JP4695544B2 - 燃料噴射装置の制御方法 - Google Patents

燃料噴射装置の制御方法 Download PDF

Info

Publication number
JP4695544B2
JP4695544B2 JP2006142370A JP2006142370A JP4695544B2 JP 4695544 B2 JP4695544 B2 JP 4695544B2 JP 2006142370 A JP2006142370 A JP 2006142370A JP 2006142370 A JP2006142370 A JP 2006142370A JP 4695544 B2 JP4695544 B2 JP 4695544B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
valve
coil
fuel injection
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006142370A
Other languages
English (en)
Other versions
JP2007315179A (ja
Inventor
忠雄 土屋
学 東海林
司 永沼
靖治 蓬莱
謙一 大森
一仁 柿元
英隆 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Keihin Corp
Original Assignee
Honda Motor Co Ltd
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Keihin Corp filed Critical Honda Motor Co Ltd
Priority to JP2006142370A priority Critical patent/JP4695544B2/ja
Priority to EP07108608A priority patent/EP1860317A1/en
Priority to US11/802,574 priority patent/US8020533B2/en
Publication of JP2007315179A publication Critical patent/JP2007315179A/ja
Application granted granted Critical
Publication of JP4695544B2 publication Critical patent/JP4695544B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、ソレノイドと磁歪素子を用いた燃料噴射弁の開閉動作を適切にできる燃料噴射装置の制御方法に関する。
内燃機関に用いられる電磁石式燃料噴射装置は、電磁石により駆動される燃料噴射弁を備えたインジェクタと、駆動用の電源と、電源とインジェクタとの間に設けられて、操作信号である燃料噴射指令が与えられたときに電源からインジェクタに駆動電流を供給する駆動回路とにより構成される。駆動用電源としては、一般的にはバッテリが用いられている。
電磁石式燃料噴射装置のインジェクタでは、燃料を噴射しない場合はコイルバネによりニードルバルブを噴射孔に押しつけ、燃料噴射時に電磁石を用いてニードルバルブを吸引して、噴射孔を開けることにより燃料噴射している。しかしながら、電磁石式燃料噴射装置は、操作信号に対して、実際の燃料噴射弁の開閉動作が緩慢に反応動作するという問題がある。このため、特許文献1の燃料噴射装置において、圧電式、電歪式、又は磁歪式のエレメントをインジェクタのニードルの一部に取り付け、エレメントの伸長動作により燃料噴射弁の開閉を調整することが記載されている。
特開2004−316644号公報(段落0005〜0026、図2)
しかしながら、特許文献1の記載において、圧電式素子を電気的なターミナル(図示されていない)を介して付勢され、圧電式素子は、付勢に依存して伸縮する。また圧電式素子の付勢は、電磁式の操作装置の付勢とは無関係に実施されると記載されているだけで、どのような電気的な制御回路及び制御方法により、燃料噴射弁の開閉動作を適切に実現するかは開示されていない。また、燃料噴射弁の開閉動作する際の圧電素子の操作と、電磁式の操作との関係が明確でなかった。
本発明は、上記の課題を解決するための発明であって、ソレノイドと磁歪素子を用いた燃料噴射弁の開閉動作を適切にできる燃料噴射装置の制御方法を提供することを目的とする。
本発明による燃料噴射装置の制御方法は、ソレノイドと磁歪素子を動弁機構の駆動力として用いた燃料噴射弁を制御する燃料噴射装置の制御方法であって、ソレノイドを駆動するためのソレノイドコイルへの通電と、磁歪素子を駆動するための複数の磁歪素子駆動電源(例えば、第1の昇圧電源32、第2の昇圧電源33、及び12V電源34)のいずれかを用いて、磁歪素子の磁歪用コイルへの通電とにより、燃料噴射弁の開閉を制御することを特徴とする。
ソレノイドの変位量と磁歪素子の変位量とが略等しいことが好ましい。
燃料噴射弁が閉弁状態において、ソレノイドコイル及び磁歪用コイルの双方に電流を流し、燃料噴射弁を第1の状態に保持する第1のステップを含むことが好ましい。
第1の状態において、磁歪用コイルに流れる電流を遮断することにより、燃料噴射弁を開弁状態とするステップを含むことが好ましい。
開弁状態において、磁歪用コイルに電流を流し、燃料噴射弁を閉弁する閉弁ステップをさらに含むことが好ましい。
複数の磁歪素子駆動電源として、所定電圧より昇圧された第1の電圧を出力する第1の電源(例えば、第1の昇圧電源32)と、所定電圧より昇圧された第1の電圧より高い第2の電圧を出力する第2の電源(例えば、第2の昇圧電源33)とのいずれかを用いることが好ましい。
第1のステップが、ソレノイドコイルに電流を流し、かつ、第1の電源を用いて磁歪用コイルに電流を流すステップを含むことが好ましい。
閉弁ステップが、第2の電源を用いて、磁歪用コイルに電流を流し、燃料噴射弁を閉弁するステップを含むことが好ましい。
本発明によれば、複数の磁歪素子駆動電源を有し、燃料噴射弁の開弁動作と閉弁動作時において、独立して磁歪素子駆動電源を使用することができるので、燃料噴射弁の開閉動作を適切にできる。
以下、本発明の実施の形態を図面を参照して説明する。
第1の実施の形態.
本発明による燃料噴射装置は、インジェクタ200と、燃料噴射弁制御ユニット100(図2参照)とにより構成される。
図1は、本発明の第1の実施の形態による燃料噴射装置のインジェクタを概念的に示す構成図である。インジェクタ200は、ソレノイド18(導電性固体であるアーマチャ14、アーマチャ14に吸引電磁力により吸着するための固定用コア13、固定用コア13とアーマチャ14に付勢を与えるリターンスプリング12、及び固定用コア13に吸引電磁力を与えるための保持用コイル11で構成される。)、磁歪素子で形成されている円柱状のバルブ22、バルブ22用の磁歪用コイル21、バルブ22下部に接合されている弁ニードル15、シート16、及びシートに設けられた噴射孔17により構成されている。なお、燃料注入路、インジェクタ用外容器などは、図示していない。また、バルブ22は、円柱状以外の形状、例えば、中空状であってもよい。
ソレノイド18は、電気エネルギーを機械的な直線運動に変換するデバイスであり、保持用コイル11に通電することにより、アーマチャ14を電磁的に吸引し、通電を停止すると、アーマチャ14を元に復帰させる。
バルブ22には、一端にアーマチャ14が接合され、他端には、弁ニードル15が接合されている。図面の中心軸線に沿って、上下に稼動できようになっている。バルブ22の磁歪素子は、磁歪用コイル21による外部磁界で、ジュール効果により図面中心軸に沿って長さが伸縮する。
インジェクタ200が閉弁状態の場合、弁ニードル15のバルブ22の反対側先端部は、シート16の噴射孔17に圧接している。インジェクタ200が開弁状態の場合、弁ニードル15のバルブ22の反対側先端部は、シート16から離れ、噴射孔17から燃料が噴射される。
保持用コイル11及び磁歪用コイル21は、各々ソレノイド駆動回路10及び磁歪素子駆動回路20(図2参照)に接続され、駆動電源30(図2参照)から電圧を印加することができる。
図2は、本発明の第1の実施の形態による燃料噴射装置の燃料噴射弁制御ユニットを示すブロック図である。燃料噴射弁制御ユニット100は、4気筒の場合を示しており、駆動回路FD1、駆動回路FD2、駆動回路FD3、駆動回路FD4、駆動電源30、及び制御部40を備えている。なお、保持用コイル11及び磁歪用コイル21は、インジェクタ200に設けられており、説明のために図示している。
駆動回路FD1は、ソレノイド駆動回路10と磁歪素子駆動回路20から構成されており、駆動回路FD2、駆動回路FD3、及び駆動回路FD4は、駆動回路FD1と同一構成である。ソレノイド駆動回路10は、保持用コイル11に、制御部40からの指令信号により電圧を印加する。磁歪素子駆動回路20は、磁歪用コイル21に、制御部40からの指令信号により電圧を印加する。
駆動電源30は、ソレノイド電源31、バッテリ電源又は磁石式発電機の出力の所定電圧から昇圧された磁歪素子用の第1の電圧を出力する第1の昇圧電源32、バッテリ電源又は磁石式発電機の出力の所定電圧から昇圧された磁歪素子用の第2の電圧を出力する第2の昇圧電源33、及びバッテリ電源である12V電源34を備えている。例えば、第1の昇圧電源32は、40V電源であり、第2の昇圧電源33は、150V電源である。
制御部40は、駆動電源30の制御、燃料噴射弁の開閉を行う駆動回路FD1〜FD4の弁開閉指令を制御するものである。制御部40は、具体的には図示しないマイクロプロセッサ、図示しない不揮発生メモリに格納されたプログラムなどにより実現される。
図3は、ソレノイド駆動回路を示す回路図である。ソレノイド駆動回路10は、インジェクタ200の保持用コイル11への通電を制御するスイッチ回路である。図3に示すように、スイッチSW11、スイッチSW12、及びスイッチSW13は、スイッチング素子であり、例えば、FETからなっている。
なお、スイッチSW11、スイッチSW12、及びスイッチSW13は、スイッチング機能を有するものであればよく、例えば、バイポーラトランジスタ、IGBT(Insulated Gate Bipolar Transistor)などを使用してもよい。
スイッチSW13のドレインは、ソレノイド電源31に接続され、スイッチSW13のソースは、保持用コイル11の一端に接続されている。スイッチSW13のゲートは、保護用の抵抗R14を介して、高圧HIドライバ端子41に接続されている。
スイッチSW12のドレインは、12V電源34に接続され、スイッチSW12のソースは、ダイオードD11を介して、保持用コイル11の一端に接続されている。スイッチSW12のゲートは、保護用の抵抗R13を介して、低圧HIドライバ端子42に接続されている。
スイッチSW11のドレインは、保持用コイル11の他端に接続され、スイッチSW11のソースは、抵抗R11を介して、接地されている。スイッチSW11のドレインとゲート間には、ツェナーダイオードZD11が接続されている。スイッチSW11のゲートは、保護用の抵抗R12を介して、LOドライバ端子43に接続されている。なお、保持用コイル11の一端には、転流ダイオードとして機能するダイオードD12のカソードが接続されている。
高圧HIドライバ端子41、低圧HIドライバ端子42、及びLOドライバ端子43は、制御部40と接続されている。
保持用コイル11に通電するには、制御部40から、高圧HIドライバ端子41又は低圧HIドライバ端子42と、LOドライバ端子43とに、オン指令信号が与えられる。
図4は、磁歪素子駆動回路を示す回路図である。磁歪素子駆動回路20は、インジェクタ200の磁歪用コイル21への通電を制御するスイッチ回路である。図4に示すように、スイッチSW21、スイッチSW22、スイッチSW23、及びスイッチSW24は、スイッチング素子であり、例えば、FETからなっている。
なお、スイッチSW21、スイッチSW22、スイッチSW23、及びスイッチSW24は、スイッチング機能を有するものであればよく、例えば、バイポーラトンジスタ、IGBTなどを使用してもよい。
スイッチSW24のドレインは、第1の昇圧電源32に接続され、スイッチSW24のソースは、ダイオードD24を介して磁歪用コイル21の一端に接続されている。スイッチSW24のゲートは、保護用の抵抗R25を介して昇圧オープンドライバ端子44に接続されている。
スイッチSW23のドレインは、第2の昇圧電源33に接続され、スイッチSW23のソースは、ダイオードD23を介して磁歪用コイル21の一端に接続されている。スイッチSW23のゲートは、保護用の抵抗R24を介して昇圧クローズドライバ端子45に接続されている。
スイッチSW22のドレインは、12V電源34に接続され、スイッチSW22のソースは、ダイオードD22を介して、磁歪用コイル21の一端に接続されている。スイッチSW22のゲートは、保護用の抵抗R23を介して、12V系ドライバ端子46に接続されている。なお、磁歪用コイル21の一端には、転流ダイオードとして機能するダイオードD25のカソードが接続されている。
スイッチSW21のドレインは、磁歪用コイル21の他端に接続され、また、ダイオードD21を介して、第1の昇圧電源32又は第2の昇圧電源33に接続されている。スイッチSW21のソースは、抵抗R21を介して接地されている。スイッチSW21のゲートは、保護用の抵抗R22を介してローサイドドライバ端子47に接続されている。
昇圧オープンドライバ端子44、昇圧クローズドライバ端子45、12V系ドライバ端子46、及びローサイドドライバ端子47は、制御部40と接続されている。
磁歪用コイル21に通電するには、制御部40から、昇圧オープンドライバ端子44と、昇圧クローズドライバ端子45と、12V系ドライバ端子46とのいずれかひとつ、及びローサイドドライバ端子47にオン指令信号が与えられる。
次に動作について説明する。
図5は、本発明の第1の実施の形態による燃料噴射装置の動作原理を示す説明図である。図5(a)に示すように、インジェクタ200の基本的なバルブ開閉動作は、オフモード、開弁モード、燃料の噴射モード、閉弁モード、及び戻しモードよりなる。なお、「モード」とは、バルブの開閉動作の状態を示すために用いている。図5(b)には、各モードにおける保持用コイル11の電圧・電流波形、磁歪用コイル21の電圧・電流波形、ソレノイドリフト量、磁歪素子変位量、及びバルブ22の全体リフト量が示されている。横軸は、時間tを表す。磁歪素子変位量とは、磁歪素子に印加される磁界に応じた磁歪素子の伸張量のことであり、印加磁界が無いとき零であり、印加磁界が強いほど増加する(伸びる)。
オフモードの場合(t<t)、保持用コイル11及び磁歪用コイル21には通電されておらず、閉弁状態である。
開弁モードの場合、保持用コイル11と、磁歪用コイル21に電圧を印加し、開弁する準備の状態である。時刻tにおいて、保持用コイル11に電圧が印加される。すると保持用コイル11に、通電電流が流れる。通電電流の増大とともに、ソレノイドがリフトを開始する。時刻tにおいて、磁歪用コイル21に電圧が印加される。すると、磁歪用コイル21に通電が開始されて通電電流が流れる。電流は、磁歪用コイル21のインダクタンスを勾配として直線的に上昇するところ、透磁率が非線形であるので、徐々に上昇する。通電電流の増大とともに、磁歪素子が伸長し、変位量が大きくなる。時刻tにおいて、ソレノイドのアーマチャ14は、保持用コイル11に吸引されて保持された状態であり、磁歪素子は、通電電流による磁界で伸長し、変位量が大きくなった状態である。ソレノイドのリフト量と磁歪素子の変位量とが相殺されるため、バルブ全体のリフト量は、零であり閉弁の状態である。なお、図5において、保持用コイル11の印加電圧の開始は、磁歪用コイル21の印加電圧の開始より先の状態が示されているが、磁歪用コイル21への印加電圧を開始してから、保持用コイル11への印加電圧を開始してもよい。
噴射モードの場合、磁歪用コイル21の印加電圧をオフし、開弁する状態である。時刻tで磁歪用コイル21の印加電圧をオフすると、磁歪用コイル21の通電電流は減衰し、磁歪素子の変位量は、小さくなり開弁状態に入る。時刻tにおいて、バルブ22全体のリフト量が最大となり、開弁の状態である。
閉弁モードの場合、磁歪用コイル21に電圧を印加し、閉弁する状態である。時刻tにおいて、磁歪用コイル21に電圧を印加する。すると磁歪用コイル21に通電電流が流れる。通電電流の増大とともに、磁歪素子が伸長し、磁歪素子の変位量が大きくなる。バルブ全体のリフト量は、小さくなる。時刻tにおいて閉弁状態となり、燃料の噴射が停止する。
戻しモードの場合、保持用コイル11と、磁歪用コイル21との双方の印加電圧をオフし、ソレノイドを元に戻し、磁歪素子の変位量を元に戻す状態である。時刻tにおいて、保持用コイル11の印加電圧をオフする。すると、保持用コイル11の通電電流の減少とともに、リターンスプリング12の戻し力により、ソレノイドのリフト量が小さくなる。時刻tにおいて、磁歪用コイル21の印加電圧をオフすると、磁歪用コイル21の通電電流は減衰し、磁歪素子の変位量が小さくなる。時刻tにおいて、ソレノイドのリフト量が零となり、オフモードの状態に戻る。
図13は、本発明の第1の実施の形態による他の開弁モードの動作原理を示す説明図である。図13に示す説明図は、図5に示す説明図に対し、開弁モードの動作が異なる。オフモード、噴射モード、閉弁モード、及び戻しモードは、図5と同様であるので、説明は省略する。図13に示す開弁モードの場合、時刻tにおいて、先に磁歪用コイル21に電圧が印加される。すると、磁歪用コイル21に通電が開始されて通電電流が流れる。電流は、磁歪用コイル21のインダクタンスを勾配として直線的に上昇するところ、透磁率が非線形であるので、徐々に上昇する。通電電流の増大とともに、磁歪素子が伸長し、変位量が大きくなる。時刻t10において、保持用コイル11に電圧が印加される。すると保持用コイル11に、通電電流が流れる。通電電流の増大とともに、ソレノイドがリフトを開始する。時刻tにおいて、ソレノイドのアーマチャ14は、保持用コイル11に吸引されて保持された状態であり、磁歪素子は、通電電流による磁界で伸長し、変位量が大きくなった状態である。ソレノイドのリフト量と磁歪素子の変位量とが相殺されるため、バルブ全体のリフト量は、零であり閉弁の状態である。図13に示すように、開弁モードにおいて、磁歪用コイル21への印加電圧による通電を開始してから、保持用コイル11への印加電圧による通電を開始してもよい。
図6〜図9に示す駆動回路の動作を説明する上で、図5において、時刻tから時刻tの期間を操作OP1、時刻tから時刻tの期間を操作OP2、時刻tから時刻tの期間を操作OP3とする。
図6は、開弁モード時の磁歪素子の伸長制御を示す説明図である。操作OP1において、磁歪素子の長さを伸長するには、磁歪用コイル21に、電圧を印加し、通電電流を流す必要がある。磁歪用コイル21への通電電源には、第1の昇圧電源32と、第2の昇圧電源33と、12V電源34がある。
磁歪用コイル21に電圧を印加するには、スイッチSW24を昇圧オープンドライバ端子44からのオン指令信号により、第1の昇圧電源32の電圧を印加する。又は、スイッチSW23を昇圧クローズドライバ端子45からのオン指令信号により、第2の昇圧電源33の電圧を印加する。あるいは、スイッチSW22を12V系ドライバ端子46からのオン指令信号により、12V電源34の電圧を印加する。磁歪用コイル21への電圧印加時、ローサイドドライバ端子47からのオン指令信号により、スイッチSW21をオンすることにより、磁歪用コイル21に通電電流が流れる。なお、磁歪素子の伸長動作の要求仕様速度及び弁のバウンス対策の仕様要求に応じて、第1の昇圧電源32と、第2の昇圧電源33と、12V電源34を制御することが好ましい。
一般に、磁歪用コイル21に印可する電圧が高いほど磁歪素子の応答が早くなるので、例えば、最初に最も電圧の高い第2の電圧(この例では、150V)で駆動することにより、磁歪素子を所望の変位量まで素早く変位させてから、所望の変位量を維持するのに十分な電圧(例えば、第1の電圧又は12V)へと駆動電圧を切り替えるようにしてもよい。これにより、消費電力を抑えながら燃料噴射弁の高速動作が可能となる。
図7は、噴射モード時の磁歪素子の収縮制御を示す説明図である。操作OP2において、磁歪素子の長さを収縮するには、磁歪用コイル21への印加電圧をオフし、通電電流を遮断する必要がある。スイッチSW24がオンされており、第1の昇圧電源32からの磁歪用コイル21への通電電流を遮断する場合について説明する。昇圧オープンドライバ端子44からのオフ指令信号により、スイッチSW24をオフする。磁歪用コイル21へのコイル通電電流は、印加電圧をオフしても直後に零にならず、電流が流れつづけるため、磁歪用コイル21への電圧印加のオフ時、ローサイドドライバ端子47からのオフ指令信号により、スイッチSW21をオフする。すると、R21に流れている通電電流が、ダイオードD21側に転流することにより、通電電流を急速に減衰させて遮断することができる。
第2の昇圧電源33からの磁歪用コイル21への通電電流を遮断する場合にも、スイッチSW23及びスイッチSW21をオフすることにより、磁歪用コイル21への通電電流を遮断することができる。
図8は、他の実施の形態による磁歪素子駆動回路を示す回路図である。操作OP2において、磁歪素子の長さを収縮するには、磁歪用コイル21への印加電圧をオフし、通電電流を遮断する必要がある。磁歪用コイル21への通電電流を遮断する他の回路構成及び動作について説明する。
図8に示す磁歪素子駆動回路20aは、図4に示す磁歪素子駆動回路20に対して、ダイオードD21を削除し、スイッチSW21のゲートとドレインとの間にツェナーダイオードZD21を設けたことが異なる。スイッチSW24がオンされており、第1の昇圧電源32からの磁歪用コイル21への通電電流を遮断する場合、スイッチSW24及びスイッチSW21をオフする。すると、ツェナーダイオードZD21とFETによるクランプ動作により、磁歪用コイル21への電流を急速に遮断することができる。
図9は、閉弁モード時の磁歪素子の伸長制御を示す説明図である。操作OP3において、磁歪素子の長さを伸長するには、磁歪用コイル21に、電圧を印加し、通電電流を流す必要がある。また、閉弁モードでは、短時間で閉弁することが要求される場合がある。短時間で閉弁するには、第2の昇圧電源33を、第1の昇圧電源32より高い電圧にしておき、急速に、磁歪用コイル21に大電流を流すことにより実現される。スイッチSW23をオン及びスイッチSW21をオンすることにより、磁歪用コイル21に、第2の昇圧電源33から大電流を通電することができる。
図10は、図2の制御部の動作を示すフローチャートである。図10に示すように、開弁モードは、ソレノイド電源31により、保持用コイル11に通電し(ステップS101)、第1の昇圧電源32により磁歪用コイル21に通電する(ステップS102)。ステップS101とステップS102の通電タイミングは、弁ニードル15の先端部がシート16から離れないように、同時あるいは前後してもよい。また、ステップS102の磁歪用コイル21への通電により、ソレノイドのリフト時のバウンスを低減することができる。
噴射モードは、磁歪用コイル21への通電を遮断する(ステップS103)。弁開の高速応答のために、急速に通電電流を遮断することが好ましい。
閉弁モードは、第2の昇圧電源33により磁歪用コイル21に通電する(ステップS104)。第2の昇圧電源33は、第1の昇圧電源32よりも昇圧電源を高くしておくことが好ましい。これにより、大電流を磁歪用コイル21に通電することができ、閉弁を高速に行うことができる。
また、第1の昇圧電源32と第2の昇圧電源33などにより複数の電源電圧を用いることにより、開弁モードでの磁歪用コイル21への通電と、閉弁モードでの磁歪用コイル21への通電を個別の電圧で通電することができる。これにより、高電圧の使用期間が短縮でき、高圧電源回路のコンデンサ充電も短時間で済むので、高速の弁開閉が可能となる。
戻しモードは、保持用コイル11への通電を遮断し(ステップS105)、磁歪用コイル21への通電を遮断する(ステップS106)。
図11は、本発明の第1の実施の形態による燃料噴射弁制御方法を示すタイミングチャートである。図11には、各部の制御信号((a)〜(f))、磁歪用コイル電流(g)、磁歪素子変位量(h)、及び弁ストローク(i)の各波形を示している。図5の各モードについて、制御部40からの指令信号に従い、弁開閉の動作について説明する。
開弁モード時、時刻t11において、制御部40は、上位の制御部(例えば、エンジン統合制御部)より、インジェクタ1(駆動回路FD1に対応する。)のオン指令信号を受信する。なお、インジェクタ1のオン指令信号は、ここでは、上位の制御部から受信しているが、制御部40が、インジェクタ1のオン指令信号を出力してもよい。
すると、制御部40は、時刻t12において、昇圧オープンドライバ端子44及びローサイドドライバ端子47に、オン指令信号を出力する。磁歪用コイル21に通電が開始され、磁歪素子の変位が開始する。制御部40は、時刻t13において、ソレノイドドライバにオン指令信号を出力する。
制御部40は、時刻t14において、12V系ドライバ端子46にオン指令信号を出力し、昇圧オープンドライバ端子44にオフ指令信号を出力する。ここで、磁歪用コイル21に印加する電源を第1の昇圧電源32から12V電源34に切り替えている。すでに、磁歪素子の変位量は、大きくなっているので、通電電流を低減することにより、磁歪用コイル21の発熱の低減を図っている。
時刻t14から時刻t15の期間、制御部40は、ローサイドドライバ端子47にPWMのオン・オフ信号を出力する。これにより、磁歪用コイル21への通電電流がオン・オフされ、過大な通電電流による発熱の低減を図っている。
噴射モード時、時刻t15において、制御部40は、12V系ドライバ端子46及びローサイドドライバ端子47にオフ指令信号を出力する。磁歪用コイル21の通電電流は、遮断され、磁歪素子は収縮し、磁歪素子の変位量がオフモードの初期状態に戻る。よって、バルブ22の弁ストロークは、開弁状態になる。燃料の噴射量は、弁の開閉度と開閉時間などにより決まる。本実施の形態の場合、磁歪素子の収縮による開弁を高速にできるので、噴射量を精密に制御することができる。
閉弁モード時、時刻t16において、制御部40は、昇圧クローズドライバ端子45及びローサイドドライバ端子47に、オン指令信号を出力する。磁歪用コイル21には、第2の昇圧電源33から、電流が通電され、高速で磁歪素子の変位量が大きくなる。これは、第2の昇圧電源33は、第1の昇圧電源32より高い昇圧電源であるためである。磁歪素子の変位量が大きくなることにより、閉弁状態となる。燃料の噴射量は、弁の開閉度と開閉時間などにより決まる。本実施の形態の場合、磁歪素子の伸長による閉弁を高速にできるので、噴射量を精密に制御することができる。
制御部40は、時刻t17において、12V系ドライバ端子46にオン指令信号を出力し、昇圧クローズドライバ端子45にオフ指令信号を出力する。ここで、磁歪用コイル21に印加する電源を第2の昇圧電源33から12V電源34に切り替えている。すでに、磁歪素子の変位量は、大きくなっているので、通電電流を低減することにより、磁歪用コイル21の発熱の低減を図っている。
時刻t17から時刻t18の期間、制御部40は、ローサイドドライバ端子47にPWMのオン・オフ信号を出力する。これにより、磁歪用コイル21への通電電流がオン・オフされ、過大な通電電流による発熱の低減を図っている。
時刻t18において、制御部40は、上位の制御部(例えば、エンジン統合制御部)より、インジェクタ1(駆動回路FD1に対応する。)のオフ指令信号を受信する。
これに応じて、制御部40は、戻しモードに入り、時刻t18において、ソレノイドドライバ、昇圧クローズドライバ端子45、及びローサイドドライバ端子47にオフ指令信号を出力する。ソレノイドを元に戻し、磁歪用コイル21への通電電流は遮断され、磁歪素子の変位量がオフモードの初期状態に戻る。
本実施の形態では、開弁モード時及び閉弁モード時の磁歪用コイル21への通電に、異なる複数の昇圧電源(第1の昇圧電源32と第2の昇圧電源33)を用いている。このため、通電電流の大きさを変更することができ、磁歪素子の伸長時間を制御することができる。
また、磁歪用コイル21への通電の繰り返し周期が短い場合(例えば、時刻t12と時刻t16の期間が短時間の場合)においても、複数の昇圧電源を使い分けることにより、通電することができる。
第2の実施の形態.
図12は、本発明の第2の実施の形態による燃料噴射弁制御方法を示すタイミングチャートである。図12には、各部の制御信号((a)〜(f))、磁歪用コイル電流(g)、磁歪素子変位量(h)、及び弁ストローク(i)の各波形を示している。図12に示す波形図は、図11に示された波形図に対し、第2噴射モードを追加した場合である。第2噴射モードとは、噴射モードにおいて、燃料の噴射量を調整するために弁ストロークを可変にする可変ストロークモードをいう。オフモード、開弁モード、噴射モード、閉弁モード、及び戻しモードは、図11と同様であるので、説明は省略する。
第2噴射モードの場合、制御部40は、時刻t21において、昇圧オープンドライバ端子44及びローサイドドライバ端子47に、オン指令信号を出力する。磁歪用コイル21に通電が開始され、磁歪素子の変位が開始する。
制御部40は、時刻t22において、12V系ドライバ端子46にオン指令信号を出力し、昇圧オープンドライバ端子44にオフ指令信号を出力する。ここで、磁歪用コイル21に印加する電源を第1の昇圧電源32から12V電源34に切り替えている。すでに、磁歪素子の変位量は、大きくなっているので、通電電流を低減することにより、磁歪用コイル21の発熱の低減を図っている。
時刻t22から時刻t23の期間、制御部40は、ローサイドドライバ端子47にPWMのオン・オフ信号を出力する。これにより、磁歪用コイル21への通電電流のオン・オフすることにより、通電電流による発熱の低減を図っている。
時刻t21から時刻t23において、磁歪素子の変位量を変化させることにより、弁ストロークを変化させている。
制御部40は、時刻t23において、12V系ドライバ端子46及びローサイドドライバ端子47にオフ指令信号を出力する。すると、弁ストロークが、噴射モードの状態に戻る。
本実施の形態の場合、可変ストロークモードにより、燃料の噴射量を調整することができる。磁歪用コイル21に通電することによる磁歪素子の変位調整ができるためである。可変ストロークモード時における、電源としては、図11に示す説明では、第1の昇圧電源32を用いているが、第2の昇圧電源33又は12V電源34を用いてもよい。磁歪用コイル21のコイル抵抗に応じた電流を流し、線形的な磁歪素子の伸長動作をさせることができるものであればよい。また、可変ストロークモードにおいては、第1の昇圧電源32、第2の昇圧電源33、12V電源34の電源容量を考慮した上で、電源を使い分けるのがよい。
以上述べた実施の形態においては、駆動電源30が、ソレノイド電源31、第1の昇圧電源32、第2の昇圧電源33、12V電源34を備えるものとして説明した。しかし、燃料噴射弁制御ユニット100が備える駆動電源は、必ずしもこの構成に限らず、バッテリから供給される電圧を基に、適切な仕様に調整された12V電圧のほか、ソレノイド用の電圧、磁歪コイル用の第1の電圧及び第2の電圧を出力できるものであれば、いかなる構成のものでもよい。また、駆動回路のスイッチング素子に対する制御信号は、説明の都合上、制御部40からそれぞれの端子を介して供給されるものとして説明したが、これらの端子は、必ずしも必要でないので省略可能である。
本発明の第1の実施の形態による燃料噴射装置のインジェクタを概念的に示す構成図である。 本発明の第1の実施の形態による燃料噴射装置の燃料噴射弁制御ユニットを示すブロック図である。 ソレノイド駆動回路を示す回路図である。 磁歪素子駆動回路を示す回路図である。 本発明の第1の実施の形態による燃料噴射装置の動作原理を示す説明図である。 開弁モード時の磁歪素子の伸長制御を示す説明図である。 噴射モード時の磁歪素子の収縮制御を示す説明図である。 他の実施の形態による磁歪素子駆動回路を示す回路図である。 閉弁モード時の磁歪素子の伸長制御を示す説明図である。 図2の制御部の動作を示すフローチャートである。 本発明の第1の実施の形態による燃料噴射弁制御方法を示すタイミングチャートである。 本発明の第2の実施の形態による燃料噴射弁制御方法を示すタイミングチャートである。 本発明の第1の実施の形態による他の開弁モードの動作原理を示す説明図である。
符号の説明
10 ソレノイド駆動回路
11 保持用コイル
12 リターンスプリング
13 固定用コア
14 アーマチャ
15 弁ニードル
16 シート
17 噴射孔
18 ソレノイド
20 磁歪素子駆動回路
21 磁歪用コイル
22 バルブ
30 駆動電源
31 ソレノイド電源
32 第1の昇圧電源
33 第2の昇圧電源
34 12V電源
40 制御部
100 燃料噴射弁制御ユニット
200 インジェクタ

Claims (5)

  1. 磁歪素子で形成されるバルブと、バルブの先端側に接合された弁ニードルと、バルブの後端側に設けられたソレノイドのアーマチャとで構成される可動部を有し、前記ソレノイドと前記磁歪素子を動弁機構の駆動力として用いた燃料噴射弁を制御する燃料噴射装置の制御方法であって、
    前記ソレノイドを駆動するためのソレノイドコイルへの通電と、前記磁歪素子を駆動するための複数の磁歪素子駆動電源のいずれかを用いて前記磁歪素子の磁歪用コイルへの通電とにより、前記燃料噴射弁の開閉を制御する際に、
    前記燃料噴射弁が閉弁状態において、前記ソレノイドコイル及び前記磁歪用コイルの双方に電流を流し、前記燃料噴射弁を前記ソレノイドのリフト量と前記磁歪素子の変位量とが略等しく、かつ、ともに大きくした第1の状態に保持する第1のステップと、
    前記第1の状態において、前記磁歪用コイルに流れる電流を遮断することにより、前記燃料噴射弁を開弁状態とするステップを含む
    ことを特徴とする燃料噴射装置の制御方法。
  2. 前記開弁状態において、
    前記磁歪用コイルに電流を流し、前記燃料噴射弁を閉弁する閉弁ステップをさらに含む
    ことを特徴とする請求項1に記載の燃料噴射装置の制御方法。
  3. 前記複数の磁歪素子駆動電源として、所定電圧より昇圧された第1の電圧を出力する第1の電源と、所定電圧より昇圧された前記第1の電圧より高い第2の電圧を出力する第2の電源とのいずれかを用いる
    ことを特徴とする請求項1または請求項2に記載の燃料噴射装置の制御方法。
  4. 前記第1のステップが、前記ソレノイドコイルに電流を流し、かつ、前記第1の電源を用いて前記磁歪用コイルに電流を流すステップを含む
    ことを特徴とする請求項に記載の燃料噴射装置の制御方法。
  5. 前記閉弁ステップが、前記第2の電源を用いて、前記磁歪用コイルに電流を流し、前記燃料噴射弁を閉弁するステップを含む
    ことを特徴とする請求項2を引用する請求項に記載の燃料噴射装置の制御方法。
JP2006142370A 2006-05-23 2006-05-23 燃料噴射装置の制御方法 Expired - Fee Related JP4695544B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006142370A JP4695544B2 (ja) 2006-05-23 2006-05-23 燃料噴射装置の制御方法
EP07108608A EP1860317A1 (en) 2006-05-23 2007-05-22 Fuel Injection Device, Fuel Injection Control Device, and Control Method of Fuel Injection Device
US11/802,574 US8020533B2 (en) 2006-05-23 2007-05-23 Fuel injection device, fuel injection control device, and control method of fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142370A JP4695544B2 (ja) 2006-05-23 2006-05-23 燃料噴射装置の制御方法

Publications (2)

Publication Number Publication Date
JP2007315179A JP2007315179A (ja) 2007-12-06
JP4695544B2 true JP4695544B2 (ja) 2011-06-08

Family

ID=38849287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142370A Expired - Fee Related JP4695544B2 (ja) 2006-05-23 2006-05-23 燃料噴射装置の制御方法

Country Status (1)

Country Link
JP (1) JP4695544B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695543B2 (ja) * 2006-05-23 2011-06-08 株式会社ケーヒン 燃料噴射装置及び燃料噴射制御装置
EP1860317A1 (en) 2006-05-23 2007-11-28 Keihin Corporation Fuel Injection Device, Fuel Injection Control Device, and Control Method of Fuel Injection Device
US8752524B2 (en) * 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
JP6914396B1 (ja) * 2020-04-28 2021-08-04 三菱電機株式会社 誘導性負荷駆動回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230940A (ja) * 1987-03-18 1988-09-27 Toyota Motor Corp 燃料噴射装置
JPH02190682A (ja) * 1989-01-18 1990-07-26 Toyota Motor Corp 圧電素子の駆動装置
JPH10252930A (ja) * 1997-03-13 1998-09-22 Zexel Corp 電磁弁駆動装置
JP2004316644A (ja) * 2003-04-14 2004-11-11 Robert Bosch Gmbh 燃料噴射弁
JP2007315178A (ja) * 2006-05-23 2007-12-06 Keihin Corp 燃料噴射装置及び燃料噴射制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230940A (ja) * 1987-03-18 1988-09-27 Toyota Motor Corp 燃料噴射装置
JPH02190682A (ja) * 1989-01-18 1990-07-26 Toyota Motor Corp 圧電素子の駆動装置
JPH10252930A (ja) * 1997-03-13 1998-09-22 Zexel Corp 電磁弁駆動装置
JP2004316644A (ja) * 2003-04-14 2004-11-11 Robert Bosch Gmbh 燃料噴射弁
JP2007315178A (ja) * 2006-05-23 2007-12-06 Keihin Corp 燃料噴射装置及び燃料噴射制御装置

Also Published As

Publication number Publication date
JP2007315179A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
US8020533B2 (en) Fuel injection device, fuel injection control device, and control method of fuel injection device
US8899210B2 (en) Drive circuit for electromagnetic fuel-injection valve
JP4482913B2 (ja) 電磁弁及び電磁弁駆動回路
US8461794B2 (en) Method and apparatus for controlling of a servo-drive
CN105736160A (zh) 燃料喷射装置的驱动装置
JPH11280527A (ja) 多燃料噴射イベントの間の電流立ち上がり時間の制御のための方法および装置
JP5023252B2 (ja) 電磁弁及び電磁弁駆動回路
JP2013087717A (ja) 燃料噴射制御装置用電磁弁駆動装置
JP4695544B2 (ja) 燃料噴射装置の制御方法
US7301256B2 (en) Method and circuit configuration for operating a piezoelectric actuator
JP4695543B2 (ja) 燃料噴射装置及び燃料噴射制御装置
JP5926159B2 (ja) 電磁弁駆動装置
JP2000027615A (ja) 電磁アクチュエータの制御装置
US20090237856A1 (en) Solenoid valve drive control apparatus and method for driving a solenoid valve
JP2018031294A (ja) 電磁弁駆動装置
ATE490545T1 (de) Steuerschaltung zum antrieb eines elektrischen stellglieds, insbesondere eines elektrischen kraftstoffeinspritzventils für eine brennkraftmaschine
CN107208615B (zh) 用于运行活塞泵的方法、活塞泵的操控装置和活塞泵
US6122158A (en) Wide voltage range driver circuit for a fuel injector
JP5865409B2 (ja) 電磁式燃料噴射弁の駆動装置
JP2017046382A (ja) 電磁デバイス駆動装置
JP6365424B2 (ja) ブートストラップ・プリドライバ
JP6518185B2 (ja) 電磁弁制御装置、車両用電子制御装置、及び車両
JP2003319667A (ja) ピエゾアクチュエータ駆動回路
JP2019002379A (ja) 電磁弁駆動装置
JP3094020B2 (ja) 電磁付勢部材を励起する切換装置および同装置の動作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees