −1 , and the rotational speed of the # 800 metal bond diamond eccentric grinding flat grindstones 1 and 2 for finish grinding was 50 min −1 . The rotation direction of the eccentric grinding flat grindstones 1 and 2 was the reverse direction. The rough grinding time was 50 seconds, and the finish grinding time was 30 seconds.

また、定盤径450mmの研磨定盤103a,103bは、同心軸上で設けられ、その回転数は、100min−1、回転方向は逆方向で、加圧力50g/cm、研磨時間は25秒とし、セリア系スラリ−を用いた。 Further, the polishing surface plates 103a and 103b having a surface plate diameter of 450 mm are provided on concentric axes, the rotation speed is 100 min −1 , the rotation direction is the reverse direction, the applied pressure is 50 g / cm 2 , and the polishing time is 25 seconds. And a ceria-based slurry was used.

得られた平坦化処理基板は、仕上研削加工後の液晶表示板用積層体の厚みが約0.609mmで、最大厚み振れ幅は、23μm、研磨加工後の液晶表示板用積層体の厚みは、約0.604mmで、最大厚み振れ幅は、16μmであった。平坦化処理基板の四隅の厚みも特に他部分と比較して高いということはなかった。 In the obtained flattened substrate, the thickness of the laminate for liquid crystal display plate after finish grinding is about 0.609 mm, the maximum thickness fluctuation width is 23 μm, and the thickness of the laminate for liquid crystal display plate after polishing is , About 0.604 mm, and the maximum thickness fluctuation width was 16 μm. The thickness of the four corners of the flattened substrate was not particularly high compared to other parts.

実施例2
液晶表示板用積層体3の偏心研削平砥石1,2への搬入時における偏心研削平砥石1,2の間隔は、1.0mm、偏心研削平砥石中心からスピンドル軸心の距離は35mm(スピンドル軸間の距離は70mm)とし、キャリアベルト4の揺動幅は150mm、揺動回数は12回/分、揺動送り速度は、360mm/秒とした。基板3の偏心研削平砥石1,2への搬入時における20インチ寸法の偏心研削平砥石1,2の間隔は、1.0mmとし、粗研削用の#320のレジノイドダイヤモンド偏心研削平砥石1,2の回転速度は120min−1、中仕上研削用の#600のレジノイドダイヤモンド偏心研削平砥石1,2の回転速度は60min−1、仕上研削用の#2000のメタルボンドダイヤモンド偏心研削平砥石1,2の回転速度は30min−1とした。偏心研削平砥石1,2の回転方向は、逆方向とした。粗研削時間は、45秒、中仕上研削時間は25秒、仕上研削時間は20秒とした。
Example 2
When the liquid crystal display panel laminate 3 is carried into the eccentric grinding flat grindstones 1 and 2, the distance between the eccentric grinding flat grindstones 1 and 2 is 1.0 mm, and the distance from the center of the eccentric grinding flat grindstone to the spindle axis is 35 mm (spindle The distance between the shafts was 70 mm), the rocking width of the carrier belt 4 was 150 mm, the rocking frequency was 12 times / minute, and the rocking feed speed was 360 mm / second. When the substrate 3 is loaded into the eccentric grinding flat grindstones 1 and 2, the interval between the 20 inch eccentric grinding flat grindstones 1 and 2 is 1.0 mm, and the # 320 resinoid diamond eccentric grinding flat grindstone 1 for rough grinding is used. The rotational speed of 2 is 120 min −1 , the rotational speed of # 600 resinoid diamond eccentric grinding flat grindstones 1 and 2 for medium finish grinding is 60 min −1 , and the # 2000 metal bond diamond eccentric grinding flat grindstone 1 for finishing grinding 1 The rotational speed of 2 was 30 min −1 . The rotation direction of the eccentric grinding flat grindstones 1 and 2 was the reverse direction. The rough grinding time was 45 seconds, the intermediate finish grinding time was 25 seconds, and the finish grinding time was 20 seconds.

また、定盤径450mmの研磨定盤103a,103bの同心軸上での回転数は、120min−1、回転方向は逆方向で、加圧力80g/cm、研磨時間は20秒とし、セリア系スラリ−を用いた。 Further, the number of rotations on the concentric axes of the polishing surface plates 103a and 103b having a surface plate diameter of 450 mm is 120 min −1 , the rotation direction is the reverse direction, the applied pressure is 80 g / cm 2 , the polishing time is 20 seconds, and the ceria type A slurry was used.

得られた平坦化処理基板は、仕上研削加工後の液晶表示板用積層体の厚みが約0.607mmで、最大厚み振れ幅は、12μm、研磨加工後の液晶表示板用積層体の厚みは、約0.605mmで、最大厚み振れ幅は、8μmであった。平坦化処理基板の四隅の厚みも特に他部分と比較して高いということはなく、平坦な液晶表示板用積層体が得られた。 The obtained flattened substrate has a thickness of the liquid crystal display plate laminate after finish grinding of about 0.607 mm, a maximum thickness fluctuation width of 12 μm, and the thickness of the liquid crystal display plate laminate after polishing is About 0.605 mm, the maximum thickness fluctuation width was 8 μm. The thickness of the four corners of the flattened substrate was not particularly high compared to other parts, and a flat laminate for a liquid crystal display panel was obtained.

本発明の一対の偏心研削平砥石を用い、液晶表示板用ガラス積層体を左右方向に揺動しながら両面研削する方法は、厚み分布が均一な液晶表示板用ガラス積層体を得ることができる。   The method of carrying out double-side grinding while swinging the glass laminate for a liquid crystal display panel in the left-right direction using the pair of eccentric grinding flat grindstones of the present invention can provide a glass laminate for a liquid crystal display panel with a uniform thickness distribution. .

両面平坦化装置を用いて角形状基板を平坦化するフロ−シ−ト図である。FIG. 5 is a flow chart for flattening a square substrate using a double-side flattening device. 図1に示す基板両面研削装置の一部分を切り欠いた断面図である。It is sectional drawing which notched a part of substrate double-sided grinding apparatus shown in FIG. 基板を両面研削加工しているときの基板と偏心角形状研削平砥石の動きを示す平面図である。It is a top view which shows a motion of the board | substrate and the eccentric angle-shaped grinding flat grindstone when carrying out double-side grinding of the board | substrate. 図1に示す両面研磨装置の一部分を切り欠いた断面図である。It is sectional drawing which notched a part of double-side polish apparatus shown in FIG.

符号の説明Explanation of symbols

1,2 偏心研削平砥石
3 角形状基板
100 両面面平坦化装置
101 粗研削用の両面研削装置
102 仕上研削用の両面研削装置
103 両面研磨装置
200 基板のローディング機構
201 基板のアンローディング機構
300 洗浄機構
400 基板の搬送機構
4 キャリアベルト
4a ポケット部
DESCRIPTION OF SYMBOLS 1, 2 Eccentric grinding flat grindstone Triangular board | substrate 100 Double-sided surface flattening apparatus 101 Double-sided grinding apparatus for rough grinding 102 Double-sided grinding apparatus for finish grinding 103 Double-sided polishing apparatus 200 Substrate loading mechanism 201 Substrate unloading mechanism 300 Cleaning Mechanism 400 Substrate transport mechanism 4 Carrier belt 4a Pocket

Claims (2)

中央部に基板収納ポケット部が設けられた直線移動キャリアベルト、
該直線移動キャリアベルトの左右移動機構、
回転軸を砥石の中心軸より外した一対の偏心角形状研削平砥石であって、この一対の角形状研削平砥石の研削面を平行にして異なった軸心で回転するよう配置した一対の偏心角形状研削平砥石、
前記偏心角形状研削砥石の昇降機構および回転駆動機構、および
前記基板収納ポケット部に収納された基板と偏心角形状研削平砥石とが接する面に研削液を供給する研削液供給手段、
を備える角形状基板の両面研削装置。
A linearly movable carrier belt provided with a substrate storage pocket in the center,
A lateral movement mechanism of the linearly movable carrier belt;
A pair of eccentric square grinding flat wheels with their rotational axes removed from the central axis of the grindstone, and a pair of eccentricity arranged such that the grinding surfaces of the pair of square grinding flat grinding wheels are parallel and rotate around different axes. Square grinding flat whetstone,
A lifting mechanism and a rotation drive mechanism of the eccentric angular grinding wheel, and a grinding fluid supply means for supplying a grinding fluid to a surface where the substrate accommodated in the substrate storage pocket and the eccentric angular grinding flat grindstone contact each other;
A double-sided grinding apparatus for a square substrate.
直線移動キャリアベルトに角形状ガラス基板を保持し、この基板を逆方向に回転する一対の偏心角形状研削平砥石の間を通過させて、前記ガラス基板の両面を同時に研削するガラス基板の研削方法において、前記一対の偏心角形状研削平砥石をその研削面を平行にして異なった軸心で回転するよう配置し、前記ガラス基板を前記偏心角形状研削平砥石の間に一定時間留まらせるとともに、前記ガラス基板の研削中に前記直線移動キャリアベルトを間歇的に左右に往復揺動させることにより前記ガラス基板の両面を研削することを特徴とする角形状ガラス基板の研削方法。   A glass substrate grinding method in which a square-shaped glass substrate is held on a linearly movable carrier belt, and the substrate is passed between a pair of eccentric square-shaped grinding grindstones rotating in the opposite direction to simultaneously grind both surfaces of the glass substrate. In the above, the pair of eccentric square grinding grindstones are arranged so that their grinding surfaces are parallel and rotate with different axes, and the glass substrate is kept between the eccentric square grinding grindstones for a certain period of time, A method for grinding a square glass substrate, wherein both sides of the glass substrate are ground by intermittently reciprocating left and right of the linearly moving carrier belt during grinding of the glass substrate.
JP2005208002A 2005-07-19 2005-07-19 Double-side grinding apparatus and double-side grinding method for square substrate Expired - Fee Related JP4751115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208002A JP4751115B2 (en) 2005-07-19 2005-07-19 Double-side grinding apparatus and double-side grinding method for square substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208002A JP4751115B2 (en) 2005-07-19 2005-07-19 Double-side grinding apparatus and double-side grinding method for square substrate

Publications (2)

Publication Number Publication Date
JP2007021662A JP2007021662A (en) 2007-02-01
JP4751115B2 true JP4751115B2 (en) 2011-08-17

Family

ID=37783075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208002A Expired - Fee Related JP4751115B2 (en) 2005-07-19 2005-07-19 Double-side grinding apparatus and double-side grinding method for square substrate

Country Status (1)

Country Link
JP (1) JP4751115B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043708B2 (en) * 2008-02-12 2012-10-10 西部自動機器株式会社 Super finishing method and grinding apparatus
JP5031673B2 (en) * 2008-06-06 2012-09-19 株式会社石井表記 Polishing apparatus and polishing method
JP5411648B2 (en) * 2009-10-13 2014-02-12 Hoya株式会社 Mask blank substrate manufacturing method, mask blank substrate manufacturing apparatus, mask blank manufacturing method, and transfer mask manufacturing method
RU2015114097A (en) * 2012-09-28 2016-11-20 Сен-Гобен Серэмикс Энд Пластикс, Инк. MODIFIED MICROSURING PROCESS
CN112091767B (en) * 2020-09-21 2021-09-07 苏州浩耐特磨具有限公司 Efficient double-side polishing equipment and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615864B2 (en) * 1988-06-21 1997-06-04 松下電器産業株式会社 Double head surface grinding machine
JP2002301646A (en) * 2001-04-03 2002-10-15 Mitsubishi Heavy Ind Ltd Glass article finishing device

Also Published As

Publication number Publication date
JP2007021662A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4744250B2 (en) Double-side polishing apparatus and double-side polishing method for square substrate
KR101800012B1 (en) Apparatus and method for locally polishing glass substrate, and apparatus and method for producing glass product
JP4838614B2 (en) Semiconductor substrate planarization apparatus and planarization method
JP5605554B2 (en) Glass plate local polishing apparatus, glass plate local polishing method, glass product manufacturing apparatus, and glass product manufacturing method
CN103084957A (en) Sheet glass, manufacturing method therefor, method and apparatus for polishing end edge portion of sheet glass
JP4751115B2 (en) Double-side grinding apparatus and double-side grinding method for square substrate
US20080293337A1 (en) Methods and apparatus for polishing a notch of a substrate by substrate vibration
KR102059203B1 (en) The polishing apparatus and the polishing methdo for polishing the peripheral edge of the work, etc by the polishing tape
JPH0811356B2 (en) Polishing method and polishing apparatus
JP2010023119A (en) Flattening device and flattening method for semiconductor substrate
US6439978B1 (en) Substrate polishing system using roll-to-roll fixed abrasive
JP2525892B2 (en) Polishing method and polishing apparatus
JP2014233797A (en) Glass plate manufacturing method and glass plate manufacturing apparatus
KR100926025B1 (en) Double face plane polishing machine and method for polishing rectangular workpiece
JPH09168953A (en) Semiconductor wafer edge polishing method and device
TWI483811B (en) The grinding method of the plate-like body and the grinding method of the plate-like body
JP5218886B2 (en) Double-side polishing equipment
JP2001138230A (en) Method for grinding face side and reverse side of substrate, and grinding apparatus used therefor
JP2002059346A (en) Method and device for chamfering plate-like work
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
CN114589586B (en) Polishing treatment method for side edge of LCD target material
JP2002126980A (en) Grinding device
JPH068129A (en) Mirror surface polishing device for stainless steel plate
JP2005125420A (en) Dressing method for grinding tool of continuous grinder
JP2001150311A (en) Circumference processing method and processing device for thin disc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees