JP4705448B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP4705448B2
JP4705448B2 JP2005283664A JP2005283664A JP4705448B2 JP 4705448 B2 JP4705448 B2 JP 4705448B2 JP 2005283664 A JP2005283664 A JP 2005283664A JP 2005283664 A JP2005283664 A JP 2005283664A JP 4705448 B2 JP4705448 B2 JP 4705448B2
Authority
JP
Japan
Prior art keywords
plating
layer
forming
nickel plating
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005283664A
Other languages
Japanese (ja)
Other versions
JP2007096007A (en
Inventor
徹 松本
学 山田
Original Assignee
日本シイエムケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本シイエムケイ株式会社 filed Critical 日本シイエムケイ株式会社
Priority to JP2005283664A priority Critical patent/JP4705448B2/en
Publication of JP2007096007A publication Critical patent/JP2007096007A/en
Application granted granted Critical
Publication of JP4705448B2 publication Critical patent/JP4705448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプリント配線板及びその製造方法に係わり、特に、ワイヤーボンディング用のめっき層形成工程において、微細なパッド(ニッケルや金めっきを含む銅配線層部分)間のショートを低減することができるプリント配線板及びその製造方法に関する。   The present invention relates to a printed wiring board and a manufacturing method thereof, and in particular, in a plating layer forming process for wire bonding, a print capable of reducing a short circuit between fine pads (copper wiring layer portions including nickel and gold plating). It is related with a wiring board and its manufacturing method.

従来、ワイヤーボンティング用のめっき層形成工程を含むプリント配線板の製造方法としては、例えば下記の特許文献1に開示されているものが知られている。   Conventionally, as a manufacturing method of a printed wiring board including a plating layer forming step for wire bonding, for example, a method disclosed in Patent Document 1 below is known.

即ち、特許文献1はプリント配線板の製造法に関するものであって、絶縁基板の表面に形成した銅配線層にニッケルめっきを行なった後、更に連続して金めっきを行なうようにした技術が開示されている。   That is, Patent Document 1 relates to a method of manufacturing a printed wiring board, and discloses a technique in which gold plating is performed continuously after nickel plating is performed on a copper wiring layer formed on the surface of an insulating substrate. Has been.

図5は斯かる従来のプリント配線板の製造方法を概略的に説明した図であり、同図(1)はめっきレジスト形成工程、同図(2)はパターンめっき工程、同図(3)はめっきレジスト剥離工程、同図(4)はフラッシュエッチング工程、同図(5)はソルダーレジスト形成工程、同図(6)は電解ニッケルめっき工程、同図(7)は電解金めっき工程をそれぞれ示している。
このような従来法においては、ニッケル層の厚みが、銅配線層の上も銅配線層の側面も同じであった。
FIGS. 5A and 5B are diagrams schematically illustrating a method for manufacturing such a conventional printed wiring board. FIG. 5A shows a plating resist forming process, FIG. 5B shows a pattern plating process, and FIG. Plating resist stripping process, FIG. 4 (4) shows a flash etching process, FIG. 5 (5) shows a solder resist forming process, FIG. 6 (6) shows an electrolytic nickel plating process, and FIG. 7 (7) shows an electrolytic gold plating process. ing.
In such a conventional method, the thickness of the nickel layer is the same on the copper wiring layer and on the side surface of the copper wiring layer.

また、図中、301aは例えば絶縁性樹脂材料からなる絶縁基材;301bは例えば銅箔からなる電解めっき給電層;302a〜302cはめっきレジスト;303a,303bは銅配線層;305a,305bはソルダーレジスト;306a,306bはニッケルめっき層;307a,307bは金めっき層である。   In the figure, 301a is an insulating base material made of, for example, an insulating resin material; 301b is an electroplating feeding layer made of, for example, copper foil; 302a to 302c are plating resists; 303a and 303b are copper wiring layers; 305a and 305b are solders 306a and 306b are nickel plating layers; 307a and 307b are gold plating layers.

而して、このような従来のプリント配線板の製造方法において充分なワイヤーボンディング性能を持たせる為には、図5(6)に示されるように、パターン形成後の銅配線層303a,303bの上に厚さ3〜5μm程度のニッケルめっき層306a,306bを形成し、更に図5(7)に示されるように、当該ニッケルめっき層306a,306bの上に厚さ0.3〜0.5μm程度の金めっき層307a,307bを形成する必要があった。   Thus, in order to provide sufficient wire bonding performance in such a conventional printed wiring board manufacturing method, as shown in FIG. 5 (6), the copper wiring layers 303a and 303b after pattern formation are formed. Nickel plating layers 306a and 306b having a thickness of about 3 to 5 μm are formed thereon, and further, as shown in FIG. 5 (7), a thickness of 0.3 to 0.5 μm is formed on the nickel plating layers 306a and 306b. It was necessary to form the gold plating layers 307a and 307b to the extent.

然しながら、斯かる従来のプリント配線板の製造方法においては、上記の如く、めっきレジストを剥離してパターン形成した後に電解ニッケルめっき処理を行なうため、銅配線層303a,303b側面(周面)にもニッケルが同量(3μm〜5μm)ずつ析出してしまうと云う問題があった。そのため、より微細なパッド間隙ではめっき時にショートが発生し易く、ファインパッド形成の妨げになっていたのが実状であった。
特開平5−235519号公報
However, in such a conventional printed wiring board manufacturing method, as described above, the electrolytic resist plating process is performed after the plating resist is peeled and the pattern is formed. There was a problem that the same amount (3 μm to 5 μm) of nickel was deposited. For this reason, with a finer pad gap, a short circuit is likely to occur at the time of plating, which hinders the formation of fine pads.
JP-A-5-235519

本発明は上述のような問題と実状に鑑みてなされたものであり、その課題は、ニッケル又は金めっき層形成工程におけるボンディングパッド間のショートを低減させることができるプリント配線板及びその製造方法を提供することにある。   The present invention has been made in view of the above problems and actual conditions, and the problem is a printed wiring board capable of reducing a short circuit between bonding pads in a nickel or gold plating layer forming process and a method for manufacturing the same. It is to provide.

本発明は、
絶縁基材の上に設けられた給電層の上にめっきレジストを形成する工程と、
次いで、前記給電層の露出面に銅配線層を形成するパターンめっき工程と、
次いで、前記銅配線層の表面にワイヤーボンディング用のニッケルめっき層を形成する第1ニッケルめっき工程と、
次いで、前記めっきレジストを除去するめっきレジスト剥離工程と、
次いで、前記給電層の露出している部分を除去するフラッシュエッチング工程と、
次いで、前記絶縁基材の上にソルダーレジストを形成するソルダーレジスト形成工程と、
次いで、前記銅配線層の上にイオンマイグレーションのバリア層としてのニッケルめっき層を形成する第2ニッケルめっき工程と、
次いで、前記第2ニッケルめっき層の上に金めっき層を形成する金めっき工程と
を有することを特徴とするプリント配線板の製造方法により上記課題を解決したものである。
The present invention
Forming a plating resist on a power feeding layer provided on an insulating substrate;
Next, a pattern plating step of forming a copper wiring layer on the exposed surface of the power feeding layer,
Next, a first nickel plating step of forming a nickel plating layer for wire bonding on the surface of the copper wiring layer,
Next, a plating resist peeling step for removing the plating resist;
Next, a flash etching process for removing the exposed portion of the power feeding layer,
Next, a solder resist forming step of forming a solder resist on the insulating substrate,
Next, a second nickel plating step of forming a nickel plating layer as a barrier layer of ion migration on the copper wiring layer,
Then, the said subject is solved by the manufacturing method of the printed wiring board characterized by having a gold plating process which forms a gold plating layer on the said 2nd nickel plating layer.

また、本発明は、
絶縁基材の上に設けられた給電層の上にめっきレジストを形成する工程と、
次いで、前記給電層の露出面に銅配線層を形成するパターンめっき工程と、
次いで、前記銅配線層の表面にワイヤーボンディング用のニッケルめっき層を形成するニッケルめっき工程と、
次いで、前記めっきレジストを除去するめっきレジスト剥離工程と、
次いで、前記給電層の露出している部分を除去するフラッシュエッチング工程と、
次いで、前記絶縁基材の上にソルダーレジストを形成するソルダーレジスト形成工程と、
次いで、前記ニッケルめっき層の上、又は前記ニッケルめっき層の上及び配線層の側面に金めっき層を形成する金めっき工程と
を有することを特徴とするプリント配線板の製造方法により上記課題を解決したものである。
The present invention also provides:
Forming a plating resist on a power feeding layer provided on an insulating substrate;
Next, a pattern plating step of forming a copper wiring layer on the exposed surface of the power feeding layer,
Next, a nickel plating step of forming a nickel plating layer for wire bonding on the surface of the copper wiring layer,
Next, a plating resist peeling step for removing the plating resist;
Next, a flash etching process for removing the exposed portion of the power feeding layer,
Next, a solder resist forming step of forming a solder resist on the insulating substrate,
Next, the above- described problem is solved by a method for manufacturing a printed wiring board, comprising: a gold plating step of forming a gold plating layer on the nickel plating layer or on the nickel plating layer and on a side surface of the wiring layer. It is a thing.

本発明のプリント配線板の製造方法によれば、めっきレジストが存在する状態でワイヤーボンディング用のニッケルめっき層を形成しているため、銅配線層側面(周面)にニッケルが析出することがないので、めっき時におけるボンディングパッド間のショートを低減させることができる。   According to the printed wiring board manufacturing method of the present invention, since the nickel plating layer for wire bonding is formed in the state where the plating resist exists, nickel does not precipitate on the side surface (peripheral surface) of the copper wiring layer. Therefore, a short circuit between the bonding pads during plating can be reduced.

本発明の実施の形態について図を用いて詳細に説明する。なお、本発明は以下に説述する実施の形態により何ら制限されるものではなく、本発明の範囲内で種々の変更が可能である。   Embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not restrict | limited at all by embodiment described below, A various change is possible within the scope of the present invention.

図1は、本発明の第1の実施の形態に係るプリント配線板の要部拡大断面説明図である。この図から明らかなように、本発明の第1の実施の形態に係るプリント配線板は、絶縁基材101aの上に設けられた給電層101bと;その給電層の上に形成された銅配線層103a,103bと;その銅配線層103a,103bの上面に形成された第1ニッケルめっき層104a,104bの上面及び側面(周面)並びに銅配線層103a,103bの側面に形成された第2ニッケルめっき層106a,106bと;その第2ニッケルめっき層104a,104bの上に形成された金めっき層107a,107bと;絶縁基材の上に設けられたソルダーレジスト105a,105bとを有しており、当該銅配線層103a,103bの上面に形成されたニッケル層は第1ニッケルめっき層104a,104b及び第2ニッケルめっき層106a,106bから成り、第2ニッケルめっき層106a,106bのみから成る当該銅配線層103a,103bの側面(周面)に形成されたニッケル層より厚くなっている。   FIG. 1 is an enlarged sectional explanatory view of a main part of a printed wiring board according to the first embodiment of the present invention. As is apparent from this figure, the printed wiring board according to the first embodiment of the present invention includes a power feeding layer 101b provided on the insulating base 101a; and a copper wiring formed on the power feeding layer. Layers 103a, 103b; upper surfaces and side surfaces (peripheral surfaces) of the first nickel plating layers 104a, 104b formed on the upper surfaces of the copper wiring layers 103a, 103b, and second layers formed on the side surfaces of the copper wiring layers 103a, 103b. A nickel plating layer 106a, 106b; a gold plating layer 107a, 107b formed on the second nickel plating layer 104a, 104b; and a solder resist 105a, 105b provided on the insulating substrate. The nickel layers formed on the upper surfaces of the copper wiring layers 103a and 103b are the first nickel plating layers 104a and 104b and the second nickel plating layer. 06a, consisting 106b, is thicker than the second nickel-plated layer 106a, the copper wiring layer consisting 106b only 103a, the nickel layer formed on 103b side of the (peripheral surface).

即ち、銅配線層103a,103bの上面にはワイヤーボンディング用として充分な厚さのめっき層(例えば、厚さ5μmのニッケルめっき層104a,104bと;厚さ0.5μmのニッケルめっき層106a,106bと;厚さ0.5μmの金めっき層107a,107b)が形成されている。また、銅配線層103a,103bの側面(周面)及びニッケルめっき層104a,104bの側面(周面)には、パッド間のイオンマイグレーションのバリア層として好適なめっき層(例えば、厚さ0.5μmのニッケルめっき層106a,106bと;厚さ0.5μmの金めっき層107a,107b)が形成されている。   That is, on the upper surfaces of the copper wiring layers 103a and 103b, plating layers having a sufficient thickness for wire bonding (for example, nickel plating layers 104a and 104b having a thickness of 5 μm; nickel plating layers 106a and 106b having a thickness of 0.5 μm). And gold plating layers 107a and 107b) having a thickness of 0.5 μm are formed. Further, on the side surfaces (peripheral surfaces) of the copper wiring layers 103a and 103b and the side surfaces (peripheral surfaces) of the nickel plating layers 104a and 104b, a plating layer (for example, having a thickness of 0. 5 μm nickel plating layers 106a and 106b; and 0.5 μm thick gold plating layers 107a and 107b) are formed.

図2は、図1に示される本発明のプリント配線板の製造方法を示す概略断面工程説明図であり、同図(1)はめっきレジスト形成工程、同図(2)はパターンめっき工程、同図(3)は第1電解ニッケルめっき工程、同図(4)はめっきレジスト剥離工程、同図(5)はフラッシュエッチング工程、同図(6)はソルダーレジスト形成工程、同図(7)は第2電解ニッケルめっき工程、同図(8)は電解金めっき工程をそれぞれ示している。   2A and 2B are schematic cross-sectional process explanatory views showing a method for manufacturing the printed wiring board of the present invention shown in FIG. 1, wherein FIG. 1A is a plating resist forming process, FIG. 2B is a pattern plating process, (3) is the first electrolytic nickel plating process, (4) is the plating resist peeling process, (5) is the flash etching process, (6) is the solder resist forming process, and (7) is the figure (7). The second electrolytic nickel plating step and FIG. 8 (8) show the electrolytic gold plating step, respectively.

また、図2中、101aは例えば絶縁性樹脂材料からなる絶縁基材;101bは例えば銅箔からなる電解めっき給電層;102a〜102cはめっきレジスト;103a,103bは銅配線層、104a,104bは第1ニッケルめっき層;105a,105bはソルダーレジスト、106a,106bは第2ニッケルめっき層;107a,107bは金めっき層である。   In FIG. 2, 101a is an insulating base material made of, for example, an insulating resin material; 101b is an electrolytic plating power supply layer made of, for example, copper foil; 102a to 102c is a plating resist; 103a and 103b are copper wiring layers, and 104a and 104b are 105a and 105b are solder resists, 106a and 106b are second nickel plating layers; 107a and 107b are gold plating layers.

以下斯かる図2と共に本発明の第1の実施の形態を説明する。まず、図2(1)に示されるように、めっきレジストの形成を行なう。即ち、電解めっき給電層101bの上にめっきレジスト102a〜102cを形成する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIG. First, as shown in FIG. 2A, a plating resist is formed. That is, the plating resists 102a to 102c are formed on the electrolytic plating power supply layer 101b.

次に、図2(2)に示されるように、パターンめっきを行なう。即ち、露出している電解めっき給電層101bの上に電解銅めっきにより、銅配線層103a,103bを形成する。
次いで、図2(3)に示されるように、第1電解ニッケルめっき処理を行なう。即ち、めっきレジスト102a〜102cが存在する状態で銅配線層103a,103bの上に電解めっきにより、厚さが2〜10μm、好ましくは5μmであるワイヤーボンディング用として充分な厚さの第1ニッケルめっき層104a,104bを形成する。
Next, pattern plating is performed as shown in FIG. In other words, the copper wiring layers 103a and 103b are formed on the exposed electrolytic plating power supply layer 101b by electrolytic copper plating.
Next, as shown in FIG. 2 (3), a first electrolytic nickel plating process is performed. That is, the first nickel plating having a thickness sufficient for wire bonding having a thickness of 2 to 10 μm, preferably 5 μm, by electrolytic plating on the copper wiring layers 103a and 103b in the presence of the plating resists 102a to 102c. Layers 104a and 104b are formed.

次いで、図2(4)に示されるように、めっきレジストの剥離を行なう。即ち、めっきレジスト102a〜102cを膨潤剥離させるなどして除去する。
次いで、図2(5)に示されるように、フラッシュエッチングを行なう。即ち、銅配線層103a,103bなどで覆われることなく露出している電解めっき給電層101bを除去する。
次いで、図2(6)に示されるように、ソルダーレジストの形成を行なう。即ち、絶縁基材101aの上にソルダーレジスト105a,105bを形成する。
Next, as shown in FIG. 2 (4), the plating resist is peeled off. That is, the plating resists 102a to 102c are removed by swelling and peeling.
Next, as shown in FIG. 2 (5), flash etching is performed. That is, the electrolytic plating power supply layer 101b exposed without being covered with the copper wiring layers 103a and 103b is removed.
Next, as shown in FIG. 2 (6), a solder resist is formed. That is, solder resists 105a and 105b are formed on the insulating base material 101a.

次いで、図2(7)に示されるように、第2電解ニッケルめっき処理を行なう。即ち、第1ニッケルめっき層104a,104bの上に電解めっきにより、厚さが0.2〜1.0μm、好ましくは0.5μmであるイオンマイグレーションのバリア層として好適な厚さの第2ニッケルめっき層106a,106bを更に形成する。
最後に、図2(8)に示されるように、電解金めっき処理を行なう。即ち、第2ニッケルめっき層106a,106bの上に電解めっきにより、厚さが0.2〜1.0μm、好ましくは0.5μmである金めっき層107a,107bを更に形成する。
このようにして本発明のプリント配線板が得られる。
Next, as shown in FIG. 2 (7), a second electrolytic nickel plating process is performed. That is, the second nickel plating having a thickness suitable as an ion migration barrier layer having a thickness of 0.2 to 1.0 μm, preferably 0.5 μm, by electrolytic plating on the first nickel plating layers 104a and 104b. Layers 106a and 106b are further formed.
Finally, as shown in FIG. 2 (8), electrolytic gold plating is performed. That is, gold plating layers 107a and 107b having a thickness of 0.2 to 1.0 μm, preferably 0.5 μm, are further formed on the second nickel plating layers 106a and 106b by electrolytic plating.
Thus, the printed wiring board of the present invention is obtained.

図3は、本発明の第2の実施の形態に係るプリント配線板の要部拡大断面説明図である。この図から明らかなように、本発明の第2の実施の形態に係るプリント配線板は、絶縁基材201aの上に設けられた給電層201bと、その給電層の上に形成された銅配線層203a,203bと、その銅配線層203a,203bの上にのみ形成されたニッケルめっき層204a,204bと、そのニッケルめっき層204a,204bの上に形成された金めっき層207a,207bと、絶縁基材の上に設けられたソルダーレジスト205a,205bとを有しており、この第2の実施の形態においても、銅配線層203a,203bの上面には、ワイヤーボンディング用として充分な厚さの、ニッケルめっき層204a,204b及び金めっき層207a,207bから成るめっき層が形成されていると共に、銅配線層203a,203bの側面(周面)及びニッケルめっき層204a,204bの側面(周面)にも、パッド間のイオンマイグレーションのバリア層として好適なめっき層(例えば厚さ0.5μmの金めっき層207a,207b)が形成されている。   FIG. 3 is an enlarged cross-sectional explanatory view of a main part of a printed wiring board according to the second embodiment of the present invention. As is apparent from this figure, the printed wiring board according to the second embodiment of the present invention includes a power supply layer 201b provided on the insulating base material 201a and a copper wiring formed on the power supply layer. Layers 203a and 203b, nickel plating layers 204a and 204b formed only on the copper wiring layers 203a and 203b, gold plating layers 207a and 207b formed on the nickel plating layers 204a and 204b, and insulation Also in this second embodiment, the upper surfaces of the copper wiring layers 203a and 203b have a sufficient thickness for wire bonding. The solder resists 205a and 205b are provided on the base material. In addition, a plating layer composed of nickel plating layers 204a and 204b and gold plating layers 207a and 207b is formed, and copper wiring layers 203a and 2 Also on the side surface (peripheral surface) of 3b and the side surfaces (peripheral surfaces) of the nickel plating layers 204a and 204b, plating layers suitable as barrier layers for ion migration between pads (for example, gold plating layers 207a and 207b with a thickness of 0.5 μm). ) Is formed.

尚、この第2の実施の形態の場合、図1を用いて説述した本発明の第1の実施形態の場合と異なり、銅配線層203a,203bの側面(周面)においてはイオンマイグレーションのバリア層としてのニッケルめっき層が存在しない、すなわちニッケルめっき層を介さず直接金めっき層207a,207bが形成されている。 In the case of the second embodiment, unlike the case of the first embodiment of the present invention described with reference to FIG. 1, ion migration is not performed on the side surfaces (peripheral surfaces) of the copper wiring layers 203a and 203b . There is no nickel plating layer as a barrier layer , that is, gold plating layers 207a and 207b are formed directly without a nickel plating layer.

図4は、図3に示される本発明のプリント配線板の製造方法を示す概略断面工程説明図であり、同図(1)はめっきレジスト形成工程、同図(2)はパターンめっき工程、同図(3)は電解ニッケルめっき工程、同図(4)はめっきレジスト剥離工程、同図(5)はフラッシュエッチング工程、同図(6)はソルダーレジスト形成工程、同図(7)は電解金めっき工程をそれぞれ示している。   4A and 4B are schematic cross-sectional process explanatory views showing the method of manufacturing the printed wiring board of the present invention shown in FIG. 3, wherein FIG. 1A is a plating resist forming process, FIG. 2B is a pattern plating process, (3) is an electrolytic nickel plating process, (4) is a plating resist stripping process, (5) is a flash etching process, (6) is a solder resist forming process, and (7) is an electrolytic gold process. Each of the plating steps is shown.

また、図4中、201aは例えば絶縁性樹脂材料からなる絶縁基材;201bは例えば銅箔からなる電解めっき給電層;202a〜202cはめっきレジスト;203a,203bは銅配線層;204a,204bはニッケルめっき層;205a,205bはソルダーレジスト;207a,207bは金めっき層である。   In FIG. 4, 201a is an insulating base material made of, for example, an insulating resin material; 201b is an electroplating feeding layer made of, for example, copper foil; 202a to 202c are plating resists; 203a and 203b are copper wiring layers; and 204a and 204b are Nickel plating layer; 205a and 205b are solder resists; 207a and 207b are gold plating layers.

以下斯かる図4と共に本発明の第2の実施の形態を説明する。まず、図4(1)に示されるように、めっきレジストの形成を行なう。即ち、電解めっき給電層201bの上にめっきレジスト202a〜202cを形成する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIG. First, as shown in FIG. 4A, a plating resist is formed. That is, the plating resists 202a to 202c are formed on the electrolytic plating power supply layer 201b.

次に、図4(2)に示されるように、パターンめっきを行なう。即ち、露出している電解めっき給電層201bの上に電解銅めっきにより、銅配線層203a,203bを形成する。
次いで、図4(3)に示されるように、電解ニッケルめっきを行なう。即ち、めっきレジスト202a〜202cが存在する状態で銅配線層203a,203bの上に電解めっきにより、厚さが2〜10μm、好ましくは5μmであるワイヤーボンディング用として充分な厚さのニッケルめっき層204a,204bを形成する。
Next, pattern plating is performed as shown in FIG. That is, copper wiring layers 203a and 203b are formed on the exposed electrolytic plating power supply layer 201b by electrolytic copper plating.
Next, as shown in FIG. 4 (3), electrolytic nickel plating is performed. That is, the nickel plating layer 204a having a sufficient thickness for wire bonding having a thickness of 2 to 10 μm, preferably 5 μm, by electrolytic plating on the copper wiring layers 203a and 203b in the presence of the plating resists 202a to 202c. , 204b.

次いで、図4(4)に示されるように、めっきレジストの剥離を行なう。即ち、めっきレジスト202a〜202cを膨潤剥離させるなどして除去する。
次いで、図4(5)に示されるように、フラッシュエッチングを行なう。即ち銅配線層203a,203bなどで覆われることなく露出している電解めっき給電層201bを除去する。
Next, as shown in FIG. 4 (4), the plating resist is peeled off. That is, the plating resists 202a to 202c are removed by swelling and peeling.
Next, as shown in FIG. 4 (5), flash etching is performed. That is, the electrolytic plating power supply layer 201b exposed without being covered with the copper wiring layers 203a and 203b is removed.

次いで、図4(6)に示されるように、ソルダーレジスト形成を行なう。即ち、絶縁基材201aの上にソルダーレジスト205a,205bを形成する。
その後、図4(7)に示されるように、電解金めっきを行なう。即ち、銅配線層203a,203bの上とニッケルめっき層204a,204bの上に、厚さが0.2〜1.0μm、好ましくは0.5μmである金めっき層207a,207bを更に形成する。
このようにして本発明のプリント配線板が得られる。
Next, as shown in FIG. 4 (6), a solder resist is formed. That is, solder resists 205a and 205b are formed on the insulating base material 201a.
Thereafter, as shown in FIG. 4 (7), electrolytic gold plating is performed. That is, gold plating layers 207a and 207b having a thickness of 0.2 to 1.0 μm, preferably 0.5 μm, are further formed on the copper wiring layers 203a and 203b and the nickel plating layers 204a and 204b.
Thus, the printed wiring board of the present invention is obtained.

以上説述したように、本発明によれば、めっきレジストが存在する状態でワイヤーボンディング用として充分な厚さのニッケルめっき層を形成しているので、銅配線層側面(周面)にニッケルが析出することがないと共に、ボンディングパッドのトップ部分に、十分なワイヤーボンディング性能を持つ厚さのニッケルめっきを施すことができる利点がある。
このため、より微細なボンディングパッド間隔に対しても、電解ニッケルめっきにおけるショートを低減することができる。
As described above, according to the present invention, since a nickel plating layer having a sufficient thickness for wire bonding is formed in the presence of a plating resist , nickel is formed on the side surface (circumferential surface) of the copper wiring layer. There is an advantage that nickel plating having a thickness with sufficient wire bonding performance can be applied to the top portion of the bonding pad without being deposited.
For this reason, short-circuiting in electrolytic nickel plating can be reduced even for a finer bonding pad interval.

その結果、間隔を狭くしてパターン幅を広く確保することが可能となり、ボンディングに使用できる面積が増える。従って、本発明によれば、微細なパッドピッチにおいても、優れたボンディング性を確保することができる。
また、セミアディティブ工法における無電解銅めっき除去のフラッシュエッチング時に、ボンディングパッドのトップ部分が電解ニッケルめっきによって保護される。これにより、ボンディングパッドトップ部分の平坦性を保つことができ、ワイヤーボンディング時に有利となる。
As a result, it is possible to secure a wide pattern width by narrowing the interval, and the area that can be used for bonding increases. Therefore, according to the present invention, excellent bonding properties can be ensured even with a fine pad pitch.
In addition, the top portion of the bonding pad is protected by electrolytic nickel plating at the time of flash etching for removing the electroless copper plating in the semi-additive method. Thereby, the flatness of the bonding pad top portion can be maintained, which is advantageous at the time of wire bonding.

更に、セミアディティブ工法におけるフラッシュエッチング時に、パターンの粗密におけるエッチングレートの差を埋めることができる。このため、従来の方法に比して、設計値に近い仕上がりを得ることができるという利点もある。   Furthermore, the difference in etching rate in the pattern density can be filled during flash etching in the semi-additive method. For this reason, there is an advantage that a finish close to the design value can be obtained as compared with the conventional method.

なお、本発明は上述の実施形態に限定されることなく種々の変形が可能であり、例えば、電解ニッケルめっき工程の前に電解脱脂工程を入れても良く、また、図4(7)の電解金めっき工程において、銅配線層203a,203bの上面にのみ厚さ0.5μmの金めっき層207a,207bが形成されるようにしても良い。   The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, an electrolytic degreasing process may be inserted before the electrolytic nickel plating process, and the electrolytic process of FIG. In the gold plating step, gold plating layers 207a and 207b having a thickness of 0.5 μm may be formed only on the upper surfaces of the copper wiring layers 203a and 203b.

本発明のプリント配線板の要部拡大断面説明図。The principal part expanded sectional explanatory drawing of the printed wiring board of this invention. 本発明のプリント配線板の製造方法を示す概略断面工程説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic cross-sectional process explanatory drawing which shows the manufacturing method of the printed wiring board of this invention. 他の本発明のプリント配線板の要部拡大断面説明図。The principal part expanded sectional explanatory drawing of the printed wiring board of other this invention. 他の本発明のプリント配線板の製造方法を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows the manufacturing method of the other printed wiring board of this invention. 従来のプリント配線板の製造方法を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows the manufacturing method of the conventional printed wiring board.

符号の説明Explanation of symbols

101a,201a,301a:絶縁基材
101b,201b,301b:電解めっき給電層
102a〜102c,202a〜202c,302a〜302c:めっきレジスト
103a,103b,203a,203b,303a,303b:銅配線層
104a,104b:第1ニッケルめっき層
105a,105b,205a,205b,305a,305b:ソルダーレジスト
106a,106b:第2ニッケルめっき層
204a,204b,306a,306b:ニッケルめっき層
107a,107b,207a,207b,307a,307b:金めっき層
101a, 201a, 301a: insulating base materials 101b, 201b, 301b: electrolytic plating power supply layers 102a-102c, 202a-202c, 302a-302c: plating resists 103a, 103b, 203a, 203b, 303a, 303b: copper wiring layers 104a, 104b: first nickel plating layers 105a, 105b, 205a, 205b, 305a, 305b: solder resists 106a, 106b: second nickel plating layers 204a, 204b, 306a, 306b: nickel plating layers 107a, 107b, 207a, 207b, 307a , 307b: Gold plating layer

Claims (4)

絶縁基材の上に設けられた給電層の上にめっきレジストを形成する工程と、
次いで、前記給電層の露出面に銅配線層を形成するパターンめっき工程と、
次いで、前記銅配線層の表面にワイヤーボンディング用のニッケルめっき層を形成する第1ニッケルめっき工程と、
次いで、前記めっきレジストを除去するめっきレジスト剥離工程と、
次いで、前記給電層の露出している部分を除去するフラッシュエッチング工程と、
次いで、前記絶縁基材の上にソルダーレジストを形成するソルダーレジスト形成工程と、
次いで、前記銅配線層の上にイオンマイグレーションのバリア層としてのニッケルめっき層を形成する第2ニッケルめっき工程と、
次いで、前記第2ニッケルめっき層の上に金めっき層を形成する金めっき工程と
を有することを特徴とするプリント配線板の製造方法。
Forming a plating resist on a power feeding layer provided on an insulating substrate;
Next, a pattern plating step of forming a copper wiring layer on the exposed surface of the power feeding layer,
Next, a first nickel plating step of forming a nickel plating layer for wire bonding on the surface of the copper wiring layer,
Next, a plating resist peeling step for removing the plating resist;
Next, a flash etching process for removing the exposed portion of the power feeding layer,
Next, a solder resist forming step of forming a solder resist on the insulating substrate,
Next, a second nickel plating step of forming a nickel plating layer as a barrier layer of ion migration on the copper wiring layer,
And a gold plating step of forming a gold plating layer on the second nickel plating layer.
前記第1及び第2のニッケルめっき層を、電解ニッケルめっき処理で形成することを特徴とする請求項記載のプリント配線板の製造方法。 Wherein the first and second nickel-plated layer, the manufacturing method according to claim 1, wherein the printed wiring board, which comprises forming by the electroless nickel plating process. 絶縁基材の上に設けられた給電層の上にめっきレジストを形成する工程と、
次いで、前記給電層の露出面に銅配線層を形成するパターンめっき工程と、
次いで、前記銅配線層の表面にワイヤーボンディング用のニッケルめっき層を形成するニッケルめっき工程と、
次いで、前記めっきレジストを除去するめっきレジスト剥離工程と、
次いで、前記給電層の露出している部分を除去するフラッシュエッチング工程と、
次いで、前記絶縁基材の上にソルダーレジストを形成するソルダーレジスト形成工程と、
次いで、前記ニッケルめっき層の上、又は前記ニッケルめっき層の上及び配線層の側面に金めっき層を形成する金めっき工程と
を有することを特徴とするプリント配線板の製造方法。
Forming a plating resist on a power feeding layer provided on an insulating substrate;
Next, a pattern plating step of forming a copper wiring layer on the exposed surface of the power feeding layer,
Next, a nickel plating step of forming a nickel plating layer for wire bonding on the surface of the copper wiring layer,
Next, a plating resist peeling step for removing the plating resist;
Next, a flash etching process for removing the exposed portion of the power feeding layer,
Next, a solder resist forming step of forming a solder resist on the insulating substrate,
And a gold plating step of forming a gold plating layer on the nickel plating layer or on the nickel plating layer and on a side surface of the wiring layer.
前記ニッケルめっき層を、電解ニッケルめっき処理で形成することを特徴とする請求項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 3 , wherein the nickel plating layer is formed by electrolytic nickel plating.
JP2005283664A 2005-09-29 2005-09-29 Method for manufacturing printed wiring board Expired - Fee Related JP4705448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283664A JP4705448B2 (en) 2005-09-29 2005-09-29 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283664A JP4705448B2 (en) 2005-09-29 2005-09-29 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2007096007A JP2007096007A (en) 2007-04-12
JP4705448B2 true JP4705448B2 (en) 2011-06-22

Family

ID=37981339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283664A Expired - Fee Related JP4705448B2 (en) 2005-09-29 2005-09-29 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP4705448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11315863B2 (en) 2019-10-22 2022-04-26 Samsung Electronics Co., Ltd. Package substrate and method of manufacturing the package substrate, and semiconductor package including the package substrate and method of manufacturing the semiconductor package

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152974A1 (en) * 2007-06-15 2008-12-18 Nippon Mining & Metals Co., Ltd. Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property
KR101008422B1 (en) 2008-10-27 2011-01-14 삼성전기주식회사 Printed circuit board manufacturing method
JP5428667B2 (en) * 2009-09-07 2014-02-26 日立化成株式会社 Manufacturing method of semiconductor chip mounting substrate
JP5720381B2 (en) * 2011-04-05 2015-05-20 富士通株式会社 Manufacturing method of semiconductor device
PL3028549T3 (en) * 2013-07-29 2018-11-30 Ferro Corporation Conductive trace and method of forming conductive trace
JP5682678B2 (en) * 2013-08-28 2015-03-11 日立化成株式会社 Semiconductor chip mounting substrate and manufacturing method thereof
JP6738690B2 (en) * 2016-08-29 2020-08-12 日本特殊陶業株式会社 Ceramic wiring board manufacturing method
CN108738240A (en) * 2017-04-19 2018-11-02 鹏鼎控股(深圳)股份有限公司 Flexible PCB and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198639A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Printed wiring board, manufacturing method therefor and mounting method of electronic component
JP2003204012A (en) * 2001-11-13 2003-07-18 Lg Electronics Inc Bonding pad for printed circuit board and method for forming the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183259A (en) * 1991-12-27 1993-07-23 Ibiden Co Ltd Manufacture of high density printed wiring board
JPH10107393A (en) * 1996-09-26 1998-04-24 Ibiden Co Ltd Ceramic wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198639A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Printed wiring board, manufacturing method therefor and mounting method of electronic component
JP2003204012A (en) * 2001-11-13 2003-07-18 Lg Electronics Inc Bonding pad for printed circuit board and method for forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11315863B2 (en) 2019-10-22 2022-04-26 Samsung Electronics Co., Ltd. Package substrate and method of manufacturing the package substrate, and semiconductor package including the package substrate and method of manufacturing the semiconductor package
US11823995B2 (en) 2019-10-22 2023-11-21 Samsung Electronics Co., Ltd. Package substrate, and semiconductor package including the package substrate

Also Published As

Publication number Publication date
JP2007096007A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4705448B2 (en) Method for manufacturing printed wiring board
JP4848451B2 (en) Method for manufacturing printed circuit board
JP2009088469A (en) Printed circuit board and manufacturing method of same
JP2003298232A (en) Multilayer wiring board and method of manufacturing the same
TW200836606A (en) Circuit board process
US20070084823A1 (en) Method of manufacturing double-sided printed circuit board
JP2004253761A (en) Method for manufacturing double-sided flexible printed circuit board
TW200917924A (en) Method for manufacturing multilayer printed-wiring board
JP2010016335A (en) Metal laminate plate and manufacturing method thereof
JP4051273B2 (en) Wiring board and method of manufacturing wiring board
JP2007067147A (en) Printed circuit board and its manufacturing method
JP2007335803A (en) Method for manufacturing wiring board
JP2006108270A (en) Method of manufacturing flexible printed board
JP2005197648A (en) Method for manufacturing a circuit board wired by electroplating
KR100873666B1 (en) Method of processing double-sided core for printed circuit board
JP4553950B2 (en) Printed circuit board and manufacturing method thereof
JPH04320092A (en) Multilayer printed board
JP2003273510A (en) Manufacturing method for printed substrate
JP2000124615A (en) Multilayer printed wiring board and its manufacture
JP3205089B2 (en) Method for producing multilayer conductor film carrier
JP2007311484A (en) Printed-wiring board, and manufacturing method therefor
JP4130873B2 (en) Printed circuit board manufacturing method
JP2001308532A (en) Printed wiring board and manufacture thereof
TWI299969B (en)
JP2004186453A (en) Multilayer wiring board and method for manufacturing the same, and component mounting board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees