JP4698855B2 - ガスタービンの燃焼調整システム - Google Patents

ガスタービンの燃焼調整システム Download PDF

Info

Publication number
JP4698855B2
JP4698855B2 JP2001045684A JP2001045684A JP4698855B2 JP 4698855 B2 JP4698855 B2 JP 4698855B2 JP 2001045684 A JP2001045684 A JP 2001045684A JP 2001045684 A JP2001045684 A JP 2001045684A JP 4698855 B2 JP4698855 B2 JP 4698855B2
Authority
JP
Japan
Prior art keywords
value
gas turbine
adjustment
nox
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001045684A
Other languages
English (en)
Other versions
JP2002243151A (ja
Inventor
素志 高須
桐児 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001045684A priority Critical patent/JP4698855B2/ja
Publication of JP2002243151A publication Critical patent/JP2002243151A/ja
Application granted granted Critical
Publication of JP4698855B2 publication Critical patent/JP4698855B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンの燃焼調整システムに関し、特に、燃焼振動制御とNOX量制御の操作方向が逆になる傾向が一般的に認められるガスタービンの燃焼調整システムに関する。
【0002】
【従来の技術】
ガスタービンには、燃焼器で生成される燃焼ガスが供給される。燃焼器として、いわゆる予混合式の燃焼器が採用されるようになった。予混合式の燃焼器は、NOX抑制のためにメインノズルから噴射される燃料が予め空気と混合されることにより希薄燃焼が行われる。このような希薄燃焼は、失火・振動燃焼のような燃焼の不安定を招く。このような燃焼不安定を回避するために、パイロットノズルから燃料が噴射されて拡散燃焼が行われるとともに、圧縮機から供給される空気の一部がバイパス弁を介して燃焼ガスと下流側で混合されるようになっている。負荷変動・安定燃焼・NOX発生の抑制のための制御システムが、複数の燃焼器のそれぞれにに組み込まれている。
【0003】
燃焼振動を防止して安定な燃焼状態を確保するための操作と燃焼ガスに含まれるNOXの量を容値以下に抑制するための操作とは、互いに相反する物理的性格を有している。燃焼振動を防止しようとする操作NOX量が増大し、NOX量を許容値以下に抑制しようとする操作は燃焼を不安定にする。このように、両操作の間には、二律背反的性格が一般的に認められ、燃焼振動を抑制し、且つ、NOX量を抑制する操作は、その範囲が極めて限定されている。
【0004】
燃焼振動は広い周波数領域の範囲で発生する。ある周波数領域に対応して有効である操作が他の周波数領域では無効であることがあり、且つ、対応の仕方が周波数領域ごとに異なることがある。燃焼振動を所定のレベルに低下させるためには、経験豊富な運転員の試行錯誤的な長時間の操作が必要であり、極めて高度の専門的知識と経験とを備えた専門家による調整技術が要求されている。特開平7−224689号は、大気温度、湿度、燃料の発熱量の変化に係わりなく、常に低NOX量であり、且つ、安定した燃焼が行われるためのシステムを提案している。このような公知装置は、燃焼安定域とNOXの制御値を表すマップに基づいて負荷指令値に対して制御信号を生成する点を開示しているが、極めて重要である周波数領域ごとの燃焼振動防止とNOX削減の点では何も開示しておらず、周波数領域ごとの制御の必要性について示唆すら示していない。
【0005】
燃焼振動とNOX発生とを周波数域ごとに制御することができることが求められる。その制御は、経験則的な視点が必要である。関連データに基づいて経験則的に知られる装置系の制御因子の制御傾向を提示することが重要である。
【0006】
【発明が解決しようとする課題】
本発明の課題は、燃焼振動とNOX発生とを周波数域ごとに制御することができるガスタービンの燃焼調整システムを提供することにある。
本発明の他の課題は、関連データに基づいて経験則的に知られる装置系の制御因子を組み込むことにより燃焼振動とNOX発生とを周波数域ごとに制御することができるガスタービンの燃焼調整システムを提供することにある。
【0007】
【課題を解決するための手段】
その課題を解決するための手段が、下記のように表現される。その表現中に現れる技術的事項には、括弧()つきで、番号、記号等が添記されている。その番号、記号等は、本発明の実施の複数・形態又は複数の実施例のうちの少なくとも1つの実施の形態又は複数の実施例を構成する技術的事項、特に、その実施の形態又は実施例に対応する図面に表現されている技術的事項に付せられている参照番号、参照記号等に一致している。このような参照番号、参照記号は、請求項記載の技術的事項と実施の形態又は実施例の技術的事項との対応・橋渡しを明確にしている。このような対応・橋渡しは、請求項記載の技術的事項が実施の形態又は実施例の技術的事項に限定されて解釈されることを意味しない。
【0008】
本発明によるガスタービンの燃焼調整システムは、ガスタービンユニット(4,5)の燃焼振動対応信号(28)に基づいて複数の周波数領域ごとの周波数領域対応振動成分値(30)を計算する計算ユニット(31)と、ガスタービンユニット(4,5)が排出するNOXのNOX量(33)を出力するセンサー(32)と、周波数領域対応振動成分値(30)が周波数領域対応振動成分許容値を越え、又は、NOX量(33)がNOX量許容値を越える場合に、周波数領域対応振動成分値(30)又はNOX量(33)に基づいて、周波数領域対応振動成分値(30)又はNOX量(33)を周波数領域対応振動成分許容値又はNOX量許容値に向かわせるための調整操作方向値をガスタービンユニットに出力する制御ユニットとから構成されている。周波数領域対応振動成分許容値は周波数領域ごとに設定されている。
【0009】
周波数領域対応振動成分値(30)を周波数領域対応振動成分許容値に向かわせる操作とNOX量をNOX量許容値に向かわせるための操作とは、逆方向に向くことがあるが、とりあえず、周波数領域対応振動成分値(30)を周波数領域対応振動成分許容値に向かわせる操作か、NOX量をNOX量許容値に向かわせるための操作かのいずれかが行われる。周波数領域対応振動成分値(30)を周波数領域対応振動成分許容値に向かわせる操作は、周波数対応の操作であり、両操作が同じ方向に向く自由度は高い。周波数対応操作は、周波数領域により異なる多様な燃焼振動を適正に抑制することができる。
【0010】
計算ユニットは、燃焼振動対応信号(28)を周波数分析し周波数領域対応振動成分を抽出する周波数分析器(31)を備えている。計算ユニットは、周波数領域対応振動成分のピーク値を周波数領域対応振動成分値(30)としてホールドする。NOX値は、周波数領域対応振動成分値(30)がホールドされる時系列点上で周波数領域対応振動成分値に対応している。この時系列点上のホールドにより、時々刻々のNOX値と周波数領域対応振動成分値とが高精度に対応する。
【0011】
調整操作方向値は、ガスタービンユニット(4,5)の燃焼室に導入する燃料(20,22)と空気量との比を規定する空気量調整弁(16)の周波数領域対応の開閉方向とNOX対応の開閉方向である。両方向の背反性が収束的に解消することができ、その解消の自由度は、周波数領域対応によりその開閉制御の自由度が高くなったことにより、その背反性の収束的解消の自由度が高くなっている。
【0012】
調整操作方向値は、更に、パイロット比の周波数領域対応の大小方向とNOX対応の大小方向、IGVの周波数領域対応の開閉方向と、燃料温度の周波数領域対応の高低方向と、蒸気流量の周波数領域対応の多少方向と、IGVのNOX対応の開閉方向と、燃料温度のNOX対応の高低方向と、蒸気流量のNOX対応の多少方向とから選択される1又は複数の方向である。
【0013】
周波数領域対応の調整操作方向値とNOX対応の調整操作方向値が正反対であるか否かによらずに、負荷と調整操作方向値とにより作成される燃焼振動調整不可範囲とNOX調整不可範囲を示すマップに基づいて前記調整操作方向値が決定される。マップ上で許容される調整可能範囲はかなり狭く制限される場合があるが、その狭い範囲で周波数対応の開閉とNOX対応の開閉の方向が一致するように、単一の方向が決定され得る。
【0014】
調整操作方向値を表示する表示器(35)が更に追加されていて、表示器(35)は、ガスタービンユニット(4,5)に近い場所に設置され、計算ユニット(31)はガスタービンユニット(4,5)から遠隔にあるサービスセンタ(1)に配置されている。制御ユニット(36)はガスタービンユニット(4,5)に近い場所に設置され、計算ユニット(31)はガスタービンユニット(4,5)から遠隔にあるサービスセンタ(1)に配置され、周波数分析器(31)とシミュレーションシステム(41)とを含む計算ユニットと制御器(36)とは、調整操作方向値を計算ユニット(31,41)から制御ユニット(36)に送信する通信線(信号48を伝送する通信線等)により接続されている。通信回線の利用により、過去のデータに基づいて即座に調整操作方向値を現場に提供して高度専門家に代わって適格なアドバイスをすることができ、更には、遠隔自動操作が可能である。計算ユニットは、周波数分析器(31)と、シミュレーションシステム(41)とを含み、既述の通り、遠隔地に配置されている。
【0015】
【発明の実施の形態】
図に対応して、本発明によるガスタービンの燃焼調整システムの実施の形態は、サービスセンタがガスタービンプラントとともに設けられている。そのガスタービンプラント2は、図1に示されるように、専用回線3と後述される信号48を通信する通信線を介してサービスセンタ1に双方向に接続している。
【0016】
ガスタービンプラント2には、複数の燃焼器4が複数のガスタービン5とともに設けられている。燃焼器4で生成される高温・高圧の燃焼ガスがガスタービン5に導入される。複数の空気圧縮機6が、燃焼器4に接続している。空気圧縮機6は、ガスタービン5に同軸に回転的に結合されている。空気圧縮機6で圧縮された空気が、燃料とともに燃焼器4に導入される。IGV(インレット・ガイド・ベーン)7が、入口側で空気圧縮機6に設けられている。開度調整が可能であるIGV7は、空気圧縮機6に吸引される空気量を調整する。
【0017】
図2は、燃焼器4を詳細に示している。燃焼器4は、外部ハウジング8と内筒9とから構成されている。内筒9の下流側部分は、尾筒11として形成されている。尾筒11は、その流路断面積がより下流側でより狭くなるように、絞り込まれて外部ハウジング8から抜け出している。内筒9の中で生成される燃焼ガスは、尾筒11を通されてガスタービン5に供給される。
【0018】
外部ハウジング8には、空気圧縮機6から送られてくる圧縮空気12が導入される導入口13を有している。導入口13から外部ハウジング8に流入する圧縮空気12の大部分は、内筒9の上流側開口14から内筒9に流入する。その圧縮空気12の残り分は、尾筒11に形成されている開口15に介設されているバイパス弁16から尾筒11に内筒9の下流側域で流入する。このように、圧縮空気12は、内筒9の上流側と内筒9の下流側部分である尾筒11に分割的に配分されて流入する。
【0019】
内筒9の中心軸線領域に、パイロットノズル17が配置されている。パイロットノズル17の周域で内筒9の内側に複数本のメインノズル18が配列されて配置されている。パイロットノズル17とメインノズル18のそれぞれの周域には、互いに隔絶された空気流路(その隔絶構造は図示されず)が形成されている。パイロットノズル17には、第1燃料弁19を介して第1燃料20が供給される。メインノズル18には、第2燃料弁21を介して第2燃料22が供給される。メインノズル18には、蒸気23が第2燃料22とともに導入される。
【0020】
パイロットノズル17の尾端から噴出される第1燃料20は、パイロットノズル17の周囲の既述の空気流路を流れる空気とパイロットノズル17の尾端よりも下流側で拡散的に混合して燃焼し、そこで拡散炎と言われる火炎が形成される。メインノズル18の尾端から噴出される第2燃料22は、メインノズル18の周囲の既述の空気流路を形成する予混合筒9’の中で予混合され、第2燃料22は予混合筒9’の尾端より下流側で既述の拡散炎により着火され、そこで予混合炎と言われる火炎が形成される。
【0021】
バイパス弁16が閉じられれば、圧縮空気12はその全てが内筒9の上流端に流入し、燃料に対する空気の割合が大きくなり、いわゆる燃空比が低くなる。バイパス弁16が開けられれば、その開度に応じて内筒9に流入する空気の配分量が減少して、その燃空比が高くなり、燃焼ガスは開口15から流入する空気によって希釈されることになる。
【0022】
燃焼によって生じる燃焼振動は、燃焼ガスの圧力、各部のガス流速、各火炎の輝度とにそれぞれの変動として現れる。各燃焼器4には、図1に示されるように、燃焼ガスの圧力、各部のガス流速、各火炎の輝度とをそれぞれに計測する圧力センサ24、流速センサ25、輝度センサ26とが設けられている。圧力センサ24、流速センサ25、輝度センサ26の内の少なくとも1つが出力する燃焼振動対応信号(例示:燃焼ガス圧力)28は、インタフェース29を介して周波数分析器31に入力される。周波数分析器31は、計算ユニットの一部分を形成している。
【0023】
周波数分析器31は、燃焼振動対応信号28をフーリエ変換して、燃焼振動スペクトルを計算して求め、且つ、フィルタ要素によって複数の周波数領域の振動成分を抽出する。その周波数領域は、低周波数領域(0〜50Hz)、中周波数領域(50〜160Hz)、高周波数領域(160〜1200Hz)、第1高高周波数領域(1200〜1700Hz)、第2高高周波数領域(1700〜2500Hz)、第3高高周波数領域(2500〜3500Hz)、第4高高周波数領域(3500〜5000Hz)とから形成されている。周波数分析器31は、信号処理部34に接続している。
【0024】
ガスタービン5の出口側には、更に、NOXセンサ32が設けられている。NOXセンサ32が出力するNOX量信号33は、インタフェース29と周波数分析器31を介して信号処理部34に入力される。信号処理部34は、周波数分析器31が出力する周波数領域対応振動成分30のピーク値をホールドし、振動数成分の検出時刻列に対応する時刻列でNOX量信号33を記憶する。周波数領域対応振動成分30とNOX量信号33は、表示部35に表示され得る。
【0025】
図3は、第1〜第8CHの燃焼器4の0〜5000Hzの周波数領域の燃焼振動スペクトルを示している。図4は、第9〜第16CHの燃焼器4の0〜500Hzの周波数領域の燃焼振動スペクトルを示している。図5は、第1〜第16CHに関して信号処理部34によりホールドされる周波数領域対応振動成分30のピーク値又は平均値(以下、周波数領域対応振動成分値30という)を示している。図5中のOAは、0〜500Hzの周波数領域の振動成分のピーク値を示している。信号処理部34は、このように、図3、図4、図5に示されるような燃焼振動スペクトルを任意の周波数領域に分け直して周波数領域対応振動成分値30としてデータ整理を行う機能を有し、整理されたデータは表示部35に表示され得る。周波数領域対応振動成分値は、下記する制御用信号37として信号処理部34から出力される。
【0026】
信号処理部34は、制御部36に接続している。制御用信号37は信号処理部34から出力され制御部36に入力される。制御部36は、制御用信号37に基づいて、下記されるパイロット比、バイパス弁16の弁開閉度、IGV7のIGV開閉度を調整する手動又は自動の制御機器である。バイパス弁16の弁開閉度とIGV7のIGV開閉度の変化は、燃空比の変化に連動的である。パイロット比は、次式で定義される:
パイロット比=Gp/(Gm+Gp)
Gp:パイロットノズル17に供給される第1燃料供給量
Gm:メインノズル18に供給される第2燃料供給量
【0027】
ガスタービンプラント2には、図1に示されるように、調整支援システム38が設けられている。調整支援システム38は、周波数領域対応振動成分値30、NOX量信号33で示されるNOX量がそれぞれに設定される許容値を越えたとき、又は、その許容値を越える恐れがあるときに、周波数領域対応振動成分値30とNOX量信号33とで示される運転状態値が入力されれば、運転員に調整指針を提供することができる。
【0028】
調整支援システム38は、データベース39とシミュレーションシステム41とを備えている。シミュレーションシステム41は、既述の計算ユニットの一部分を形成している。データベース39は、過去に製作されたガスタービンプラントのガスタービン形式、IGV形式、燃焼器形式、蒸気噴射の有無、燃料加熱の有無のようなタービンプラントに固有である物理形式と、その物理形式について燃焼振動・NOX量の既述の運転状態値を運転状態許容値以下に抑える過去の運転の運転調整実績の類型化の蓄積とから構成されている。その物理形式と類型化の蓄積から形成されるデータベース39は、調整の特性・傾向を示す表・マップとして整理された状態のデータを保有し、更に、調整作業に関する注意事項・助言を添付的に保有している。このようなデータは、検索により所望部分が抽出され所望形式で出力されることが可能である状態で保存されている。このように保存されているデータは、これ自体が問題解決のためにかなりの程度の指針を運転者に提供することができる。調整因子としては、パイロット比、バイパス弁開閉度、IGV開閉度、燃料温度、蒸気噴射量が主として採用される。
【0029】
シミュレーションシステム41は、プラント名、運転状態値(例示:負荷、周波数領域対応振動成分値30、NOX量、既述の調整因子の値、吸気温度)を入力する入力ユニット42を備えている。入力ユニット42は、運転状態判定ユニット43に接続している。運転状態判定ユニット43は、周波数領域対応振動成分値30とNOX量とから形成される既述の運転状態値がそれぞれの運転状態許容値を越えているかどうかを判定する。運転状態判定ユニット43は、調整値選定ユニット44に接続している。調整値選定ユニット44は、運転状態値がそれぞれの運転状態許容値を越えていると運転状態判定ユニット43が判定した場合に、データベース39の運転調整実績の類型化蓄積に基づいて、各調整因子の調整因子値を増減させる増減方向とその増減方向の増減幅との周波数対応調整量を選定する。
【0030】
調整値選定ユニット44は、演算ユニット45に接続している。演算ユニット45は、調整値選定ユニット44により選定された周波数対応調整量48に基づいて変動すると予測される運転状態予測値を演算する。演算ユニット45は、調整量積算ユニット46に接続している。調整量積算ユニット46は、各調整因子の周波数対応調整量を積算する。調整量積算ユニット46は、出力ユニット47に接続している。出力ユニット47は、運転状態値が運転状態許容値よりも小さく、且つ、調整因子値が調整因子許容値よりも小さいと判断する場合に、各調整因子の周波数対応調整量48と、運転状態予測値(周波数領域対応振動成分値30の予測値とNOX量の予測値)とを出力する。各調整因子の周波数対応調整量48は制御部36に入力される。周波数対応調整量48は、サービスセンタ1を制御部36に接続する通信線により伝送される。その通信線は、サービスセンタ1を表示部35にも接続している。
【0031】
図6は、シミュレーションシステム41により実行されるシミュレーションの流れを表す対応表49を示している。対応表49は、特定機種の物理形式について、発生周波数帯毎の調整因子の周波数対応調整量の調整方向を示し、その調整方向は、発生周波数帯毎の振動力又は発生周波数帯毎の既述のピーク値を低減する低減方向に一致している。対応表49は、更に、NOX量が増大した場合に、そのNOX量を低減させる調整因子の周波数対応調整量の調整方向を示し、その調整方向はNOX量を低減させる低減方向に一致している。NOX制御の操作方向(バイパス弁に関して閉方向、パイロット比に関して低方向、IGVに関して開方向、燃料温度に関して高方向、蒸気流量に関して大方向)は、燃焼振動を抑制するための操作方向に一般には一致せず(二律背反的)、且つ、周波数領域ごとに一致せず、両方向の関係は極めて複雑であり、理論的に割り出すことができない。図6に示される表に基づいて、運転員により手動的に制御され、又は、制御部36により自動的に制御される。
【0032】
予混合気の噴出速度がある値を越えると失火し、燃焼振動はその噴出速度が失火速度より小さくなれば発生する。そのような値は、燃料の種類、燃焼器の形式が同一であれば概ね一定であると言われている。基本的には、負荷が一定であれば、IGVとバイパス弁それぞれに閉じる方向に調整し、パイロット比を上げる方向に調整することにより、燃焼は安定する方向に向かって燃焼振動が抑制される方向に向かう。このようなことは、一般的傾向であることが知られている。しかし、現象は必ずしもこのような一般的傾向に従わず、燃料温度、蒸気噴射量、その他の諸因子が複雑に絡み合っていて、各周波数領域の振動成分のピーク値が許容値を越えることのみによって、IGV、バイパス弁、パイロット比の調整対応は、図6の操作方向と、図7〜図11に現れる周波数対応調整不可能性とに示されるように、周波数領域ごとに複雑に変動し、低中周波数領域と高高周波数領域ではその対応が正反対になっており、その中間の周波数領域では更に複雑になっている。
【0033】
図7に示されるように、負荷が大きい領域では、1200〜3500Hzの範囲で燃焼振動調整は困難であり、パイロット比が小さい範囲で漸くその調整が可能になる。負荷の全範囲にわたって、0〜50Hz又は150〜500Hzの範囲では、燃焼振動調整は不可能である。パイロット比が小さい領域では、全負荷範囲でNOX調整が不可能である。1200Hzより低く500Hzより高く、且つ、パイロット比が40%より大きい範囲で、燃焼振動制御とNOX量制御の両制御が可能である。
【0034】
図8に示されるように、燃空比(バイパス弁開閉度に連動)が高すぎても低すぎても、燃焼振動とNOX量との制御が困難であり、その困難性は周波数領域ごとに顕著に現れる。図9,10は、ICV開度、燃料温度についてNOX・燃焼振動の調整負荷範囲の周波数依存を示している。図7〜図11に示されるように、燃焼振動調整とNOX量調整の一般的な二律背反性の傾向と、周波数依存性とが負荷の全範囲で複雑に絡み合うことを示している。このような傾向と図6に示される制御方向とが調和する狭いマップ領域に入るように、バイパス比、パイロット比、IGV開度、燃料温度、蒸気流量が制御される。
【0035】
データベースには、ガスタービン形式、燃焼器形式の他に、蒸気噴射の有無、燃料加熱の有無等によって分類され、燃焼振動とNOXを許容値以下に抑えるための諸因子の対応関係が整理されて、図6に示されるマップ、図7〜図11に示される周波数対応範囲が纏められて更新可能に保存されている。シミュレーションシステム41にプラント名と運転状態(値)が入力されると、制御のための操作方向による調整対応が検索され、その検索の結果が短時間に指針として出力される。運転員は、その指針に基づいて諸因子を調整し、又は、その結果が周波数対応調整量48として直接に制御部36に入力される。このように周波数対応の調整指針が蓄積されていて、運転員は高度専門家に相談することなく適正に即座に対応が可能であり、又は、運転員によらない自動対応が可能である。
【0036】
本発明によるガスタービンの燃焼調整システムは、サービスセンタの1ヶ所に設置され、各プラントと通信回線によって結ばれていて、各プラントの運転員がパスワードを用いてサービスセンタにアクセスすれば、ガスタービンプラント2が起動して、そのプラントに関係するデータのみが利用可能であり、サービスセンタの本支援システムは、周波数対応調整の周波数対応調整量48をそのプラントに送信する。周波数対応調整量48は、そのプラントの表示部35に表示され、又は、そのプラントの制御部36に直接に入力される。
【0037】
【発明の効果】
本発明によるガスタービンの燃焼調整システムは、諸因子が複雑に絡み合って一般的には二律背反的であるが周波数領域毎には必ずしも二律背反的ではない燃焼振動の抑制とNOX量の抑制とを同時的に調整することができる。
【図面の簡単な説明】
【図1】図1は、本発明によるガスタービンの燃焼調整システムの実施の形態を示すシステムブロック図である。
【図2】図2は、燃焼器を示す断面図である。
【図3】図3は、8チャンネルの周波数スペクトラムをそれぞれに示すグラフである。
【図4】図4は、他の8チャンネルの周波数スペクトラムをそれぞれに示すグラフである。
【図5】図5は、各チャンネルの周波数領域毎のピーク値を示すグラフである。
【図6】図6は、各周波数領域、NOXについて各因子の操作方向を示す表である。
【図7】図7は、負荷とパイロット比に基づく調整不可範囲を示すマップである。
【図8】図8は、負荷とバイパス弁開度に基づく調整不可範囲を示すマップである。
【図9】図9は、負荷とIGV開度に基づく調整不可範囲を示すマップである。
【図10】図10は、負荷と燃料温度に基づく調整不可範囲を示すマップである。
【図11】図11は、負荷と蒸気流量比に基づく調整不可範囲を示すマップである。
【符号の説明】
1…サービスセンタ
2…ガスタービンプラント
4,5…ガスタービンユニット
16…空気量調整弁
22…燃料
28…燃焼振動対応信号
30…周波数領域対応振動成分値
31,34又は41…計算ユニット
32…センサー
33…NOX量
35…表示器
48…通信線

Claims (8)

  1. ガスタービンユニットの燃焼振動対応信号に基づいて複数の周波数領域ごとの周波数領域対応振動成分値を計算する計算ユニットと、
    前記ガスタービンユニットが排出するNOXのNOX量を出力するセンサーと、
    前記周波数領域対応振動成分値が周波数領域対応振動成分許容値を越え、又は、前記NOX量がNOX量許容値を越える場合に、前記周波数領域対応振動成分値又は前記NOX量に基づいて、前記周波数領域対応振動成分値又は前記NOX量を前記周波数領域対応振動成分許容値又はNOX量許容値に向かわせるための調整操作方向値をガスタービンユニットに出力する制御ユニットとを含み、
    前記周波数領域対応振動成分許容値は前記周波数領域ごとに設定されており、
    周波数領域対応の前記調整操作方向値とNOX対応の前記調整操作方向値が正反対であるか否かによらずに、パイロット比、空気流量調整弁開度、IGV開度、燃料温度及び蒸気流量比のうち少なくとも1つの調整操作方向値と負荷とにより作成される少なくとも1つの燃焼振動調整不可範囲とNOX調整不可範囲を示すマップに基づいて前記調整操作方向値が決定される
    ガスタービンの燃焼調整システム。
  2. 前記計算ユニットは燃焼振動対応信号を周波数分析し前記周波数領域対応振動成分を抽出する周波数分析器を更に含み、
    前記計算ユニットは、前記周波数領域対応振動成分のピーク値を前記周波数領域対応振動成分値としてホールドする請求項1のガスタービンの燃焼調整システム。
  3. 前記NOX値は、前記周波数領域対応振動成分値がホールドされる時系列点上で前記周波数領域対応振動成分値に対応している請求項2のガスタービンの燃焼調整システム。
  4. 前記調整操作方向値は、前記ガスタービンユニットの燃焼室に導入する燃料と空気量との比を規定する空気量調整弁の周波数領域対応の開閉方向とNOX対応の開閉方向であり、
    前記空気流量調整弁開度は前記空気流量調整弁の開度である
    請求項1のガスタービンの燃焼調整システム。
  5. 前記調整操作方向値は、更に、前記パイロット比の周波数領域対応の大小方向とNOX対応の大小方向とである請求項4のガスタービンの燃焼調整システム。
  6. 前記調整操作方向値は、更に、IGVの周波数領域対応の開閉方向と、前記燃料温度の周波数領域対応の高低方向と、前記蒸気流量比の周波数領域対応の多少方向と、IGVのNOX対応の開閉方向と、前記燃料温度のNOX対応の高低方向と、前記蒸気流量比のNOX対応の多少方向とであり、
    前記IGV開度は前記IGVの開度である
    請求項5のガスタービンの燃焼調整システム。
  7. 前記調整操作方向値を表示する表示器を更に含み、前記表示器は、前記ガスタービンユニットから遠隔にあるサービスセンタに配置され、
    前記計算ユニットと前記表示器とは、前記調整操作方向値を前記計算ユニットから前記表示器に送信する通信線により接続されている請求項1のガスタービンの燃焼調整システム。
  8. 前記制御ユニットは前記ガスタービンユニットに近い場所に設置され、前記計算ユニットは前記ガスタービンユニットから遠隔にあるサービスセンタに配置され、前記計算ユニットと前記制御ユニットとは、前記調整操作方向値を前記計算ユニットから前記制御ユニットに送信する通信線により接続されている請求項1のガスタービンの燃焼調整システム。
JP2001045684A 2001-02-21 2001-02-21 ガスタービンの燃焼調整システム Expired - Fee Related JP4698855B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045684A JP4698855B2 (ja) 2001-02-21 2001-02-21 ガスタービンの燃焼調整システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045684A JP4698855B2 (ja) 2001-02-21 2001-02-21 ガスタービンの燃焼調整システム

Publications (2)

Publication Number Publication Date
JP2002243151A JP2002243151A (ja) 2002-08-28
JP4698855B2 true JP4698855B2 (ja) 2011-06-08

Family

ID=18907426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045684A Expired - Fee Related JP4698855B2 (ja) 2001-02-21 2001-02-21 ガスタービンの燃焼調整システム

Country Status (1)

Country Link
JP (1) JP4698855B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775052B2 (en) * 2004-05-07 2010-08-17 Delavan Inc Active combustion control system for gas turbine engines
US7337057B2 (en) * 2004-05-28 2008-02-26 General Electric Company Methods and apparatus for predicting and/or for avoiding lean blow-outs
JP5550592B2 (ja) * 2011-03-29 2014-07-16 三菱重工業株式会社 ガスタービンの制御装置
JP5818945B2 (ja) * 2014-05-20 2015-11-18 三菱日立パワーシステムズ株式会社 ガスタービンの制御方法及びガスタービンの燃空比設定方法
WO2023204096A1 (ja) * 2022-04-20 2023-10-26 三菱重工業株式会社 ガスタービン制御装置、ガスタービン制御方法、及び、ガスタービン制御プログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185626A (ja) * 1989-01-12 1990-07-20 Hitachi Ltd ガスタービン用蒸気供給設備および蒸気噴射方法
JPH0476232A (ja) * 1990-07-17 1992-03-11 Toyota Central Res & Dev Lab Inc ガスタービン機関の消炎予測判別装置
JPH05126335A (ja) * 1991-11-07 1993-05-21 Hitachi Ltd ガスタービンの燃焼制御装置及びガスタービンの燃焼制御方法
JPH06147484A (ja) * 1992-11-17 1994-05-27 Mitsubishi Heavy Ind Ltd 燃焼制御装置
JPH07189743A (ja) * 1993-12-28 1995-07-28 Hitachi Ltd ガスタービン燃焼器の制御方法
JPH07305847A (ja) * 1994-05-10 1995-11-21 Hitachi Ltd ガスタービンの燃焼制御方法
JPH084554A (ja) * 1994-04-12 1996-01-09 General Electric Co <Ge> 窒素酸化排気放出物を低減させる装置及び方法
JPH09269107A (ja) * 1996-03-29 1997-10-14 Toshiba Corp 燃焼器の燃焼振動抑制装置およびその抑制方法
JPH11324725A (ja) * 1998-05-19 1999-11-26 Toshiba Corp ガスタービン異常監視装置
JP2000055318A (ja) * 1998-08-10 2000-02-22 Hitachi Ltd 燃焼器
JP2000130750A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 燃焼監視装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185626A (ja) * 1989-01-12 1990-07-20 Hitachi Ltd ガスタービン用蒸気供給設備および蒸気噴射方法
JPH0476232A (ja) * 1990-07-17 1992-03-11 Toyota Central Res & Dev Lab Inc ガスタービン機関の消炎予測判別装置
JPH05126335A (ja) * 1991-11-07 1993-05-21 Hitachi Ltd ガスタービンの燃焼制御装置及びガスタービンの燃焼制御方法
JPH06147484A (ja) * 1992-11-17 1994-05-27 Mitsubishi Heavy Ind Ltd 燃焼制御装置
JPH07189743A (ja) * 1993-12-28 1995-07-28 Hitachi Ltd ガスタービン燃焼器の制御方法
JPH084554A (ja) * 1994-04-12 1996-01-09 General Electric Co <Ge> 窒素酸化排気放出物を低減させる装置及び方法
JPH07305847A (ja) * 1994-05-10 1995-11-21 Hitachi Ltd ガスタービンの燃焼制御方法
JPH09269107A (ja) * 1996-03-29 1997-10-14 Toshiba Corp 燃焼器の燃焼振動抑制装置およびその抑制方法
JPH11324725A (ja) * 1998-05-19 1999-11-26 Toshiba Corp ガスタービン異常監視装置
JP2000055318A (ja) * 1998-08-10 2000-02-22 Hitachi Ltd 燃焼器
JP2000130750A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 燃焼監視装置

Also Published As

Publication number Publication date
JP2002243151A (ja) 2002-08-28

Similar Documents

Publication Publication Date Title
US8510014B2 (en) Gas turbine control method and device
JP4405517B2 (ja) ガスタービン設備における燃料の組成変動を補償する方法とその装置
CN1944985B (zh) 控制对燃气轮机燃烧器的旁路空气分流的方法
US8701420B2 (en) Gas turbine control method and device
JP4624647B2 (ja) Dlnガスタービンの性能が強化された制御
US5185997A (en) Gas turbine system
JP4331406B2 (ja) バーナの運転方法およびバーナ装置
CN103216339B (zh) 燃烧器熄火恢复方法和系统
EP1300566B1 (en) Fuel ratio control method in a gas turbine combustor
KR20020065859A (ko) 연소 온도 결정 방법 및 연소 온도 결정 제어 시스템
JPH06257748A (ja) ガスタービン、ガスタービンの燃焼部、及びガスタービンの個々の燃焼室への燃料を調整する方法
CN1244909A (zh) 燃烧器稀释分流系统
JP4698855B2 (ja) ガスタービンの燃焼調整システム
US7162874B2 (en) Apparatus and method for gas turbine engine fuel/air premixer exit velocity control
JPH0674748B2 (ja) 調整装置を備えた補助燃焼室とバイパス導管を有する改良された過給式内燃機関
CA2399667C (en) Gas turbine combustor apparatus
US20080118343A1 (en) Combustion control for a gas turbine
US7603862B2 (en) Combustion device
US7526920B2 (en) Method of operating an atomizing arrangement
JPH0461169B2 (ja)
CN104246179A (zh) 用于确定用于燃气轮机的调节的至少一个燃烧温度的方法以及用于执行该方法的燃气轮机
KR20070046584A (ko) 가스터빈의 연소감시 및 연소튜닝 장치와 그 방법
JPH0464813A (ja) ガス焚ボイラシステムにおける比例燃焼制御装置
JPH05187270A (ja) ガスタービン燃焼器の運転方法
JPH0476232A (ja) ガスタービン機関の消炎予測判別装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4698855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees