JP4699960B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP4699960B2
JP4699960B2 JP2006233642A JP2006233642A JP4699960B2 JP 4699960 B2 JP4699960 B2 JP 4699960B2 JP 2006233642 A JP2006233642 A JP 2006233642A JP 2006233642 A JP2006233642 A JP 2006233642A JP 4699960 B2 JP4699960 B2 JP 4699960B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
refrigeration cycle
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006233642A
Other languages
English (en)
Other versions
JP2008057827A (ja
Inventor
健司 加藤
伸也 黒木
俊男 鳥居
正弘 君島
洋 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Denso Corp
Original Assignee
Honda Motor Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Denso Corp filed Critical Honda Motor Co Ltd
Priority to JP2006233642A priority Critical patent/JP4699960B2/ja
Publication of JP2008057827A publication Critical patent/JP2008057827A/ja
Application granted granted Critical
Publication of JP4699960B2 publication Critical patent/JP4699960B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクル装置に関するものであり、特に、蒸発器から圧縮機へ戻る冷媒配管の配管接続部近傍で発生するキーン音を低減することのできる配管接続部構造に関するものである。
従来から冷凍サイクル装置の冷媒配管では、冷媒が流れる際に冷媒配管内の冷媒流路の形状によって渦が発生し騒音の原因となっている。下記の特許文献1では、多パス型の蒸発器に冷媒を分流する分流器の入口配管の内側に旋回流発生手段としての多条螺旋溝を設け、旋回流にして分流させることで絞り部を無くして冷媒通過音を防止するものである。
また、下記の特許文献2では、膨張弁に流入する冷媒の流れを、開度可変絞り部の上流側の冷媒通路に形成した乱れ生起部によって乱すものである。これにより、冷媒が減圧されることなく気液二相冷媒流中の気泡を細分化して均一化することができるため、下流にある開度可変絞り部で気液二相冷媒流の圧力変動を低減することができ、ひいては、冷媒が膨張弁の開度可変絞り部を通過する際の騒音および不連続音を低減するものである。
しかしながら、これらの従来技術は、膨張弁や蒸発器に流入する気液二相冷媒流で発生する、例えばシュー音のような、あまり高くない周波数の騒音に対するものである。一方、冷凍サイクル装置における冷媒系の騒音として、蒸発器から圧縮機へ戻る冷媒配管の配管接続部から「キーン」という5〜7kHz付近の金属的な音が発生することが知られている。この騒音を抑制するために従来は、冷媒配管同士の接続部において、渦の発生原因となる流動不良箇所としてエッジをできるだけ無くして適度な角度のテーパーとしたものがある(例えば、下記の特許文献3を参照)。
特開2000−105026号公報 特開2005−226846号公報 特開平7−217779号公報
しかしながら近年、冷却能力向上のためにオイルセパレータ付きのコンプレッサが普及して冷凍サイクル内のオイル循環量が減少してきたことにより、同じ配管形状でありながらキーン音が再発するようになってきている。これは従来、配管接続部の冷媒流路内に存在する段差にオイルが溜まって流路の形状を滑らかにしていたためと思われる。よって当然、冷凍サイクル内のオイル循環量を増やせば、キーン音発生の頻度は減少するが、冷却能力が低下してしまうという問題点がある。
また、冷媒配管としてのホースやパイプから接続部を無くして一体的に形成できれば、このようなキーン音は発生しないことも判っているが、装置の組み立て上配管接続部を無くすことは現実的ではない。このキーン音は、大きく発生する配管接続部の冷媒流路内の段差を無くすことにより、その部分でのキーン音の発生を防止することが可能であるが、この場合、これまでキーン音を発生していなかった別の配管接続部の段差から新たに更に大きなキーン音が発生することから、段差を無くしていく対応では完全に消音することが困難である。
また、発明者らは、ボックス型の膨張弁の両側に冷媒配管を接続する配管接続部では、膨張弁の低圧側冷媒流路内に配置されて感温部の動きを伝達する伝達ロッドの冷媒流れ下流側に渦が発生し、その周期性の渦が冷媒流速により定在波となって冷媒流れ下流側へ伝播し、配管接続部下流側の冷媒配管部がその定在波に共鳴してキーン音を発生しているということも見出している。
本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、蒸発器から圧縮機へ戻る冷媒配管の配管接続部近傍で発生するキーン音を低減することのできる冷凍サイクル装置を提供することにある。
本発明は上記目的を達成するために、請求項1ないし請求項4に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を吸入し圧縮する圧縮機(10)と、
圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、
放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、
減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(50)と、
これらを環状に接続する冷媒配管(H1、H2、P1〜4)とを備えた冷凍サイクル装置において、
蒸発器(50)から圧縮機(10)へ戻る冷媒配管(H2、P3、P4)の配管接続部(J1〜J3)に対して冷媒流れ下流側に接続された冷媒配管(H2、P3、P4)において、冷媒流れ上流側の端部の内面に乱流発生凹凸部(65)が形成され、乱流発生凹凸部(65)は冷媒流れ方向に3つ以上の連続的に並んだ凹部もしくは凸部から成っていることを特徴としている。
この請求項1に記載の発明によれば、段差を無くして冷媒流れをスムーズにする対策ではなく、配管接続部(J1〜J3)の下流側に接続されて、定在波に共鳴してキーン音を発生している冷媒配管(H2、P3、P4)の上流端部の内面に冷媒の流れを乱す乱流発生凹凸部(65)を設けることで、その配管接続部近傍でのキーン音発生防止と、他の配管接続部でキーン音が悪化することを防止することができる。
また、請求項2に記載の発明では、請求項1に記載の冷凍サイクル装置において、乱流発生凹凸部(65)は、発音部の冷媒流れ上流側に設けられていることを特徴としている。この請求項2に記載の発明によれば、発音部の上流側で冷媒の流れに乱れを生じさせて周期的な渦の発生を阻止することで、キーン音の発生を有効に防止することができる。
また、請求項3に記載の発明では、請求項1または請求項2に記載の冷凍サイクル装置において、乱流発生凹凸部(65)は、冷媒配管(H2、P3、P4)の内面に螺子状に形成されていることを特徴としている。乱流発生凹凸部(65)は、冷媒配管(H2、P3、P4)の内面に螺子を切ることで形成したものであっても良い。
この請求項3に記載の発明によれば、乱流発生凹凸部(65)を容易に形成することができ、キーン音防止のコストを抑えることができる。なお、特許請求の範囲および上記各手段に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、本発明の第1実施形態について添付した図1ないし図7を用いて詳細に説明する。まず、図1は本発明の実施形態に係る冷凍サイクル装置1の構成を示す斜視図であり、図2は蒸発器50と配管接続部J1、J2の正面図である。そして、図3は本発明の一実施形態における配管接続部J1の構造を示す断面図、図4は本発明の一実施形態における配管接続部J2の構造を示す断面図、図5は本発明の一実施形態における配管接続部J3の構造を示す断面図である。
本実施形態では、本発明を車両用クーラーとしての冷凍サイクル装置へ適用した例にて説明する。車両用クーラーは、車室内に冷房用空気を送り込むための図示しない送風機と、冷房用空気の通路を成す図示しないダクトとを備え、ダクト内には、ダクト内を流れる空気を冷却する冷却用熱交換器として後述の蒸発器50が備えられている。
次に、本冷凍サイクル装置1の構成部品を、冷媒の流れに沿って説明する。まず、圧縮機10は、図示しない車両走行用エンジンから動力を得て冷媒を吸入圧縮する。なお、圧縮機10は周知の圧縮装置であり、構造を問わないため詳細な説明は省略するが、本実施形態では図示しないオイルセパレータを備えた圧縮機10であり、冷凍サイクル内のオイル循環量を少なくしたものである。また、圧縮機10は電動のものであっても良い。
そして、圧縮機10から吐出された高圧冷媒は、フレキシブルな冷媒ホースH1を通って凝縮器(本発明で言う放熱器)20に供給される。凝縮器20は、車両走行時に前方から受ける風や図示しない冷却ファンから送られる風を冷却風として、その冷却風と圧縮機10から吐出される高圧冷媒とを熱交換して高圧冷媒を放冷させて凝縮させる高圧側熱交換器である。
なお、凝縮器20も周知のものであり、本実施形態では構造を問わないため、詳細な説明は省略する。また、本実施形態の凝縮器20は、凝縮器20から流入する冷媒を気液分離して液冷媒のみを流出させるとともに、冷凍サイクル内の余剰冷媒を液冷媒として貯留するレシーバ30と、レシーバ30より流出した液冷媒を外気と熱交換させて更に冷却する過冷却器とを一体に構成している。
凝縮器20から流出する凝縮した冷媒は、アルミニウム製の冷媒パイプP1を通って膨張弁(本発明で言う減圧膨張手段)40の第1流入ポート411に流入する(図4参照)。なお、本実施形態での膨張弁40は、図4に示すように、感温部を冷媒流路内に有する周知のボックスタイプの膨張弁40で構成している。膨張弁40は、高圧冷媒を等エンタルピ的に減圧膨脹させるとともに、蒸発器50の冷媒出口側における冷媒温度に基づいて高圧冷媒の圧力を制御する減圧手段であり、詳細な構造は後述する。
先の第1流入ポート411に流入した高圧冷媒は、第1冷媒通路中の後述する弁部で減圧されて第1流出ポート412から流出し、アルミニウム製の冷媒パイプP2を通って蒸発器50に供給される。蒸発器50は、減圧された低圧冷媒と車室内に吹き出す空気とを熱交換することによって低圧冷媒を蒸発させる低圧側熱交換器である。
なお、蒸発器50は周知の熱交換器であり構造は問わないが、本実施形態では図2に示すように、チューブ51とフィン52とを交互に積層して熱交換部を形成し、その下側には冷媒を各チューブ51へ分配するための下部タンク53、上側には熱交換の済んだ冷媒を集約するための上部タンク54が設けられている。下部タンク53からは冷媒導入パイプ55、上部タンク54からは冷媒導出パイプ56が延出され、これらのパイプ55、56の先端側にはブロックジョイント57がろう付け接合されている。
蒸発器50は、車室内に搭載された図示しないダクト内に収納されていて、送風機により送り込まれた冷房用空気が、全量、熱交換部を通過するように配置されている。蒸発器50は、膨張弁40で減圧膨張した冷媒を蒸発させ、冷媒の蒸発熱によって車室内に吹き出す冷房用空気を冷却、除湿するものである。
蒸発器50で蒸発した低圧冷媒は、アルミニウム製の冷媒パイプP3を通って膨張弁40の第2流入ポート413に流入し、感温部と連通する第2冷媒通路を通って第2流出ポート414に抜ける(図4参照)。そして、膨張弁40を通過した冷媒は、アルミニウム製の冷媒パイプP4とフレキシブルな冷媒ホースH2とを通って圧縮機10に吸入される。
なお、本実施形態では図1、図2に示すように、冷媒パイプP2、P3の両端にブロックジョイント61、62をろう付け接合して配管アッシー60を構成し、冷媒パイプP1、P4の一端にブロックジョイント71をろう付け接合して配管アッシー70を構成している。また、冷媒パイプP4と冷媒ホースH2との間には、図5に示す配管接続部J3を構成している。
次に、図3〜図5を用いて配管接続部J1〜J3の具体的な構造を説明する。まず、図3に示す配管接続部J1は、蒸発器50のブロックジョイント57と配管アッシー60一端側のブロックジョイント61との接続部である。ブロックジョイント57の反接続側面にはパイプ接続穴571、572が形成されており、このパイプ接続穴571、572に冷媒導入、導出パイプ55、56の先端部を挿入してろう付け接合している。また、接続側面には嵌合凸部573、574が形成されており、シール用のOリング58、59が嵌められている。
ブロックジョイント61も、反接続側面にはパイプ接続穴611、612が形成されており、冷媒パイプP2、P3の一端側の先端部を挿入してろう付け接合している。また、接続側面には嵌合凹部613、614が形成されており、ブロックジョイント57の嵌合凸部573、574が挿入嵌合される。そしてこれらのブロックジョイント57、61は、図示しないスルーボルトで締結されて接続、シールが成される。
図4に示す配管接続部J2は、配管アッシー60他端側のブロックジョイント62と配管アッシー70一端側のブロックジョイント71との間に膨張弁40を構成した接続部である。ブロックジョイント62の反接続側面にはパイプ接続穴621、622が形成されており、冷媒パイプP2、P3の他端側の先端部を挿入してろう付け接合している。また、接続側面には嵌合凸部623、624が形成されており、シール用のOリング63、64が嵌められている。
ブロックジョイント71も、反接続側面にはパイプ接続穴711、712が形成されており、冷媒パイプP1、P4の一端側の先端部を挿入してろう付け接合している。また、接続側面には嵌合凸部713、714が形成されており、シール用のOリング72、73が嵌められている。
そして次に、膨張弁40の構造について説明する。本実施形態の膨張弁40は、いわゆるボックス型と呼ばれるタイプのものである。膨張弁40は、膨張弁ブロックB、伝熱部41、伝達ロッド42、エレメント部43およびボール弁44などより構成されている。弁ブロックBは、例えばアルミニウム製で略直方体形状に設けられ、第1冷媒通路と第2冷媒通路とを有している。
第1冷媒通路は、前述した凝縮器20からの冷媒パイプP1に接続される流入ポート411、蒸発器50への冷媒パイプP2に接続される流出ポート412、および流入ポート411側と流出ポート412側とを連通する連通孔を有し、この連通孔の入口側(流入ポート411側)に円錐状のシート面が設けられている。第2冷媒通路は、蒸発器50出口側からの冷媒パイプP3に接続される流入ポート413、圧縮機10への冷媒パイプP4に接続される流出ポート414、および流入ポート413と流出ポート414とを連通し、伝熱部41へも連通する連通路を有している。
エレメント部43は、可撓性のある薄い金属板から成るダイヤフラム431と、このダイヤフラム431を挟持する受け部432と蓋部433とを具備し、弁ブロックBの上部にパッキン49aを介して螺子結合される。受け部432と蓋部433は、例えばTIG溶接により接合され、ダイヤフラム431と蓋部433とでダイヤフラム室45を形成している。
このダイヤフラム室45には、冷凍サイクルに使用される冷媒ガスと異なる種類の飽和ガスが封入されている。尚、蓋部433には、ダイヤフラム室45に飽和ガスを入れるための孔が開けられており、飽和ガスを入れた後、プラグ45aによって気密に閉塞されている。また、このエレメント部43を構成する各部品(ダイヤフラム431、受け部432、蓋部433およびプラグ45a)は、全て同一の金属材料(例えばステンレス)を使用して形成されている。
伝熱部41は、熱伝導率の高い金属材料(例えばアルミニウムまたは黄銅など)を使用して円柱状に形成されている。そして、円柱状の上面は下方からの後述する付勢力を受けてダイヤフラム431の下面に密着しており、第2の冷媒通路を流れる冷媒(蒸発器50で蒸発した気相冷媒)の温度変化をダイヤフラム433に伝達すると共に、円柱状の下面には伝達ロッド42が当接しており、ダイヤフラム431の変位を伝達ロッド42と協同してボール弁44に伝達するものである。
伝達ロッド42は、伝熱部41の下部に配されて、弁ブロックBに摺動自在に保持されている。その上端部は伝熱部41の下面に当接すると共に、第2の冷媒通路の連通路を上下方向に貫通し、第1冷媒通路の連通孔内部に挿通され、下端部は円錐状のシート面に押し当たるボール弁44の上面に当接している。また、上下方向に摺動自在に嵌挿されている伝達ロッド42に対して、第1冷媒通路と第2冷媒通路との間の弁ブロックB部にはOリング49bによるシール部が設けられている。
ボール弁44は、図4に示すように、連通孔の入口側に配されて、伝達ロッド42と弁受け部材46との間に保持され、シート面に着座することで連通孔を閉じ、シート面から離脱(リフト)することで連通孔を開くことができる。このボール弁44は、図4において、ダイヤフラム431を下方へ押し下げる力(ダイヤフラム室45の圧力−ダイヤフラム431の下側に作用する冷媒蒸気の圧力)と弁受け部材46を介してボール弁44を図4の上方へ付勢するスプリング47の荷重とが釣り合った位置に静止している。
スプリング47は、弁ブロックBの下端部に取り付けられた調節螺子48と弁受け部材46との間に配され、弁受け部材46を介してボール弁44を図4の上方(弁開度が小さくなる方向)へ付勢している。調節螺子48は、ボール弁44の開弁圧(ボール弁44を付勢するスプリング47の荷重)を調節するもので、Oリング49cを介して弁ブロックBの下端部に螺子結合されている。そしてこれらのブロックジョイント62、71と膨張弁40とは、図示しないスルーボルトで両側から締結されて接続、シールが成される。
図5に示す配管接続部J3は、膨張弁40からの冷媒パイプP4と圧縮機10への冷媒ホースH2との接続部である。冷媒パイプP4の他端には嵌合雌部74が形成されており、この嵌合雌部74の外側には雄螺子ジョイント75が挿入されている。また、冷媒ホースH2の先端金具には嵌合雄部91が形成されており、この嵌合雄部91にはシール用のOリング92が嵌められているとともに、嵌合雄部91の外側には雌螺子ジョイント93が挿入されている。そして、嵌合雄部91を嵌合雌部74に挿入嵌合するとともに、雄螺子ジョイント75と雌螺子ジョイント93とを締結することで接続、シールが成される。
次に、本実施形態における発明の要部を説明する。本実施形態では、蒸発器50から圧縮機10へ戻る冷媒配管H2、P3、P4の配管接続部J1〜J3の冷媒流れ下流側となる冷媒配管H2、P3、P4の上流端近傍の内面に乱流発生凹凸部65を形成している(図3〜図5参照)。この乱流発生凹凸部65は、本実施形態では冷媒配管H2、P3、P4の内面に螺子を切ることで形成したものであるが、これに限るものではなく、例えば各凹凸が円周方向に連続していないものであっても良いし、ねじのように螺旋でなくとも良い。
これによれば、配管接続部の冷媒流路内に存在する内径が縮小する方向の段差の冷媒流れ下流側に、流路方向に形状が一様でない乱流発生部65を設けることで、一様な管径変化が発生要因となっているキーン音の周期性を乱して特定周波数での発音を抑えることができる。なお、本実施形態での発音部位は、定在波に共鳴する冷媒流れ下流側の冷媒配管H2、P3、P4ということになる。このように、冷媒配管H2、P3、P4の内面に乱流発生凹凸部65を形成することによって容易にキーン音の発生を防止することができる。
図6は本発明を適用した実施形態での騒音の発生状況を示すグラフであり、図7は本発明を適用する前の騒音の発生状況を示すグラフである。図7のグラフでは、破線の楕円で囲んで示すように、6.47kHzに78dBAのキーン音のピークが出ていたものが、図6のグラフでは、本発明の適用によりそのキーン音のピークが無くなることが分かる。
次に、本実施形態での特徴と、その効果について述べる。まず、蒸発器50から圧縮機10へ戻る冷媒配管H2、P3、P4の配管接続部J1〜J3の冷媒流れ下流側に形成された乱流発生凹凸部(65)を有し、乱流発生凹凸部(65)は冷媒流れ方向に3つ以上の連続的に並んだ凹部もしくは凸部から成っている。
これによれば、段差を無くして冷媒流れをスムーズにする対策ではなく、定在波に共鳴してキーン音を発生している冷媒配管H2、P3、P4の上流端近傍に冷媒の流れを乱す乱流発生凹凸部65を設けることで、その配管接続部近傍でのキーン音発生防止と、他の配管接続部でキーン音が悪化することを防止することができる。
また、乱流発生凹凸部65は、発音部の冷媒流れ上流側に設けられている。これによれば、発音部の上流側で冷媒の流れに乱れを生じさせて周期的な渦の発生を阻止することで、キーン音の発生を有効に防止することができる。
また、乱流発生凹凸部65は、配管接続部J1〜J3の冷媒流れ下流側となる冷媒配管H2、P3、P4の上流端近傍の内面に形成している。これによれば、定在波に共鳴してキーン音を発生している冷媒配管H2、P3、P4の上流端近傍に冷媒の流れを乱す乱流発生凹凸部65を設けることで、その配管接続部近傍でのキーン音発生防止と、他の配管接続部でキーン音が悪化することを防止することができる。
また、乱流発生凹凸部65は、冷媒配管H2、P3、P4の内面に螺子状に形成されている。乱流発生凹凸部65は、冷媒配管H2、P3、P4の内面に螺子を切ることで形成したものであっても良い。これによれば、乱流発生凹凸部65を容易に形成することができ、キーン音防止のコストを抑えることができる。
(その他の実施形態)
上述の実施形態では、本発明を車両用空調装置に適用した例を示したが、本発明は上述した実施形態に限定されるものではなく、冷凍サイクルを用いるものであれば他の装置に適用しても良い。また、上述の実施形態では、両方向の配管をブロックジョイントで一体にして配管アッシー60、70を構成しているが、それぞれの方向の配管が別個となった構成であっても良い。
また、上述の実施形態では配管とブロックジョイントとの接合をろう付けとしているが、かしめ接合であっても良い。また、上述の実施形態では、放熱器で冷媒が凝縮する亜臨界圧サイクルとしたが、放熱器においては冷媒が凝縮しない超臨界圧サイクルであっても良いし、冷凍サイクル中にアキュムレータや内部熱交換器を構成したものであっても良い。
本発明の実施形態に係る冷凍サイクル装置1の構成を示す斜視図である。 蒸発器50と配管接続部J1、J2の正面図である。 本発明の一実施形態における配管接続部J1の構造を示す断面図である。 本発明の一実施形態における配管接続部J2の構造を示す断面図である。 本発明の一実施形態における配管接続部J3の構造を示す断面図である。 本発明を適用した実施形態での騒音の発生状況を示すグラフである。 本発明を適用する前の騒音の発生状況を示すグラフである。
符号の説明
10…圧縮機
20…凝縮器(放熱器)
40…膨張弁(減圧膨張手段)
50…蒸発器
65…乱流発生凹凸部
H1、H2…冷媒ホース(冷媒配管)
P1〜4…冷媒パイプ(冷媒配管)
J1〜J3…配管接続部

Claims (3)

  1. 冷媒を吸入し圧縮する圧縮機(10)と、
    前記圧縮機(10)から吐出される高温高圧冷媒の放熱を行う放熱器(20)と、
    前記放熱器(20)から流出する冷媒を減圧膨張させる減圧膨張手段(40)と、
    前記減圧膨張手段(40)から流出する冷媒を蒸発させる蒸発器(50)と、
    これらを環状に接続する冷媒配管(H1、H2、P1〜4)とを備えた冷凍サイクル装置において、
    前記蒸発器(50)から前記圧縮機(10)へ戻る前記冷媒配管(H2、P3、P4)の配管接続部(J1〜J3)に対して冷媒流れ下流側に接続された前記冷媒配管(H2、P3、P4)において、冷媒流れ上流側の端部の内面に乱流発生凹凸部(65)が形成され、前記乱流発生凹凸部(65)は冷媒流れ方向に3つ以上の連続的に並んだ凹部もしくは凸部から成っていることを特徴とする冷凍サイクル装置。
  2. 前記乱流発生凹凸部(65)は、発音部の冷媒流れ上流側に設けられていることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記乱流発生凹凸部(65)は、前記冷媒配管(H2、P3、P4)の内面に螺子状に形成されていることを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。
JP2006233642A 2006-08-30 2006-08-30 冷凍サイクル装置 Expired - Fee Related JP4699960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233642A JP4699960B2 (ja) 2006-08-30 2006-08-30 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233642A JP4699960B2 (ja) 2006-08-30 2006-08-30 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2008057827A JP2008057827A (ja) 2008-03-13
JP4699960B2 true JP4699960B2 (ja) 2011-06-15

Family

ID=39240794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233642A Expired - Fee Related JP4699960B2 (ja) 2006-08-30 2006-08-30 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP4699960B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464171B2 (ja) * 2011-05-25 2014-04-09 株式会社デンソー 流体通路接続装置
JP5863460B2 (ja) * 2012-01-04 2016-02-16 三菱重工業株式会社 ガスタービン燃焼器
FR3065775B1 (fr) * 2017-04-28 2020-03-27 Valeo Systemes Thermiques Dispositif de connexion comprenant une zone de raccordement anti-turbulence

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129371A (en) * 1981-02-03 1982-08-11 Nippon Denso Co Refrigerating plant
JPS59168677U (ja) * 1983-04-27 1984-11-12 三菱重工業株式会社 冷凍装置
JPH037532Y2 (ja) * 1985-02-08 1991-02-25
JPH0712429A (ja) * 1993-06-24 1995-01-17 Hitachi Ltd 空気調和機
JP3214588B2 (ja) * 1993-09-30 2001-10-02 株式会社デンソー 冷凍サイクル用配管継手
JPH11182980A (ja) * 1997-12-19 1999-07-06 Denso Corp 冷媒配管

Also Published As

Publication number Publication date
JP2008057827A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4375412B2 (ja) 蒸発器ユニット
US8282025B2 (en) Ejector
US7654108B2 (en) Unit for refrigerant cycle device
US8105050B2 (en) Ejector and manufacturing method thereof
US8201620B2 (en) Evaporator unit
US20070169512A1 (en) Heat exchanger and refrigerant cycle device using the same
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
US20160245563A1 (en) Accumulator, air-conditioning apparatus and method for manufacturing accumulator
JP2009097771A (ja) エジェクタ式冷凍サイクル
JP4114554B2 (ja) エジェクタサイクル
JP4222137B2 (ja) 放熱器
JP4699960B2 (ja) 冷凍サイクル装置
JP2008057826A (ja) 冷凍サイクル装置
JP5540816B2 (ja) 蒸発器ユニット
JP2009180419A (ja) 膨張弁
JP6446636B2 (ja) 膨張弁およびその配管取付構造
JP2005226866A (ja) 冷凍サイクル装置
JP2000039290A (ja) 熱交換装置
JP4187055B2 (ja) エジェクタサイクル
WO2012108112A1 (ja) 冷凍サイクル装置
JP2009204271A (ja) 冷凍サイクル
JP2019020113A (ja) 空調機
CN220583155U (zh) 换热装置及冰箱
JP7211606B2 (ja) 凝縮器、冷房システム、及び管継手

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

LAPS Cancellation because of no payment of annual fees