JP4741069B2 - 光ファイバグレーティング - Google Patents

光ファイバグレーティング Download PDF

Info

Publication number
JP4741069B2
JP4741069B2 JP2000373214A JP2000373214A JP4741069B2 JP 4741069 B2 JP4741069 B2 JP 4741069B2 JP 2000373214 A JP2000373214 A JP 2000373214A JP 2000373214 A JP2000373214 A JP 2000373214A JP 4741069 B2 JP4741069 B2 JP 4741069B2
Authority
JP
Japan
Prior art keywords
grating
mode
optical fiber
clad
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000373214A
Other languages
English (en)
Other versions
JP2002174739A (ja
Inventor
直樹 木村
裕 石井
研二 西出
朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000373214A priority Critical patent/JP4741069B2/ja
Publication of JP2002174739A publication Critical patent/JP2002174739A/ja
Application granted granted Critical
Publication of JP4741069B2 publication Critical patent/JP4741069B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光情報通信分野で用いられる光アンプの利得等化器などとして利用されている光ファイバグレーティングに関する。
【0002】
【従来の技術】
光ファイバグレーティングは、コアとその外周上に設けられたクラッドとを備えた光ファイバの長さ方向にそって、前記コアまたはクラッドの少なくとも一部に例えば屈折率の周期的な変化などを形成したグレーティング部を備えているものである。例えばゲルマニウム添加石英ガラスに波長240nm付近の紫外線を照射すると、屈折率が上昇するフォトリフラクティブ効果を利用して製造することができる。この製造方法によって製造したグレーティングを紫外線誘起型とよぶ。
そして、利得等化器などに主に用いられている長周期型光ファイバグレーティングは、コアをその入射方向と同方向に伝搬するモード(以下、導波モードという)と、コアの外周上に設けられたクラッドを同方向に伝搬するクラッドモードとを結合させることによって、所定の波長帯の光を損失させる特性を備えている。一般的な長周期型光ファイバグレーティング、すなわち均一なグレーティング間隔を備えた長周期型光ファイバグレーティングひとつで得られる損失の波長依存性(波長と損失との関係)を示したグラフにおいて、得られる損失ピークは単峰型である。
【0003】
一方、利得等化器などにおいては、複雑な損失特性(損失の波長依存性)、すなわち利得等化特性を要求される場合がある。そのため、以下のようなデバイスが用いられている。
(1)直列接続型デバイス:複数の光ファイバグレーティングを直接、直列接続して、それぞれの損失特性を併せ持つデバイスとしたもの。各光ファイバグレーティングの損失特性の和がこのデバイスの損失特性となる。
図5はこのデバイスの構成の一例を示したもので、このデバイス1は、第1の光ファイバグレーティング2と第2の光ファイバグレーティング3とがピグテイルファイバ5を介して接続され、第2の光ファイバグレーティング3と第3の光ファイバグレーティング4とがピグテイルファイバ6を介して接続され、さらにこれらがケース7に収められて形成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記(1)においては、デバイスのサイズが大きくなるという問題があった。
すなわち、図5に示したように第1の光ファイバグレーティング2において、導波モードと結合したクラッドモードがピグテイルファイバ5を伝搬し、光ファイバグレーティング3に入射するまでの間に消失しなければ、このクラッドモードが第2の光ファイバグレーティング3の特性に影響を与え、所望の損失特性が得られない。第2の光ファイバグレーティング3と第3の光ファイバグレーティング4との間においても同様である。
【0005】
したがって、このデバイス1においては、ピグテイルファイバ5、6を長くして、ピグテイルファイバ5、6を伝搬中にクラッドモードを十分に減衰させる必要があった。その結果、図5に示したように、ケース7においては、第1ないし第3の光ファイバグレーティング2、3、4を収めるスペースのみならず、ピグテイルファイバ5、6を巻き回して収めるスペースが必要であった。これは、高密度化、デバイスやモジュールの小型化などにおいて不利であった。
また、独立した第1ないし第3の光ファイバグレーティング2、3、4をピグテイルファイバ5、6を介して接続する結果、総ファイバ長が長くなる。したがって、特に第1ないし第3の光ファイバグレーティング2、3、4との接続損失が小さな光ファイバを用いるピグテイルファイバ5、6の伝送損失が大きいと、デバイスの過剰損失が増加するという問題があった。
【0006】
そこで、小型化を図れるものとして、以下のようなものが提案された。
(2)位相シフト型光ファイバグレーティング:単一の光ファイバグレーティングからなる広帯域利得等化器であって、グレーティング部内の一箇所または複数箇所において、例えば屈折率変化の周期などのいわゆるグレーティング周期が変更されており、その結果、位相のシフトを行うものである。そして、そのシフト量や位相シフトを導入する位置、グレーティングの総段数を変化させることによって、単一の光ファイバグレーティングまたは複数の通常の光ファイバグレーティングを組み合わせた場合と比較して、複雑な損失特性を実現することができる。
(3)クラッドモード変更型デバイス(特開平11−326668号公報に開示):単一デバイス上に複数のグレーティング部が形成され、それぞれのグレーティング部において、導波モードと結合させるクラッドモード(クラッドモードの次数)が異なるデバイスである。クラッドモードの次数を異なるものにすることによって、グレーティング部間のクラッドモードの干渉を低減し、各グレーティング部の損失特性の和に近い損失特性が得られる。
【0007】
しかしながら、前記(2)の位相シフト型は、損失特性が位相シフト量に対して非常に敏感であるという欠点があった。
特に、紫外線誘起型のものを製造するにおいては、光学特性の長期安定性を確保するために加熱エージング工程が必須である。そして、この工程中に屈折率が変化し、この変化に伴って位相シフト量が変化してしまう可能性がある。その結果、損失特性が大きく変動し、安定な製造が困難であるという問題があった。
また、グレーティング部内において、位相シフトはその位置が離散的にしか選択することができないため、設計の自由度が低いという欠点があった。
【0008】
前記(3)のクラッドモード変更型においては、前記(1)と比較すると小型化を図ることができ、前記(2)と比較すると安定な製造が可能である。しかしながら、実際には、グレーティング部は、相互にわずかずつ光学特性に影響を及ぼし、全体として無視できないほどの干渉の影響が生じる場合がある。したがって、設計どおりの損失特性が得られず、実験的に補正する処置が必要となる場合があり、製造効率が低下するという問題があった。
また、グレーティング部毎に導波モードと結合させるクラッドモードを変更して設計するため、クラッドモードの選択の幅が限定され、その結果、設計条件が限定されるという問題があった。すなわち、例えば、特に損失させる波長帯域が広い場合、モード結合によって生じる損失ピークの近傍に、別のクラッドモードとの結合による損失ピークを生じ、不都合となる場合があった。
【0009】
本発明は前記事情に鑑みてなされたもので、複雑な損失特性を容易に実現できるデバイスを提供することを課題とする。
そして、この特性を備えた上で、以下に示す少なくともひとつの課題を解決するデバイスを提供することを課題とする。
小型化を図ることができるデバイスを提供する。
過剰損失の小さいデバイスを提供する。
安定に製造することができるデバイスを提供する。
設計が容易なデバイスを提供する。
製造後に実験的に特性を補正する必要が生じないデバイスを提供する。
設計の自由度が高いデバイスを提供する。
【0010】
【課題を解決するための手段】
前記課題を解決するために、本発明の光ファイバグレーティングは、コアとその外周上に設けられたクラッドとを備え、該コアを入射方向と同方向に伝搬する導波モードと、該導波モードと同方向に伝搬するクラッドモードとを結合させて損失させる特性を備えた同じ外径と屈折率分布を備えた複数の材料ファイバに形成された、それぞれ損失特性が異なる複数のグレーティング部が、コアとその外周上に設けられたクラッドとを備え、該クラッドにクラッドモードを吸収するドーパントが添加されたそれぞれ前記材料ファイバと同じ外径と屈折率を備えた複数のクラッドモード吸収部を介して接続されており、前記クラッドモード吸収部長さは2〜10mmであり、該クラッドモード吸収部において、クラッドモードが30dB以上減衰するものであることを特徴とする。
【0011】
【発明の実施の形態】
図1は本発明の光ファイバグレーティングの一例を示したもので、この光ファイバグレーティング11は、第1のグレーティング部12と第2のグレーティング部13と第3のグレーティング部14とが、その長さ方向と平行に一列に配列され、かつ、この第1のグレーティング部12と第2のグレーティング部13とがクラッドモード吸収部15を介して接続され、この第2のグレーティング部13と前記第3のグレーティング部14とがクラッドモード吸収部16を介して接続されている。そして、これらがひとつのケース17に収められて構成されている。
【0012】
この例において、第1のグレーティング部12、第2のグレーティング部13、第3のグレーティング部14は、同じ外径と屈折率分布を備えた3本の材料ファイバに、それぞれ損失特性が異なるグレーティング部を形成したものである。
例えば、第1のグレーティング部12は、コア12aがゲルマニウム添加石英ガラスからなり、その外周上に設けられたクラッド12aが純粋石英ガラスからなる材料ファイバに、その長さ方向にそって、所定の周期で波長240nm付近の紫外線を照射することによって形成したものである。
第2のグレーティング部13、第3のグレーティング部14においても同様である。
【0013】
なお、ゲルマニウムは上述のようにフォトリフラクティブ効果を生じる他、添加するのみで屈折率を上昇させる作用を備えているため、コア12aの屈折率の調整のために通常添加されているものである。
第1ないし第3のグレーティング部12、13、14の損失特性は、グレーティング周期、グレーティング数(段数)、屈折率変化量などによって変更することができる。
なお、この例においてはコアの屈折率を変化させているが、設計条件によっては、少なくともコアの一部またはクラッドの一部の一方または両方の屈折率を変化させたグレーティング部を形成することもできる。
【0014】
この例において、クラッドモード吸収部15、16は、第1ないし第3のグレーティング部12、13、14と等しい外径を備え、かつモードフィールド径が等しくなるように屈折率分布が調整されたものである。なお、シングルモード光ファイバはコアと光が伝搬する領域とが同一ではなく、この光が伝搬する領域をモードフィールド径という。シングルモード光ファイバの接続は光の強度分布のパターンによって決定されるため、接続損失の観点において、モードフィールド径は重要なパラメータである。
よって、第1ないし第3のグレーティング部12、13、14と同じ外径と屈折率分布の光ファイバを用いることにより、接続損失を低下させることができる。
クラッドモード吸収部15はコア15aとその外周上に設けられたクラッド15bとからなり、クラッド15bにクラッドモードを吸収するドーパントが添加されている。なお、コア15aは例えばゲルマニウム添加石英ガラスから構成されている。
クラッドモード吸収部16も同様であって、コア16aとクラッド16bとからなり、クラッド16bにクラッドモードを吸収するドーパントが添加されている。
【0015】
クラッドモードを吸収するドーパントとしては、例えばCo、Cr、Ni、Mn、V、Fe、Cuなどの遷移金属などを例示することができる。これら例示したドーパントは波長900〜1600nm付近にかけてなだらかな吸収特性を示す。したがって、この波長帯内で通信を行う用途に用いることができ、一般的な光通信システムであれば十分に適用できる。また、1.55μm帯において通信を行う用途に用いる場合には、1.54μm付近に吸収帯を備えた希土類元素であるErなどを用いることもできる。
【0016】
図2はクラッドモード吸収部15、16のクラッド15b、16bに添加するドーパントの1.55μm帯における透過特性を示したグラフである。Coの濃度は30000ppm、15000ppm、3000ppmである。
このグラフより、Co濃度が高くなる程、またクラッドモード吸収部15、16の長さが長くなる程、透過損失が増加している。
クラッドモード吸収部15、16においては、それぞれクラッドモードが30dB以上、好ましくは40dB以上、実質的には50dB程度減衰するように、そのドーパントの添加量と長さを調整すると好ましい。30dB未満の場合は十分にクラッドモードを減衰させることができず、第1のグレーティング部12の特性が第2のグレーティング部13の特性に影響し、また第2のグレーティング部13の特性が第3のグレーティング部14の特性に影響するため不都合である。
【0017】
なお、クラッドモード吸収部15、16の長さは好ましくは2〜10mm、さらに好ましくは4〜7mmとされる。2mm未満ではクラッドモードを十分に抑制することができない場合があり、また10mmをこえると十分に小型化できなくなったり、過剰損失が大きくなるため、不都合となる場合がある。
また、クラッド15b、16bに添加するクラッドモードを吸収するドーパントの濃度は特に限定せず、ドーパントの種類やクラッドモード吸収部15、16の長さなどによって適宜調整すると好ましい。Coの場合は例えば5000〜50000ppm、好ましくは10000〜30000ppmとされる。5000ppm未満では十分にクラッドモードを吸収することができない場合があり、50000ppmをこえると材料ファイバ自体を安定に製造することが困難となる。
なお、図2に示したグラフより、例えばCoの濃度が15000ppmで、長さ5mmのクラッドモード吸収部15、16を用いれば、クラッドモードを30dB以上減衰させることができる。このように短い長さであっても効果が得られるため、デバイスを小型化することができ、かつピグテイルファイバ18、18の伝送損失に起因する過剰損失も小さくなる。
【0018】
なお、第1ないし第3のグレーティング部12、13、14とクラッドモード吸収部15、16との接続においては、単にこれらの端面を研磨し、突き合わせて接続することもできるし、融着接続などの他の公知の方法によって接続することもできる。
また、第1のグレーティング部12の片端と、第3のグレーティング部14の片端に接続され、ケース17から外部に延びるピグテイルファイバ18、18の外周上には、通常プラスチックからなる保護被覆層(図示せず)が設けられている。また、ケース17は、例えば金属、ガラス、またはセラミックスなどからなる公知のものを用いることができる。
【0019】
この光ファイバグレーティング11においては、第1のグレーティング部12に入射した導波モードのうち、所定の波長帯の導波モードがクラッドモードに結合し、損失する。そして、このクラッドモードはクラッドモード吸収部15において、クラッド15bに吸収されることによって減衰する。そして、他の導波モードはクラッドモード吸収部15を経て第2のグレーティング部13に至り、ここで、さらに所定の波長帯の導波モードがクラッドモードに結合し、このクラッドモードがクラッドモード吸収部16のクラッド16bに吸収されることによって減衰する。そして、クラッドモードと結合しなかった導波モードはさらに第3のグレーティング部14に至り、所定の波長帯の導波モードがクラッドモードに結合し、他の導波モードが第3のグレーティング部14の出射端から出射する。
そして、第1ないし第3のグレーティング部12、13、14の損失特性の和にほぼ等しい損失特性を備えた出射光が得られる。
【0020】
このように本発明の光ファイバグレーティングにおいては、損失特性の異なる第1ないし第3のグレーティング部12、13、14の組み合わせにより、複雑な損失特性を実現することができる。
そして、これら第1ないし第3のグレーティング部12、13、14の間にクラッドモード吸収部15、16を設けることにより、第1のグレーティング部12において、導波モードと結合したクラッドモードを、クラッドモード吸収部15において十分に減衰させることができる。したがって、必要な導波モードのみを第2のグレーティング部13に導くことができ、前記クラッドモードの影響を抑制することができる。そして、同様に、クラッドモード吸収部16において、第2のグレーティング部13において、導波モードと結合したクラッドモードを十分に減衰させることができる。したがって、必要な導波モードのみを第3のグレーティング部14に導くことができ、前記クラッドモードの影響を抑制することができる
【0021】
また、第1ないし第3のグレーティング部12、13、14の相互間の影響が少ないため、この光ファイバグレーティングの損失特性は、これら第1ないし第3のグレーティング部12、13、14の損失特性の和と近いものとなり、設計が容易となり、また、製造後に実験的に特性を補正する必要が生じにくい。
また、第1ないし第3のグレーティング部12、13、14の損失特性が製造時に大きく変化することがないため、安定に製造することができる。
また、従来技術で示したようなクラッドモードの次数などの制限がないため、比較的設計の自由度が高くなる。
【0022】
【実施例】
以下、本発明を実施例を示して詳しく説明する。
材料ファィバである3本の株式会社フジクラ製1.3μm単一モードファィバに、UVレーザ光源にKrFエキシマレーザを使用して、損失特性の異なる紫外線誘起型の第1ないし第3のグレーティング部をそれぞれ形成した。なお、この材料ファイバはコアがゲルマニウム添加石英ガラスからなり、クラッドが純粋石英ガラスからなるステップ型の屈折率分布を備えたもので、その外径は125μmであった。
表1にそれぞれのグレーティング周期およびグレーティング数(段数)を示した。なお、これら第1ないし第3のグレーティング部においては導波モード(LP01モード)を、クラッドモード(LP08モード)と結合させるように設計した。
【0023】
【表1】
Figure 0004741069
【0024】
図3は、これら第1ないし第3のグレーティング部の損失特性の測定値を示したグラフである。このグラフには、さらに第1ないし第3のグレーティング部の損失特性の測定値の和の計算値が示されている。一方、目標特性値とはこれら第1ないし第3のグレーティング部を備えた光ファイバグレーティングについての目標特性値であって、前記測定値の和とほぼ一致している。
【0025】
これらの第1ないし第3のグレーティング部を用いて、図1に示したものと同様の光ファイバグレーティングを製造した。
ふたつのクラッドモード吸収部には、それぞれ、前記材料ファイバと同じ外径と屈折率分布を備え、かつクラッドにCoを30000ppm添加した長さ4mmのものを用いた。
【0026】
図4は、この光ファイバグレーティングの損失特性を示したグラフである。このグラフには、図3のグラフにも示した第1ないし第3のグレーティング部の損失特性の測定値の和の計算値を示した。光ファイバグレーティングの損失特性は、前記測定値の和によく一致している。
したがって、この光ファイバグレーティングにおいては、製造時などに第1ないし第3のグレーティング部の損失特性が変化せず、それぞれの損失特性の和が得られることが明らかとなった。
【0027】
【発明の効果】
以上説明したように本発明においては、損失特性の異なる複数のグレーティング部の組み合わせにより、複雑な損失特性を実現することができる。
そして、これらのグレーティング部の間にクラッドモード吸収部を設けることにより、このグレーティング吸収部において、グレーティング部において導波モードと結合したクラッドモードを十分に減衰させることができ、他のグレーティング部に対する前記クラッドモードの影響を抑制することができる。
このように、複数のグレーティング部の相互間の影響が少ないため、本発明の光ファイバグレーティングの損失特性は、これらのグレーティング部の損失特性の和と近いものとなり、設計が容易となり、また、製造後に実験的に特性を補正する必要がない。
また、グレーティング部の損失特性が製造時に大きく変化することがないため、安定に製造することができる。
また、クラッドモードの次数などの制限がないため、比較的設計の自由度が高くなる。
【図面の簡単な説明】
【図1】 本発明の光ファイバグレーティングの一例を示した側断面図である。
【図2】 クラッドモード吸収部の特性の一例を示したグラフである。
【図3】 実施例に用いた第1ないし第3のグレーティング部の損失特性の測定値を示したグラフである。
【図4】 実施例の光ファイバグレーティングの損失特性を示したグラフである。
【図5】 従来のデバイスの構成の一例を示した一部断面図である。
【符号の説明】
11…光ファイバグレーティング、
12…第1のグレーティング部、13…第2のグレーティング部、
14…第3のグレーティング部、15、16…クラッドモード吸収部。

Claims (1)

  1. コアとその外周上に設けられたクラッドとを備え、該コアを入射方向と同方向に伝搬する導波モードと、該導波モードと同方向に伝搬するクラッドモードとを結合させて損失させる特性を備えた同じ外径と屈折率分布を備えた複数の材料ファイバに形成された、それぞれ損失特性が異なる複数のグレーティング部が、コアとその外周上に設けられたクラッドとを備え、該クラッドにクラッドモードを吸収するドーパントが添加されたそれぞれ前記材料ファイバと同じ外径と屈折率を備えた複数のクラッドモード吸収部を介して接続されており、
    前記クラッドモード吸収部長さは2〜10mmであり、該クラッドモード吸収部において、クラッドモードが30dB以上減衰するものであることを特徴とする光ファイバグレーティング。
JP2000373214A 2000-12-07 2000-12-07 光ファイバグレーティング Expired - Fee Related JP4741069B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373214A JP4741069B2 (ja) 2000-12-07 2000-12-07 光ファイバグレーティング

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373214A JP4741069B2 (ja) 2000-12-07 2000-12-07 光ファイバグレーティング

Publications (2)

Publication Number Publication Date
JP2002174739A JP2002174739A (ja) 2002-06-21
JP4741069B2 true JP4741069B2 (ja) 2011-08-03

Family

ID=18842635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373214A Expired - Fee Related JP4741069B2 (ja) 2000-12-07 2000-12-07 光ファイバグレーティング

Country Status (1)

Country Link
JP (1) JP4741069B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121807A (ja) * 1986-11-11 1988-05-25 Sumitomo Electric Ind Ltd 光フアイバ
JPH09325227A (ja) * 1996-06-06 1997-12-16 Fujikura Ltd 光導波路グレーティング
JPH1062637A (ja) * 1996-08-16 1998-03-06 Sumitomo Electric Ind Ltd 平面導波路型フィルタ
JP3360005B2 (ja) * 1997-06-13 2002-12-24 昭和電線電纜株式会社 光固定減衰器
CA2244572A1 (en) * 1997-08-12 1999-02-12 Photonics Research Ontario Design of complex optical fiber filters using long-period gratings
JP3587679B2 (ja) * 1998-04-24 2004-11-10 沖電気工業株式会社 利得平坦化器及び利得平坦化器を用いた光伝送システム
JP3149921B2 (ja) * 1998-05-18 2001-03-26 住友電気工業株式会社 光損失フィルタおよびその製造方法
JP3769386B2 (ja) * 1998-07-30 2006-04-26 京セラ株式会社 光減衰スタブ及びそれを用いた光減衰器

Also Published As

Publication number Publication date
JP2002174739A (ja) 2002-06-21

Similar Documents

Publication Publication Date Title
KR100387187B1 (ko) 광파이버 그레이팅 소자, 제조 방법 및 광파이버 필터
US6842566B2 (en) Optical fiber with built-in grating and optical fiber for forming grating therein
US6522810B2 (en) Optical loss filter
JPH09236720A (ja) 光信号整形装置
US6501881B2 (en) Device for fabricating polarization insensitive long period fiber grating
CA2383416A1 (en) Fiber bragg grating with cladding mode suppression
JP3966978B2 (ja) 光フィルタおよび光通信システム
WO2002052311A2 (en) Laser pigtail fiber with inherent attenuation characteristic
JP4741069B2 (ja) 光ファイバグレーティング
JP3800743B2 (ja) 長周期グレーティングを備えた光ファイバ及びその製造方法
WO2011122633A1 (ja) 光ファイバグレーティングの製造方法、光ファイバグレーティング及びファイバレーザ
JP4304416B2 (ja) 光ファイバフィルタおよびその製造方法
JP3923364B2 (ja) ファイバグレーティング型光部品
WO2001098803A1 (fr) Selecteur de mode oblique a courte periode
JP4578733B2 (ja) 偏波保持光ファイバを用いた長周期光ファイバグレーティング
US6915042B2 (en) Slanted Bragg grating optical fiber and process for manufacturing such a fiber
WO2001086335A1 (en) Twisted long-period fiber grating and method for reducing polarization dependent loss and shifting wavelength of a long-period fiber grating
JP4002135B2 (ja) ファイバグレーティング型光部品
US6785444B2 (en) Optical fiber grating device
WO2021215232A1 (ja) 利得等化フィルタ及び利得等化フィルタの製造方法
JP3717307B2 (ja) 光ファイバ型光部品
US20220196908A1 (en) Optical fiber and optical fiber filter
JP2000292629A (ja) 光ファイバグレーティングおよび光通信システム
JP4329173B2 (ja) 光導波路グレーティング素子製造方法
JP2002082235A (ja) スラント型短周期グレーティング

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees