JP4711158B2 - Low temperature fired ceramic circuit board - Google Patents

Low temperature fired ceramic circuit board Download PDF

Info

Publication number
JP4711158B2
JP4711158B2 JP2001204522A JP2001204522A JP4711158B2 JP 4711158 B2 JP4711158 B2 JP 4711158B2 JP 2001204522 A JP2001204522 A JP 2001204522A JP 2001204522 A JP2001204522 A JP 2001204522A JP 4711158 B2 JP4711158 B2 JP 4711158B2
Authority
JP
Japan
Prior art keywords
low
thick film
fired ceramic
film resistor
temperature fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001204522A
Other languages
Japanese (ja)
Other versions
JP2003023233A (en
Inventor
昌志 深谷
俊博 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001204522A priority Critical patent/JP4711158B2/en
Publication of JP2003023233A publication Critical patent/JP2003023233A/en
Application granted granted Critical
Publication of JP4711158B2 publication Critical patent/JP4711158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、Ag−Pd導体とガラスとの混合物を主成分とする厚膜抵抗体が形成された低温焼成セラミック回路基板に関するものである。
【0002】
【従来の技術】
800〜1000℃で焼成する低温焼成セラミック回路基板は、セラミックと同時焼成する配線導体として、電気的特性に優れたAg系導体等の低融点金属を使用できると共に、アルミナ基板と比較して誘電率が低く、信号処理の高速化に対応できる等の利点がある。この低温焼成セラミック回路基板に厚膜抵抗体を形成する場合は、RuO2 系の厚膜抵抗体ペーストを用いることが多いが、温度変化の影響を受けにくい安定した抵抗特性が要求される回路では、厚膜抵抗体の抵抗温度係数(TCR)を例えば±100ppm/℃以内にすることが要求される場合がある。
【0003】
シート抵抗値が50〜300mΩ/□の厚膜抵抗体を形成する場合、RuO2 系の厚膜抵抗体では上記の要求を満たすことができないため、Ag−Pd導体とガラスとの混合物からなる抵抗体材料を用いて抵抗温度係数の小さい厚膜抵抗体を形成するようにしている。
【0004】
一般に、Ag−Pd導体の抵抗温度係数は、Ag又はPdを単独で用いる場合よりも小さくなり、AgとPdの配合比が、Ag:Pd=50:50の付近で抵抗温度係数が最も小さくなる。この特性から、Ag−Pd導体を主導電体成分とする厚膜抵抗体は、Ag:Pd=50:50の付近で用いられる場合が多い。
【0005】
【発明が解決しようとする課題】
ところが、低温焼成セラミック回路基板に形成する電極導体(厚膜配線導体)は、電気的特性を良くするために、Ag導体、又は、10重量%以下のPdを含むAg−Pd導体により形成する場合が多い。このような電極導体上にAg−Pd系の厚膜抵抗体を印刷して焼成すると、電極導体と厚膜抵抗体とのPd含有量が大きく異なるため、焼成時に電極導体中のAg原子がAg含有量の少ない厚膜抵抗体中に拡散して、電極導体内部がポーラス化(多孔質化)する現象が発生する。その結果、電極導体と低温焼成セラミック基板との接合強度が弱くなって、信頼性が悪くなるという欠点がある。
【0006】
この対策として、電極導体と厚膜抵抗体との間に、Ag拡散防止のための中間導体層として、両者の中間的な20〜30重量%のPdを含むAg−Pd導体層を形成したり、或は、電極導体(厚膜配線導体)にガラス成分を多く配合して、電極導体とセラミック基板との接合強度を大きくするようにしていた。
【0007】
しかし、電極導体と厚膜抵抗体との間に、Ag−Pdの中間導体層を形成する場合は、印刷工程が増加すると共に、20〜30重量%のPdを含むAg−Pd導体が新たに必要となり、コストアップするという欠点がある。また、電極導体(厚膜配線導体)のガラス含有量を多くすると、電極導体(厚膜配線導体)の導通抵抗が大きくなり、回路の電気的特性が悪くなってしまうという欠点がある。
【0008】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、Ag−Pd系の厚膜抵抗体を接続する電極導体(厚膜配線導体)と低温焼成セラミック基板との接合強度を向上して信頼性を確保しながら、コスト低減と電気的特性向上の要求も満たすことができる低温焼成セラミック回路基板を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、上記目的を達成するために、本発明の請求項1の低温焼成セラミック回路基板は、低温焼成セラミック基板の表面に形成された電極導体と、この電極導体に接合するように形成された厚膜抵抗体とを備えたものにおいて、前記電極導体を、Ag導体又はPd含有量が10重量%以下のAg−Pd導体により形成し、前記厚膜抵抗体をAg−Pd導体とガラスとの混合物に前記低温焼成セラミック基板を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料を5重量%以上添加した抵抗体材料により形成したものである。
【0010】
このように、低温焼成セラミック基板と同種の低温焼成セラミック材料を5重量%以上添加した抵抗体材料を用いて厚膜抵抗体を形成すれば、焼成時に厚膜抵抗体から電極導体側に低温焼成セラミック材料が拡散し、厚膜抵抗体と電極導体との間に低温焼成セラミック材料の中間層が形成される。この中間層が電極導体から厚膜抵抗体へのAg拡散を防止する役割を果たし、Ag拡散による電極導体内部のポーラス化が防止され、電極導体と低温焼成セラミック基板との接合強度の低下が防止される。
【0011】
しかも、厚膜抵抗体には、低温焼成セラミック基板と同種の低温焼成セラミック材料が5重量%以上添加されているので、厚膜抵抗体と低温焼成セラミック基板との熱膨張係数の差が小さくなり、厚膜抵抗体と低温焼成セラミック基板との接合部に作用する熱応力が小さくなる。しかも、焼成時に低温焼成セラミック基板から厚膜抵抗体側にしみ出したガラス成分と厚膜抵抗体のガラス成分とが同種であるため、両方のガラス成分が融合して、厚膜抵抗体と低温焼成セラミック基板との接合強度が増加する。また、焼成時に低温焼成セラミック基板の表面にしみ出したガラス成分が電極導体(厚膜配線導体)を接着する接着剤の役割を果たし、電極導体(厚膜配線導体)の接合強度も確保される。
【0012】
この場合、Ag−Pd系の厚膜抵抗体は、AgとPdの配合比が、Ag:Pd=50:50の付近で抵抗温度係数が最小になる特性があることから、請求項2のように、厚膜抵抗体の全導体の合計含有量に対するPd含有量を40重量%以上にすると良い。このようにすれば、厚膜抵抗体の抵抗温度係数を最小値に近付けることができ、温度変化の影響を受けにくい安定した抵抗特性を実現することができる。尚、厚膜抵抗体のPd含有量が多くなって、電極導体と厚膜抵抗体とのPd含有量の差が大きくなっても、前述したように、焼成時に厚膜抵抗体から電極導体側に低温焼成セラミック材料が拡散して、厚膜抵抗体と電極導体との間に低温焼成セラミック材料の中間層が形成されるため、この中間層によって電極導体から厚膜抵抗体へのAg拡散が防止され、Ag拡散による電極導体と低温焼成セラミック基板との接合強度の低下が防止される。
【0013】
また、請求項3のように、低温焼成セラミック材料は、CaO−SiO2 −Al2 3 −B2 3 系ガラス粉末とAl2 3 粉末との混合物を用いるようにしても良い。この低温焼成セラミック材料は、低誘電率、低熱膨張係数の特長があり、信号処理の高速化に対応した高性能のセラミック回路基板を形成できると共に、該低温焼成セラミック材料を厚膜抵抗体に5重量%以上添加しても、厚膜抵抗体の抵抗温度係数が増加せず、温度変化の影響を受けにくい安定した抵抗特性を得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態を図1に基づいて説明する。低温焼成セラミック基板11は、800〜1000℃で焼成した低温焼成セラミック材料で形成され、複数枚の低温焼成セラミックのグリーンシートを積層して焼成した多層基板又は単層基板のいずれであっても良い。この低温焼成セラミック基板11を形成する低温焼成セラミック材料としては、例えばCaO−SiO2 −Al2 3 −B2 3 系ガラス粉末:50〜65重量%(好ましくは60重量%)とAl2 3 粉末:50〜35重量%(好ましくは40重量%)との混合物を用いると良い。この他、例えば、MgO−SiO2 −Al2 3 −B2 3 系ガラス粉末とAl2 3 粉末との混合物、SiO2 −B2 3 系ガラス粉末とAl2 3 粉末との混合物、PbO−SiO2 −B2 3 系ガラス粉末とAl2 3 粉末との混合物、コージェライト系結晶化ガラス等の800〜1000℃で焼成できる低温焼成セラミック材料を用いても良い。
【0015】
低温焼成セラミック基板11の表面(又は裏面)には、Ag導体又はPd含有量が10重量%以下のAg−Pd導体のペーストを用いて、表層配線導体12と電極導体13が印刷・焼成されている。この表層配線導体12と電極導体13は、低温焼成セラミック基板11と同時焼成しても良く、或は、低温焼成セラミック基板11の焼成後に後付けで表層配線導体12と電極導体13を印刷・焼成しても良い。
【0016】
ここで、表層配線導体12や電極導体13をAg−Pd導体で形成する場合、PdはAgのマイグレーションを抑制する役割を果たすが、Pd含有量が10重量%よりも多くなると、半田付け性が悪くなったり、導通抵抗値が大きくなるため、Pd含有量が10重量%以下(Ag含有量が90重量%以上)とすることが望ましい。
【0017】
また、低温焼成セラミック基板11の表面(又は裏面)には、一対の電極導体13間に跨がって厚膜抵抗体14が印刷・焼成されている。この厚膜抵抗体14は、Ag−Pd導体とガラスとの混合物に低温焼成セラミック基板11を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料を5重量%以上添加した抵抗体材料のペーストにより形成されている。更に、この厚膜抵抗体14は、全導体の合計含有量に対するPd含有量が40重量%以上に設定されている。この厚膜抵抗体14は、AgとPdの配合比が、Ag:Pd=50:50の付近で抵抗温度係数が最小になる特性があることから、厚膜抵抗体14のPd含有量を40〜60重量%にすれば、厚膜抵抗体14の抵抗温度係数が最小値近付の値となり、温度変化の影響を受けにくい安定した抵抗特性が得られる。
【0018】
この厚膜抵抗体14は、表層配線導体12や電極導体13と同時焼成したり、或は、表層配線導体12や電極導体13の焼成後に、厚膜抵抗体14を印刷・焼成しても良い。
【0019】
例えば、低温焼成セラミック基板11を形成する低温焼成セラミック材料が、CaO−SiO2 −Al2 3 −B2 3 系ガラス粉末とAl2 3 粉末との混合物により形成されている場合には、厚膜抵抗体14には、CaO−SiO2 −Al2 3 −B2 3 系ガラス粉末とAl2 3 粉末との混合物を5重量%以上添加すると良い。この際、低温焼成セラミック基板11と厚膜抵抗体14とで、全く同一の組成・配合比の低温焼成セラミック材料を用いることが望ましいが、低温焼成セラミック基板11と厚膜抵抗体14とで、ガラス粉末とAl2 3 粉末との配合比が少し異なる低温焼成セラミック材料を用いても良いことは言うまでもない。低温焼成セラミック材料のガラス粉末とAl2 3 粉末との配合比が少しぐらい異なっても、同じ組成のガラス粉末とAl2 3 粉末が配合されていれば、低温焼成セラミック材料の性質がほぼ同じになるためである。また、低温焼成セラミック基板11と厚膜抵抗体14とで、低温焼成セラミック材料のガラス成分の主成分が同じであれば、そのガラス成分の添加物等が若干異なっていても良い。
【0020】
以上説明した本実施形態の構成では、低温焼成セラミック基板11以上説明した本実施形態の構成では、低温焼成セラミック基板11を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料を5重量%以上添加した抵抗体材料を用いて厚膜抵抗体14を形成したので、焼成時に厚膜抵抗体14から電極導体13側に低温焼成セラミック材料が拡散し、厚膜抵抗体14と電極導体13との間に低温焼成セラミック材料の中間層が形成される。この中間層が電極導体13から厚膜抵抗体14へのAg拡散を防止する役割を果たし、Ag拡散による電極導体13内部のポーラス化が防止され、電極導体12と低温焼成セラミック基板11との接合強度の低下が防止される。
【0021】
しかも、厚膜抵抗体14には、低温焼成セラミック基板11を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料が5重量%以上添加されているので、厚膜抵抗体14と低温焼成セラミック基板11との熱膨張係数の差が小さくなり、厚膜抵抗体14と低温焼成セラミック基板11との接合部に作用する熱応力が小さくなる。しかも、焼成時に低温焼成セラミック基板11から厚膜抵抗体14側にしみ出したガラス成分と厚膜抵抗体14のガラス成分とが同種であるため、両方のガラス成分が融合して、厚膜抵抗体14と低温焼成セラミック基板11との接合強度が増加する。また、焼成時に低温焼成セラミック基板11の表面にしみ出したガラス成分が電極導体13(表層配線導体12)を接着する接着剤の役割を果たし、電極導体13(表層配線導体12)の接合強度も確保される。
【0022】
従って、本実施形態では、厚膜抵抗体14と電極導体13との間に、両者の中間的な20〜30重量%のPdを含むAg−Pd導体層を形成しなくても、電極導体13から厚膜抵抗体14へのAg拡散を防止できて、電極導体12と低温焼成セラミック基板11との接合強度を確保できるので、印刷工程が増加せず、しかも、中間層を形成する専用のAg−Pd導体ペーストが不要となり、コストアップせずに済む。しかも、電極導体13(表層配線導体12)のガラス含有量を多くしなくても、電極導体12と低温焼成セラミック基板11との接合強度を確保できるので、電極導体13(表層配線導体12)の導通抵抗値が大きくならずに済み、回路の電気的特性が悪化せずに済む。これにより、回路の信頼性向上、コスト低減、電気的特性向上の要求を全て満たすことができる。
【0023】
【実施例】
本発明者は、電極導体13のPd含有量、厚膜抵抗体14のPd含有量、厚膜抵抗体14の低温焼成セラミック材料添加量の適正範囲を評価する試験を行ったので、その試験結果を次の表1に示す。
【0024】
【表1】

Figure 0004711158
【0025】
この試験で用いた低温焼成セラミック材料は、CaO−SiO2 −Al2 3 −B2 3 系ガラス粉末:60重量%とAl2 3 粉末:40重量%との混合物であり、表1の各サンプル#1〜#18は、焼成後の低温焼成セラミック基板11に後付けで電極導体13と厚膜抵抗体14を印刷・焼成したものである。この試験では、各サンプル#1〜#18を液体窒素に浸して極低温に冷却した後に、各サンプル#1〜#18を液体窒素から取り出して抵抗値変化率を測定する液体窒素ディップテストを行い、抵抗値変化率が1%以下のものを合格(○)とし、抵抗値変化率が1%より大きいものを不合格(×)とした。
【0026】
従来のように、焼成時に電極導体13中のAg原子が厚膜抵抗体14中に拡散して、電極導体13の内部がポーラス化(多孔質化)すると、電極導体13と低温焼成セラミック基板11との間の接合強度が弱くなって、液体窒素ディップテストで電極導体13と低温焼成セラミック基板11との接合部にクラックや剥離が発生しやすくなり、その結果、抵抗値変化率が1%より大きくなる。
【0027】
表1の各サンプル#1〜#18は、電極導体13のPd含有量が0重量%、5重量%、10重量%のいずれかであり、厚膜抵抗体14の全導体の合計含有量に対するPd含有量が40重量%、50重量%、55重量%、60重量%のいずれかである。電極導体13のPd含有量が10重量%より多くなると、電極導体13の導通抵抗値が大きくなり過ぎて、回路の電気的特性が悪くなったり、半田付け性が悪化する。また、厚膜抵抗体14は、AgとPdの配合比が、Ag:Pd=50:50の付近で抵抗温度係数が最も小さくなることから、Pd含有量が40〜60重量%の範囲では、厚膜抵抗体14の抵抗温度係数が最小値付近の値となり、温度変化の影響を受けにくい安定した抵抗特性が得られる。
【0028】
実施例のサンプル#1〜#12は、厚膜抵抗体14の低温焼成セラミック材料添加量が5重量%、10重量%、15重量%のいずれかであり、比較例のサンプル#13〜#18は、厚膜抵抗体14の低温焼成セラミック材料添加量が0重量%又は3重量%である。
【0029】
この表1の試験結果から明らかなように、電極導体13のPd含有量が10重量%以下で、厚膜抵抗体14のPd含有量が40〜60重量%の範囲では、厚膜抵抗体14の低温焼成セラミック材料添加量によって抵抗値変化率が変化し、厚膜抵抗体14の低温焼成セラミック材料添加量が増加するに従って、抵抗値変化率が小さくなり、回路の信頼性が向上する。
【0030】
比較例のように、低温焼成セラミック材料添加量が3重量%以下では、低温焼成セラミック材料添加量が不足して、合格(○)の判定基準である抵抗値変化率≦1%の条件を満たさず、不合格(×)となった。
【0031】
これに対し、実施例のように、厚膜抵抗体14の低温焼成セラミック材料添加量が5重量%以上になると、抵抗値変化率が0.6%以下となり、合格(○)の判定基準である抵抗値変化率≦1%の条件を満たした。この試験結果から、電極導体13のPd含有量が10重量%以下で、厚膜抵抗体14のPd含有量が40〜60重量%の範囲では、厚膜抵抗体14の低温焼成セラミック材料添加量を5重量%以上に設定することが適正であることが確認された。
【0032】
尚、本発明は、厚膜抵抗体14のPd含有量が40重量%以下又は60重量%以上でも適用可能であり、また、厚膜抵抗体14の低温焼成セラミック材料添加量を15重量%以上にしても良い。
【0033】
その他、本発明は、低温焼成セラミック回路基板の内層にAg−Pd系の厚膜抵抗体を形成する場合にも適用できる等、種々変更して実施できる。
【0034】
【発明の効果】
以上の説明から明らかなように、本発明の請求項1の低温焼成セラミック回路基板によれば、電極導体をAg導体又はPd含有量が10重量%以下のAg−Pd導体により形成し、厚膜抵抗体をAg−Pd導体とガラスとの混合物に低温焼成セラミック基板を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料を5重量%以上添加した抵抗体材料により形成したので、電極導体と厚膜抵抗体との間にAg−Pdの中間導体層を形成しなくても、電極導体から厚膜抵抗体へのAg拡散を防止できて、電極導体のポーラス化を防止できると共に、厚膜抵抗体と低温焼成セラミック基板との熱膨張係数の差を小さくできて、両者間の熱応力を小さくすることができ、信頼性を向上させながら、コスト低減と電気的特性向上の要求も満たすことができる。
【0035】
また、請求項2では、厚膜抵抗体の全導体の合計含有量に対するPd含有量の比率を40重量%以上にしたので、厚膜抵抗体の抵抗温度係数を最小値に近付けることができ、温度変化の影響を受けにくい安定した抵抗特性を実現することができる。
【0036】
また、請求項3では、低温焼成セラミック材料は、CaO−SiO2 −Al2 3 −B2 3 系ガラス粉末とAl2 3 粉末との混合物を用いるようにしたので、信号処理の高速化に対応した高性能のセラミック回路基板を形成できると共に、該低温焼成セラミック材料を厚膜抵抗体に5重量%以上添加しても、安定した抵抗特性を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す低温焼成セラミック回路基板の主要部の縦断面図
【符号の説明】
11…低温焼成セラミック基板、12…表層配線導体、13…電極導体、14…厚膜抵抗体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-temperature fired ceramic circuit board on which a thick film resistor mainly composed of a mixture of an Ag—Pd conductor and glass is formed.
[0002]
[Prior art]
A low-temperature fired ceramic circuit board fired at 800 to 1000 ° C. can use a low-melting-point metal such as an Ag-based conductor excellent in electrical characteristics as a wiring conductor to be fired simultaneously with the ceramic, and has a dielectric constant as compared with an alumina substrate. Is advantageous in that it can cope with high speed signal processing. When forming a thick film resistor on this low-temperature fired ceramic circuit board, a RuO 2 thick film resistor paste is often used, but in a circuit that requires stable resistance characteristics that are not easily affected by temperature changes. The resistance temperature coefficient (TCR) of the thick film resistor may be required to be within ± 100 ppm / ° C., for example.
[0003]
When a thick film resistor having a sheet resistance value of 50 to 300 mΩ / □ is formed, a RuO 2 thick film resistor cannot satisfy the above requirements, and thus a resistance composed of a mixture of an Ag—Pd conductor and glass. A thick film resistor having a small resistance temperature coefficient is formed using a body material.
[0004]
In general, the resistance temperature coefficient of the Ag-Pd conductor is smaller than that when Ag or Pd is used alone, and the resistance temperature coefficient is the smallest when the mixing ratio of Ag and Pd is in the vicinity of Ag: Pd = 50: 50. . From this characteristic, a thick film resistor having an Ag—Pd conductor as a main conductor component is often used in the vicinity of Ag: Pd = 50: 50.
[0005]
[Problems to be solved by the invention]
However, the electrode conductor (thick film wiring conductor) formed on the low-temperature fired ceramic circuit board is formed of an Ag conductor or an Ag—Pd conductor containing 10% by weight or less of Pd in order to improve electrical characteristics. There are many. When an Ag—Pd thick film resistor is printed on such an electrode conductor and fired, the Pd content of the electrode conductor and the thick film resistor is greatly different, so that the Ag atoms in the electrode conductor are Ag during firing. A phenomenon occurs in which the inside of the electrode conductor becomes porous (porous) by diffusing into the thick film resistor having a small content. As a result, there is a disadvantage that the bonding strength between the electrode conductor and the low-temperature fired ceramic substrate is weakened and the reliability is deteriorated.
[0006]
As a countermeasure, an Ag—Pd conductor layer containing 20 to 30% by weight of Pd intermediate between them is formed as an intermediate conductor layer for preventing Ag diffusion between the electrode conductor and the thick film resistor. Alternatively, a large amount of glass component is blended in the electrode conductor (thick film wiring conductor) to increase the bonding strength between the electrode conductor and the ceramic substrate.
[0007]
However, when an Ag—Pd intermediate conductor layer is formed between the electrode conductor and the thick film resistor, the number of printing steps increases and an Ag—Pd conductor containing 20 to 30 wt% Pd is newly added. It is necessary and has the disadvantage of increasing costs. Further, when the glass content of the electrode conductor (thick film wiring conductor) is increased, there is a drawback that the conduction resistance of the electrode conductor (thick film wiring conductor) increases and the electrical characteristics of the circuit deteriorate.
[0008]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to join an electrode conductor (thick film wiring conductor) for connecting an Ag-Pd thick film resistor and a low-temperature fired ceramic substrate. An object of the present invention is to provide a low-temperature fired ceramic circuit board capable of satisfying demands for cost reduction and improvement of electrical characteristics while improving strength and ensuring reliability.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in order to achieve the above object, a low-temperature fired ceramic circuit board according to claim 1 of the present invention is joined to an electrode conductor formed on the surface of the low-temperature fired ceramic substrate and the electrode conductor. The electrode conductor is formed of an Ag conductor or an Ag-Pd conductor having a Pd content of 10% by weight or less, and the thick film resistor is formed of Ag-Pd. It is formed of a resistor material obtained by adding 5% by weight or more of a low-temperature sintered ceramic material having the same main component as the low-temperature sintered ceramic material forming the low- temperature sintered ceramic substrate to a mixture of conductor and glass.
[0010]
Thus, if a thick film resistor is formed using a resistor material to which 5% by weight or more of the same kind of low temperature fired ceramic material as that of the low temperature fired ceramic substrate is added, low temperature firing is performed from the thick film resistor to the electrode conductor side during firing. The ceramic material diffuses and an intermediate layer of low temperature fired ceramic material is formed between the thick film resistor and the electrode conductor. This intermediate layer plays the role of preventing Ag diffusion from the electrode conductor to the thick film resistor, preventing the porous inside of the electrode conductor due to Ag diffusion and preventing the reduction of the bonding strength between the electrode conductor and the low-temperature fired ceramic substrate. Is done.
[0011]
In addition, since the thick film resistor is added with 5% by weight or more of the same kind of low temperature fired ceramic material as that of the low temperature fired ceramic substrate, the difference in thermal expansion coefficient between the thick film resistor and the low temperature fired ceramic substrate is reduced. The thermal stress acting on the junction between the thick film resistor and the low-temperature fired ceramic substrate is reduced. Moreover, since the glass component that oozes out from the low-temperature fired ceramic substrate during firing to the thick film resistor side and the glass component of the thick film resistor are the same type, both the glass components are fused, and the thick film resistor and low temperature fired. Bonding strength with the ceramic substrate increases. In addition, the glass component that oozes out on the surface of the low-temperature fired ceramic substrate during firing serves as an adhesive for bonding the electrode conductor (thick film wiring conductor), and the bonding strength of the electrode conductor (thick film wiring conductor) is also ensured. .
[0012]
In this case, the Ag-Pd thick film resistor has the characteristic that the temperature coefficient of resistance is minimized when the mixing ratio of Ag and Pd is in the vicinity of Ag: Pd = 50: 50. Furthermore, the Pd content with respect to the total content of all the conductors of the thick film resistor is preferably 40% by weight or more. In this way, the resistance temperature coefficient of the thick film resistor can be brought close to the minimum value, and a stable resistance characteristic that is not easily affected by temperature changes can be realized. Even if the Pd content of the thick film resistor increases and the difference in the Pd content between the electrode conductor and the thick film resistor increases, as described above, the thick film resistor is moved from the thick film resistor to the electrode conductor side during firing. Since the low-temperature fired ceramic material diffuses to form an intermediate layer of the low-temperature fired ceramic material between the thick film resistor and the electrode conductor, Ag diffusion from the electrode conductor to the thick film resistor is caused by this intermediate layer. This prevents a decrease in bonding strength between the electrode conductor and the low-temperature fired ceramic substrate due to Ag diffusion.
[0013]
Further, as a third aspect, the low-temperature fired ceramic material may be a mixture of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder and Al 2 O 3 powder. This low-temperature fired ceramic material has the features of a low dielectric constant and a low thermal expansion coefficient, and can form a high-performance ceramic circuit board corresponding to high-speed signal processing. Even if it is added by weight% or more, the temperature coefficient of resistance of the thick film resistor does not increase, and stable resistance characteristics that are hardly affected by temperature change can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. The low-temperature fired ceramic substrate 11 is formed of a low-temperature fired ceramic material fired at 800 to 1000 ° C., and may be either a multilayer substrate or a single-layer substrate obtained by laminating and firing a plurality of low-temperature fired ceramic green sheets. . Examples of the low-temperature fired ceramic material for forming the low-temperature fired ceramic substrate 11 include CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder: 50 to 65 wt% (preferably 60 wt%) and Al 2. A mixture of O 3 powder: 50 to 35% by weight (preferably 40% by weight) may be used. In addition, for example, a mixture of MgO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder and Al 2 O 3 powder, SiO 2 —B 2 O 3 glass powder and Al 2 O 3 powder A low-temperature fired ceramic material that can be fired at 800 to 1000 ° C., such as a mixture, a mixture of PbO—SiO 2 —B 2 O 3 glass powder and Al 2 O 3 powder, or cordierite crystallized glass, may be used.
[0015]
On the front surface (or back surface) of the low-temperature fired ceramic substrate 11, the surface layer wiring conductor 12 and the electrode conductor 13 are printed and fired using a paste of an Ag conductor or an Ag—Pd conductor having a Pd content of 10 wt% or less. Yes. The surface layer wiring conductor 12 and the electrode conductor 13 may be fired simultaneously with the low temperature fired ceramic substrate 11, or the surface layer wiring conductor 12 and the electrode conductor 13 are printed and fired after the low temperature fired ceramic substrate 11 is fired. May be.
[0016]
Here, when the surface layer wiring conductor 12 and the electrode conductor 13 are formed of an Ag—Pd conductor, Pd plays a role of suppressing the migration of Ag. However, when the Pd content is more than 10% by weight, the solderability is improved. Since it deteriorates and the conduction resistance value increases, the Pd content is preferably 10% by weight or less (Ag content is 90% by weight or more).
[0017]
A thick film resistor 14 is printed and fired on the front surface (or back surface) of the low-temperature fired ceramic substrate 11 across the pair of electrode conductors 13. This thick film resistor 14 is a resistor in which 5% by weight or more of a low-temperature sintered ceramic material having the same main component as the low-temperature sintered ceramic material forming the low- temperature fired ceramic substrate 11 is added to a mixture of an Ag—Pd conductor and glass. It is formed of a material paste. Further, the thick film resistor 14 has a Pd content with respect to the total content of all conductors set to 40% by weight or more. The thick film resistor 14 has a characteristic that the temperature coefficient of resistance is minimized when the mixing ratio of Ag and Pd is in the vicinity of Ag: Pd = 50: 50. Therefore, the Pd content of the thick film resistor 14 is 40%. If it is set to ˜60% by weight, the resistance temperature coefficient of the thick film resistor 14 becomes a value close to the minimum value, and stable resistance characteristics that are not easily affected by temperature change can be obtained.
[0018]
The thick film resistor 14 may be fired at the same time as the surface layer wiring conductor 12 and the electrode conductor 13, or the thick film resistor 14 may be printed and fired after the surface layer wiring conductor 12 and the electrode conductor 13 are fired. .
[0019]
For example, when the low-temperature fired ceramic material forming the low-temperature fired ceramic substrate 11 is formed of a mixture of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder and Al 2 O 3 powder. The thick film resistor 14 may be added with 5% by weight or more of a mixture of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder and Al 2 O 3 powder. At this time, it is desirable to use the low-temperature fired ceramic substrate 11 and the thick film resistor 14, but the low-temperature fired ceramic substrate 11 and the thick film resistor 14 have the same composition and blend ratio. Needless to say, a low-temperature fired ceramic material having a slightly different blending ratio between the glass powder and the Al 2 O 3 powder may be used. Even if the mixing ratio of the glass powder of the low-temperature fired ceramic material and the Al 2 O 3 powder is slightly different, if the glass powder and Al 2 O 3 powder of the same composition are blended, the properties of the low-temperature fired ceramic material are almost the same. It is because it becomes the same. Further, if the glass component of the low-temperature fired ceramic material is the same in the low-temperature fired ceramic substrate 11 and the thick film resistor 14, the glass component additives and the like may be slightly different.
[0020]
In the configuration of the present embodiment described above, the low-temperature fired ceramic substrate 11 having the same main component as the low-temperature fired ceramic material forming the low- temperature fired ceramic substrate 11 is used in the structure of the present embodiment described above. Since the thick film resistor 14 is formed using the resistor material added by weight% or more, the low temperature fired ceramic material diffuses from the thick film resistor 14 to the electrode conductor 13 side during firing, and the thick film resistor 14 and the electrode conductor are diffused. 13, an intermediate layer of low-temperature fired ceramic material is formed. This intermediate layer plays a role of preventing Ag diffusion from the electrode conductor 13 to the thick film resistor 14, prevents the inside of the electrode conductor 13 from being porous due to Ag diffusion, and joins the electrode conductor 12 and the low-temperature fired ceramic substrate 11. A decrease in strength is prevented.
[0021]
In addition, the thick film resistor 14 is added with 5% by weight or more of a low temperature sintered ceramic material having the same main component as the low temperature sintered ceramic material forming the low temperature fired ceramic substrate 11. The difference in thermal expansion coefficient from the low-temperature fired ceramic substrate 11 is reduced, and the thermal stress acting on the junction between the thick film resistor 14 and the low-temperature fired ceramic substrate 11 is reduced. In addition, since the glass component oozing out from the low-temperature fired ceramic substrate 11 to the thick film resistor 14 side during firing and the glass component of the thick film resistor 14 are the same type, both glass components are fused to form a thick film resistor. The bonding strength between the body 14 and the low-temperature fired ceramic substrate 11 is increased. In addition, the glass component that has oozed out on the surface of the low-temperature fired ceramic substrate 11 during firing serves as an adhesive for bonding the electrode conductor 13 (surface wiring conductor 12), and the bonding strength of the electrode conductor 13 (surface wiring conductor 12) is also high. Secured.
[0022]
Therefore, in this embodiment, the electrode conductor 13 can be formed without forming an Ag—Pd conductor layer containing 20 to 30 wt% Pd intermediate between the thick film resistor 14 and the electrode conductor 13. Diffusion to the thick film resistor 14 can be prevented, and the bonding strength between the electrode conductor 12 and the low-temperature fired ceramic substrate 11 can be ensured, so that the printing process does not increase and the dedicated Ag for forming the intermediate layer -No need for Pd conductor paste and cost increase. In addition, since the bonding strength between the electrode conductor 12 and the low-temperature fired ceramic substrate 11 can be secured without increasing the glass content of the electrode conductor 13 (surface layer wiring conductor 12), the electrode conductor 13 (surface layer wiring conductor 12) can be secured. The conduction resistance value does not need to be increased, and the electrical characteristics of the circuit do not deteriorate. As a result, it is possible to satisfy all the requirements for improving circuit reliability, reducing costs, and improving electrical characteristics.
[0023]
【Example】
The present inventor conducted a test to evaluate the appropriate ranges of the Pd content of the electrode conductor 13, the Pd content of the thick film resistor 14, and the low-temperature fired ceramic material addition amount of the thick film resistor 14. Is shown in Table 1 below.
[0024]
[Table 1]
Figure 0004711158
[0025]
The low-temperature fired ceramic material used in this test is a mixture of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder: 60% by weight and Al 2 O 3 powder: 40% by weight. Samples # 1 to # 18 are obtained by printing and firing the electrode conductor 13 and the thick film resistor 14 on the low-temperature fired ceramic substrate 11 after firing. In this test, after each sample # 1 to # 18 is immersed in liquid nitrogen and cooled to an extremely low temperature, a liquid nitrogen dip test is performed in which each sample # 1 to # 18 is taken out of liquid nitrogen and the resistance value change rate is measured. Those having a resistance value change rate of 1% or less were evaluated as pass (◯), and those having a resistance value change rate greater than 1% were determined as reject (x).
[0026]
As in the past, when the Ag atoms in the electrode conductor 13 diffuse into the thick film resistor 14 during firing and the inside of the electrode conductor 13 becomes porous (porous), the electrode conductor 13 and the low-temperature fired ceramic substrate 11 The bond strength between the electrode conductor 13 and the low-temperature fired ceramic substrate 11 is likely to be cracked or peeled off in the liquid nitrogen dip test. As a result, the rate of change in resistance value is less than 1%. growing.
[0027]
In each sample # 1 to # 18 in Table 1, the Pd content of the electrode conductor 13 is 0% by weight, 5% by weight, or 10% by weight, and is based on the total content of all the conductors of the thick film resistor 14 The Pd content is 40% by weight, 50% by weight, 55% by weight or 60% by weight. When the Pd content of the electrode conductor 13 exceeds 10% by weight, the conduction resistance value of the electrode conductor 13 becomes too large, and the electrical characteristics of the circuit are deteriorated and the solderability is deteriorated. Further, the thick film resistor 14 has a resistance temperature coefficient that is the smallest when the mixing ratio of Ag and Pd is in the vicinity of Ag: Pd = 50: 50. Therefore, when the Pd content is in the range of 40 to 60% by weight, The resistance temperature coefficient of the thick film resistor 14 becomes a value in the vicinity of the minimum value, and stable resistance characteristics that are not easily affected by temperature changes can be obtained.
[0028]
In the samples # 1 to # 12 of the example, the addition amount of the low-temperature fired ceramic material of the thick film resistor 14 is 5 wt%, 10 wt%, or 15 wt%, and the samples # 13 to # 18 of the comparative example The amount of the low-temperature fired ceramic material added to the thick film resistor 14 is 0% by weight or 3% by weight.
[0029]
As is apparent from the test results in Table 1, when the Pd content of the electrode conductor 13 is 10% by weight or less and the Pd content of the thick film resistor 14 is in the range of 40 to 60% by weight, the thick film resistor 14 The resistance value change rate changes depending on the amount of low-temperature fired ceramic material added, and as the amount of low-temperature fired ceramic material added to the thick film resistor 14 increases, the resistance value change rate decreases and the reliability of the circuit improves.
[0030]
As in the comparative example, when the low-temperature fired ceramic material addition amount is 3% by weight or less, the low-temperature fired ceramic material addition amount is insufficient and satisfies the condition of the resistance value change rate ≦ 1%, which is a pass (◯) criterion. It was rejected (x).
[0031]
On the other hand, when the amount of the low-temperature fired ceramic material added to the thick film resistor 14 is 5% by weight or more as in the example, the rate of change in resistance value is 0.6% or less. A certain resistance value change rate ≦ 1% was satisfied. From this test result, when the Pd content of the electrode conductor 13 is 10% by weight or less and the Pd content of the thick film resistor 14 is in the range of 40 to 60% by weight, the low-temperature fired ceramic material addition amount of the thick film resistor 14 It was confirmed that it was appropriate to set the amount to 5% by weight or more.
[0032]
The present invention can be applied even when the Pd content of the thick film resistor 14 is 40% by weight or less or 60% by weight or more, and the low-temperature fired ceramic material addition amount of the thick film resistor 14 is 15% by weight or more. Anyway.
[0033]
In addition, the present invention can be implemented with various modifications such as being applicable to the case where an Ag-Pd thick film resistor is formed on the inner layer of a low-temperature fired ceramic circuit board.
[0034]
【The invention's effect】
As is clear from the above description, according to the low-temperature fired ceramic circuit board of claim 1 of the present invention, the electrode conductor is formed of an Ag conductor or an Ag-Pd conductor having a Pd content of 10% by weight or less. Since the resistor is formed of a resistor material obtained by adding 5 wt% or more of a low-temperature sintered ceramic material having the same main component as the low-temperature sintered ceramic material forming the low- temperature fired ceramic substrate to the mixture of the Ag—Pd conductor and the glass, Without forming an Ag-Pd intermediate conductor layer between the electrode conductor and the thick film resistor, Ag diffusion from the electrode conductor to the thick film resistor can be prevented, and the electrode conductor can be prevented from becoming porous. The difference in thermal expansion coefficient between the thick film resistor and the low-temperature fired ceramic substrate can be reduced, the thermal stress between them can be reduced, and the reliability is improved while reducing the cost and improving the electrical characteristics. Required can also be satisfied.
[0035]
In claim 2, since the ratio of the Pd content to the total content of all the conductors of the thick film resistor is set to 40% by weight or more, the resistance temperature coefficient of the thick film resistor can be brought close to the minimum value, Stable resistance characteristics that are not easily affected by temperature changes can be realized.
[0036]
According to the third aspect of the present invention, since the low-temperature fired ceramic material is a mixture of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass powder and Al 2 O 3 powder, high-speed signal processing is possible. In addition to forming a high-performance ceramic circuit board corresponding to the increase in the thickness, a stable resistance characteristic can be obtained even when the low-temperature fired ceramic material is added to the thick film resistor by 5% by weight or more.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part of a low-temperature fired ceramic circuit board showing an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 11 ... Low-temperature baking ceramic substrate, 12 ... Surface layer wiring conductor, 13 ... Electrode conductor, 14 ... Thick film resistor.

Claims (3)

低温焼成セラミック基板の表面に形成された電極導体と、この電極導体に接合するように形成された厚膜抵抗体とを備えた低温焼成セラミック回路基板において、前記電極導体は、Ag導体又はPd含有量が10重量%以下のAg−Pd導体により形成され、前記厚膜抵抗体は、Ag−Pd導体とガラスとの混合物に前記低温焼成セラミック基板を形成する低温焼結セラミック材料と主成分が同一の低温焼成セラミック材料を5重量%以上添加した抵抗体材料により形成されていることを特徴とする低温焼成セラミック回路基板。In a low-temperature fired ceramic circuit board comprising an electrode conductor formed on the surface of a low-temperature fired ceramic substrate and a thick film resistor formed so as to be joined to the electrode conductor, the electrode conductor contains an Ag conductor or Pd The thick film resistor is formed of an Ag-Pd conductor having an amount of 10% by weight or less, and the main component is the same as the low-temperature sintered ceramic material forming the low- temperature fired ceramic substrate in a mixture of the Ag-Pd conductor and glass. A low-temperature fired ceramic circuit board characterized by being formed of a resistor material to which 5% by weight or more of the above-mentioned low-temperature fired ceramic material is added. 前記厚膜抵抗体は、全導体の合計含有量に対するPd含有量が40重量%以上であることを特徴とする請求項1に記載の低温焼成セラミック回路基板。 2. The low-temperature fired ceramic circuit board according to claim 1, wherein the thick film resistor has a Pd content of 40 wt% or more with respect to a total content of all conductors. 前記低温焼成セラミック材料は、CaO−SiO−Al−B系ガラス粉末とAl粉末との混合物からなることを特徴とする請求項1又は2に記載の低温焼成セラミック回路基板。The low-temperature co-fired ceramic material, low-temperature firing of claim 1 or 2, characterized by comprising a mixture of a CaO-SiO 2 -Al 2 O 3 -B 2 O 3 based glass powder and Al 2 O 3 powder Ceramic circuit board.
JP2001204522A 2001-07-05 2001-07-05 Low temperature fired ceramic circuit board Expired - Lifetime JP4711158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204522A JP4711158B2 (en) 2001-07-05 2001-07-05 Low temperature fired ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204522A JP4711158B2 (en) 2001-07-05 2001-07-05 Low temperature fired ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2003023233A JP2003023233A (en) 2003-01-24
JP4711158B2 true JP4711158B2 (en) 2011-06-29

Family

ID=19040974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204522A Expired - Lifetime JP4711158B2 (en) 2001-07-05 2001-07-05 Low temperature fired ceramic circuit board

Country Status (1)

Country Link
JP (1) JP4711158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498835B2 (en) * 2003-07-23 2010-07-07 シャープ株式会社 Circuit board, manufacturing method thereof, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122685A (en) * 1984-07-04 1986-01-31 富士通株式会社 Conductive paste
JPS61260603A (en) * 1985-05-14 1986-11-18 三菱電機株式会社 Electronic component
JPH04329691A (en) * 1991-05-01 1992-11-18 Tdk Corp Conductor paste and wiring board
JPH04354101A (en) * 1991-05-30 1992-12-08 Tdk Corp Glass frit, resistor paste and wiring board
JPH06168620A (en) * 1992-11-26 1994-06-14 Kawasumi Gijutsu Kenkyusho:Kk Conductive paste composition
JPH07201222A (en) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd Conductive paste, ceramic lamination body, and manufacture of ceramic lamination body
JPH0936508A (en) * 1995-07-13 1997-02-07 Shinko Electric Ind Co Ltd Conductive paste for ceramic circuit board and ceramic circuit board
JP2000077205A (en) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122685A (en) * 1984-07-04 1986-01-31 富士通株式会社 Conductive paste
JPS61260603A (en) * 1985-05-14 1986-11-18 三菱電機株式会社 Electronic component
JPH04329691A (en) * 1991-05-01 1992-11-18 Tdk Corp Conductor paste and wiring board
JPH04354101A (en) * 1991-05-30 1992-12-08 Tdk Corp Glass frit, resistor paste and wiring board
JPH06168620A (en) * 1992-11-26 1994-06-14 Kawasumi Gijutsu Kenkyusho:Kk Conductive paste composition
JPH07201222A (en) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd Conductive paste, ceramic lamination body, and manufacture of ceramic lamination body
JPH0936508A (en) * 1995-07-13 1997-02-07 Shinko Electric Ind Co Ltd Conductive paste for ceramic circuit board and ceramic circuit board
JP2000077205A (en) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method

Also Published As

Publication number Publication date
JP2003023233A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP2952303B2 (en) Composite circuit device
JP2004104047A (en) Resistor composition and resistor
KR100228147B1 (en) Thick film multilayered printed circuit using the paste
JPH07105717A (en) Base metal composition for outside electrode of laminated electronic part
JP4711158B2 (en) Low temperature fired ceramic circuit board
US7140097B2 (en) Method of manufacturing chip-type ceramic electronic component
US5763339A (en) Insulating glass composition
JP2001322831A (en) Over-coat glass and thick film printed circuit board
JP2986539B2 (en) Thick film resistor composition
JPH03134905A (en) Copper paste
JP2727651B2 (en) Ceramic substrate
JP2816742B2 (en) Circuit board
JPH05221686A (en) Conductive paste composition and wiring substrate
JPH04329691A (en) Conductor paste and wiring board
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JPH04328207A (en) Conductor compound and wiring board
JP2005285957A (en) Conductive paste and ceramic multilayered circuit board using the same
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
JP2760035B2 (en) Thick film circuit board
JPH0686327B2 (en) Ceramic substrate composition
JPH0521935A (en) Circuit board
JP3862119B2 (en) Resistance paste
JP2002015620A (en) Conductor composition and wiring board using it
JPH01107592A (en) Electric circuit board
JP2632325B2 (en) Electric circuit board

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4711158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150