JP4742058B2 - 除染方法 - Google Patents

除染方法 Download PDF

Info

Publication number
JP4742058B2
JP4742058B2 JP2007042594A JP2007042594A JP4742058B2 JP 4742058 B2 JP4742058 B2 JP 4742058B2 JP 2007042594 A JP2007042594 A JP 2007042594A JP 2007042594 A JP2007042594 A JP 2007042594A JP 4742058 B2 JP4742058 B2 JP 4742058B2
Authority
JP
Japan
Prior art keywords
condensation
decontamination
equivalent value
sensor
amount equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007042594A
Other languages
English (en)
Other versions
JP2008200422A (ja
Inventor
康司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acous Corp
Original Assignee
Airex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airex Co Ltd filed Critical Airex Co Ltd
Priority to JP2007042594A priority Critical patent/JP4742058B2/ja
Publication of JP2008200422A publication Critical patent/JP2008200422A/ja
Application granted granted Critical
Publication of JP4742058B2 publication Critical patent/JP4742058B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/186Peroxide solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/208Hydrogen peroxide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明は、密閉室内に除染ガスを投入し、当該密閉室に内在する除染対象物の表面で前記除染ガスを凝縮させて当該除染対象物の表面を除染する除染方法に関する。
外界から気密的に遮断された密閉室内に過酸化水素ガス等の除染ガスを投入し、該密閉室に内在する除染対象物の表面に該除染ガスを凝縮させて、該除染対象物の表面を除染する除染方法は、既に良く知られている(例えば、特許文献1参照。)。なお、かかる密閉室としては、例えばアイソレーターがあり、除染対象物としては、例えばバイアルに内容物を充填する充填装置等の機械装置、又は当該密閉室の内面等が例示される。そして、除染対象物を除染する除染工程を実行して除染が完了すると、除染ガスをすべて排気し、かかる除染状態を維持したまま当該密閉室内で実際に機械装置を駆動させて生産等の操業を行う操業工程を実行することとなる。
さらに、上記除染工程において、除染ガスの凝縮を検知できる公知の凝縮センサーを密閉室内に配置し、かかる凝縮センサーにより密閉室内における除染ガスの凝縮状況を管理する構成も既に提案されている(例えば、特許文献2参照。)。このような凝縮センサーは、密閉室内において特に除染の管理が重要となる箇所に配置される。ここで、特に除染の管理が重要となる箇所としては、上述した機械装置の表面またはその近傍位置が例として挙げられる。なぜならば、まず機械装置表面は、実際に操業が行われるところであり、微生物汚染された製品を生産してしまうことは確実に回避しなくてはならないからである。また、機械装置の近傍位置は、その機械装置自体が複雑な形状を呈していたり、種々の機器が密集していたりすることが多く、除染ガスが機械装置表面まで行き渡り難くなっており、いわゆるコールドスポットとなり易いからである。
特表2003−527211号公報 再表2003−095994号公報
しかしながら、実際に機械装置を駆動させて操業する場合、当該機械装置の上面に凝縮センサーが配置されていると、該凝縮センサーが邪魔となって操業に不具合が生じることとなる。このため、現実には、凝縮センサーの配置位置は操業に支障がない位置に制限されており、必ずしも所望位置に配置できるわけではなかった。
本発明は、上記した問題に鑑み、操業工程実行時にその操業を阻害することがなく、しかも所望位置の除染状況を把握できる除染方法を提供することを目的とする。
本発明は、外界から気密的に遮断された密閉室内に除染ガスを投入し、当該密閉室に内在する除染対象物の表面で前記除染ガスを凝縮させて当該除染対象物の表面を除染する除染方法において、密閉室内の除染ガスがその表面に凝縮することとなる凝縮形成部、及び該凝縮形成部に凝縮した除染ガスの凝縮量の変化に伴い変動する凝縮量相当値を測定して該値を出力する凝縮量相当値測定手段を備えた凝縮センサーが複数配置された密閉室に除染ガスを投入し、所定の測定タイミングで前記凝縮センサーで凝縮量相当値を各々測定し、前記凝縮センサーのうちいずれかひとつの凝縮センサーにより測定した凝縮量相当値と、他のいずれかひとつの凝縮センサーにより測定した凝縮量相当値とで、両凝縮量相当値の相対比を算出する除染前工程と、前記除染前工程実行後に、除染ガス排出済みで、かつ除染前工程で算出した相対比に係る二つの凝縮センサーのうち一方の凝縮センサーが前記除染前工程での配設位置に配置されてなる密閉室に除染ガスを再投入し、所定の測定タイミングで該凝縮センサーで凝縮量相当値を再測定し、該凝縮量相当値と前記相対比とで、前記相対比に係る二つの凝縮センサーのうち他方の凝縮センサーの配置位置における推定凝縮量相当値を算出し、該推定凝縮量相当値に基づき当該密閉室の除染状態を制御して除染対象物の表面を除染する除染工程とを備えたことを特徴とする除染方法である。
上述のように本発明に係る除染方法は、前半に実行される除染前工程と、後半に実行される除染工程とを備えている。ここで、密閉室内にある除染対象物を実際に除染する工程は除染工程であり、除染前工程は除染工程を実行する準備工程として位置付けられる。
ところで、本発明は、次のような原理を前提としている。
通常、密閉室内において異なる位置で形成される凝縮膜の凝縮量は、十分な時間をおいて測定するとそれぞれ互いに異なる値でほぼ一定となる。このように互いに異なる値となるのは、密閉室に除染ガスを投入する過程において、密閉室内にある装置若しくは器具の配置、温度差、気流のばらつき、又は密閉室若しくは除染対象物表面の形状等が要因となって、同じ室内空間であっても除染ガスの行き渡り方に差が生じ、密閉室内には除染ガスの凝縮が比較的起こり易い位置と比較的起こり難い位置とが発生することによるものである。したがって、仮に、凝縮センサーXと凝縮センサーYとを配置した場合、凝縮センサーXの配置位置と凝縮センサーYの配置位置とでは絶対的な凝縮量の差が生じるため、それぞれ凝縮量相当値を測定すると、例えば、
(凝縮センサーXの凝縮量相当値):(凝縮センサーYの凝縮量相当値)=2:1
というような関係が成立する。ここで、かかる関係に基づくと、
(凝縮センサーYの凝縮量相当値)/(凝縮センサーXの凝縮量相当値)=相対比
の算出式が導かれ、前記の例で言えば、両凝縮センサーX,Yに関し、1/2という相対比を算出することが可能となる。換言すれば、凝縮センサーYの配置位置は、凝縮センサーXの配置位置に比して1/2の量の凝縮量が形成されるということが推察可能となる。そうすると、別途改めて除染ガスを投入した際に凝縮センサーXの凝縮量相当値とこの相対比とを利用することにより、実際に凝縮センサーYで凝縮量相当値を測定しなくても、当該凝縮センサーYの配置位置の凝縮量相当値を推定することができる。このようにして推定される凝縮センサーYの配置位置の凝縮量相当値が、本発明に係る凝縮センサーYの配置位置の推定凝縮量相当値である。したがって、密閉室内における除染状況にあっては、
(凝縮センサーYの配置位置の推定凝縮量相当値)=(凝縮センサーXの凝縮量相当値)×(相対比)
という関係が成立しているという原理が導かれる。
以上の原理に基づけば、本発明の除染工程にあっては、除染前工程で算出した相対比に係る二つの凝縮センサーのうち他方の凝縮センサーで凝縮量相当値を測定せずとも、相対比に係る二つの凝縮センサーのうち一方の凝縮センサーで測定する凝縮量相当値と本発明に係る相対比とを用いて、前記他方の凝縮センサーの配置位置の凝縮状態を把握することが可能となる。なお、除染前工程で算出する相対比は、前記一方の凝縮センサーに対応する凝縮量相当値を、同タイミングで測定した前記他方の凝縮センサーに対応する凝縮量相当値で除して相対比を算出しても良いし、逆に前記他方の凝縮センサーに対応する凝縮量相当値を、前記一方の凝縮センサーに対応する凝縮量相当値で除して相対比を算出しても良い。また、凝縮量相当値を測定する測定タイミングは、除染前工程と除染工程とで一致していても良いし、相違していても良い。なお、通常、凝縮量相当値は、除染ガス投入後であってその値が一定となった適当なタイミングで測定する。また、本発明にあっては、凝縮センサーにより具体的な凝縮量を測定することは要せず、除染ガスの凝縮量の変化に伴い変動する凝縮量相当値を測定すれば良い。ただし、本発明は、凝縮量を測定することができる構成を積極的に排除するものではない。また、凝縮センサーによる凝縮量相当値の測定は、連続的な測定であっても良いし、間欠的な測定であっても良い。また、本発明における除染とは、化学T期除染、無菌、殺菌、滅菌等が含まれる。また、密閉室は、例えばクリーンルーム、病室、無菌室、アイソレーター、除染庫、チャンバー等を含む概念である。また、除染ガスとしては、過酸化水素ガスが好適であるが、その他のガスであっても良い。また、除染対象物とは、除染の対象となるものをすべて含む概念であり、密閉室内に設置された装置類、机などの備品、計算機などの事務機器のほか、密閉室の壁面、床面、天井面などを含めても良い。また、密閉室の除染状態を制御することには、除染ガスの投入量を制御、除染ガスの気流の速度を変更、室内湿度を変更、又は室内温度を変更等することが含まれるものであり、従来から良く知られた周知技術が好適に採用される。なお、除染ガスの投入量を制御するとは、例えば除染ガスの投入量を調節することであり、勿論、除染ガスの投入を中止することも含まれる。また、本発明は、三つ以上の凝縮センサーを配置した場合に、いずれかひとつの凝縮センサーと、この凝縮センサーを除く他の凝縮センサーのうちいずれかひとつの凝縮センサーとを用いて一つの相対比を算出する構成に限定されるものではなく、前記いずれかひとつの凝縮センサーと、残りの凝縮センサー各々とで相対比をそれぞれ算出することも勿論可能である。また、除染前工程で二つの凝縮センサー(第一凝縮センサー及び第二凝縮センサー)を配置した場合は、第一凝縮センサーが、複数の凝縮センサーのうちいずれかひとつの凝縮センサーに対応し、第二凝縮センサーが、他のいずれかひとつの凝縮センサーに対応する。
なお、これまでに述べた構成にあって、操業工程を阻害しない位置にある凝縮センサーを除染工程での前記一方の凝縮センサーとし、除染管理において重要とされる機械装置表面あるいはその近傍位置にある凝縮センサーを除染工程での前記他方の凝縮センサーとする構成が好適な例として挙げられる。かかる構成にあって、除染前工程実行後に前記他方の凝縮センサーを撤去すれば、除染工程において除染管理上重要な地点における除染ガスの凝縮状況を確実に把握しながら除染できると共に、その機械装置の表面等に凝縮センサーが設置されないため、そのままその後の操業工程で機械装置を円滑に駆動させることができる。
また、凝縮センサーにより凝縮量相当値を測定する構成にあって、測定した凝縮量相当値に、その測定位置で菌が死滅しているか否かを示す菌死滅情報を割り当てる構成が提案される。
かかる構成にあって、菌死滅情報は、所定位置で菌が死滅していることを示す陰性と、菌が未だ死滅していないことを示す陽性とがある。このように、凝縮量相当値が測定された場合に、その凝縮量相当値に陰性又は陽性の菌死滅情報を予め割り当てておくことにより、除染工程において推定された前記他方の凝縮センサーの配置位置における凝縮量相当値を確認しつつ、そのタイミングでの当該凝縮センサーの配置位置における菌の死滅状態を把握することが可能となる。これにより、除染工程の適切な終了タイミングがわかることとなり、実際は除染が完了していないのに除染工程を終了してしまう、という過誤を排除できる。
また、除染前工程で算出した相対比に係る二つの凝縮センサーのうち一方の凝縮センサーの凝縮量相当値測定手段が、当該凝縮センサーに係る凝縮形成部に凝縮した除染ガスに基づき凝縮量相当値を測定する凝縮量相当値測定装置により構成されると共に、該凝縮センサーの凝縮形成部及び/又は凝縮量相当値測定装置を密閉室の室壁に近接又は密接させることが提案される。
かかる構成にあって、前記一方の凝縮センサーの構成は、密閉室外から作業者が種々の管理作業(例えば、目視による凝縮量相当値の出力確認や清掃などの保守管理)を容易に行うことができる程度に密閉室の室壁に近接又は密接しているのが好適である。かかる構成とすることにより、除染工程で当該凝縮センサーにトラブルが発生した場合に、密閉室外にいる作業者が迅速に対応することができる。なお、凝縮センサーの凝縮形成部及び凝縮量相当値測定装置のうち少なくともいずれかが密閉室の室壁に近接又は密接していれば、本発明に係る作用効果が発揮され得る。
また、凝縮センサーにより測定した凝縮量相当値の時間経過に伴う変化を示すグラフを作成する構成が提案される。
かかる構成とすることにより、作業者が、時間経過に伴う凝縮量相当値の変化を、視覚を通じて確実に認識することができる。換言すれば、各凝縮センサーを配置した位置における凝縮過程を作業者が明確に認識することが可能となる。
また、除染前工程を複数回実行して相対比を複数算出すると共に、除染工程で、前記複数の相対比のうちいずれかを選定し、該相対比に基づき相対比に係る二つの凝縮センサーのうち他方の凝縮センサーの配置位置における推定凝縮量相当値を算出する構成が提案される。
かかる構成にあって、除染前工程を複数回実行すると、各回の除染ガス投入条件の内容に基づき、種々の相対比が算出される。ここで、除染前工程又は除染工程を実行する場合、両工程で除染ガスの投入条件を完全に同一のものとすることは実際上極めて困難であり、通常は、何らかの条件が相違して結果的に除染ガスの凝縮の形成過程が各々変化する。したがって、このような現実の事情に鑑み、本発明のように予め複数の相対比を算出しておき、除染工程において測定された凝縮センサーの凝縮量相当値を参考にしながら、該複数の相対比のなかからいずれかの相対比を適宜選定するようにすることにより、凝縮過程の実態に沿った除染工程を実行することが可能となる。
本発明に係る除染方法は、凝縮センサーにより測定した凝縮量相当値で相対比を算出する除染前工程と、相対比を算出した二つの凝縮センサーのうち一方の凝縮センサーにより測定した凝縮量相当値と前記相対比とで、他方の凝縮センサーの配置位置における推定凝縮量相当値を算出する除染工程とで構成したため、除染工程にあって、他方の凝縮センサーを用いることなくその凝縮センサーの配置位置における凝縮過程を把握することができる効果がある。
また、凝縮量相当値に菌死滅情報を割り当てる構成とした場合は、出力される凝縮量相当値から菌の死滅を把握することが可能となるため、測定した凝縮量相当値に基づき菌が死滅したことの確認が得られることとなる。このため、除染工程の適切な終了タイミングがわかることとなり、実際は除染が完了していないのに除染工程を終了してしまう、という過誤を排除できる効果がある。
また、除染工程で用いる凝縮センサーの凝縮形成部及び/又は凝縮量相当値測定装置を密閉室の室壁に近接又は密接させる構成とした場合は、密閉室外から作業者が、当該凝縮センサーに対して種々の管理作業を容易に行うことができるため、当該凝縮センサーでトラブルが発生した場合に迅速に対応可能となる効果がある。
また、凝縮センサーにより測定した凝縮量相当値の時間経過に伴う変化を示すグラフを作成する構成とした場合は、作業者が、時間経過に伴う凝縮量相当値の変化を視覚を通じて確実に認識することができるため、各凝縮センサーを配置した位置における凝縮過程を明確に認識することができる効果がある。
さらに、除染前工程を複数回実行して相対比を複数算出すると共に、除染工程で、前記複数の相対比のうちいずれかを用いて推定凝縮量相当値を算出する構成とした場合は、実態に沿った除染工程を実行することができる効果がある。
本発明に係る実施例を添付図面に従って説明する。
本発明の除染方法は、アイソレーター1に過酸化水素ガス(除染ガス)を投入し、アイソレーター1内に配置される機械装置W(図1等参照)の表面又はアイソレーター1の内面で過酸化水素ガスを各々凝縮させて、当該機械装置Wの表面等を除染するものである。ここで、本実施例の機械装置Wは、バイアルに薬液を充填する充填装置であり、アイソレーター1の除染が完了すると、当該アイソレーター1内でこの充填装置を駆動させて所望の製品を生産する操業工程が実行されることとなる。なお、上記した機械装置Wにより、本発明に係る除染対象物が構成される。
図1,2に示すように、アイソレーター1は、一方向流が形成されたクリーンルーム(図示省略)に配置され、その室内空間2を無菌・無塵状態を維持して外界に対して気密化することにより、局所清浄空間が実現されている。さらに詳述すると、アイソレーター1は、室内空間2を室外から気密的に遮断する装置筐体3を備えている。また、この装置筐体3は、室内空間2を外部から視認できるようにするガラス窓4を備えている。また、装置筐体3は作業孔5を備え、この作業孔5に手作業を可能とする作業グローブ6の基端部が密閉状に取り付けられている。かかる構成により、作業者が室外から作業グローブ6に手を挿入して、ガラス窓4を介して室内空間2を確認しながら、その作業グローブ6で室内空間2にある機械装置W等を取り扱うことができる。
また、アイソレーター1の室内空間2には、装置筐体3との間で隙間を形成する内壁10が設けられている。そして、装置筐体3と内壁10との間に形成された隙間を周回路11としている。また、アイソレーター1内の上部には、送風機12が設けられている。そして、この送風機12が駆動することにより、エアーが一方向に送り出され、フィルター13を介して清浄化された後、その清浄化されたエアーが室内空間2を上方から下方に流通する。そしてさらに、室内空間2を通過したエアーは、内壁10の下方に設けられた開口部14を通じて周回路11に進入し、周回路11内を上昇する。このように、アイソレーター1内の気流が一方向流となるようにして、気流の適正化が図られている。なお、このアイソレーター1は、公知品が好適に用いられるものであり、本発明に係る密閉室を構成するものである。
また、このアイソレーター1には、過酸化水素ガス投入装置20が接続されている。この過酸化水素ガス投入装置20は、過酸化水素ガスを発生させ、この過酸化水素ガスを室内空間2に投入する機能を備えている。この過酸化水素ガス投入装置20は、公知品が好適に用いられる。
また、このアイソレーター1には、室内空間2内の温度を測定する温度計50、室内空間2内の湿度を測定する湿度計51、及び室内空間2内の過酸化水素ガス濃度を測定するガス濃度計52が接続されている。なお、これらの計測機器は、公知品が好適に用いられる。
また、アイソレーター1内には、当該アイソレーター1内における過酸化水素ガスの凝縮過程を検知できる凝縮センサー30が配置されている。以下、凝縮センサー30について、図3〜図6に従って説明する。
図3に示すように、凝縮センサー30は、投光装置34、受光装置37、及びこの投光装置34と受光装置37との間に間隔を置いて列設された複数のガラス板(透明板)35を備えている。そして、この投光装置34、受光装置37、及びガラス板35が室内空間2に配置されている。
前記投光装置34の一側面には、投光部38が配設されている。そして、この投光部38からは、近赤外領域のレーザ光Lが一方向に照射される。また、この投光装置34には、配線ケーブル37aを介して電源供給装置45が接続されている。この電源供給装置45は、アイソレーター1の外に配置されており、アイソレーター1の外にいる作業者はこの電源供給装置45に設けられた操作盤(図示省略)を操作することにより、所望のタイミングでレーザ光Lを発振することができる。なお、レーザ光Lは、半導体レーザ光が好適であるが、他の構成であっても勿論良い。また、光源や波長も適宜選定することができる。
前記受光装置37の一側面には、受光部39が配設されている。この受光部39は、前記投光部38から照射されるレーザ光Lと対向する位置に配置されている。この受光装置37は、受光部39で受光したレーザ光Lの受光量に対応する電圧出力を発生し、配線ケーブル37bを介して接続された出力装置46の測定値表示部(図示省略)に測定値を表示する。この出力装置46は、アイソレーター1の外に配されており、アイソレーター1の外にいる作業者は室外で測定値を確認することができる。なお、本実施例の出力装置46は、測定値として凝縮量相当値(無次元数)が出力表示されるように設定されている。かかる凝縮量相当値については、後で詳述する。
前記複数のガラス板35は、その表面に過酸化水素ガスが凝縮することとなるものであって、後述する保持ケース36に保持されながら、投光部38から発振されたレーザ光Lを板面のほぼ中央35a(図5参照)で受光できるように配置されている。さらに詳述すると、前記保持ケース36は、合成樹脂材料からなり、図6に示すように、上方のみが開口している。また、図4に示すように、保持ケース36の内壁面のうち、対向する内壁面36b,36bには、鉛直方向に、保持溝36aがそれぞれ複数間隔を置いて設けられている。なお、この保持溝36aの溝幅は、ガラス板35の肉厚と等しくなるように設計されている。かかる構成にあって、複数のガラス板35が保持溝36aに沿って前記開口を介して挿入され、この保持溝36aによってガラス板35の両端縁が嵌着されることにより、ガラス板35が並列状に保持される。なお、保持ケース36は、図5に示すように、床部36cを具備し、上方から挿入されたガラス板35の下縁は、この床部36cの上面と当接することにより、ガラス板35が担持されている。なお、ガラス板35とガラス板35との間隙は、開放されたガラス板35の辺部で構成される連通開口部44を介して、アイソレーター1の室内空間2と連通している。このような列設状態でレーザ光Lがガラス板35に照射されると、該レーザ光Lがガラス板35の板面に対してほぼ垂直に入射することとなる。
なお、前記ガラス板35により、本発明に係る凝縮形成部が構成される。また、前記の投光装置34、電源供給装置45、受光装置37、出力装置46により、本発明に係る凝縮量相当値測定装置55が構成される。また、この凝縮量相当値測定装置55により、本発明に係る凝縮量相当値測定手段が構成される。ところで、上記した投光装置34、電源供給装置45、受光装置37、及び出力装置46は、公知品が好適に用いられる。
次に、上記した凝縮センサー30を用いた凝縮確認方法について説明する。
図1〜3に示すように、投光装置34、受光装置37、及びガラス板35が挿入された保持ケース36を、アイソレーター1内に配置する。
そして次に、過酸化水素ガス投入装置20を駆動させて室内空間2に過酸化水素ガスを投入開始する。これと共に、連続的に又は間欠的に、投光装置34からレーザ光Lを照射して、出力装置46で表示される測定値をモニタリングする。
さらに過酸化水素ガスを投入し続けると、室内空間2が過酸化水素ガスにより飽和状態となり、凝縮センサー30の各ガラス板35上に過酸化水素ガスが凝縮し始める。ここで、ガラス板35上に形成された凝縮膜が原因となってレーザ光Lが散乱・吸収し、凝縮状態で受光装置37が受光するレーザ光Lの受光量は、非凝縮状態で測定される受光量よりも減少することとなる。さらに、ガラス板35上における過酸化水素ガスの凝縮量が増大していくと、これに伴い前記受光量は順次減少していくこととなる。換言すれば、過酸化水素ガスの凝縮量が増大すると、透過したレーザ光Lの受光量を示す出力値(以下、透過光出力値という)は減少することとなる。すなわち、この透過光出力値の経時変化に基づいて、ガラス板35表面における過酸化水素ガスの凝縮量の変化を検出することが可能となる。なお、本発明にあっては、凝縮量の増減に対応させて、凝縮量相当値が前記出力装置46により出力されるように設定されている。すなわち、過酸化水素ガスの凝縮量が増大すると、出力される凝縮量相当値も増大し、過酸化水素ガスの凝縮量が減少すると、出力される凝縮量相当値も減少する。なお、本発明に係る凝縮量相当値は、少なくとも凝縮量の変化に伴い変動する値であれば良く、例えば、透過光出力値の逆数とする構成が挙げられる。また凝縮のまったく無いときの出力を出力=0とし、かつ完全に透過量が無くなったとき(凝縮が完全に発達しきったとき)の出力を出力=100として、これらを上下限値とする出力範囲で凝縮発生時の出力を表示するようにしても良い。また、透過量が無くなったときを基準として、測定された透過量を「%」表示で出力しても良い。また、出力をV(ボルト)表示しても良い。また、本発明に用いられる凝縮センサーは、上記構成に限定されない。
次に、本発明の要部について説明する。
本発明の除染方法は、除染前工程、及び除染工程からなり、除染前工程、除染工程の順に実行される。なお、実際に機械装置W等を除染するのは、除染工程である。以下、各工程を順に説明する。
<除染前工程>
図7に示されるように、前記凝縮センサー30のうち、アイソレーター1の装置筐体3を構成する室壁に近くて作業者が容易に管理できる位置にあり、しかも機械装置Wの操業に支障がない位置に第一凝縮センサー31を配置する。具体的には、第一凝縮センサー31の投光装置34、受光装置37、及びガラス板35が挿入された保持ケース36が室壁の近くで、作業グローブ6で取扱うことができる位置に載置されている。
また、過酸化水素ガスが最も行き渡りにくく、凝縮膜が形成されにくいと考えられる位置に第二凝縮センサー32を配置する。具体的には、機械装置Wの上面に載置されている。
そして、過酸化水素ガスをアイソレーター1内に投入開始する。かかる投入タイミングを、以下、ガス投入タイミングT0とする(図9参照)。なお、前記投入条件の内容としては、アイソレーター1内の温度、湿度、及びアイソレーター1が設置される空間の温度、及びその空間の湿度、アイソレーター1の内壁面の表面温度、過酸化水素ガスの投入量、並びに送風機12の回転数等が挙げられる。
そして、過酸化水素ガスの投入を継続し、ガス投入タイミングT0から所定時間経過後の所定の測定開始タイミングT1(図9参照)から両凝縮センサー31,32により凝縮量相当値を測定開始する。ここで、第一凝縮センサー31により測定された凝縮量相当値の変化を示すグラフが図9aであり、第二凝縮センサー32により測定された凝縮量相当値の変化を示すグラフが図9bである。なお、本実施例は、ガス投入タイミングT0と測定開始タイミングT1とが異なるが、ガス投入タイミングT0と測定開始タイミングT1とを一致させることも勿論可能である。ところで、除染前工程で測定する凝縮量相当値は、以下、凝縮量相当値Pと記載する。
そして、ガス投入から所定時間が経過すると、過酸化水素ガスがアイソレーター1内で飽和し、各凝縮センサー31,32において凝縮が検知され始める。そして、過酸化水素ガスの凝縮量の増大に伴い、出力される凝縮量相当値Pが増大していくこととなる。
そして、各凝縮センサー31,32で測定する凝縮量相当値Pがほぼ一定となると、所定の測定タイミングT2で、第一凝縮センサー31により測定した凝縮量相当値P1と、第二凝縮センサー32により測定した凝縮量相当値P2とをそれぞれ特定する。なお、本実施例にあっては、第一凝縮センサー31により測定した凝縮量相当値P1がP1=10であり、第二凝縮センサー32により測定した凝縮量相当値P2がP2=5であったとする。ところで、前記の測定タイミングT2は、上述のように凝縮量測定値Pが一定となる範囲内にあるのが好適である。
そして次に、各凝縮センサー31,32により測定された凝縮量相当値P1,P2とで、相対比Kを算出する。具体的には、
K=P2/P1
の算出式から求める。本実施例にあっては、上述のように、P1=10、及びP2=5であるため、相対比KはK=1/2となる。
なお、図9に示すように、各凝縮センサー31,32で測定した凝縮量相当値Pの変化を、x軸に時間T、y軸に凝縮量相当値Pを割り当ててグラフ化することにより、作業者は視覚を通じて凝縮量相当値P1,P2の値、及びその変動過程を容易に認識することができるようになる。
ところで、各凝縮量相当値Pには、菌死滅情報を割り当てておく構成が好適である。
すなわち、予め公知のバイオロジカルインジケーター(以下、BI(Biological Indicator)という。)を用いた実験を実施し、測定された凝縮量相当値Pに対して、菌に関する陰性あるいは陽性を関連付けさせておくものである。具体的には、所定の凝縮センサー30の配置位置にBIも設置し、その凝縮センサー30で凝縮量測定値Pを測定しつつ、その凝縮量測定値Pが測定された条件下での菌の死滅をそのBIで確認し、凝縮量測定値Pと菌の死滅を関連付けておくものである。そうすると、例えば、凝縮量相当値Pが5以上であると、その測定位置においては菌が完全に死滅するため、「陰性」であるが、これに対し、凝縮量相当値Pが5未満であると、その測定位置においては菌が完全に死滅していないため、「陽性」である、というような判断規準を構築することができる。なお、本実施例にあっては、5以上である凝縮量相当値Pに対しては、凝縮膜が充分に形成されて除染が完了するため、「陰性」の菌死滅情報が割り当てられており、5未満の凝縮量相当値Pに対しては、凝縮膜の形成が不十分であって除染が未了であるため、「陽性」の菌死滅情報が割り当てられているものとする。
したがって、P1=10、及びP2=5である場合は、第一凝縮センサー31及び第二凝縮センサー32が配置された位置にあって、共に菌が完全に死滅していることとなる。
そして、当該除染前工程にあって、上述のように相対比を算出すると、次に過酸化水素ガスをアイソレーター1の室外へ排出し、さらに第二凝縮センサー32をアイソレーター1内から撤去して、除染前工程を終了する。
<除染工程>
次に、図8に示すように、過酸化水素ガス排出済みのアイソレーター1内に、第一凝縮センサー31のみを配置する。ここで、第一凝縮センサー31は、除染前工程で使用したものであり、再び測定可能な状態とした後、除染前工程における配置位置に再度配置される。
そして、かかるアイソレーター1内に、過酸化水素ガスを再投入すると共に、除染前工程と同様の測定開始タイミングT1(図9参照)から、第一凝縮センサー31により凝縮量相当値P’を測定開始する。なお、除染工程で測定する凝縮量相当値は、以下、凝縮量相当値P’と記載する。
ここで、除染前工程と同様の測定タイミングT2における第一凝縮センサー31による凝縮量相当値P’1は、本実施例にあって、P’1=8であったとする。
ここで、除染前工程における凝縮量相当値P1と、除染工程における凝縮量相当値P’1とは、同じ測定タイミングT2における測定値であるが異なる値となっている。これは、実際上、両工程で完全にガス投入条件を一致させることは極めて困難であり、様々な測定環境が微妙に影響して、過酸化水素ガスの凝縮過程を異ならせることによる。
次に、測定した凝縮量相当値P’1と、除染前工程で算出した相対比K=1/2とを次式に代入する。
(第二凝縮センサー32の配置位置における推定凝縮量相当値P’2)=(第一凝縮センサー31の凝縮量相当値P’1)×(相対比K)
そうすると、第二凝縮センサー32の配置位置における推定凝縮量相当値P’2を算出することができる。
ここで、前記の推定凝縮量相当値P’2について説明する。
第二凝縮センサー32の配置位置における推定凝縮量相当値P’2は、実際に第二凝縮センサー32で測定した凝縮量相当値P’ではなく、第一凝縮センサー31で測定した凝縮量相当値P’1に基づき算出した推定値である。ここで、上記の推定凝縮量相当値P’2を算出する算出式は、次のような原理に基づいて導かれるものである。すなわち、アイソレーター1内において異なる位置で形成される凝縮量は、それぞれ互いに異なる値でほぼ一定となる。また、ほぼ同様の環境下で繰返し凝縮膜を形成させた場合、上述のように凝縮量の絶対量は実際上各回で多少変動するものの、各位置で形成される凝縮量の相対比はほぼ変わらない。
したがって、本実施例にあっては、上述のように、P’1=8、及びK=1/2であるため、第二凝縮センサー32の配置位置における推定凝縮量相当値P’2は、
P’2=8×(1/2)
となって、P’2=4と推定され得る。
これは、当該除染工程における測定タイミングT2にあって、第二凝縮センサー32の配置位置では凝縮量相当値P’が4に相当する凝縮量が形成されているということを示すものである。
ここで、事前に凝縮量相当値Pに割り当てた菌死滅情報は、推定凝縮量相当値P’2についても流用して、同じように菌の死滅の確認に利用できる。したがって、第二凝縮センサー32の配置位置における菌の死滅を検討すると、第二凝縮センサー32の配置位置における推定凝縮量相当値P’2は、P’2=4であり、その値は「5」未満であるため、菌死滅情報としては「陽性」となる。
したがって、現状においては第二凝縮センサー32の配置位置の除染は未完であり、さらに凝縮量を増やすような除染状態の制御が必要となる。このような制御としては、温度計50、湿度計51、及びガス濃度計52を利用しつつ、例えば単位時間当りの過酸化水素ガスの投入量を増やして過酸化水素ガスの凝縮を促進させることが提案される。そして、引き続き、第一凝縮センサー31により凝縮量相当値P’1を測定し、上記算出式により、推定凝縮量相当値P’2を算出して、第二凝縮センサー32の配置位置の除染状況を監視する。
そして、さらに所定時間が経過すると、過酸化水素ガスの凝縮が進行するため、推定凝縮量相当値P’2が増大することとなる。ここで、推定凝縮量相当値P’2が、P’2≧5となると、かかる値に相当する菌死滅情報としては「陰性」となるため、機械装置Wの表面等の除染が完了し、除染工程を終了することが可能となる。
このように、凝縮量相当値に菌死滅情報を割り当てる構成とすることにより、作業者は菌の死滅に関する客観的な保証を確実に得て除染工程を終了することが可能となる。
そして、操業工程に移行する際には、過酸化水素ガスをアイソレーター1から排出して、アイソレーター1内で操業可能な状態とする。なお、除染工程終了時点において、機械装置Wの上面等には凝縮センサー30は存在しないため、そのまま機械装置Wを稼動させることができる。
なお、本実施例に係る第一凝縮センサー31により、本発明に係る除染前工程で算出した相対比に係る二つの凝縮センサーのうち一方の凝縮センサーが構成される。また、本実施例に係る第二凝縮センサー32により、本発明に係る除染前工程で算出した相対比に係る二つの凝縮センサーのうち他方の凝縮センサーが構成される。
ところで、上記構成にあっては、一度除染前工程を実行して相対比を算出すれば、その後その相対比を用いて何度も除染工程を実行することは可能である。
また、次のような構成としても良い。
すなわち、除染前工程を複数回実行して相対比Kを複数算出し、除染工程で、前記複数の相対比Kのうちいずれかを所定の選定規準に従って実際に利用する相対比Kを選定し、該相対比Kに基づき除染前工程で用いた第二凝縮センサー32の配置位置における推定凝縮量相当値P’2を算出する構成である。
ここで、かかる構成は、次のような考えを前提としている。すなわち、除染前工程又は除染工程を実行する場合、両工程で過酸化水素ガスの投入条件を完全に同一のものとすることは実際上極めて困難であり、通常は、何らかの条件が相違して結果的に過酸化水素ガスの凝縮の形成過程が変化し、算出される相対比Kの値もばらつきが生じることとなる。
したがって、例えば、除染前工程を3回実行すると、各回の過酸化水素ガスの投入条件の内容に基づき、三つの異なる相対比K1〜K3が算出される。
例えば、第一回除染前工程にあって、投入開始から10分後に第一凝縮センサー31の凝縮量相当値P1がP1=8、第二凝縮センサー32の凝縮量相当値P2がP2=4.5として測定された場合、相対比K1はK1=0.56となる。
第二回除染前工程で、投入開始から10分後に第一凝縮センサー31の凝縮量相当値P1がP1=10、第二凝縮センサー32の凝縮量相当値P2がP2=5として測定された場合、相対比K2はK2=1/2=0.5となる。
第三回除染前工程で、投入開始から10分後に第一凝縮センサー31の凝縮量相当値P1がP1=15、第二凝縮センサー32の凝縮量相当値P2がP2=8として測定された場合、相対比K3はK3=1/2=0.53となる。
そして、次に除染工程を実行したときに、ガス投入開始から10分後に、第一凝縮センサーの凝縮量相当値P’1がP’1=11であるときは、当業者の一般的な判断により、除染条件としては最も第二回除染前工程におけるものと近似していると考えられ、第二回除染前工程で算出した相対比K2を採用して、当該除染工程における推定凝縮量相当値P’2を算出する。
かかる構成とすることにより、実際の除染条件に沿った除染工程を実行することが可能となる。
ところで、これまでに述べた構成にあって、第一凝縮センサー31はアイソレーター1の室壁に近くて作業者が容易に管理できる位置に設置されているため、上記いずれかの工程にあって第一凝縮センサー31にトラブルが発生した場合でも、第一凝縮センサー31のメンテナンスを迅速かつ容易に行うことができる。なお、本発明にあっては、投光装置34、受光装置37、及びガラス板35が挿入された保持ケース36のいずれかが少なくともメンテナンス容易な位置に配設されていれば良く、室壁に対して離間しているかあるいは接触しているかは問題とならない。
なお、これまでに述べた構成にあって、凝縮量相当値に菌死滅情報を割り当てる方策は、上記構成に限定されず、例えば、ケミカルインジケーターを用いた他の公知技術を用いても勿論良い。また、種々の蓄積されたデータ等が存在すれば、菌死滅情報を凝縮量相当値Pに割り当てずに測定した凝縮量相当値Pの値のみから除染工程終了タイミングを判断しても良い。
ところで、これまでに述べた構成にあって、第二凝縮センサー32の配置は、種々の実験により蓄積された実験データからあらかじめ予想できる過酸化水素ガスが行き渡り難い位置とするのが好適である。
これまでの構成に代えて、第二凝縮センサー32の配置決定について次のような構成が提案される。
すなわち、除染前工程にあって、図10に示すように、まずアイソレーター1内に複数の凝縮センサー30を配置する。本実施例では、五つの凝縮センサー30を配置している。また、配置位置としては、アイソレーター1のなかで過酸化水素ガスの凝縮状況の把握が特に求められる位置が選ばれている。
次に、過酸化水素ガス投入装置20を駆動し、予め定められた投入条件に従ってアイソレーター1内に過酸化水素ガスを投入する。これと共に、各凝縮センサー30ごとに、凝縮量相当値Pをそれぞれ測定開始する。
過酸化水素ガスの投入を継続すると、室内空間2内で過酸化水素ガスが飽和し、各凝縮センサー30で過酸化水素ガスの凝縮が検知され始める。ここで、各凝縮センサー30にあっては、ガラス板35を具備する保持ケース36の配置が各々異なるため、その周囲の温度環境等もそれぞれ異なる。したがって、凝縮が生じにくい環境に配置された凝縮センサー30は、他の位置に配置された凝縮センサー30に比べて、凝縮が実際に形成される凝縮開始タイミングが遅かったり、所定時間内での凝縮量が少なかったり、又は凝縮の持続時間が短かったりする。このため、各凝縮センサー30ごとに凝縮開始タイミング等が異なって検知される。
各凝縮センサー30で測定される凝縮量相当値Pがほぼ一定となったタイミングで、各凝縮センサー30で測定された凝縮量相当値Pの絶対値、凝縮開始タイミング、又は凝縮の持続時間等を比較し、過酸化水素ガスが最も行き渡りにくく、凝縮膜が形成されにくい位置に配置された凝縮センサー30を選定する。本実施例にあっては、機械装置Wの上面に配置した凝縮センサー30で測定された凝縮量相当値が最小であったことから、当該凝縮センサー30の配置位置をいわゆるコールドスポットと判断し、当該位置の除染状況を管理することとする。そして、当該凝縮センサー30を第二凝縮センサー32とする。そして、別途選定する第一凝縮センサー31と、この第二凝縮センサー32とで相対比を算出する。
このように、除染前工程で相対比を算出する過程において、複数の凝縮量相当値の絶対値等を評価することにより、当該アイソレーター1内で凝縮量の形成において最も不利なコールドスポットを簡易的かつ客観的に特定することが可能となる。そしてさらに、このようなコールドスポットに配置された凝縮センサー30を第二凝縮センサー32とすることにより、除染工程のなかで、凝縮量の形成において最も不利と考えられる位置における凝縮過程を把握することが可能となる。これにより、かかる位置が除染完了していればその他の位置でも除染が完了しているという考えに従って、確実で効率の良い除染が実行できることとなる。なお、測定して得た凝縮量相当値の情報に基づきいずれを第二凝縮センサー32とするかは、所望の除染目的に応じて、既に蓄積された種々の情報に基づき適宜決定することができる。
また、相対比を算出する算出式は、上記内容に限定されるものではない。
なお、上記実施例は、具体的に過酸化水素ガスの凝縮量を測定するものではないが、凝縮センサー30により、直接凝縮量を測定することができる構成としても良い。
また、凝縮センサー30の配置位置、個数等は、上記実施例に限定されるものではない。
例えば、個数に関し、次のような構成としても良い。まず除染前工程で、第一、第二、及び第三凝縮センサーを配置する。そして、第一凝縮センサーと第二凝縮センサーとで相対比K01を算出すると共に、第一凝縮センサーと第三凝縮センサーとで相対比K02を算出する。次に、除染工程では第一凝縮センサーのみで凝縮量相当値を測定し、当該第一凝縮センサーの凝縮量相当値と相対比K01とで第二凝縮センサーの配置位置における推定凝縮量相当値を算出すると共に、相対比K02を用いて第三凝縮センサーの配置位置における推定凝縮量相当値を算出する。かかる構成とすることにより、除染工程において単数の管理用凝縮センサー(前記第一凝縮センサー)により、多数点における凝縮状況を凝縮センサーなしで把握することが可能となる。
アイソレーター1の縦断側面図である。 図1のA−A線横断平面図である。 凝縮センサー30の概念図である。 保持ケース36の平面図である。 保持ケース36の側面図である。 保持ケース36の縦断側面図である。 除染前工程における凝縮センサー30の配置を示す概念図である。 除染工程における第一凝縮センサー31の配置を示す概念図である。 時間経過に伴う凝縮量相当値Pの変化を示すグラフであり、aは第一凝縮センサー31のものであり、bは第二凝縮センサー32によるものである。 他の実施例に係る除染前工程における凝縮センサー30の配置を示す概念図である。
符号の説明
1 アイソレーター
30,31,32 凝縮センサー
35 ガラス板(凝縮形成部)
50 凝縮量相当値測定装置(凝縮量相当値測定手段)
W 機械装置(除染対象物)

Claims (5)

  1. 外界から気密的に遮断された密閉室内に除染ガスを投入し、当該密閉室に内在する除染対象物の表面で前記除染ガスを凝縮させて当該除染対象物の表面を除染する除染方法において、
    密閉室内の除染ガスがその表面に凝縮することとなる凝縮形成部、及び該凝縮形成部に凝縮した除染ガスの凝縮量の変化に伴い変動する凝縮量相当値を測定して該値を出力する凝縮量相当値測定手段を備えた凝縮センサーが複数配置された密閉室に除染ガスを投入し、所定の測定タイミングで前記凝縮センサーで凝縮量相当値を各々測定し、前記凝縮センサーのうちいずれかひとつの凝縮センサーにより測定した凝縮量相当値と、他のいずれかひとつの凝縮センサーにより測定した凝縮量相当値とで、両凝縮量相当値の相対比を算出する除染前工程と、
    前記除染前工程実行後に、除染ガス排出済みで、かつ除染前工程で算出した相対比に係る二つの凝縮センサーのうち一方の凝縮センサーが前記除染前工程での配設位置に配置されてなる密閉室に除染ガスを再投入し、所定の測定タイミングで該凝縮センサーで凝縮量相当値を再測定し、該凝縮量相当値と前記相対比とで、前記相対比に係る二つの凝縮センサーのうち他方の凝縮センサーの配置位置における推定凝縮量相当値を算出し、該推定凝縮量相当値に基づき当該密閉室の除染状態を制御して除染対象物の表面を除染する除染工程と
    を備えたことを特徴とする除染方法。
  2. 凝縮センサーにより凝縮量相当値を測定する構成にあって、
    測定した凝縮量相当値に、その測定位置で菌が死滅しているか否かを示す菌死滅情報を割り当てることを特徴とする請求項1記載の除染方法。
  3. 除染前工程で算出した相対比に係る二つの凝縮センサーのうち一方の凝縮センサーの凝縮量相当値測定手段が、当該凝縮センサーに係る凝縮形成部に凝縮した除染ガスに基づき凝縮量相当値を測定する凝縮量相当値測定装置により構成されると共に、
    該凝縮センサーの凝縮形成部及び/又は凝縮量相当値測定装置を密閉室の室壁に近接又は密接させることを特徴とする請求項1又は請求項2記載の除染方法。
  4. 凝縮センサーにより測定した凝縮量相当値の時間経過に伴う変化を示すグラフを作成することを特徴とする請求項1乃至請求項3のいずれか1項に記載の除染方法。
  5. 除染前工程を複数回実行して相対比を複数算出すると共に、
    除染工程で、前記複数の相対比のうちいずれかを選定し、該相対比に基づき相対比に係る二つの凝縮センサーのうち他方の凝縮センサーの配置位置における推定凝縮量相当値を算出することを特徴とする請求項1乃至請求項4のいずれか1項に記載の除染方法。
JP2007042594A 2007-02-22 2007-02-22 除染方法 Active JP4742058B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042594A JP4742058B2 (ja) 2007-02-22 2007-02-22 除染方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042594A JP4742058B2 (ja) 2007-02-22 2007-02-22 除染方法

Publications (2)

Publication Number Publication Date
JP2008200422A JP2008200422A (ja) 2008-09-04
JP4742058B2 true JP4742058B2 (ja) 2011-08-10

Family

ID=39778496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042594A Active JP4742058B2 (ja) 2007-02-22 2007-02-22 除染方法

Country Status (1)

Country Link
JP (1) JP4742058B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115451A (ja) * 2008-11-15 2010-05-27 Earekkusu:Kk 除染装置、該除染装置における除染条件の決定方法、及び該除染装置における除染条件の管理方法。
US20210308300A1 (en) * 2020-04-06 2021-10-07 Nuro, Inc. Methods and apparatus for sanitizing an autonomous vehicle
CA3236414A1 (en) * 2021-12-13 2023-06-22 Amgen Inc. Methods for designing and performing a vapor phase hydrogen peroxide decontamination cycle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203821A (ja) * 1982-05-21 1983-11-28 大日本印刷株式会社 包装材料殺菌機
US5788925A (en) * 1996-02-16 1998-08-04 Steris Corporation Method for real time monitoring and control of load sterilization and parametric release
AU753047B2 (en) * 1997-11-14 2002-10-03 Ethicon Inc. Method for measuring the concentration of hydrogen peroxide vapor
US6451254B1 (en) * 1998-12-30 2002-09-17 Ethicon, Inc. Sterilization of diffusion-restricted area by revaporizing the condensed vapor
JP4106814B2 (ja) * 1999-06-18 2008-06-25 澁谷工業株式会社 滅菌装置
GB2354443A (en) * 1999-09-21 2001-03-28 Microflow Ltd Vapour phase sterilisation
GB2360454A (en) * 2000-03-21 2001-09-26 Microflow Ltd Control of gaseous sterilisation
ES2292950T3 (es) * 2002-03-28 2008-03-16 Bioquell Uk Limited Metodo y aparato para descontaminar espacios cerrados.
US7186372B2 (en) * 2002-03-29 2007-03-06 Ethicon, Inc. Method for determining lumen penetration of a vapor phase sterilant
AU2003231417A1 (en) * 2002-05-14 2003-11-11 Airex Co., Ltd. Condensation sensor and method of controlling condensate film in sealed space with condensation sensor
JP2005058495A (ja) * 2003-08-13 2005-03-10 Earekkusu:Kk 除染方法及び除染装置
WO2005046742A1 (ja) * 2003-11-13 2005-05-26 Airex Co.,Ltd. 除染方法、及び除染装置
JP2005147854A (ja) * 2003-11-14 2005-06-09 Earekkusu:Kk 過酸化水素ガスの凝縮センサー
JP4510480B2 (ja) * 2004-02-04 2010-07-21 株式会社エアレックス 除染装置及び除染方法
JP4388844B2 (ja) * 2004-03-31 2009-12-24 株式会社エアレックス 過酸化水素ガスの凝縮検出装置、及び過酸化水素ガスの凝縮管理システム
JP2006288527A (ja) * 2005-04-07 2006-10-26 Earekkusu:Kk 除染方法、及び除染システム
JP4619228B2 (ja) * 2005-07-28 2011-01-26 株式会社エアレックス 隔絶可撓性部材の除染方法、及び該除染方法に用いられる隔絶可撓性部材の凝縮検知装置
JP4619240B2 (ja) * 2005-08-26 2011-01-26 株式会社エアレックス 除染方法、及び凝縮センサー
JP4734216B2 (ja) * 2006-11-01 2011-07-27 株式会社エアレックス 除染システム

Also Published As

Publication number Publication date
JP2008200422A (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
US20220296757A1 (en) Sterilization Container Capable Of Providing An Indication Regarding Whether Or Not Surgical Instruments Sterilized In The Container Were Properly Sterilized
US20200179549A1 (en) Method of sterilizing medical devices, analyzing biological indicators, and linking medical device sterilization equipment
CN113990060B (zh) 用于连接医疗装置消毒设备的装置和方法
US10675369B1 (en) Rotating object holder for multi-function sanitization, disinfection, and sterilization in a cabinet
US20180099259A1 (en) Particle control method
JP4619228B2 (ja) 隔絶可撓性部材の除染方法、及び該除染方法に用いられる隔絶可撓性部材の凝縮検知装置
JP4742058B2 (ja) 除染方法
TWI507219B (zh) 除污染管理方法及使用於該除污染管理方法中之除污染管理裝置
US20150004898A1 (en) Air sampling system providing compound discrimination via comparative pid approach
US11666899B2 (en) Safety cabinet
US20190376886A1 (en) Test chamber, use and method for the microbial and/or particulate barrier testing of a product
US9027385B2 (en) Aerosol sensor
CN1980700A (zh) 用于汽化过氧化氢的视觉探测器
JP2006320486A (ja) 除染システム、及び除染方法
JP3809176B2 (ja) 凝縮センサー及び該凝縮センサーを用いた密閉空間内の凝縮膜管理方法
US10716871B1 (en) Rotating object holder for multi-function sanitization, disinfection, and sterilization in a cabinet
Kümin et al. The Hitchhiker's Guide to Hydrogen Peroxide Fumigation, Part 2: Verifying and Validating Hydrogen Peroxide Fumigation Cycles
JP4619240B2 (ja) 除染方法、及び凝縮センサー
DE59904033D1 (de) Sterilisator mit einem Messwertaufnehmer und Verfahren zur Überwachung des Messwertaufnehmers
JP4775397B2 (ja) 微生物計測システム
JP2010115451A (ja) 除染装置、該除染装置における除染条件の決定方法、及び該除染装置における除染条件の管理方法。
JP5822205B2 (ja) 除菌性能予測システム及び除菌性能予測プログラム
US20220275423A1 (en) Biological indicators, and systems and methods for determining efficacy of sterilization
KR20240036583A (ko) 약제 충전 시스템의 멸균 터널 내 입자를 계수하기 위한 입자 계수기 및 방법
JP2005147854A (ja) 過酸化水素ガスの凝縮センサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Ref document number: 4742058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250