JP4719412B2 - 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法 - Google Patents

半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法 Download PDF

Info

Publication number
JP4719412B2
JP4719412B2 JP2003382770A JP2003382770A JP4719412B2 JP 4719412 B2 JP4719412 B2 JP 4719412B2 JP 2003382770 A JP2003382770 A JP 2003382770A JP 2003382770 A JP2003382770 A JP 2003382770A JP 4719412 B2 JP4719412 B2 JP 4719412B2
Authority
JP
Japan
Prior art keywords
drain electrode
electrode
circuit
semiconductor
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382770A
Other languages
English (en)
Other versions
JP2004179648A (ja
Inventor
俊文 中谷
寿史 足立
幸生 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003382770A priority Critical patent/JP4719412B2/ja
Publication of JP2004179648A publication Critical patent/JP2004179648A/ja
Application granted granted Critical
Publication of JP4719412B2 publication Critical patent/JP4719412B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

本発明は、携帯電話等の高周波回路に使用される半導体差動回路、半導体差動回路を使用した発振装置、増幅装置、ミキサ装置、スイッチ装置、半導体差動回路の配置方法に関する。
携帯電話の急速な普及に伴い、その無線部の小型化の必要性が増している。そのため、無線部をIC化することが近年のトレンドである。無線部をIC化するためには、従来個別の部品やモジュールで作られていた発振器や低雑音アンプをIC化する必要がある。
図12は、IC化された従来の発振装置の回路の一例を示す。図12に示す回路において、コイル1002およびコイル1003が直列に接続され、コイル1002およびコイル1003の接続点には、電源1001が接続されている。コイル1002およびコイル1003の直列回路には、直流阻止用コンデンサ1004、1005を介して、スイッチング素子1006、1007が直列に接続された回路、および直流阻止用コンデンサ1025,1026を介して、可変容量素子1008、1009が直列に接続された回路が並列に接続されている。そして上記のように構成される共振回路に、MOSFET1010、1020で形成される負性抵抗回路が接続され、回路全体として差動発振器として形成されている。また、スイッチング素子1006、1007には、制御電圧端子13が接続され、制御電圧端子13に印加される制御電圧により、発振周波数の周波数帯を切り替えることができる。
また、図13は、IC化された従来の増幅装置の回路の一例を示す。図13に示す回路において、コイル1027およびコイル1028が直列に接続され、コイル1027およびコイル1028の接続点には、電源1029が接続されている。コイル1027およびコイル1028の直列回路には、MOSFET1030,1031が接続され、差動増幅器が形成されている。
しかし、図12に示す発振器がシリコン基板(図示せず)上に形成された場合は、MOSFETのドレイン1021側に基板との間に寄生容量1023および寄生抵抗1024が形成される。従って、コイル1003は、高周波信号成分に対しては、図14に示すように、寄生容量1023および寄生抵抗1024の直列回路との並列接続回路と等価となる。このように寄生容量1023および寄生抵抗1024の影響を受けると、共振回路の特性は、図15に示すように、本来実線で示す特性となるべきものが、破線で示すように鈍った特性となってしまう。すなわち、共振回路のQが劣化し、C/Nが劣化していた。
また、図13に示す増幅回路がシリコン基板上に形成された場合も同様に、MOSFETのドレイン1021、1022側に基板との間に寄生容量1023および寄生抵抗1024が形成される。従って高周波信号は、寄生容量1023を介して寄生抵抗1024にリークする。そして、この寄生抵抗の影響により高周波信号の一部が損失する。その結果、ゲートの寄生成分の影響により雑音特性が劣化し、ドレインの寄生成分の影響により歪み特性が劣化していた。
また、シリコン基板上にスイッチング素子が形成された場合も、上記と同様に寄生抵抗および寄生容量が形成され、その結果、スイッチング素子がONされたときの損失につながっていた。また、例えば、上記の発振器と組み合わせて使用される場合、スイッチング素子がONの状態では、共振回路がさらにスイッチング素子を介した寄生抵抗および寄生容量の影響を受けるので、Q値がさらに鈍り特性が劣化してしまう。
そこで、上記の問題を解決するために、いくつかの解決策が示されてきた。例えば、1つの解決策では、半導体素子とシリコン基板の間に酸化膜を形成する構成が提案されてきた(例えば、特許文献1参照。)。このように半導体素子とシリコン基板の間に酸化膜を形成することにより、寄生容量1023を低下させることにより、発振器、低雑音アンプの特性劣化を改善することができる。しかし、現実的には、このような構成とするためには、製造プロセスの変更が必要となり、高コストなプロセスとなっていた。
また、別の解決策では、シリコン基板の不純物濃度を低下させることにより、寄生抵抗1024の抵抗値を増加させる構成が提案されてきた(例えば、特許文献2参照。)。図16は、寄生抵抗1024を変化させたときの、図12に示す発振装置を構成する共振回路のQ値の特性を模式的に示したものである。このような特性は、図12に示す回路において、コイル1002、1003が図14に示す回路に置き換わったものとして、共振回路のコンダクタンス、サセプタンスから導出することができる。図16に示す特性において、寄生抵抗1024が100〜500Ωの範囲において、Q値が特に劣化する。従って、共振回路のQ値を改善するためには、寄生抵抗1024の抵抗値を上記の範囲から増加させるか低下させるかすればよい。従って、上記のようにシリコン基板の不純物濃度を低下させることにより寄生抵抗1024の抵抗値を増加させ、発振回路の特性を改善することができる。また増幅回路においても、寄生抵抗が増加することにより特性劣化を抑制することができる。しかし、この解決策においても、製造プロセスの変更が必要とされ、そのために高コストなプロセスとなっていた。
そこで、さらに別の解決策においては、MOSFETにできるだけ近接させてシリコン基板の接地を取るためのコンタクトを配置する構成も提案されてきた。図17はこのような構成のマルチフィンガータイプのMOSFETの構成を示す平面図である。図17に示す構成において、長手形状を有したソース電極1032が配置され、ソース電極1032に隣接して長手形状のゲート電極1033が配置され、ゲート電極1033に隣接して長手形状のドレイン電極1034が配置されている。そして、ドレイン電極1034に近接して、シリコン基板配線1036に接続されたコンタクタ1035が配置されている。シリコン基板配線1036は接地極に接続されている。このような構成により、ドレイン電極1034から接地極に至る寄生抵抗1024の抵抗値を低下させることができるので、上述した理由により発振回路におけるQ値の特性を改善することができる。また、増幅回路においても、寄生抵抗1024を低下させることによりその特性の劣化を抑制することができる。
特表平11−501466号公報 特開平8−316420号公報
しかし、図17に示す解決策においては、各ドレイン電極1034における寄生抵抗1024を十分に低下させるためには、コンタクタ1035を多数配置することが必要であった。例えば、図12に示す発振回路のMOSFET1010、1020を半導体基板上で実現すると、図18に示す配置となる。このように、コンタクタ1035およびシリコン基板配線1036を設置するための面積が余計に必要となり、ICチップ全体が大型化してしまい、コストアップの要因となっていた。
本発明は、上記の課題を鑑み、ICチップを小型化することができる、半導体差動回路、上記半導体差動回路を用いた発振装置、上記半導体差動回路を用いた増幅装置、上記半導体差動回路を用いたスイッチ装置、上記半導体差動回路を用いたミキサ装置、上記半導体差動回路を用いた回路装置、および半導体差動回路の配置方法を提供することを目的とするものである。
上記課題を解決するために、第1の本発明は、半導体基板と、
前記半導体基板上に形成され、差動信号のうち一方の信号が伝達される第1のゲート電極、および前記第1のゲート電極により制御された、差動信号のうちの一方を出力する第1のドレイン電極を有する第1の半導体素子と、
前記半導体基板上に形成され、前記差動信号のうち他方の信号が伝達される第2のゲート電極、および前記第2のゲート電極により制御された、差動信号のうちの他方の信号を出力する第2のドレイン電極を有する第2の半導体素子と、を備え、
所定の周波数において、前記第1のドレイン電極が、第1の所定の抵抗を介して接地され、かつ、前記第2のドレイン電極が、前記第1の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、前記第1のドレイン電極と、前記第2のドレイン電極とが近接して配置され、
前記第1の半導体素子および前記第2の半導体素子がそれぞれマルチフィンガータイプのFETであり、前記第1のドレイン電極の長手方向に沿って前記第2のドレイン電極の長手方向が近接して配置され、
前記半導体基板上にソース電極が形成され、
前記第1のゲート電極は、前記ソース電極の長手方向に沿って前記ソース電極に隣接して配置され、
前記第1のドレイン電極は、前記第1のゲート電極の長手方向に沿って、前記ソース電極とは反対側に前記第1のゲート電極に隣接して配置され、
前記第2のドレイン電極は、前記第1のドレイン電極の長手方向に沿って、前記第1のゲート電極とは反対側に前記第1のドレイン電極と近接して配置され、
前記第2のゲート電極は、前記第2のドレイン電極の長手方向に沿って、前記第1のドレイン電極とは反対側に前記第2のドレイン電極に隣接して配置され、
前記ソース電極、前記第1のゲート電極、前記第1のドレイン電極、前記第2のドレイン電極、および前記第2のゲート電極で構成される回路を単位回路として備え、
前記単位回路が互いに隣接してn個配置され、
i(iは1以上n−1以下)番目の単位回路の前記第2のゲート電極が、i+1番目の単位回路の前記ソース電極に隣接して配置され、
前記n個の第1のドレイン電極は互いに接続され、前記n個の第2のドレイン電極は互いに接続され、前記n個の第1のゲート電極は互いに接続され、前記n個の第2のゲート電極は互いに接続され、前記n個のソース電極は互いに接続されている、半導体差動回路である。
第2の本発明は、前記第1の所定の抵抗の抵抗値は、前記所定の周波数において、前記第1のドレイン電極と前記第2のドレイン電極との間隔により決定される、前記半導体基板を介した、前記第1のドレイン電極と前記第2のドレイン電極との間に形成される抵抗値の半分である、第1の本発明の半導体差動回路である。
第3の本発明は、第1の本発明の半導体差動回路を用いた発振装置である。
第4の本発明は、第1の本発明の半導体差動回路を用いたスイッチ装置である。
第5の本発明は、第1の本発明の半導体差動回路を用いた増幅装置である。
第6の本発明は、半導体基板上に、差動信号のうち一方の信号が伝達される第1のドレイン電極、および前記一方の信号を制御するための第1のゲート電極を有する第1の半導体素子を形成する工程と、
前記半導体基板上に、前記差動信号のうち他方の信号が伝達される第2のドレイン電極、および前記他方の信号が伝達される第2のゲート電極を有する第2の半導体素子を形成する工程と
前記半導体基板上に、ソース電極を形成する工程と、を備え、
所定の周波数において、前記第1のドレイン電極が、第1の所定の抵抗を介して接地され、かつ、前記第2のドレイン電極が、前記第1の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、前記第1のドレイン電極と、前記第2のドレイン電極とを近接して配置し、
前記第1の半導体素子および前記第2の半導体素子がそれぞれマルチフィンガータイプのFETであり、前記第1のドレイン電極の長手方向に沿って前記第2のドレイン電極の長手方向を近接して配置し、
前記第1のゲート電極を、前記ソース電極の長手方向に沿って前記ソース電極に隣接して配置し、
前記第1のドレイン電極を、前記第1のゲート電極の長手方向に沿って、前記ソース電極とは反対側に前記第1のゲート電極に隣接して配置し、
前記第2のドレイン電極を、前記第1のドレイン電極の長手方向に沿って、前記第1のゲート電極とは反対側に前記第1のドレイン電極と近接して配置し、
前記第2のゲート電極を、前記第2のドレイン電極の長手方向に沿って、前記第1のドレイン電極とは反対側に前記第2のドレイン電極に隣接して配置し、
前記ソース電極、前記第1のゲート電極、前記第1のドレイン電極、前記第2のドレイン電極、および前記第2のゲート電極で構成される回路を単位回路として、
前記単位回路を互いに隣接してn個配置し、
i(iは1以上n−1以下)番目の単位回路の前記第2のゲート電極を、i+1番目の単位回路の前記ソース電極に隣接して配置し、
前記n個の第1のドレイン電極を互いに接続し、前記n個の第2のドレイン電極を互いに接続し、前記n個の第1のゲート電極を互いに接続し、前記n個の第2のゲート電極を互いに接続し、前記n個のソース電極を互いに接続する、半導体差動回路の配置方法である。
第7の本発明は、第1の本発明の半導体差動回路を用いたミキサ装置である。
第8の本発明は、第1の本発明の半導体差動回路を用いた、FETのソースを共有する回路装置である。
本発明によれば、ICチップを小型化することができる、半導体差動回路、上記半導体差動回路を用いた発振装置、上記半導体差動回路を用いた増幅装置、上記半導体差動回路を用いたスイッチ装置、上記半導体差動回路を用いたミキサ装置、上記半導体差動回路を用いた回路装置、および半導体差動回路の配置方法を提供することができる。
(実施の形態1)
図1は、本発明に関連する発明の実施の形態1の、マルチフィンガータイプの半導体差動回路の平面図(図1(a))、および断面図(図1(b))である。図1に示す半導体差動回路は、半導体基板1上に、長手形状の第1のドレイン電極D1が配置され、ドレイン電極D1の両側にドレイン電極D1に隣接して長手形状のゲート電極G1が配置され、それぞれのゲート電極G1に隣接して長手形状のソース電極Sが配置されている。ソース電極S、ゲート電極G1、ドレイン電極D1、ゲート電極G1、およびソース電極Sが配列された構成を、第1の半導体素子の構成とする
また、半導体基板1上には、長手形状の第2のドレイン電極D2が配置され、ドレイン電極D2の両側にドレイン電極D2に隣接して長手形状のゲート電極G2が配置され、それぞれのゲート電極2に隣接して長手形状のソース電極Sが配置されている。ソース電極S、ゲート電極G2、ドレイン電極D2、ゲート電極G2、およびソース電極Sが配列された構成を、第2の半導体素子の構成とする
ここで、上記の、第1の半導体素子および第2の半導体素子で構成される回路を第1の単位回路とすると、図1に示す回路は、一番目の第1の単位回路と2番目の第1の単位回路が隣接して配置された構成である。図1において、上記第1の半導体素子の右端のソース電極Sと、上記第2の半導体素子の左端のソース電極は、共有化されている。また、一番目の第1の単位回路の右端のソース電極Sと、2番目の第1の単位回路の左端のソース電極も共有化されている。
このとき、ドレイン電極D1およびドレイン電極D2は、できるだけ近接して配置される。また、ドレイン電極D1には、差動信号の一方の信号が入力され、ドレイン電極D2には、差動信号の他方の信号が入力される。また第1の単位回路において、各ドレイン電極D1は互いに接続され、各ドレイン電極D2は互いに接続され、各ゲート電極G1は互いに接続され、各ゲート電極G2は互いに接続されている。
次に、上記のように構成された図1に記載の半導体差動回路の動作について説明する。ドレイン電極D1に差動信号の一方が伝達され、ドレイン電極D2に差動信号の他方が伝達されると、ドレイン電極D1およびドレイン電極D2から電気長が等しい点(以下電気的中点という。)においては、差動信号が互いに打ち消し合うため接地されていることと等価となる。例えば図1(b)を参照しながら説明すると、ドレイン電極D1およびドレイン電極D2は、高周波領域において、寄生容量2および寄生抵抗3を介して接続されているものと見なすことができる。ドレイン電極D1およびドレイン電極D2は半導体基板1上に同様のプロセスで形成されるので寄生容量2は等しいと見ることができる。従って、ドレイン電極D1、D2の間の半導体基板1を介する寄生抵抗3の中点、すなわち半導体基板1内において、ドレイン電極D1およびドレイン電極D2の電気的中点4においては、接地されていることと等価(以下仮想接地という。)となる。従って、半導体基板1内において、ドレイン電極D1およびドレイン電極D2の間隔により決定される抵抗をRとすると、ドレイン電極D1およびドレイン電極D2は、それぞれR/2の抵抗(本発明の第1の所定の抵抗値に対応)を介して接地されたものと等価となる。
このように、本実施の形態の半導体差動回路によれば、接地側に接続されたコンタク1035が必要とされることなく接地を取ることができ、コンタクタ1035およびシリコン基板配線1036のための接地面積が不要となり、ICチップを小型化することができる。さらに、寄生抵抗3の値を半分にすることができるので、さらに寄生抵抗3の抵抗値を低下させることができる。その結果、共振器のQ値を高めることができ、発振装置、増幅装置の特性劣化を改善することができる。
なお、図1に示す構成では、第1の半導体素子は、ドレイン電極D1の両側にゲート電極G1がそれぞれ配置される構成であるとして説明したが、第1の半導体素子は、ドレイン電極D1の片側にゲート電極G1が配置される構成であってもよい。その場合は、第1の半導体素子は、ゲート電極G1に隣接したソース電極を1つ有する構成となる。また、第2の半導体素子についても上記第1の半導体素子と同様の構成となる。
また、上記では、第1の単位回路における、各ドレイン電極D1どうし、各ドレイン電極D2どうし、各ゲート電極G1どうし、各ゲート電極G2どうしは、それぞれ互いに接続されている、としたが、各ドレイン電極D1どうし、各ドレイン電極D2どうし、各ゲート電極G1どうし、各ゲート電極G2どうしは、それぞれ互いに接続されない構成も考えられる。その場合は、1番目の第1の単位回路は2番目の第1の単位回路に直列に接続されるように構成されてもよい。すなわち、1番目の第1の単位回路の第1の半導体素子の出力側は、2番目の第1の単位回路の第1の半導体素子の入力側に接続され、1番目の第1の単位回路の第2の半導体素子の出力側は、2番目の第1の単位回路の第2の半導体素子の入力側に接続される構成であってもよい。
また、上記は、第1の単位回路が2つ接続された構成を有する場合を示したが、第1の単位回路がn(nは2以上)個接続される構成であってもよい。その場合は、i(iは1以上n−1以下)番目の第1の単位回路に隣接してi+1番目の第1の単位回路が配置される構成であればよい。
(実施の形態2)
図2は、本発明の実施の形態2のマルチフィンガータイプの半導体差動回路の構成を示す平面図(図2(a))、および断面図(図2(b))である。図2に示す半導体差動回路は、半導体基板1上に形成された本発明のソース電極の一例であるソース電極Sと、ソース電極Sの長手方向に沿ってソース電極Sに隣接して配置される、本発明の第1のゲート電極の一例であるゲート電極G1と、ゲート電極G1の長手方向に沿って、ソース電極Sとは反対側にゲート電極G1に隣接して配置される、本発明の第1のドレイン電極の一例であるドレイン電極D1と、ドレイン電極D1の長手方向に沿って、ゲート電極G1とは反対側にドレイン電極D1と近接して配置される、本発明の第2のドレイン電極の一例であるドレイン電極D2と、ドレイン電極D2の長手方向に沿って、ドレイン電極D1とは反対側にドレイン電極D2に隣接して配置される、本発明の第2のゲート電極の一例であるゲート電極G2と、を備えている。
ソース電極S、ゲート電極G1、ドレイン電極D1、ドレイン電極D2、およびゲート電極G2が配列された構成は、本発明の単位回路を形成する一例である(この構成を第2の単位回路とする)
また第2の単位回路におけるドレイン電極D1どうしは互いに接続され、ドレイン電極D2どうしは互いに接続され、ゲート電極G1どうしは互いに接続され、ゲート電極G2どうしは互いに接続されている。
本実施の形態の半導体差動回路によれば、ドレイン電極D1とドレイン電極D2との間には、他の電極が挿入されない構成なので、ドレイン電極D1およびドレイン電極D2は、実施の形態1の半導体差動回路における場合よりも、より近接させることができ、さらに共振器のQ値を高めることができる。したがって、本実施の形態の半導体差動回路によれば、発振装置、増幅装置の特性劣化をさらに改善することができる。
なお、図2に示す構成は、第2の単位回路が2つ配置された例を示したが、本実施の形態の半導体差動回路は、n(nは2以上)個の第2の単位回路により構成されてもよい。その場合は、i(iは1以上n−1以下)番目の第2の単位回路に隣接してi+1番目の第2の単位回路が配置される構成であればよい。そして、i番目の第2の単位回路のゲート電極G2がi+1番目の単位回路のソース電極Sに隣接して配置される構成であればよい。
なお、以上までの実施の形態1および2の説明において、ドレイン電極D1、ドレイン電極D2は、その長手方向が近接するように配置されるとして説明してきたが、ドレイン電極D1およびドレイン電極D2は、他の方向が互いに近接して配置される構成であってもよい。例えば図9は、ドレイン電極D1およびドレイン電極D2の先端部を近接させた構成を示す。このような構成においても、ドレイン電極D1およびドレイン電極D2の電気的中点(すなわち距離的中点)は、仮想接地点となり、ドレイン電極D1、ドレイン電極D2ともに上記と同様、寄生抵抗値R/2を介して接地側と接続されている状態と等価となり上記の場合と同様の効果を得ることができる。
また、上記では、第2の単位回路における、各ドレイン電極D1どうし、各ドレイン電極D2どうし、各ゲート電極G1どうし、各ゲート電極G2どうしは、それぞれ互いに接続されている、としたが、各ドレイン電極D1どうし、各ドレイン電極D2どうし、各ゲート電極G1どうし、各ゲート電極G2どうしは、それぞれ互いに接続されない構成も考えられる。その場合は、1番目の第2の単位回路は2番目の第2の単位回路に直列に接続されるように構成されてもよい。すなわち、1番目の第2の単位回路の第1の半導体素子の出力側は、2番目の第2の単位回路の第1の半導体素子の入力側に接続され、1番目の第2の単位回路の第2の半導体素子の出力側は、2番目の第2の単位回路の第2の半導体素子の入力側に接続される構成であってもよい。
また、以上の説明までのFETは、マルチフィンガータイプのものであるとしてきたが、他のタイプのFETであってもよく、その場合も上記と同様の効果を得ることができる。
(実施の形態3)
図3は、本発明に関連する発明の実施の形態3の半導体差動回路の構成を示す平面図である。図3に示す半導体差動回路は、矩形状のドレイン電極D1およびドレイン電極D1’、矩形状のドレイン電極D2およびドレイン電極D2’を有する。そして、ドレイン電極D1、D1’をそれぞれ囲むように配置される、ゲート電極G1、ゲート電極G1’を有し、ドレイン電極D2、D2’をそれぞれ囲むように配置される、ゲート電極G2、ゲート電極G2’を有する。
そして、ゲート電極G1およびゲート電極G1’の間、ならびにゲート電極G2およびゲート電極G2’の間には、長手形状のソース電極S1が配置され、ゲート電極G1およびゲート電極G2の間、ならびにゲート電極G1’およびゲート電極G2’の間には、ソース電極S1と交差するように接続されている長手形状のソース電極S2が配置されている。
そして、ゲート電極G1、G1’、G2、G2’、およびソース電極S1、S2を囲むようにソース電極S3が配置されている。ソース電極S1およびソース電極S2は、ソース電極S3に接続されている
ここで、ドレイン電極D1およびドレイン電極D2は、それらを結ぶ中点(または中線)が仮想接地点(または仮想接地線)となるように近接して配置される。同様に、ドレイン電極D1’、D2’についても近接して配置される。従って、上記の仮想接地線は、ソース電極S2にほぼ沿って上下に延びる。
このような本実施の形態の半導体差動回路によれば、各ドレイン電極は、各ゲート電極により囲まれる構成であればよいので、各ドレイン電極は、充分小さい面積を有して構成することができる。各ドレイン電極の面積を小さくすることにより半導体基板1との寄生容量2を減少させることができるので、さらに特性劣化の少ない発振回路、増幅回路を構成することができる。
なお、上記の説明では、仮想接地線がソース電極S2に沿った構成であるとして説明したが、仮想接地線がソース電極S1に沿って形成されるような構成であってもよい。
さらに、仮想接地線がソース電極S1およびソース電極S2にそれぞれ沿って形成される構成であってもよい。その場合の構成例を図4に示す。図4に示す半導体差動回路は、図3に示す半導体差動回路のドレイン電極D1およびドレイン電極D1’が対角状に配置され、ドレイン電極D2およびドレイン電極D2’が対角状に配置される構成を有する。すなわち、ドレイン電極D1と、ドレイン電極D2との間にソース電極S2が配置され、ドレイン電極D1’と、ドレイン電極D2’との間に、ソース電極S2が配置され、ドレイン電極D1とドレイン電極D2’との間には、ソース電極S2に接続されたソース電極S1が配置され、ドレイン電極D1’とドレイン電極D2との間には、ソース電極S1が配置されている。
各ドレイン電極をこのように配置することにより、仮想中線は、ソース電極S2とソース電極S1にほぼ沿って形成される。このように仮想中線が増加することは、各ドレインと接地側とがより広い範囲で寄生抵抗値R/2を介して接続されることになるので、図4に示す半導体差動回路によれば、より特性劣化の少ない発振回路、増幅回路を構成することができる。
また、本実施の形態の上記の説明において、各ドレイン電極は矩形状であるとしてきたが、各ドレイン電極が、各ゲート電極により囲まれる形状であればどのような形状であってもよく、その場合も上記と同様の効果を得ることができる。
また、上記の説明において、例えば図3の例では、ドレイン電極が4個ある構成であるが、他の個数であってもよい。その場合は、各ドレイン電極を囲むように各ゲート電極が配置され、第1のゲート電極と第2のゲート電極との間にソース電極が配置される構成であればよい。そのような場合も上記と同様の効果を得ることができる。
また、図5に示す構成は、図4に示す構成からソース電極S1およびソース電極S2を除去した構成である。図5に示す構成においては、各ゲート電極の形状は、各ドレイン電極を囲む形状ではなく、各ゲート電極は、各ドレイン電極とソース電極S3とにより挟まれる配置である。すなわち、ドレイン電極D1、およびドレイン電極D2が近接して配置され、ドレイン電極D1’、およびドレイン電極D2’が近接して配置され、ドレイン電極D1およびドレイン電極D2’が近接して配置され、ドレイン電極D1’およびドレイン電極D2が近接して配置されている。
このような構成の半導体差動回路によると、各ドレイン電極の間にソース電極S1、S2が存在しないので、各ドレイン電極をより近接して配置することが可能となり、寄生抵抗3をさらに低下させることができる。従って図5に示す半導体差動回路を用いれば、より特性劣化の少ない発振回路、増幅回路を提供することができる。なお、この場合各ドレイン電極の数、形状、配置は、図5に示すものに限定されず、第1のドレイン電極と第2のドレイン電極とが近接して配置され、各ドレイン電極および各ゲート電極を囲むようにソース電極が配置される構成であれば、他の数、形状、配置であってもよく、その場合も上記と同様の効果を得ることができる。
(実施の形態4)
図6は、本発明に関連する発明の実施の形態4の半導体差動回路の構成を示す断面図である。本実施の形態の半導体差動回路は、上記の実施の形態1〜3までの半導体差動回路をバイポーラトランジスタで構成したものである。図6(a)に示す半導体差動回路は、コレクタC1が半導体基板1上にウェル状に形成され、ベースB1がコレクタC1上にウェル状に形成され、エミッタEがベースB1上にウェル状に形成されている。このとき、コレクタC1には差動信号のうちの一方の信号が入力され、コレクタC1、ベースB1、エミッタEは、第1の半導体素子を形成している。
コレクタC1に隣接して、コレクタC2がウェル状に形成され、コレクタC2上に、ベースB2がウェル状に形成され、ベースB2上には、エミッタEがウェル状に形成されている。このとき、コレクタC2には差動信号のうちの他方の信号が入力され、コレクタC2、ベースB2、エミッタEは、第2の半導体素子を形成している。そして、コレクタC1およびコレクタC2の間には、絶縁層5が設けられているが、コレクタC1およびコレクタC2は、できるだけ近接して配置される。また第1の半導体および第2の半導体は、そのコレクタがC1C2C2C1の順に繰り返し配置されるように配置される。
その結果、コレクタC1は、高周波信号成分に対して、半導体基板1内のコレクタC1およびコレクタC2の距離により決定される寄生抵抗値R’の半分の抵抗値R’/2で接地されることと等価となり、またコレクタC2は、同様に抵抗値R’/2で接地されることと等価となる。その結果、上記の実施の形態1〜3の場合と同様に、共振回路のQ値を高めることができる。
図6(b)は、別の例のバイポーラトランジスタで構成された半導体差動回路を示す。図6(b)に示す半導体差動回路は、第1の半導体および第2の半導体が、そのコレクタがC1C2C1C2の順に繰り返し配置されるように配置されている。このような構成によれば、図6(a)に示す構成による場合よりも、電気的中点4’が多く形成されるので、より特性劣化の少ない発振装置、増幅装置を提供することができる。
なお、上記では、各コレクタが半導体基板1上にウェルとして形成される構成を説明したが、各ベースが半導体基板1上にウェルとして形成される構成であってもよい。その場合、図6(a)、図6(b)における各コレクタの位置に各ベースが配置され、各ベースの位置に各エミッタが配置され、各エミッタの位置に各コレクタが配置される構成となる。図7は、そのような場合の半導体差動回路の上部から見た平面図を示す。そして、ベースB1およびベースB2が近接される構成となり、上記と同様の効果を得ることができる。
また、図8に示すように、差動信号の一方が伝達されるベースB1およびベースB1’を対角上に配置し、差動信号の他方の信号が伝達されるベースB2およびベースB2’を対角上に配置する構成も考えられる。このような構成によっても上記と同様の効果を得ることができる。
実施の形態に説明した半導体差動回路を用いた発振装置、増幅装置も本発明の範疇に属する。図10は、本発明の半導体差動回路を用いた発振装置の回路構成例を示す。図10に示す回路は、図12に示す回路において、スイッチング素子1006、1007から構成される部分を本発明の半導体差動回路11に置き換え、MOSFET1010,1020から構成される部分を本発明の半導体差動回路12に置き換えたものである。半導体差動回路11には、制御電圧端子13が接続され、制御電圧端子13に印加される制御電圧により、発振周波数の周波数帯を切り替えることができる。また、半導体差動回路12においては、上述のように寄生抵抗値が小さくなっているので、共振回路のQ値を高く取ることができ、発振回路の特性の劣化を抑制することができる。
図11は、本発明の半導体差動回路を用いた増幅装置の回路構成例を示す。図11に示す回路は、図13に示す回路において、MOSFET1030、1031から構成される部分を本発明の半導体差動回路13に置き換えたものである。このような増幅装置によれば、上述のように寄生抵抗による損失を低下させることができ、増幅装置の劣化を抑制することができる。
また、本発明の半導体差動回路をスイッチング装置として利用した場合、スイッチング素子がON時の寄生抵抗、寄生容量による損失を低下させることができる。また、例えばスイッチ装置と上述の発回路を組み合わせて使用する場合は、発回路の特性劣化を抑制することができる。
(実施の形態5)
本発明に関連する発明の実施の形態5の半導体差動回路について説明する。図19はダブルバランスミキサの回路構成を示している。同図において、1901、1902はバイポーラトランジスタ、1903、1904、1905、1906は、MOSFETであり、1907は定電流源、1908、1909、1910、1911はインダクタである。入力ノードP1+、P1−から差動信号が入力され、入力された差動信号はバイポーラトランジスタ1901、1902で増幅される。その出力信号はソース電極S1、ソース電極S2に接続される各ノードに入力される。すなわち、上記出力信号の一方は、MOSFET1903およびMOSFET1904が共有するソース電極S1に入力され、上記出力信号の他方は、MOSFET1905およびMOSFET1906が共有するソース電極S2に入力される。
入力ノードP3+、P3−から入力された局部発振信号はゲート電極G1、ゲート電極G2に接続される各ノードに入力され、MOSFET1903〜1906でミキシングされる。すなわち、差動信号である局部発振信号の一方は、MOSFET1903およびMOSFET1905が共有するゲート電極G1に入力され、上記局部発振信号の他方は、MOSFET1904およびMOSFET1906が共有するゲート電極G2に入力される。
そして、ソース電極S1から入力された差動信号の一方が、MOSFET1903のゲート電極G1に入力された差動局部発振信号の一方により制御されることにより、両者のミキシング信号が差動信号の一方としてドレイン電極D1から出力される。また、ソース電極S2から入力された差動信号の他方が、MOSFET1905のゲート電極G2に入力された差動局部発振信号の他方により制御されることにより、両者のミキシング信号が差動信号の一方としてドレイン電極D1から出力される。
同様に、ソース電極S1から入力された差動信号の一方が、MOSFET1904のゲート電極G2に入力された差動局部発振信号の一方により制御されることにより、両者のミキシング信号が差動信号の他方としてドレイン電極D2から出力される。また、ソース電極S2から入力された差動信号の他方が、ゲート電極G1に入力された差動局部発振信号の一方により制御されることにより、両者のミキシング信号が差動信号の他方としてドレイン電極D2から出力される。
このようにMOSFET1903〜1906から、ミキシングにより周波数変換された信号がP2+、P2−ノードに出力される。
次にMOSFET1903〜1906の構成について説明する。図20(a)はMOSFET1903〜1906の平面図であり、図20(b)は、MOSFET1903〜1906の断面図である。これらの図においてS1、S2、G1、G2、D1、D2は図19における同名の各電極に相当する。また図20(a)の破線内が単位セル(この構成を第3の単位回路とする)となっており、繰り返し配置される。
すなわち、ゲート電極G1は、ソース電極S1の長手方向に沿ってソース電極S1に隣接して配置され、ドレイン電極D1は、ゲート電極G1の長手方向に沿って、ソース電極S1とは反対側にゲート電極G1に隣接して配置され、ゲート電極G2は、ドレイン電極D1の長手方向に沿って、ゲート電極G1とは反対側にドレイン電極D1に隣接して配置され、ソース電極S2は、ゲート電極G2の長手方向に沿って、ドレイン電極D1とは反対側にゲート電極G2に隣接して配置される。ゲート電極G1は、ソース電極S2の長手方向に沿って、ゲート電極G2とは反対側にソース電極S2に隣接して配置され、ドレイン電極D2は、ゲート電極G1の長手方向に沿って、ソース電極S2とは反対側にゲート電極G1に隣接して配置される。ゲート電極G2は、ドレイン電極D2の長手方向に沿って、ゲート電極G1とは反対側にドレイン電極D2に隣接して配置され。ソース電極S1、ソース電極S2、ゲート電極G1、ゲート電極G2、電極ドレイン電極D1、およびドレイン電極D2を有する回路が第3の単位回路として構成され、第3の単位回路が互いに隣接してn個配置され、i(iは1以上n−1以下)番目の第3の単位回路のゲート電極G2が、i+1番目の単位回路のソース電極S1に隣接して配置され、n個のドレイン電極D1は互いに接続され、n個のドレイン電極D2は互いに接続され、n個のゲート電極G1は、互いに接続され、n個のゲート電極G2は互いに接続され、n個のソース電極S1は、互いに接続され、n個のソース電極S2は互いに接続されている。
このような構成により、出力の差動対であるドレイン電極D1、D2に加え、ゲート電極G1、G2およびソース電極S1、S2が近接して対称に配置されることとなる。
すなわち、上記混合された差動信号の周波数において、ドレイン電極D1が、第1の所定の抵抗を介して接地され、かつ、ドレイン電極D2が、第1の所定の抵抗と同抵抗値の抵抗を介して接地されたものと等価となるように、ドレイン電極D1と、ドレイン電極D2とが近接して配置される。
ここで第1の所定の抵抗の抵抗値とは、混合された差動信号の周波数において、ドレイン電極D1とドレイン電極D2との間隔により決定される、半導体基板1を介した、ドレイン電極D1とドレイン電極D2との間に形成される抵抗値の半分である。
その結果、各ノードから仮想接地までのシリコン基板における損失は低減され、増幅回路の場合と同様にダブルバランスミキサの雑音特性、歪み特性が改善される。
さらに、上記所定の差動局部発振信号の周波数において、ゲート電極G1が、第3の所定の抵抗を介して接地され、かつ、ゲート電極G2が、第3の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、ゲート電極G1と、ゲート電極G2とが近接して配置されている場合は、さらにシリコン基板における損失は低減され、ダブルバランスミキサの雑音特性、歪み特性が改善される。
ここで、第3の所定の抵抗の抵抗値とは、差動局部発振信号の周波数において、ゲート電極G1とゲート電極G2との間隔により決定される、半導体基板1を介した、ゲート電極G1とゲート電極G2との間に形成される抵抗値の半分である。
さらに、上記局部発振信号と混合されるべき差動信号の周波数において、ソース電極S1が、第4の所定の抵抗を介して接地され、かつ、ソース電極S2が、第4の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、ソース電極S1と、ソース電極S2とが近接して配置されている場合は、さらにシリコン基板における損失は低減され、ダブルバランスミキサの雑音特性、歪み特性が改善される。
ここで、第4の所定の抵抗の抵抗値とは、前記混合されるべき差動信号の周波数において、ソース電極S1とソース電極S2との間隔により決定される、半導体基板1を介した、ソース電極S1とソース電極S2との間に形成される抵抗値の半分である。
なお、本実施の形態において、典型例では、第1の半導体素子、第2の半導体素子、第3の半導体素子、および第4の半導体素子はそれぞれマルチフィンガータイプのFETである。ドレイン電極D1の長手方向に沿ってドレイン電極D2の長手方向が近接して配置される。ゲート電極G1とゲート電極G2が近接して配置される場合は、ゲート電極G1の長手方向に沿ってゲート電極G2の長手方向が近接して配置される。さらに、ソース電極S1とソース電極S2が近接して配置される場合は、ソース電極S1の長手方向に沿ってソース電極S2の長手方向が近接して配置される。
しかし、上記の第1の半導体素子、第2の半導体素子、第3の半導体素子、および第4の半導体素子はそれぞれマルチフィンガータイプのFETでなくてもよい。例えば、図3〜5に示す構成であってもよい。その場合でも、ドレイン電極D1とドレイン電極D2、ゲート電極G1とゲート電極G2、ソース電極S1とソース電極S2、の少なくもいずれかのペアが互いに近接して配置されていれば、上記と同様の効果を得ることができる。
また、本実施の形態においては、ダブルバランスミキサを例示して説明したが、ダブルバランスミキサに限らず、本発明の半導体差動回路を用いて、各FETのソースを共有する回路装置を含むようにしてもよい
さらに、各MOSFETの代わりにバラポーラトランジスタが使用されることも考えられる。
また、以上までの説明における図示の回路は、各半導体がp型としての動作を示しているが、これに限らず、n型でも同様の効果を得ることができることは言うまでない。
本発明にかかる、半導体差動回路によれば、ICチップを小型化することができ、発振装置、増幅装置、スイッチ装置、ミキサ装置等において有用である。
(a)本発明に関連する発明の実施の形態1の半導体差動回路の構成を示す平面図である(b)本発明に関連する発明の実施の形態1の半導体差動回路の構成を示す断面図である (a)本発明の実施の形態2の半導体差動回路の構成を示す平面図である(b)本発明の実施の形態2の半導体差動回路の構成を示す断面図である 本発明に関連する発明の実施の形態3の半導体差動回路の構成を示す平面図である 本発明に関連する発明の実施の形態3の半導体差動回路の構成を示す平面図である 本発明に関連する発明の実施の形態3の半導体差動回路の構成を示す平面図である (a)本発明に関連する発明の実施の形態4の半導体差動回路の構成を示す断面図である(b)本発明に関連する発明の実施の形態4の半導体差動回路の構成を示す断面図である 本発明に関連する発明の実施の形態4の半導体差動回路の構成を示す平面図である 本発明に関連する発明の実施の形態4の半導体差動回路の構成を示す平面図である 本発明に関連する発明の実施の形態1の半導体差動回路の別の構成を示す平面図である 本発明の半導体差動回路を用いた発振装置の回路構成を示す図である 本発明の半導体差動回路を用いた増幅装置の回路構成を示す図である 従来技術の発振装置の回路構成を示す図である 従来技術の増幅装置の回路構成を示す図である 従来技術の発振装置または増幅装置における寄生成分の影響を考慮した回路要素の等価回路である 従来技術または本発明における発振装置に使用される共振回路における共振周波数特性のQ値の変化による影響を示す図である 従来技術または本発明における発振装置に使用される共振回路におけるQ値の寄生抵抗による影響を示す図である 従来技術のマルチフィンガータイプのFETの構成を示す平面図である 従来技術のマルチフィンガータイプのFETを差動構成とするときの配置を示す平面図である 本発明に関連する発明の実施の形態5の半導体差動回路を用いたミキサ装置の構成を示す回路図である (a)本発明に関連する発明の実施の形態5の半導体差動回路の構成を示す平面図である(b)本発明に関連する発明の実施の形態5の半導体差動回路の構成を示す断面図である
符号の説明
1 半導体基板
2 寄生容量
3 寄生抵抗
4 電気的中点
D1、D1’、D2、D2’ ドレイン電極
G1、G1’、G2、G2’ ゲート電極
S、S1、S2、S3 ソース電極
11,12,13 半導体差動回路

Claims (8)

  1. 半導体基板と、
    前記半導体基板上に形成され、差動信号のうち一方の信号が伝達される第1のゲート電極、および前記第1のゲート電極により制御された、差動信号のうちの一方を出力する第1のドレイン電極を有する第1の半導体素子と、
    前記半導体基板上に形成され、前記差動信号のうち他方の信号が伝達される第2のゲート電極、および前記第2のゲート電極により制御された、差動信号のうちの他方の信号を出力する第2のドレイン電極を有する第2の半導体素子と、を備え、
    所定の周波数において、前記第1のドレイン電極が、第1の所定の抵抗を介して接地され、かつ、前記第2のドレイン電極が、前記第1の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、前記第1のドレイン電極と、前記第2のドレイン電極とが近接して配置され、
    前記第1の半導体素子および前記第2の半導体素子がそれぞれマルチフィンガータイプのFETであり、前記第1のドレイン電極の長手方向に沿って前記第2のドレイン電極の長手方向が近接して配置され、
    前記半導体基板上にソース電極が形成され、
    前記第1のゲート電極は、前記ソース電極の長手方向に沿って前記ソース電極に隣接して配置され、
    前記第1のドレイン電極は、前記第1のゲート電極の長手方向に沿って、前記ソース電極とは反対側に前記第1のゲート電極に隣接して配置され、
    前記第2のドレイン電極は、前記第1のドレイン電極の長手方向に沿って、前記第1のゲート電極とは反対側に前記第1のドレイン電極と近接して配置され、
    前記第2のゲート電極は、前記第2のドレイン電極の長手方向に沿って、前記第1のドレイン電極とは反対側に前記第2のドレイン電極に隣接して配置され、
    前記ソース電極、前記第1のゲート電極、前記第1のドレイン電極、前記第2のドレイン電極、および前記第2のゲート電極で構成される回路を単位回路として備え、
    前記単位回路が互いに隣接してn個配置され、
    i(iは1以上n−1以下)番目の単位回路の前記第2のゲート電極が、i+1番目の単位回路の前記ソース電極に隣接して配置され、
    前記n個の第1のドレイン電極は互いに接続され、前記n個の第2のドレイン電極は互いに接続され、前記n個の第1のゲート電極は互いに接続され、前記n個の第2のゲート電極は互いに接続され、前記n個のソース電極は互いに接続されている、半導体差動回路。
  2. 前記第1の所定の抵抗の抵抗値は、前記所定の周波数において、前記第1のドレイン電極と前記第2のドレイン電極との間隔により決定される、前記半導体基板を介した、前記第1のドレイン電極と前記第2のドレイン電極との間に形成される抵抗値の半分である、請求項1に記載の半導体差動回路。
  3. 請求項1に記載の半導体差動回路を用いた発振装置。
  4. 請求項1に記載の半導体差動回路を用いたスイッチ装置。
  5. 請求項1に記載の半導体差動回路を用いた増幅装置。
  6. 半導体基板上に、差動信号のうち一方の信号が伝達される第1のドレイン電極、および前記一方の信号を制御するための第1のゲート電極を有する第1の半導体素子を形成する工程と、
    前記半導体基板上に、前記差動信号のうち他方の信号が伝達される第2のドレイン電極、および前記他方の信号が伝達される第2のゲート電極を有する第2の半導体素子を形成する工程と
    前記半導体基板上に、ソース電極を形成する工程と、を備え、
    所定の周波数において、前記第1のドレイン電極が、第1の所定の抵抗を介して接地され、かつ、前記第2のドレイン電極が、前記第1の所定の抵抗と同じ抵抗値の抵抗を介して接地されたものと等価となるように、前記第1のドレイン電極と、前記第2のドレイン電極とを近接して配置し、
    前記第1の半導体素子および前記第2の半導体素子がそれぞれマルチフィンガータイプのFETであり、前記第1のドレイン電極の長手方向に沿って前記第2のドレイン電極の長手方向を近接して配置し、
    前記第1のゲート電極を、前記ソース電極の長手方向に沿って前記ソース電極に隣接して配置し、
    前記第1のドレイン電極を、前記第1のゲート電極の長手方向に沿って、前記ソース電極とは反対側に前記第1のゲート電極に隣接して配置し、
    前記第2のドレイン電極を、前記第1のドレイン電極の長手方向に沿って、前記第1のゲート電極とは反対側に前記第1のドレイン電極と近接して配置し、
    前記第2のゲート電極を、前記第2のドレイン電極の長手方向に沿って、前記第1のドレイン電極とは反対側に前記第2のドレイン電極に隣接して配置し、
    前記ソース電極、前記第1のゲート電極、前記第1のドレイン電極、前記第2のドレイン電極、および前記第2のゲート電極で構成される回路を単位回路として、
    前記単位回路を互いに隣接してn個配置し、
    i(iは1以上n−1以下)番目の単位回路の前記第2のゲート電極を、i+1番目の単位回路の前記ソース電極に隣接して配置し、
    前記n個の第1のドレイン電極を互いに接続し、前記n個の第2のドレイン電極を互いに接続し、前記n個の第1のゲート電極を互いに接続し、前記n個の第2のゲート電極を互いに接続し、前記n個のソース電極を互いに接続する、半導体差動回路の配置方法。
  7. 請求項1に記載の半導体差動回路を用いたミキサ装置。
  8. 請求項1に記載の半導体差動回路を用いた、FETのソースを共有する回路装置。
JP2003382770A 2002-11-15 2003-11-12 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法 Expired - Fee Related JP4719412B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382770A JP4719412B2 (ja) 2002-11-15 2003-11-12 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002332688 2002-11-15
JP2002332688 2002-11-15
JP2003382770A JP4719412B2 (ja) 2002-11-15 2003-11-12 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法

Publications (2)

Publication Number Publication Date
JP2004179648A JP2004179648A (ja) 2004-06-24
JP4719412B2 true JP4719412B2 (ja) 2011-07-06

Family

ID=32716258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382770A Expired - Fee Related JP4719412B2 (ja) 2002-11-15 2003-11-12 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法

Country Status (1)

Country Link
JP (1) JP4719412B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113359A1 (en) * 2013-11-28 2017-01-04 ams AG Amplifier arrangement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053579B2 (ja) * 2006-06-28 2012-10-17 寛治 大塚 静電気放電保護回路
JP5398841B2 (ja) 2009-09-29 2014-01-29 株式会社東芝 電力増幅器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119724A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 電圧制御発振器及びこれを用いた無線通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188160A (ja) * 1983-04-08 1984-10-25 Hitachi Ltd 半導体集積回路装置
JPS6381054A (ja) * 1986-09-24 1988-04-11 Seikosha Co Ltd プリンタヘツド
JP2904787B2 (ja) * 1988-02-22 1999-06-14 株式会社日立製作所 ミクサ回路
JPH088264B2 (ja) * 1988-06-30 1996-01-29 株式会社東芝 半導体集積回路
US5315136A (en) * 1993-01-04 1994-05-24 Rohm Co., Ltd. Double-balanced mixer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119724A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 電圧制御発振器及びこれを用いた無線通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113359A1 (en) * 2013-11-28 2017-01-04 ams AG Amplifier arrangement
US9813026B2 (en) 2013-11-28 2017-11-07 Ams Ag Amplifier arrangement

Also Published As

Publication number Publication date
JP2004179648A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
US7071786B2 (en) Cascode circuit and integrated circuit having it
US7928517B2 (en) High frequency transistor layout for low source drain capacitance
US7525407B2 (en) Integrated circuit having integrated inductors
US7847638B2 (en) Cascoded circuit
US6992532B2 (en) IGFET and tuning circuit
EP1732211B1 (en) Distributed amplifier
JP2007335808A (ja) 半導体装置
US7079829B2 (en) Semiconductor differential circuit, oscillation apparatus, switching apparatus, amplifying apparatus, mixer apparatus and circuit apparatus using same, and semiconductor differential circuit placement method
JPH11308059A (ja) 高周波増幅装置
US20050280096A1 (en) Split source RF MOSFET device
JP3043250B2 (ja) ゲートアレイ用アナログ出力駆動回路
JP2011249485A (ja) スイッチング素子、高周波信号スイッチ及び高周波信号増幅モジュール
US11211909B2 (en) Adjustable capacitors to improve linearity of low noise amplifier
JP4719412B2 (ja) 半導体差動回路、それを用いた発振装置、増幅装置、スイッチ装置、ミキサ装置、回路装置、半導体差動回路の配置方法
US7030698B2 (en) High-frequency power amplifier
KR100874772B1 (ko) 스위치, 부성 저항부 및 이를 이용하는 차동 전압 제어발진기
US6664609B2 (en) High frequency differential amplification circuit with reduced parasitic capacitance
US20230282644A1 (en) Layout design for rf circuit
JP2008021949A (ja) 半導体素子及びこれを備える通信機器
JPH11283994A (ja) マルチフィンガー型電界効果トランジスタ
US20020153592A1 (en) Semiconductor device having bipolar transistors
US7199669B2 (en) Dual gate cascade amplifier
JPH07123210B2 (ja) 差動増幅素子
JP2008130581A (ja) 半導体装置およびそれを用いた無線通信装置
JP2020035819A (ja) 増幅装置及び無線通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees