JP4714243B2 - 一酸化炭素除去触媒の活性化方法 - Google Patents
一酸化炭素除去触媒の活性化方法 Download PDFInfo
- Publication number
- JP4714243B2 JP4714243B2 JP2008144686A JP2008144686A JP4714243B2 JP 4714243 B2 JP4714243 B2 JP 4714243B2 JP 2008144686 A JP2008144686 A JP 2008144686A JP 2008144686 A JP2008144686 A JP 2008144686A JP 4714243 B2 JP4714243 B2 JP 4714243B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon monoxide
- gas
- catalyst
- removal catalyst
- monoxide removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Catalysts (AREA)
Description
しかし、固体高分子型燃料電池に供する燃料ガスを製造する燃料改質装置にあっては、固体高分子型燃料電池が約80℃という低温で作動することから、微量の一酸化炭素によって電極触媒が被毒されてしまうために、更に前記一酸化炭素を低減する必要があり、前記一酸化炭素変成器の下流に、一酸化炭素を酸化除去する一酸化炭素除去触媒を収容した一酸化炭素除去器を設けて、前記一酸化炭素変成器で処理された前記燃料ガスに、空気等の酸化剤を添加してこれに導入し、この一酸化炭素除去触媒の存在下で、一酸化炭素を二酸化炭素に酸化し、一酸化炭素濃度を所定濃度以下(例えば、100ppm以下)にまで低減した燃料ガスを得ていた。
これらの副反応は、前記一酸化炭素除去触媒の反応温度が高い(例えば200℃以上)と起こり易い傾向にあるため、前記一酸化炭素除去触媒は、理想的には100℃程度の低温で使用することが好ましい。
また、前記一酸化炭素除去触媒を、水素を主成分とするガスを用いて活性化するとすれば、やはり、水素を消費することになり、また、前記一酸化炭素除去触媒の活性化のためだけに高濃度の水素ガスを多量に必要とするので手間がかかるという問題点があった。さらには、この活性化処理に用いられたガスを系外に排出するにあたり、水素の爆発限界範囲(4〜75体積%)の濃度になる虞れがあるので、後処理を必要とするという問題点があった。
これによって、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、前記一酸化炭素除去触媒の活性化のためだけに、高濃度の水素ガスを多量に用意する手間が省ける。
ここで、前記不活性ガスとは、それ単体では、前記一酸化炭素除去触媒と反応しないガスをいう。
従って、前記水素ガスを窒素等の不活性ガスで10体積%以下に希釈したガスで、前記一酸化炭素除去触媒を活性化することができることは従来知られておらず、同一組成のガスで、前記アルコールの改質触媒、一酸化炭素変成触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができることは、本願発明者らが見出した新知見である。
このようにすると、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記一酸化炭素変成触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
この活性化を80℃以上で行なうと、図2〜4及び表1に示すように、例えば、改質ガス製造時において、前記燃料ガス中の一酸化炭素濃度を、大幅に減少させることができる。なお、400℃以上で行なうと加熱に要するエネルギーが過大となる上、触媒をシンタリングさせてしまうおそれがあるので、80〜400℃の範囲で行なうことが好ましい。
更に好ましくは、前記活性化の温度が120〜250℃であると、前記燃料ガス中の一酸化炭素濃度を反応開始初期から100ppm以下にまで低減することができるので好ましい(図2〜4及び表1参照)。
また、水素ガスを10体積%以下含む不活性ガスにより活性化した場合は80〜250℃で活性化することによって、前記燃料ガス中の一酸化炭素濃度を、5000ppmから50或いは100ppm以下にまで削減することができる(図2〜4及び表1参照)。更には、120〜250℃で活性化することによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表1参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる。
また、前記特徴手段において、請求項2に記載されているように、前記不活性ガスが、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素ガスから選ばれる少なくとも1種のガスを含んでなるものであれば、比較的安価で入手・保管も容易であり、また、前記一酸化炭素除去触媒以外の部材を構成する材質とも反応し難いので、腐食等の弊害を招き難い。
ここで、前記混合ガスにより前記一酸化炭素除去触媒を、80〜250℃の温度で活性化させると、改質ガス中の一酸化炭素濃度を100ppm以下にまで削減することができる(図2〜4及び表1参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記一酸化炭素除去器の運転開始時から、前記固体高分子型燃料電池に供給可能な前記燃料ガスを得ることができる。更には、120〜250℃の温度で活性化させることによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表1参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる。
図1は、本発明に係る一酸化炭素除去触媒の活性化方法を実施可能な燃料改質装置を示す。この燃料改質装置は、天然ガスを原燃料として、固体高分子型燃料電池に供する水素を主成分とする燃料ガスを製造するものであって、前記原燃料を供給する原燃料供給系1(たとえば、ガスボンベやガス管から配管を通じて前記原燃料を供給する)、脱硫触媒や脱硫剤が内装された脱硫器2、改質触媒が内装された改質器4、一酸化炭素変成触媒が内装された一酸化炭素変成器5及び前記一酸化炭素除去触媒が内装された一酸化炭素除去器6が、夫々配管を通じて連接されていて、これらを通過して改質された改質ガスは、固体高分子型燃料電池7に供給される。尚、本願においては、前記燃料改質装置と固体高分子型燃料電池7とをあわせて燃料電池システムという。
前記原燃料供給系1から供給された天然ガスは、前記脱硫器2を通過する際に、前記脱硫触媒(例えば、Ni−Mo系触媒やCo−Mo系触媒)により硫黄化合物が水素化され、ZnOと接触して硫黄分が除去される。そして、水蒸気発生器3から供給される水蒸気と混合された後に、前記改質器4に搬送されて、ここで、前記改質触媒(例えば、Ni系触媒やRu系触媒)と接触して、前記天然ガス中のメタン等の炭化水素が水素に改質される。このようにして得られたガスは、水素に富むもの、副生成物としての一酸化炭素を十数体積%含むので、前記固体高分子型燃料電池7に直接供給することができない。そこで、前記一酸化炭素変成器5において、銅−亜鉛系触媒のような一酸化炭素変成触媒と接触させて、一酸化炭素を二酸化炭素に変成させて、所定値にまで一酸化炭素濃度を下げ、更に温度調整手段6aを備えた前記一酸化炭素除去器6において、前記酸化剤供給手段9から供給される酸化剤(たとえば、酸素を含む空気)とともに、前記一酸化炭素除去触媒(例えば、ルテニウム、白金、ロジウム、パラジウム等の貴金属をアルミナ等の担体に担持したもの)と接触させて、一酸化炭素を酸化除去して二酸化炭素として、最終的には、所定の濃度以下とする。
前記活性化は80〜400℃の範囲で行なうことが好ましい。さらには、前記一酸化炭素除去触媒の活性化は、120〜250℃で行なうことが好ましく、また、有限値以上10体積%以下の水素ガスを含み残余ガスが不活性ガスにより活性化した場合は、前記一酸化炭素除去触媒の活性化を80〜250℃で行なうことが好ましく、更には120〜250℃で行なうことが好ましい。
つまり、前記一酸化炭素変成器5と前記一酸化炭素除去器6とを、前記配管で接続した状態で、前記不活性ガスに、10体積%以下の水素ガスを混合したガスを通気しながら、前記一酸化炭素変成器5と前記一酸化炭素除去器6とを、夫々の還元、活性化に適した温度に保持して、還元操作、活性化操作を行なうことができる。このようにすると、活性化(還元)ガスを1種類だけ用意すれば足りる。
直径2〜4mmのアルミナ球を担体とし、この担体にルテニウム(Ru)を担持したRu/アルミナ触媒(一酸化炭素除去触媒)8ccを、ステンレス鋼製の反応管に充填して、一酸化炭素除去器を作成した。この一酸化炭素除去器は、前記反応管を外部から加熱可能なヒータ及び冷却可能な冷却器を備えた温度調節手段を備えていて、前記反応管の温度を制御可能に構成してある。
この一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は1.0重量%)に、前記一酸化炭素除去触媒を活性化するための混合ガス(水素6%、窒素94%)を、1000cc/分の流量で導入しながら、前記温度調節手段により、反応管温度が250℃になるまで昇温し、250℃で1.5時間保持した(前処理)。
この前処理の後、前記反応管の温度を100℃にまで降温させて、そのまま100℃に保ち、処理ガスを、空間速度(GHSV)7500/時間となるように、前記反応器に導入して、一酸化炭素の酸化除去反応を行なった。尚、前記処理ガスとしては、前記一酸化炭素変成器の出口ガスに、酸素/一酸化炭素のモル比が1.6となるように、空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.8%、窒素3.1%、水5%、水素でバランス)を用いた。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図2に示す。
前記一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は1.0重量%)に、前記一酸化炭素除去触媒を活性化するための混合ガス(水素10体積%、窒素90体積%)を、1000cc/分の流量で導入しながら、前記ヒータにより、反応管温度が200℃になるまで昇温し、200℃で2時間保持した(前処理)。
この前処理の後、前記反応管の温度を110℃にまで降温させて、そのまま110℃に保ち、前記処理ガスを、空間速度(GHSV)7500/時間となるように、前記反応管に導入して、一酸化炭素の酸化除去反応を行なった。尚、前記処理ガスとしては、前記一酸化炭素変成器の出口ガスに、酸素/一酸化炭素のモル比が1.6となるように、空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.8%、窒素3.1%、水20%、水素でバランス)を用いた(以下、特に記載のない限り、この組成のガスを「処理ガス」という。)。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図3に示す。
前記一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は0.5重量%)を用いて、一酸化炭素の酸化除去反応時の温度を120℃とした以外は、前記実施例2と同様に処理したものを、実施例3とした。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図4に示す。
前記一酸化炭素除去器に前処理を施していない以外は、前記実施例1〜3と同様に一酸化炭素の酸化除去反応を行なったものを、夫々比較例1〜3とした。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、それぞれ図2〜4に示す。
前処理に用いるガス種と、処理温度について検討した。
前記一酸化炭素除去器に充填された一酸化炭素除去触媒を、前記一酸化炭素除去触媒を活性化するため、水素ガスを10体積%含む窒素ガス(混合ガス)流下で、80〜250℃に保ち、2時間処理した。これらに、酸素/一酸化炭素のモル比が1.7となるように、前記一酸化炭素変成器の出口ガスに空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.85%、窒素3.4%、水20%、水素でバランス)を、空間速度(GHSV)7500/時間となるように導入して、前記反応管温度を110℃に保って、一酸化炭素の酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、表1に示す。
かかる条件で活性化を施すと、前記一酸化炭素除去器の運転開始直後から、前記固体高分子型燃料電池に直接供給可能な改質ガスが得られるので改質ガスの製造効率を向上させることができ、その活性化温度も低くてすむので熱発生量を抑制することができる点で好ましいことがわかった。
以下に別実施形態を説明する。
本発明に係る一酸化炭素除去器は、その上流に設けられる器材を、特に選ばない。従って、前記燃料ガス改質装置で用いる脱硫触媒、改質触媒、一酸化炭素変成触媒は、その種類を限定する必要はなく、公知のものを使用することができる。
また、本法は、前述したような、天然ガス(メタン)を改質する場合のみならず、メタノール改質により得られた改質ガスに含まれる一酸化炭素を除去する場合にも使用することができる。ここで、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを活性化に用いれば、前記一酸化炭素除去器を設置すべき燃料改質装置に備えられる他の触媒、例えば、一酸化炭素変成触媒や、アルコール(例えば、メタノール)を改質する場合に用いるアルコール(メタノール)改質触媒の活性化(還元)に使用する代表的な還元ガスとしても使用することができる。従って、前述した一酸化炭素変成触媒やアルコール改質触媒の還元ガスを、同時に、前記一酸化炭素除去触媒の活性化ガスとして共用することができ、また、前記一酸化炭素除去触媒の活性化温度を低下させることができるので熱発生量が少なくてすむ。
なお、前記不活性ガスとして窒素を用いたが、ヘリウムガス、アルゴンガス、二酸化炭素ガスを使用しても、比較的安価で入手・保管も容易であり、また、前記一酸化炭素除去触媒以外の部材を構成する材質とも反応し難いので、腐食等の弊害を招き難い等の効果が得られる。
6 一酸化炭素除去器
7 固体高分子型燃料電池
Claims (3)
- 水素を主成分とする燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、触媒がシンタリングを起こす温度未満である400℃未満の温度範囲で、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスと接触させて活性化する一酸化炭素除去触媒の活性化方法。
- 前記不活性ガスが、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素ガスから選ばれる少なくとも1種のガスを含んでなる請求項1に記載の一酸化炭素除去触媒の活性化方法。
- 前記水素を主成分とする燃料ガスが、炭化水素類又はアルコール類を改質して得られる改質ガスである請求項1又は2に記載の一酸化炭素除去触媒の活性化方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008144686A JP4714243B2 (ja) | 2008-06-02 | 2008-06-02 | 一酸化炭素除去触媒の活性化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008144686A JP4714243B2 (ja) | 2008-06-02 | 2008-06-02 | 一酸化炭素除去触媒の活性化方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000281936A Division JP4240787B2 (ja) | 2000-09-18 | 2000-09-18 | 一酸化炭素除去触媒の活性化方法及び一酸化炭素除去器の運転方法並びに燃料電池システムの運転方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008264781A JP2008264781A (ja) | 2008-11-06 |
JP4714243B2 true JP4714243B2 (ja) | 2011-06-29 |
Family
ID=40045031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008144686A Expired - Lifetime JP4714243B2 (ja) | 2008-06-02 | 2008-06-02 | 一酸化炭素除去触媒の活性化方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4714243B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101430162B1 (ko) | 2012-03-16 | 2014-08-14 | 삼성중공업 주식회사 | 연료 전지 시스템 및 이를 구비한 선박 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0930802A (ja) * | 1995-05-15 | 1997-02-04 | Toyota Motor Corp | 一酸化炭素濃度低減装置及びメタノール濃度低減装置並びに燃料改質装置 |
JP2001129401A (ja) * | 1999-11-04 | 2001-05-15 | Ne Chemcat Corp | 水素含有ガス中の一酸化炭素選択酸化触媒並びに該触媒を用いた一酸化炭素除去方法及び固体高分子電解質型燃料電池システム |
-
2008
- 2008-06-02 JP JP2008144686A patent/JP4714243B2/ja not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0930802A (ja) * | 1995-05-15 | 1997-02-04 | Toyota Motor Corp | 一酸化炭素濃度低減装置及びメタノール濃度低減装置並びに燃料改質装置 |
JP2001129401A (ja) * | 1999-11-04 | 2001-05-15 | Ne Chemcat Corp | 水素含有ガス中の一酸化炭素選択酸化触媒並びに該触媒を用いた一酸化炭素除去方法及び固体高分子電解質型燃料電池システム |
Also Published As
Publication number | Publication date |
---|---|
JP2008264781A (ja) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7658908B2 (en) | Method of removing carbon monoxide and operating a fuel cell system | |
JP5065605B2 (ja) | 水素製造装置および燃料電池システム並びにその運転方法 | |
JP2008518870A (ja) | 燃料電池システムでの使用のために燃料原料を前処理するための前処理アセンブリ | |
JP4284028B2 (ja) | 一酸化炭素除去方法及びこれを用いた燃料電池システムの運転方法 | |
JP2008501607A (ja) | ハイブリッド式水性ガスシフト反応装置 | |
JP4240787B2 (ja) | 一酸化炭素除去触媒の活性化方法及び一酸化炭素除去器の運転方法並びに燃料電池システムの運転方法 | |
JP3865479B2 (ja) | 一酸化炭素除去システム及び一酸化炭素の除去方法 | |
WO2000053696A1 (fr) | Systeme et procede de suppression du monoxyde de carbone | |
JP2001180912A (ja) | 水素精製装置 | |
US20040241509A1 (en) | Hydrogen generator and fuel cell system | |
JP4714243B2 (ja) | 一酸化炭素除去触媒の活性化方法 | |
JP2000256003A (ja) | 水素リッチガス中のco除去方法 | |
JP2006190586A (ja) | Co選択酸化反応器の使用方法 | |
JP2006076839A (ja) | 水素精製装置およびそれを用いた燃料電池システム | |
JP2003277013A (ja) | 一酸化炭素除去方法及び固体高分子型燃料電池システム | |
JP2015196610A (ja) | 一酸化炭素除去方法および固体高分子形燃料電池システム | |
US20120114537A1 (en) | Reformer | |
JP2002085983A5 (ja) | ||
JP5809049B2 (ja) | 燃料電池用水蒸気改質触媒の使用方法及び水素製造システム | |
JP4506429B2 (ja) | 一酸化炭素除去触媒の活性回復方法、燃料電池発電装置の運転方法、及び水素発生装置の運転方法 | |
JP2001068136A (ja) | 固体高分子型燃料電池システム及びその運転方法 | |
JP2006257351A (ja) | ガス化ガス後処理用触媒反応器及び該触媒反応器を用いたシステム並びにガス化ガス後処理方法 | |
JP4663095B2 (ja) | 水素精製装置 | |
JP4521970B2 (ja) | 一酸化炭素除去触媒及びこれを用いた一酸化炭素の除去方法 | |
JP4820106B2 (ja) | Co選択酸化触媒の還元方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4714243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |