JP4687571B2 - 可変圧縮比内燃機関のバルブタイミング制御システム - Google Patents

可変圧縮比内燃機関のバルブタイミング制御システム Download PDF

Info

Publication number
JP4687571B2
JP4687571B2 JP2006162571A JP2006162571A JP4687571B2 JP 4687571 B2 JP4687571 B2 JP 4687571B2 JP 2006162571 A JP2006162571 A JP 2006162571A JP 2006162571 A JP2006162571 A JP 2006162571A JP 4687571 B2 JP4687571 B2 JP 4687571B2
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
combustion engine
changed
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006162571A
Other languages
English (en)
Other versions
JP2007332798A (ja
Inventor
幸博 中坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006162571A priority Critical patent/JP4687571B2/ja
Publication of JP2007332798A publication Critical patent/JP2007332798A/ja
Application granted granted Critical
Publication of JP4687571B2 publication Critical patent/JP4687571B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、圧縮比を可変とする可変圧縮比内燃機関の吸排気弁のバルブタイミングを制御するバルブタイミング制御システムに関する。
近年、内燃機関の燃費性能や出力性能などを向上させることを目的とした、内燃機関の圧縮比を可変にする技術が提案されている。この種の技術としては、シリンダブロックとクランクケースとを相対移動可能に連結するとともにその連結部分にカム軸を設け、前記カム軸を回動させてシリンダブロックとクランクケースとを、気筒の軸線方向に相対移動させることで燃焼室の容積を変更し、以て内燃機関の圧縮比を変更する技術が提案されている(例えば、特許文献1を参照。)。
内燃機関の圧縮比を変更すべく、内燃機関の機関要素の一部の配置、大きさ等を変更する場合、該内燃機関のクランクシャフトの回転と燃焼サイクルにおけるピストンの位置との相対関係がずれる場合がある。ここで、吸排気弁がクランクシャフトの動力によって駆動される場合やクランクアングルに基づいて吸排気弁の開閉時期であるバルブタイミングが制御される場合には、ピストンが圧縮行程上死点等の所定位置にある時期に対して吸排気弁のバルブタイミングが本来あるべきタイミングからずれる虞がある。
これに対し、可変バルブタイミング機構によって吸排気弁のバルブタイミングを上記のずれ量に基づき調整することによって吸排気弁のバルブタイミングが圧縮比の変更に伴ってずれることを可及的に抑制する技術も提案されている(例えば、特許文献2を参照。)。
ここで、圧縮比に応じて要求される吸排気弁のバルブタイミングは異なる場合があり、特に吸気弁のバルブタイミングにおいては、圧縮比が比較的高い場合には進角側に、圧縮比が低い場合には遅角側に要求される場合がある。しかし、上記の可変バルブタイミング機構において変更できる位相の幅よりも要求される位相の差が大きい場合には、上記の要求を満たすことができない虞があった。
特開2003−206771号公報 特開2005−325702号公報 特開2001−263099号公報 実開昭63−52903号公報
本発明は、上記従来技術に鑑みてなされたものであり、その目的とするところは、内燃機関の圧縮比を変更した場合に、吸気弁または排気弁のバルブタイミングを圧縮比に応じて定められる所定の目標バルブタイミングに、より確実に変更することが可能な技術を提供することである。
上記課題を達成するために本発明の可変圧縮比内燃機関のバルブタイミング制御システムは、以下の手段を採用した。
即ち、内燃機関のシリンダブロックとクランクケースとを相対移動させることで該内燃機関の圧縮比を変更する圧縮比変更手段を備える可変圧縮比内燃機関であって、
前記クランクケース側に設けられるとともにクランク軸からの駆動力が伝達される第1
被駆動回転体と、
前記シリンダブロック側に設けられるとともに前記第1被駆動回転体に噛み合うことにより該第1被駆動回転体から前記駆動力が伝達される第2被駆動回転体と、
前記シリンダブロック側に設けられるとともにタイミングチェーン又はタイミングベルトを介して前記第2被駆動回転体から前記駆動力が伝達されるとともに、前記内燃機関の吸気弁若しくは排気弁のうち少なくとも何れかの駆動弁を開閉させる駆動軸に前記駆動力を伝達する駆動回転体と、
前記少なくとも何れかの前記駆動弁のバルブタイミングを変更するバルブタイミング変更手段と、
を備え、
前記バルブタイミング変更手段は、
前記圧縮比変更手段によって前記圧縮比が変更される際に前記駆動回転体と前記駆動軸との相対的な回転位相を変更することによって前記駆動軸と前記クランク軸との回転位相を変更可能な第1位相変更機構と、
前記圧縮比変更手段によって前記圧縮比が変更される際に前記第1被駆動回転体と前記第2被駆動回転体とが噛み合いながら相対移動することに起因して前記第1及び第2被駆動回転体の相対的な回転位相が変更されることによって前記駆動軸と前記クランク軸との回転位相を変更可能な第2位相変更機構と、
を有し、
前記第1及び第2位相変更機構によって前記駆動弁のバルブタイミングを前記圧縮比に応じて定められる所定の目標バルブタイミングに変更することを特徴とする。
このように構成された可変圧縮比内燃機関(以下、単に「内燃機関」ともいう。)においては、運転状態に応じて圧縮比を変更させる必要が生じたときに、圧縮比変更手段が圧縮比を変更する。ここで、前記圧縮比と内燃機関の運転状態とは密接な関係があり、且つ該運転状態に応じて該内燃機関に要求される吸排気弁のバルブタイミングが異なる場合がある。
例えば、前記内燃機関の機関負荷が比較的低い場合には、該内燃機関の圧縮比を高くして燃費の向上を図ることが考えられる(以下、「パーシャル燃費要求」ともいう。)。具体的には、前記吸気弁の開弁時期を進角させてバルブオーバーラップを確保し、所謂内部EGRを増大させるとともに、前記吸気弁の閉弁時期を進角させることによってポンプ損失を低減させ、内燃機関の燃費を向上させることが要求される場合がある。
一方、前記内燃機関が冷間始動時等の場合には、圧縮比を高くすることが困難である場合がある。該内燃機関のスタータ容量が小さい場合等には、圧縮比を高くして筒内圧力を上昇させると、クランキング回転数が充分に上がらない場合や、該内燃機関の振動が増大する虞があるからである。そのような場合には圧縮比を低く設定して燃料の蒸発を促進するため、前記内燃機関の筒内ガス温度を早期に昇温することが要求される(以下、「冷間始動要求」ともいう。)。具体的には、前記吸気弁の開弁時期を遅角させて負圧を増大させるとともに前記吸気弁の閉弁時期を遅角させて吸入空気量を増大させることによって、ポンプ損失を増大させて前記内燃機関の早期昇温を図ることが要求される場合がある。
従って、前記内燃機関における圧縮比が比較的高い場合においては前記吸気弁のバルブタイミングを進角側に制御することが要求され、圧縮比が低い場合においては前記吸気弁のバルブタイミングを遅角側に制御することが要求されることが多いと考えられる。
そこで、本発明に係る可変圧縮比内燃機関のバルブタイミング制御システムにおいては、バルブタイミング変更手段によって前記駆動軸と前記クランク軸との回転位相を変更させることにより、前記駆動弁のバルブタイミングを前記圧縮比に応じて定められる所定の
目標バルブタイミングに変更させる。尚、所定の目標バルブタイミングとは、前記内燃機関における圧縮比に応じて定められる好適な前記吸気弁若しくは排気弁の開閉時期である。
ここで、前記バルブタイミング変更手段は前記駆動回転体と前記駆動軸との相対的な回転位相を変更することによって前記駆動軸と前記クランク軸との回転位相を変更することが可能な第1位相変更機構を有している。従って、第1位相変更機構によって前記駆動軸と前記クランク軸との回転位相を変更することにより前記駆動弁のバルブタイミングを前記圧縮比に応じて定められる所定の目標バルブタイミングに変更することができる。
更に、前記バルブタイミング変更手段は、前記圧縮比変更手段によって前記圧縮比が変更される際に前記第1被駆動回転体と前記第2被駆動回転体とが噛み合いながら相対移動することに起因して前記第1及び第2被駆動回転体の相対的な回転位相が変更されることによって前記駆動軸と前記クランク軸との回転位相を変更することが可能な第2位相変更機構を有する。これにより、前記内燃機関の圧縮比が大きく変更されることによって前記第1被駆動回転体と前記第2被駆動回転体との相対移動量が増大するほど前記回転位相の変更量を大きくすることができる。
このように、前記バルブタイミング変更手段は、前記第1位相変更機構と前記第2位相変更機構の2種類のバルブタイミング変更手段を有するので、上記の進角側の要求と遅角側の要求の位相差が大きい場合に対しても、より確実に前記駆動弁のバルブタイミングを前記圧縮比に応じて定められる所定の目標バルブタイミングに変更することができる。
また、一般に、前記目標バルブタイミングは前記内燃機関における圧縮比の他に、該内燃機関の運転状態によっても異なる。これに対し、本発明における前記第2位相変更機構によって変更される前記駆動軸と前記クランク軸との回転位相は前記圧縮比が変更される際の前記第1被駆動回転体と前記第2被駆動回転体との相対移動量に応じて変更される。
そして、前記第2位相変更機構による前記駆動軸と前記クランク軸との回転位相が変更される際に、前記駆動弁のバルブタイミングと前記目標バルブタイミングとが異なる場合がある。
これに対し、本発明における前記第1位相変更機構は、前記第2位相変更機構によって変更された前記駆動弁のバルブタイミングと前記目標バルブタイミングとの差を低減するように、前記駆動軸と前記クランク軸との回転位相を変更させても良い。
即ち、前記第2位相変更機構によって変更された前記駆動弁のバルブタイミングと前記目標バルブタイミングとの差が生じても、前記第1位相変更機構によって前記駆動軸と前記クランク軸との回転位相の変更量を調整することによって、より精度良く前記駆動弁のバルブタイミングを前記目標バルブタイミングに変更することが可能となる。
ここで、前記目標バルブタイミングは、前記内燃機関の圧縮比が比較的高い場合(例えば、パーシャル燃費要求時)には進角側に変更することにより該内燃機関の燃費を向上させ、該圧縮比が低い場合(例えば、冷間始動要求時)には遅角側に変更することにより該内燃機関を迅速に昇温することが望まれることが多い。
これに対し、本発明における前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相が前記駆動軸の前記クランク軸に対する位相が進角する方向に変更されるべく配置され、
前記目標バルブタイミングは、前記圧縮比が高いほど、より大きく進角するように設定されても良い。
そして、前記第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相を前記駆動軸の前記クランク軸に対する位相が進角する方向に変更するために、前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体における前記第1被駆動回転体との接点が該第2被駆動回転体の回転方向に対して逆方向の位置に変更されるべく配置されても良い。
これにより、前記内燃機関の圧縮比を高圧縮比側に変更した場合に、前記第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相を進角させることによって、前記駆動軸の前記クランク軸に対する位相を進角することができる。更に、前記圧縮比がより大きく変更されるほど、前記第2被駆動回転体の前記第1被駆動回転体に対する相対移動量は増大し、前記駆動軸の前記クランク軸に対する位相をより進角側に変更することができる。
ここで、本発明における前記駆動回転体は、前記吸気弁を開閉させる吸気側の駆動軸に前記駆動力を伝達する吸気側駆動回転体と前記排気弁を開閉させる排気側の駆動軸に前記駆動力を伝達する排気側駆動回転体とからなり、単一の前記タイミングチェーン又はタイミングベルトにより前記吸気側駆動回転体及び前記排気側駆動回転体に前記第2被駆動回転体からの前記駆動力が伝達される場合には、前記第2位相変更機構によって前記駆動軸の前記クランク軸に対する回転位相を変更することによって、前記吸気弁及び排気弁の前記バルブタイミングが連動して変更される。ところが、前記排気弁のバルブタイミングは前記内燃機関の圧縮比が前記内燃機関の運転状態に応じて変更される場合においても、一定に維持することが要求される場合がある。
これに対し、本発明に係る可変圧縮比内燃機関のバルブタイミング制御システムにおいては、前記クランクケース側に設けられるとともに前記吸気側駆動回転体と前記排気側駆動回転体との間において前記タイミングチェーン又はタイミングベルトに当接することにより該タイミングチェーン又はタイミングベルトの張り具合を変更するタイミング変更テンショナを備え、
前記バルブタイミング変更手段は、
前記圧縮比変更手段によって前記圧縮比が変更される際に前記タイミング変更テンショナと前記タイミングチェーン又はタイミングベルトとが相対移動することに起因して、前記吸気側駆動回転体と前記排気側駆動回転体とを相対的に逆方向に回転させるとともに前記吸気側の駆動軸と前記排気側の駆動軸との回転位相を変更可能な第3位相変更機構を有していても良い。
上記構成によれば、前記圧縮比変更手段によって前記内燃機関の圧縮比が変更される際に、シリンダブロック側に設けられる前記吸気側駆動回転体及び前記排気側駆動回転体と、前記クランクケース側に設けられる前記タイミング変更テンショナが相対移動することに伴い、前記タイミングチェーン又はタイミングベルトと前記タイミング変更テンショナとの相対位置が変更される事によって該タイミングチェーン又はタイミングベルトの張り具合が変更される。
そして、上記のように前記タイミング変更テンショナと前記タイミングチェーン又はタイミングベルトとは該吸気側駆動回転体と該排気側駆動回転体との間において当接するため、前記吸気側駆動回転体と前記排気側駆動回転体とを相対的に逆方向に回転させることができる。尚、上記の「相対的に逆方向に回転させる」とは前記吸気側駆動回転体または前記排気側駆動回転体の回転が逆回転する意味ではなく、前記吸気側駆動回転体に対する
前記排気側駆動回転体の相対的な回転位相が進角または遅角することを意味する。
このように、前記吸気側駆動回転体と前記排気側駆動回転体との相対的な回転位相を変更することによって前記吸気側の駆動軸と前記排気側の駆動軸との回転位相が変更され、以って前記吸気弁と前記排気弁との相対的なバルブタイミングの位相を変更することができる。
また、本発明において、前記吸気側駆動回転体及び前記排気側駆動回転体の回転方向、径、前記タイミング変更テンショナの前記タイミングチェーン又はタイミングベルトに対する配置を変更しても良い。これにより、前記回転位相の変更する方向(進角・遅角)、該回転位相の変更量を設定することが可能である。
例えば、前記吸気側駆動回転体及び前記排気側駆動回転体の回転方向を時計回りと反時計回りとの間で変更することで、前記回転位相を逆方向に変更することができる。また、前記タイミング変更テンショナが当接する前記タイミングチェーン又はタイミングベルトの面を表裏逆にすることで前記回転位相を逆方向に変更することができる。
更に、前記タイミング変更テンショナが前記タイミングチェーン又はタイミングベルトに当接する位置ついては、前記排気側駆動回転体と前記排気側駆動回転体との間の中央で当接させることによって前記回転位相の変更量は最小となり、
前記排気側駆動回転体または前記排気側駆動回転体のどちらか一方に近づけて当接させる場合には前記回転位相の変化量を増大させることができる。また、前記吸気側駆動回転体及び前記排気側駆動回転体の径を大きくするほど前記回転位相の変更量を減少させることができ、該径を小さくするほど前記回転位相の変更量を増大させることができる。
また、本発明において前記第3位相変更機構は、前記圧縮比変更手段が圧縮比を高く変更するほど前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相を遅角させても良い。
例えば、前記第2位相変更機構によって、前記内燃機関の圧縮比を高く変更するほど前記第1被駆動回転体に対する前記第2被駆動回転体の相対的な回転位相が進角側に変更する場合には、前記第3位相変更機構によって前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相を遅角させても良い。そうすれば、前記吸気側駆動回転体及び前記排気側駆動回転体の前記第1被駆動回転体に対する相対的な回転位相が進角側に変更されるとともに、前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相を遅角側に変更することができる。即ち、前記吸気側の駆動軸の前記クランク軸に対する相対的な回転位相の進角量を大きくするとともに、前記排気側の駆動軸の前記クランク軸に対する相対的な回転位相の進角量を小さくすることができる。
また、前記第2位相変更機構による前記第2被駆動回転体の前記第1被駆動回転体に対する回転位相の変更量と、前記第3位相変更機構による前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相の変更量とを略等しくしても良い。
これにより、前記吸気側の駆動軸の前記クランク軸に対する相対的な回転位相を進角させるとともに、前記排気側の駆動軸の前記クランク軸に対する相対的な回転位相を略変更させないことが可能となる。更に、前記バルブタイミング変更手段は、前記第2位相変更機構及び第3位相変更機構によっても前記吸気弁及び排気弁のバルブタイミングと前記目標バルブタイミングが異なる場合には、前記吸気弁及び排気弁のバルブタイミングが前記目標バルブタイミングとなるべく、前記第1位相変更手段によって前記吸気側駆動回転体と前記吸気側の駆動軸との相対的な回転位相、又は前記排気側駆動回転体と前記排気側の
駆動軸との相対的な回転位相を調整しても良い。これにより、より精度良く前記吸気弁及び排気弁のバルブタイミングと前記目標バルブタイミングとを略一致させることが可能となる。
本発明にあっては、内燃機関の圧縮比を変更した場合に、吸気弁または排気弁のバルブタイミングを圧縮比に応じて定められる所定の目標バルブタイミングに変更することができる。
以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は、圧縮比を可変とする可変圧縮比内燃機関(以下、単に「内燃機関」という)1の概略構成を表す図である。尚、本実施例においては、内燃機関1における一部の構成要素の表示を省略している。シリンダ2内の燃焼室には、シリンダヘッド10に設けられた吸気ポート18を介して吸気管19が接続されている。シリンダ2への吸気の流入は吸気弁5によって制御される。吸気弁5の開閉は、吸気側カム7の回転駆動によって制御される。また、シリンダヘッド10に設けられた排気ポート20を介して、排気管21が接続されている。シリンダ2外への排気の排出は排気弁6によって制御される。排気弁6の開閉は排気側カム8の回転駆動によって制御される。更に、吸気ポート18には燃料噴射弁17が、シリンダ2の頂部には、点火プラグ16が設けられている。そして、内燃機関1のクランクシャフト13にコンロッド14を介して連結されたピストン15が、シリンダ2内で往復運動を行う。
ここで、内燃機関1においては、可変圧縮比機構によって、シリンダブロック3をクランクケース4に対してシリンダ2の軸線方向に相対移動させることで、内燃機関1の圧縮比が変更される。即ち、可変圧縮比機構が、シリンダブロック3と共にシリンダヘッド10を、シリンダ2の軸線方向にクランクケース4に対して相対移動させることによって、シリンダブロック3、シリンダヘッド10およびピストン15によって構成される燃焼室の容積が変更され、その結果、内燃機関1の圧縮比が可変制御される。例えば、シリンダブロック3がクランクケース4から遠ざかる方向に相対移動されると、燃焼室容積が増えて圧縮比が低下する。従って、可変圧縮比機構は本実施例において圧縮比変更手段に相当する。
可変圧縮比機構は、軸部9aと、軸部9aの中心軸に対して偏心された状態で軸部9aに固定された正円形のカムプロフィールを有するカム部9bと、カム部9bと同一外形を有し軸部9aに対して回転可能且つカム部9bと同じように偏心状態で取り付けられた可動軸受部9cと、軸部9aと同心状に設けられたウォームホイール9dと、ウォームホイール9dと噛み合うウォーム9eと、ウォーム9eを回転駆動させるモータ9fによって構成される。そして、カム部9bはシリンダブロック3に設けられた収納孔内に設置され、可動軸受部9cはクランクケース4に設けられた収納孔内に設置され、また、モータ9fは、シリンダブロック3に固定されており、シリンダブロック3と一体的に移動する。ここで、モータ9fからの駆動力は、ウォーム9eとウォームホイール9dとを介して軸部9aに伝えられる。そして、偏心状態にあるカム部9b、可動軸受部9cが駆動されることで、シリンダブロック3がクランクケース4に対してシリンダ2の軸線方向に相対移動させられる。
また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)90が併設されている。このECU90は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。
ここで、アクセル開度センサ92がECU90と電気的に接続されており、ECU90はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ91がECU90と電気的に接続されており、ECU90は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。
更に、可変圧縮比機構を構成するモータ9fがECU90と電気的に接続されている。そして、ECU90からの指令によりモータ9fが駆動されて、可変圧縮比機構による内燃機関1の圧縮比の変更が行われる。尚、この内燃機関1の圧縮比の変更は、内燃機関1の運転状態に基づいて行われる。従って、本実施例において圧縮比変更手段はECU90を含んで構成される。
次に、内燃機関1における吸気弁5及び排気弁6の開閉動作並びに該開閉動作を行う開閉機構について、図2に基づいて説明する。図2は、主に内燃機関1のバルブタイミング制御システムの機構を示す図であり、図2(a)はシリンダブロック3がクランクケース4に近づき、内燃機関1の圧縮比が比較的高い圧縮比(以下、単に「高圧縮比ε」という。)となっている状態を示し、図2(b)はシリンダブロック3がクランクケース4から遠ざかり、内燃機関1の圧縮比が比較的低い圧縮比(以下、単に「低圧縮比ε」という。)となっている状態を示す。図2に示すように、シリンダブロック3がクランクケース4に対してシリンダ2の軸線方向にΔhだけ相対移動することで、内燃機関1の圧縮比が変更される。
内燃機関1においては、吸気弁5の開閉動作は吸気側カム7によって行われる。この吸気側カム7は吸気側カムシャフト22に取り付けられ、更に吸気側カムシャフト22の端部には吸気側ギア24が設けられている。更に、吸気側カムシャフト22と吸気側ギア24との相対的な回転位相を変更可能とする可変回転位相機構(以下、「吸気側VVT」という)23が設けられている。この吸気側VVT23は、ECU90からの指令に従って吸気側カムシャフト22と吸気側ギア24との相対的な回転位相を制御する。更に、吸気側カムシャフト22の回転角を検出する吸気側カム角センサ93が設けられ、吸気側カム角センサ93とECU90が電気的に接続されている。
また、排気弁6の開閉動作は排気側カム8によって行われる。この排気側カム8は排気側カムシャフト25に取り付けられ、更に排気側カムシャフト25の端部には排気側ギア27が設けられている。更に、排気側カムシャフト25と排気側ギア27との相対的な回転位相を変更可能とする可変回転位相機構(以下、「排気側VVT」という。)26が設けられている。この排気側VVT26は、ECU90からの指令に従って排気側カムシャフト25と排気側ギア27との相対的な回転位相を制御する。更に、排気側カムシャフト25の回転角を検出する排気側カム角センサ94が設けられ、排気側カム角センサ94とECU90が電気的に接続されている。従って、吸気側VVT23、排気側VVT26は本実施例において第1位相変更機構に相当し、バルブタイミング変更手段の一部を構成する。
そして、吸気側カムシャフト22と排気側カムシャフト25の回転駆動は、クランクシ
ャフト13の駆動力をチェーン38によって伝達することで行われる。そこで、チェーン38は、シリンダブロック3に設けられるとともにクランク側ギア36と噛み合うリダクションギア37と、吸気側ギア24と、排気側ギア27と、に掛けられることで、クランクシャフト13の駆動力によって吸気弁5、排気弁6の開閉動作が行われる。ここで、クランク側ギア36は本実施例における第1被駆動回転体に相当し、リダクションギア37は本実施例における第2被駆動回転体に相当する。また、吸気側ギア24、排気側ギア27はそれぞれ本実施例において吸気側駆動回転体、排気側駆動回転体に相当する。
このように構成される内燃機関1においては、可変圧縮比機構によってシリンダブロック3をクランクケース4に対して相対移動させることで圧縮比を変更させる。本実施例においては、図2(a)に示す高圧縮比εの状態から、可変圧縮比機構によってシリンダブロック3をクランクケース4からΔhだけ遠ざけることによって、図2(b)に示す低圧縮比εの状態としている。その際、リダクションギア37はシリンダブロック3に設けられることにより、シリンダブロック3と同様にリダクションギア37もシリンダ2の軸線方向にΔhだけ移動する。そうすると、クランク側ギア36とリダクションギア37とは噛み合いながら相対位置が変更される。
このように、本実施例における内燃機関1では、可変圧縮比機構によって内燃機関1の圧縮比が変更されることに連動して、クランク側ギア36とリダクションギア37との相対的な回転位相を変更することが可能である(以下、この機構を「クランク側可変回転位相機構」という。)。従って、クランク側可変回転位相機構は少なくともクランク側ギア36とリダクションギア37を含んで構成される。また、クランク側可変回転位相機構は本実施例において第2位相変更機構に相当し、吸気側VVT23、排気側VVT26とともにバルブタイミング変更手段の一部を構成する。
ここで、クランク側可変回転位相機構について、図3に基づいて詳しく説明する。図3は、本実施例に係る内燃機関1の圧縮比が変更されるときの、クランク側ギア36とリダクションギア37の相対位置を示す概念図である。図3(a)は内燃機関1の圧縮比が高圧縮比εである状態を示し、図3(b)は内燃機関1の圧縮比が低圧縮比εである状態を示す。尚、図中の実線による矢印はクランク側ギア36、リダクションギア37の回転方向を示す。また、内燃機関1の圧縮比を変更する前であって、高圧縮比と低圧縮比との中間の圧縮比(以下、単に「中間圧縮比ε」という。)の状態におけるリダクションギア37の位置を破線によって図中に示す。
図3(a)に示すように、内燃機関1の圧縮比を中間圧縮比εから高圧縮比εに変更すると、リダクションギア37がシリンダ2の軸線方向であって、図3(a)中における破線の矢印の方向に移動する。ここで、リダクションギア37はクランク側ギア36に噛み合いながら移動するため、リダクションギア37とクランク側ギア36との接触状態が変更される。即ち、リダクションギア37とクランク側ギア36との接点は、点Aからリダクションギア37の回転方向とは逆方向の点Bに移動する。その結果、クランク側ギア36に対するリダクションギア37の相対的な回転位相が進角側に変更される。ここで、リダクションギア37と吸気側ギア24及び排気側ギア27とはチェーン38を介して同期回転しているため、クランクシャフト13に対する吸気側カムシャフト22及び排気側カムシャフト25の回転位相が進角側に変更される。
一方、図3(b)に示すように、内燃機関1の圧縮比が中間圧縮比εから低圧縮比εに変更されると、リダクションギア37がシリンダ2の軸線方向であって図3(b)中における破線の矢印の方向に移動する。そうすると、リダクションギア37とクランク側ギア36との接点は、点Aからリダクションギア37の回転方向と同じ方向の点Cに移動する。その結果、クランク側ギア36に対するリダクションギア37の相対的な回転位相
が遅角側に変更され、クランクシャフト13に対する吸気側カムシャフト22及び排気側カムシャフト25の回転位相を遅角側に変更することができる。
以上のように、上記構成によれば、内燃機関1における圧縮比の変更に連動して、吸気弁5及び吸気弁6のバルブタイミングを変更することができる。即ち、内燃機関1の圧縮比を高圧縮比εに変更する際には上記バルブタイミングを進角側に、内燃機関1の圧縮比を低圧縮比εに変更する際には上記バルブタイミングを遅角側に変更することができる。
次に、内燃機関1の圧縮比を変更するときの、クランク側ギア36とリダクションギア37との相対移動量u、リダクションギア37の半径d、クランク側ギア36とリダクションギア37との回転位相の変化量θの関係について、図4に基づいて説明する。
図4は、本実施例に係る内燃機関1の圧縮比が低圧縮比ε、中間圧縮比ε及び高圧縮比εの状態におけるクランク側ギア36とリダクションギア37の相対位置を示した概念図である。尚、内燃機関1の圧縮比が高圧縮比εである状態を実線により、低圧縮比εである状態を一点鎖線により、中間圧縮比εである状態を破線により示す。また、上記の相対移動量uについては、圧縮比を中間圧縮比εから高圧縮比εに変更したときの相対移動量をu1、低圧縮比εに変更したときの相対移動量をu2とする。更に、上記の回転位相の変化量θについては、圧縮比を中間圧縮比εから高圧縮比εに変更したときの回転位相の変化量をθ1、低圧縮比εに変更したときの回転位相の変化量をθ2とする。そして、d、u1、u2、θ1、θ2の関係は(1)式から(3)式により求められる。
tanθ1=u1/d ・・・(1)
tanθ2=u2/d ・・・(2)
d=(u1+u2)/(tanθ1+tanθ2) ・・・(3)
(1)式から(3)式に示されるように、内燃機関1の圧縮比を中間圧縮比εから高圧縮比εに変更したときの回転位相の変化量θ1は、半径dに対する相対移動量u1の比によって設定され、中間圧縮比εから低圧縮比εに変更したときの回転位相の変化量θ2は、半径dに対する相対移動量u2の比によって求めることができる。
従って、吸気弁5及び吸気弁6のバルブタイミングを圧縮比に応じた所望のタイミングにするために決定される回転位相の変化量θ1、θ2と圧縮比に応じた相対移動量u1、u2との関係から半径dを決定することができる。即ち、半径dを適切に設定することによって内燃機関1の圧縮比を高圧縮比εに変更した時と低圧縮比εに変更した時とに要求される最適なバルブタイミングに上記バルブタイミングを変更することができる。尚、上記(1)式から(3)式は内燃機関1における圧縮比を連続的に変更させる場合においても適用することができる。
図5は、本実施例に係る内燃機関1の圧縮比と、該圧縮比に応じて最適になると定められる吸気弁5及び排気弁6のバルブタイミング(以下、「目標バルブタイミング」という。)との関係を例示した図である。図5の横軸は内燃機関1の圧縮比を表し、縦軸は吸気弁5の目標バルブタイミングを表す。本実施例においては、内燃機関1の圧縮比を高くするほど吸気弁5のバルブタイミングを進角側に変更するものとした。これにより、圧縮比の比較的高い状態においては吸気弁5の開弁時期を進角させることにより、バルブオーバーラップを確保して内部EGRを増大させるとともに、吸気弁5の閉弁時期を進角させることによってポンプ損失を低減させ、内燃機関1の燃費を向上させることが可能となる。
一方、例えば冷間始動時等の様に内燃機関1の圧縮比が低い状態においては、吸気弁5の開弁時期を遅角させて負圧を増大させるとともに吸気弁5の閉弁時期を遅角させて吸入空気量を増大させることによって、ポンプ損失を増大させて内燃機関1の早期昇温を図ることが可能となる。
ここで、可変圧縮比機構によって内燃機関1の圧縮比を変更する際における吸気弁5、排気弁6のバルブタイミングを調整するための制御について、図6に基づいて説明する。図6は、本実施例に係る内燃機関1の圧縮比の変更時におけるバルブタイミング制御ルーチンを示すフローチャートである。尚、本ルーチンは一定のサイクルで繰り返し実行されるルーチンである。
先ず、S101では、内燃機関1の運転状態を検出する。この運転状態は、シリンダ2内での燃焼と関連する運転状態であって、内燃機関1の圧縮比が該燃焼に適しているか否かを判定するための基礎となる項目である。本実施例においては、クランクポジションセンサ91からの信号に基づいて得られる機関回転速度と、アクセル開度センサ92からの信号に基づいて得られる機関負荷とによって、内燃機関1の運転状態を検出する。この他に、内燃機関1における吸入空気量等によって運転状態を検出しても良い。S101の処理が終了すると、S102に進む。
S102においては、S101で検出された内燃機関1の運転状態に基づいて、内燃機関1の圧縮比が変更されるべきか否かが判定される。上述したように、内燃機関1の運転状態によってシリンダ2内で行われるべき燃焼は変動するため、該燃焼に適正な圧縮比へと変更することが要求される。そこで、S102においては内燃機関1の運転状態が現在設定されている圧縮比を変更すべき運転状態であるときはS103に進む。一方、内燃機関1の運転状態が現在設定されている圧縮比を変更する必要がない場合には本ルーチンを一旦終了する。
S103においては、S101において検出された内燃機関1の運転状態に基づいて、内燃機関1で行われる燃焼に最適な圧縮比(以下、「目標圧縮比」という。)が推定される。具体的には、例えば機関回転速度と機関負荷とで決定される内燃機関1の運転状態と、各運転状態における目標圧縮比との関係を予め実験等で求めておき、該関係を制御マップの形でECU90内に格納しておいても良い。そしてS103では、該制御マップに内燃機関1の運転状態をパラメータとしてアクセスすることで目標圧縮比が導出される。そして、S103の処理が終わるとS104に進む。
S104においては、S103で導出された目標圧縮比に基づいて設定される吸気弁5及び排気弁6の目標バルブタイミングが導出される。この目標バルブタイミングは、図5に示すように、例えば目標圧縮比と目標バルブタイミングとの関係を予め実験等で求めておき、該関係が格納されたマップから目標バルブタイミングを読み出すことにより導出するようにしても良い。S104の処理が終わるとS105に進む。
S105においては、S103において推定された目標圧縮比に基づいて、可変圧縮比機構によって、内燃機関1の圧縮比が目標圧縮比になるべく、シリンダブロック3とクランクケース4との相対移動が行われる。また、それと同時に、クランク側可変回転位相機構によってクランク側ギア36とリダクションギア37とが噛み合いながら相対位置が変更されることによって、吸気弁5及び排気弁6のバルブタイミングが目標バルブタイミングとなるべく変更される。尚、本実施例に係るリダクションギア37の半径dは、圧縮比が変更されるときに、吸気弁5及び排気弁6のバルブタイミングが目標バルブタイミングになるように上記(1)式から(3)式によって予め求めておくものとした。S105の処理が終わるとS106に進む。
S106においては、クランク側可変回転位相機構によって変更された吸気弁5のバルブタイミングTvinと排気弁6のバルブタイミングTvexを推定し、それぞれ目標バルブタイミングとのずれ量ΔTvin、ΔTvexを導出する。また、ΔTvin、ΔTvexはクランクポジションセンサ91と吸気側カム角センサ93、排気側カム角センサ94とからの信号に基づいて導出しても良い。S106の処理が終わるとS107に進む。
S107においては、バルブタイミングのずれ量ΔTvin、ΔTvexが所定の基準ずれ量ΔTv以上であるか否か判定される。尚、所定の基準ずれ量ΔTvは予め実験的にもとめられるバルブタイミングのずれ量である。ここで、ΔTvin、ΔTvexが所定の基準ずれ量ΔTv以上であると判定された場合には、吸気弁5及び排気弁6のバルブタイミングTvin、Tvexを目標バルブタイミングに近づくように変更する必要があると判断され、S108に進む。一方、ΔTvin、ΔTvexが所定の基準ずれ量ΔTv未満であると判定された場合には、本ルーチンを一旦終了する。
S108においては、吸気側VVT23、排気側VVT26によってバルブタイミングのずれ量ΔTvin、ΔTvexが解消する方向に吸気側ギア24に対する吸気側カムシャフト22の相対的な回転位相と、排気側ギア27に対する吸気側カムシャフト25の相対的な回転位相とを調整する。S108の処理が終わると本ルーチンを一旦終了する。
このように、本ルーチンによれば、内燃機関1の圧縮比の変更に連動し、クランク側可変回転位相機構によって吸気弁5及び排気弁6のバルブタイミング(Tvin、Tvex)を、該圧縮比に最適な予め設定される目標バルブタイミングに変更することが可能である。また、該Tvin、Tvexが目標バルブタイミングと異なる場合においても、吸気側VVT23、排気側VVT26によって該Tvin、Tvexを目標バルブタイミングにすることができる。
尚、本実施例においては、クランク側可変回転位相機構によって該Tvin、Tvexを変更した後、吸気側VVT23、排気側VVT26によって該Tvin、Tvexを調整しているが、圧縮比の変更と同時にクランク側可変回転位相機構と吸気側VVTと排気側VVT26とにより該Tvin、Tvexを目標バルブタイミングに変更しても良い。
また、本実施例に係るクランク側可変回転位相機構において、クランク側ギア36とリダクションギア37とを相対移動させる方向はシリンダ2の軸線方向に限定されない。例えば、シリンダ2の軸線方向と垂直方向の成分も生じさせるようにクランク側ギア36とリダクションギア37を相対移動させるガイドをクランクケース4側に設けても良い。即ち、内燃機関1の圧縮比を変更する際に、上記のようなガイドの軌道に沿ってリダクションギア37をクランク側ギア36に対して相対移動させることにより、シリンダ2の軸線方向と垂直方向におけるリダクションギア37とクランク側ギア36との中心間距離を変化させることができる。
例えば、リダクションギア37とクランク側ギア36とのシリンダ2の軸線方向の相対移動量が同じ場合に、上記のシリンダ2の軸線方向と垂直方向における中心間距離が小さくなるように相対移動させた方が、該垂直方向における中心間距離が大きくなるように相対移動させた場合に比べてクランク側ギア36とリダクションギア37との回転位相の変化量を大きくすることができる。従って、リダクションギア37とクランク側ギア36とを相対移動させる際に、シリンダ2の軸線方向と垂直方向におけるリダクションギア37の移動量を調整することによって、より精度良く吸気弁5及び排気弁6のバルブタイミングを変更することが可能となる。
また、本実施例に係るクランク側可変回転位相機構において、内燃機関1の圧縮比を高圧縮比側に変更するほど吸気弁5及び排気弁6のバルブタイミング(Tvin、Tvex)を進角側に変更する例を示したが、例えば、図3に示したクランク側ギア36及びリダクションギア37の回転方向が図示の方向と逆回転とする場合には、圧縮比を高圧縮比側に変更するほどTvin、Tvexを遅角側に変更することもできる。
また、本実施例において、吸気側カムシャフト22と排気側カムシャフト25の回転駆動は、クランクシャフト13の駆動力をチェーン38によって伝達することで行っているが、チェーン38の代わりにタイミングベルトによって該駆動力を伝達しても良い。
次に、本発明に係る内燃機関のバルブタイミング制御システムの実施例1とは異なる実施例を説明する。尚、本実施例に係る内燃機関1において、図1に示す内燃機関1と同一の構成要素については同一の参照番号を付して、その説明は省略する。
図7は、図2と同様に、内燃機関1のバルブタイミング制御システムの機構を示す図であり、図7(a)は高圧縮比εとなっている状態を示し、図7(b)は低圧縮比εとなっている状態を示す。図7に示すように、可変圧縮比機構によってシリンダブロック3がクランクケース4に対してシリンダ2の軸線方向にΔhだけ相対移動することで、内燃機関1の圧縮比が変更される。また、実施例1に係る内燃機関1と同様に、シリンダブロック3に取り付けられているリダクションギア37もシリンダ2の軸線方向にΔh移動する。
ここで、図2に示す内燃機関1のバルブタイミングの制御システムの機構との違いは、タイミング調整テンショナ39、張力調整テンショナ40が設けられている点である。尚、タイミング調整テンショナ39は吸気側ギア24と排気側ギア27との間においてチェーン38に当接している。
タイミング調整テンショナ39はクランクケース4に設けられており、チェーン38はシリンダブロック3に設けられる吸気側ギア24、排気側ギア27及びリダクションギア37に掛けられており、内燃機関1の圧縮比が変更される際にタイミング調整テンショナ39とチェーン38との相対位置が変更される。従って、内燃機関1の圧縮比の変更に連動してチェーン38の張り具合がタイミング調整テンショナ39によって変更される。尚、タイミング調整テンショナ39は本実施例においてタイミング変更テンショナに相当する。
また、張力調整テンショナ40はシリンダブロック3に設けられており、吸気側ギア24とリダクションギア37との間においてチェーン38に当接している。更に、張力調整テンショナ40は、スプリング式又は油圧式のテンショナであってチェーン38の撓みを抑制させるテンショナである。従って、タイミング調整テンショナ39が吸気側ギア24と排気側ギア27との間においてチェーン38の張り具合を変更する場合においても、チェーン38全体の張力が必要以上に過大になること、又は撓むことが抑制される。
図8は、本実施例に係る内燃機関1の圧縮比が変更されるときの、クランク側ギア36とリダクションギア37の相対位置、タイミング調整テンショナ39とチェーン38との相対位置を示した概念図である。尚、図8中には吸気側ギア24、排気側ギア27、張力調整テンショナ40を図示しているが、その他一部の構成要素の表示を省略している。また、内燃機関1の圧縮比が高圧縮比εであるときの状態を実線によって示し、内燃機関1の圧縮比が低圧縮比εであるときの状態を破線によって示す。更に、図中の実線によ
る矢印は本実施例における吸気側ギア24、排気側ギア27、クランク側ギア36、リダクションギア37の回転方向を示す。
図8に示すように、可変圧縮比機構によって内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されると、シリンダブロック3に設けられている吸気側ギア24、排気側ギア27、リダクションギア37が図中の破線によって示される位置に移動する。一方、タイミング調整テンショナ39はクランクケース4に設けられているため、内燃機関1の圧縮比が変更されても、クランクケース4との相対位置は変更されない。
従って、圧縮比が高圧縮比εから低圧縮比εに変更されることによってチェーン38とタイミング調整テンショナ39との相対位置が変更され、チェーン38の張り具合が変更される。即ち、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されるとチェーン38の張力が増大し、チェーン38は図中に破線の矢印によって示される方向に引張力が作用する。
ここで、上記の引張力はチェーン38に噛み合う吸気側ギア24及び排気側ギア27に作用し、吸気側ギア24と排気側ギア27とは相対的に逆方向に回転する。その結果、本実施例における内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されることによって、排気側ギア27の吸気側ギア24に対する相対的な回転位相は進角側に変更される。一方、内燃機関1の圧縮比が低圧縮比εから高圧縮比εに変更されることによって、排気側ギア27は吸気側ギア24に対して相対的に回転位相が遅角側に変更される。
即ち、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されることによって、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相を進角側に変更することができる。また、内燃機関1の圧縮比が低圧縮比εから高圧縮比εに変更されることによって、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相を遅角側に変更することができる。
尚、吸気側ギア24及び排気側ギア27の回転方向が逆方向である場合には、内燃機関1の圧縮比が変更されることによって排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相が変更される方向が上記の方向とは逆になる。そのような場合には、例えば、タイミング調整テンショナ39がチェーン38に当接する面を図8においてタイミング調整テンショナ39がチェーン38に当接する面とは表裏逆になるようにタイミング調整テンショナ39を配置しても良い。そうすれば、吸気側ギア24及び排気側ギア27の回転方向に関わらず、内燃機関1の圧縮比を高圧縮比εから低圧縮比εに変更することによって、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相を進角側に変更することが可能である。逆に、圧縮比を低圧縮比εから高圧縮比εに変更することによって、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相を遅角側に変更することが可能となる。
以上のように、本実施例における内燃機関1においては、可変圧縮比機構によって内燃機関1の圧縮比が変更されることに連動し、吸気側カムシャフト22と排気側カムシャフト25との相対的な回転位相を変更可能となる(以下、この機構を「カムシャフト可変回転位相機構」という。)。従って、カムシャフト可変回転位相機構は少なくともタイミング調整テンショナ39とチェーン38を含んで構成される。尚、カムシャフト可変回転位相機構は本実施例において第3位相変更機構に相当し、吸気側VVT23、排気側VVT26、クランク側可変回転位相機構とともにバルブタイミング変更手段の一部を構成する。
次に、内燃機関1の圧縮比を変更するときの、カムシャフト可変回転位相機構によって
変更される排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相の変化量φについて、図9に基づいて詳しく説明する。
図9は、本実施例に係る内燃機関1の圧縮比が高圧縮比ε及び低圧縮比εの状態におけるタイミング調整テンショナ39とチェーン38との相対位置を示した概念図である。尚、図8と同様に、内燃機関1の圧縮比が高圧縮比εである状態を実線によって、低圧縮比εである状態を破線によって示す。また、吸気側ギア24、排気側ギア27の回転方向、チェーン38に作用する引張力の方向等は図8に示す方向と同様とし、詳しい説明を省略する。
また、本実施例における吸気側ギア24及び排気側ギア27のギア半径rは同じ大きさであり、吸気側ギア24と排気側ギア27との中心間距離はLである。また、タイミング調整テンショナ39は、吸気側ギア24と排気側ギア27との間の中央に設けられており(L1=L/2)、タイミング調整テンショナ39がチェーン38に当接するチェーン38の長手方向の長さはL2である。また、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されるときの、シリンダブロック3に設けられている吸気側ギア24及び排気側ギア27のクランクケース4に対する相対移動量をΔh1とする。
ここで、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されるときの、カムシャフト可変回転位相機構によって変更される排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相の進角量φは、排気側ギア27の吸気側ギア24に対する相対的な回転位相の変更量であり、吸気側ギア24の遅角量φ1と排気側ギア27の進角量φ2との和となる。ここで、圧縮比を高圧縮比εから低圧縮比εに変更することによりチェーン38は図中に実線で示す状態から破線で示す状態になる。即ち、チェーン38の長さがLからL3に変更される。そして、チェーン38の長さの変更量(L3−L)が吸気側ギア24の遅角量φ1と排気側ギア27の進角量φ2との和に等しいと考えられる。以上のことから、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相の変化量φは(4)式によって求めることができる。
Figure 0004687571
(4)式に示すように、吸気側ギア24及び排気側ギア27のギア半径rを変更することによって回転位相の変化量φを変更することができる。また、本実施例においては、タイミング調整テンショナ39を吸気側ギア24と排気側ギア27との間の中央でチェーン38に当接するように配置しているが、吸気側ギア24及び排気側ギア27のどちらか一方のギアに近づけて配置しても良い。ここで、タイミング調整テンショナ39をチェーン38の長手方向に対して配置を変更する場合に、吸気側ギア24と排気側ギア27との中央に配置する場合には回転位相の変化量φが最小となり、どちらか一方のギア側に近づけて配置する場合には回転位相の変化量φを増大させることができる。
図10は、本実施例に係る内燃機関1の圧縮比と、吸気弁5のバルブタイミングTvinと排気弁6のバルブタイミングTvexとの位相の差との関係を例示した図である。図10の横軸は内燃機関1の圧縮比を表し、縦軸は排気弁6の吸気弁5に対するバルブタイミングの位相差を表す。本実施例では内燃機関1の圧縮比を高くするほど、排気弁6の吸気弁5に対するバルブタイミングを相対的に遅角側に変更するものとした。
これにより、内燃機関1の圧縮比を高く変更するほどクランク側可変回転位相機構によって、クランク側ギア36に対するリダクションギア37の相対的な回転位相が進角側に
変更される場合においても、カムシャフト可変回転位相機構によって排気側ギア27の吸気側ギア24に対する回転位相を遅角することができる。従って、吸気側カムシャフト22のクランクシャフト13に対する相対的な回転位相の進角量を大きくするとともに、排気側カムシャフト25のクランクシャフト13に対する相対的な回転位相の進角量を小さくすることができる。
また、上述したカムシャフト可変回転位相機構を備えた内燃機関1のバルブタイミング制御システムにおいて、図6に示すバルブタイミング制御ルーチンを適用可能である。その場合、バルブタイミング制御ルーチンにおけるS105では、S103において推定された目標圧縮比に基づいて、可変圧縮比機構によってシリンダブロック3とクランクケース4との相対移動が行われることに伴い、カムシャフト可変回転位相機構によって吸気弁5のバルブタイミングTvinに対する排気弁6のバルブタイミングTvexを相対的に遅角側に変更させる。
ここで、図11は、本実施例に係る内燃機関1の圧縮比と、吸気弁5のバルブタイミングTvin及び排気弁6のバルブタイミングTvexとの関係を例示した図である。また、図11中の実線によって吸気弁5のバルブタイミングTvinを示し、破線によって排気弁6のバルブタイミングTvexを示す。本実施例においては、上記のカムシャフト可変回転位相機構によって遅角される排気弁6のバルブタイミングTvexの変更量は、クランク側可変回転位相機構により進角された排気弁6のバルブタイミングTvexの変更量に等しくさせるものとした。その結果、図11に示すように、吸気弁5のバルブタイミングTvinは圧縮比が高圧縮比側に変更されるほど進角側に変更するとともに、排気弁6のバルブタイミングTvexは圧縮比の変更に関わらず一定のタイミングに維持することが可能となる。
次に、図7に示したカムシャフト可変回転位相機構と構成の異なる第2カムシャフト可変回転位相機構について、図12に基づいて説明する。図12は、本実施例に係る内燃機関1の圧縮比が変更されるときの第2カムシャフト可変回転位相機構の概念図である。図12(a)は内燃機関1の圧縮比が高圧縮比εである状態を示し、図12(b)は内燃機関1の圧縮比が低圧縮比εである状態を示す。また、図12はタイミング調整テンショナ39とチェーン38を中心に図示しており、一部の構成要素の表示を省略している。尚、図中の矢印は本実施例における吸気側ギア24、排気側ギア27の回転方向を示す。
図12に示すように、タイミング調整テンショナ39にはテンショナ結合部材41が組み合わされ、テンショナ結合部材41は梃子の原理を利用した機構となっている。このテンショナ結合部材41は、力点部41a、支点部41b、作用点部41cから構成されている。更に、力点部41aはシリンダブロック4に、支点部41bはクランクケース3に設けられており、作用点部41cはタイミング調整テンショナ39に接合されている。また、本実施例におけるテンショナ結合部材41には力点部41a、支点部41b、作用点部41cが直列に配置されている。
上記構成によれば、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されると、吸気側ギア24及び排気側ギア27がシリンダ2の軸線方向にΔh2だけ相対移動することにより、力点部41aと支点部41bとがシリンダ2の軸線方向にΔh2だけ相対移動する。一方、作用点部41cと支点部41bとは、支点部41bの相対移動の方向とは逆向きにシリンダ2の軸線方向にΔh3だけ相対移動する。従って、タイミング調整テンショナ39とチェーン38との相対移動量はΔh2とΔh3との和となる。
以上のように、テンショナ結合部材41が設けられていないカムシャフト可変回転位相機構に比べて、タイミング調整テンショナ39とチェーン38との相対移動量を増大させ
ることにより、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相をより進角側に変更することができる。
尚、上記の相対移動量Δh2、Δh3は力点部41aと支点部41bとの距離及び作用点部41cと支点部41bとの距離とに比例する。従って、力点部41aの位置に比べて作用点部41cの位置を支点部41bからより遠ざけることによって、相対移動量Δh3を相対移動量Δh2に比べてより増大させることが可能となる。
次に、上記の第2カムシャフト可変回転位相機構と構成の異なる第3カムシャフト可変回転位相機構について、図13に基づいて説明する。図13は、本実施例に係る内燃機関1の圧縮比が変更されるときの第3カムシャフト可変回転位相機構の概念図である。図13(a)は内燃機関1の圧縮比が高圧縮比εである状態を示し、図13(b)は内燃機関1の圧縮比が低圧縮比εである状態を示す。また、図13はタイミング調整テンショナ39とチェーン38を中心に図示しており、一部の構成要素の表示を省略している。尚、図中の矢印は本実施例における吸気側ギア24、排気側ギア27の回転方向を示す。
ここで、第3カムシャフト可変回転位相機構にはテンショナ結合部材41と異なる構成の第2テンショナ結合部材42が設けられている。この第2テンショナ結合部材42には、支点部42b、力点部42a、作用点部42cが、この順に直列に配置されている。また、力点部42aはシリンダブロック4に、支点部42bはクランクケース3に設けられており、作用点部41cはタイミング調整テンショナ39に接合されている。また、タイミング調整テンショナ39は、該タイミング調整テンショナ39がチェーン38に対して当接する面が第2カムシャフト可変回転位相機構に係るタイミング調整テンショナ39とは表裏逆になるように配置されている。
上記構成によれば、内燃機関1の圧縮比が高圧縮比εから低圧縮比εに変更されると、吸気側ギア24及び排気側ギア27がシリンダ2の軸線方向にΔh2だけ相対移動することにより、力点部42aと支点部42bとがシリンダ2の軸線方向にΔh2だけ相対移動する。一方、作用点部42cは、支点部41bの相対移動の方向と同じ方向に支点部41bに対してΔh4だけ相対移動する。また、上記のように、吸気側ギア24及び排気側ギア27は力点部42a及び作用点部42cの相対移動する方向と同じ方向にΔh2だけ相対移動するため、タイミング調整テンショナ39とチェーン38との相対移動量はΔh4とΔh2との差となる。
また、上記の相対移動量Δh2、Δh4は支点部42bと力点部42aとの距離と、支点部42bと作用点部42cとの距離と、に比例する。従って、力点部42aの位置に比べて作用点部42cの位置を支点部42bからより遠ざけることによって、相対移動量Δh4を相対移動量Δh2に比べてより増大させることが可能となる。その結果、タイミング調整テンショナ39とチェーン38との相対移動量を増大させることにより、排気側カムシャフト25の吸気側カムシャフト22に対する相対的な回転位相をより進角側に変更することができる。
次に、本発明に係る内燃機関のバルブタイミング制御システムの実施例1及び2とは異なる実施例を説明する。本実施例において、内燃機関1の圧縮比が高圧縮比εに変更される時にピストン15と吸気弁5及び排気弁6とが干渉すること(以下、「バルブスタンプ」という。)を抑制する内燃機関のバルブタイミング制御システムについて説明する。
図14は、本実施例に係る内燃機関1の圧縮比が変更されるときの、クランク側可変回転位相機構及びカムシャフト可変回転位相機構の概念図である。内燃機関1の圧縮比が高
圧縮比εであるときの状態を実線によって示し、低圧縮比εであるときの状態を破線によって示す。また、図中の矢印は本実施例における吸気側ギア24、排気側ギア27、クランク側ギア36、リダクションギア37の回転方向を示す。
図示のように、図14に示したクランク側可変回転位相機構及びカムシャフト可変回転位相機構と、実施例2の図8において示したクランク側可変回転位相機構及びカムシャフト可変回転位相機構とは、クランク側ギア36とリダクションギア37との配置位置が異なり、且つタイミング調整テンショナ39がチェーン38に対して当接する面が異なる。
図14に示すように、内燃機関1の圧縮比を低圧縮比εから高圧縮比εに変更すると、リダクションギア37とクランク側ギア36との接点は、圧縮比を変更する前に比べてリダクションギア37の回転方向と同じ方向の位置にずれる。その結果、クランク側ギア36に対するリダクションギア37の相対的な回転位相が遅角側に変更される。即ち、クランク側可変回転位相機構によりクランクシャフト13に対する吸気側カムシャフト22及び排気側カムシャフト25の回転位相を遅角側に変更することができる。
一方、カムシャフト可変回転位相機構によって排気側ギア27の吸気側ギア24に対する相対的な回転位相を進角側に変更される。即ち、排気側カムシャフト25の吸気側カムシャフト22に対する回転位相を進角側に進角することができる。
図15は、本実施例に係る内燃機関1の圧縮比と、吸気弁5のバルブタイミングTvin及び排気弁6のバルブタイミングTvexとの関係を例示した図である。また、図中の実線は吸気弁5のバルブタイミングTvinを示し、破線は排気弁6のバルブタイミングTvexを示す。本実施例においては内燃機関1の圧縮比が高く、ピストン15とシリンダヘッド10との距離が小さくなる場合に、吸気弁5のバルブタイミングTvinをクランク角に対して遅角させ、排気弁6のバルブタイミングTvexをクランク角に対して進角させる。これにより、圧縮比が変更されてもバルブオーバーラップを確保することができるとともにバルブスタンプが生じることを抑制することができる。
次に、本発明に係る内燃機関のバルブタイミング制御システムの実施例1から3とは異なる実施例を説明する。本実施例においては、内燃機関1の圧縮比の変更時における吸気弁5のバルブタイミングTvin及び排気弁6のバルブタイミングTvexを独立して変更可能な内燃機関のバルブタイミング制御システムについて説明する。
図16は、本実施例に係るクランク側可変回転位相機構の概念図である。本実施例におけるクランク側可変回転位相機構は、吸気弁5のバルブタイミングTvin、排気弁6のバルブタイミングTvexを独立して変更するための、吸気側リダクションギア37a、排気側リダクションギア37bがそれぞれ設けられており、クランクシャフト13の駆動力は吸気側チェーン38a、排気側チェーン38bを介して吸気側ギア24及び排気側ギア27に伝達される。また、内燃機関1の圧縮比が高圧縮比εであるときの各ギアの相対位置を実線により、内燃機関1の圧縮比が低圧縮比εであるときの各ギアの相対位置を破線によって示す。また、図中の矢印は各ギアの回転方向を示す。
図16に示す構成によれば、内燃機関1の圧縮比を低圧縮比εから高圧縮比εに変更すると、シリンダブロック3に設けられている吸気側リダクションギア37a及び排気側リダクションギア37bとクランク側ギア36とが噛み合いながら相対移動する。その結果、吸気側リダクションギア37aのクランク側ギア36に対する回転位相を相対的に進角側に変更し、排気側リダクションギア37bのクランク側ギア36に対する回転位相を相対的に遅角側に変更することができる。一方、圧縮比を高圧縮比εから低圧縮比ε
に変更するときは、吸気側リダクションギア37aを相対的に遅角させるとともに、排気側リダクションギア37bを相対的に進角させることができる。また、上記の回転位相の変更量は吸気側リダクションギア37a及び排気側リダクションギア37bの半径を変更することにより調整することができる。
以上により、本実施例に係るクランク側可変回転位相機構は、圧縮比を高圧縮比側に変更するほど、吸気弁5のバルブタイミングTvinを進角側に変更するとともに排気弁6のバルブタイミングTvexを遅角側に変更することが可能である。また、吸気弁5のバルブタイミングTvinにおける位相の変更量と、吸気弁6のバルブタイミングTvexにおける位相の変更量とを異ならせることも可能となる。
また、本実施例においては圧縮比を高圧縮比側にするほど吸気弁5のバルブタイミングTvinを進角側に変更し、排気弁6のバルブタイミングTvexを遅角側に変更したが、低圧縮比側にするほど吸気弁5のバルブタイミングTvinを進角側に変更し、排気弁6のバルブタイミングTvexを遅角側に変更しても良い。そのようにするための構成として、クランク側ギア36の回転方向を本実施例に示す方向とは逆方向に回転させる構成や、吸気側ギア24と排気側ギア27との配置を入れ替える構成を例示することができる。
本発明に係る内燃機関の概略構成を示した図である。 実施例1に係る内燃機関のバルブタイミング制御システムの機構を示した図である。(a)は内燃機関の圧縮比が高圧縮比εである状態を示した図である。(b)は内燃機関1の圧縮比が低圧縮比εである状態を示した図である。 実施例1に係る内燃機関の圧縮比が変更されるときの、クランク側ギアとリダクションギアの相対位置を示す概念図である。(a)は内燃機関1の圧縮比が高圧縮比εである状態を示した概念図である。(b)は内燃機関の圧縮比が低圧縮比εである状態を示した概念図である。 実施例1に係る内燃機関の圧縮比が低圧縮比ε、中間圧縮比ε及び高圧縮比εの状態におけるクランク側ギアとリダクションギアの相対位置を示した概念図である。 実施例1に係る内燃機関の圧縮比と吸気弁及び排気弁の目標バルブタイミングとの関係を例示した図である。 実施例1に係る内燃機関の圧縮比の変更時におけるバルブタイミング制御ルーチンを示すフローチャートである。 実施例2に係る内燃機関のバルブタイミング制御システムの機構を示した図である。(a)は内燃機関の圧縮比が高圧縮比εである状態を示した図である。(b)は内燃機関1の圧縮比が低圧縮比εである状態を示した図である。 実施例2に係る内燃機関の圧縮比が変更されるときの、クランク側ギアとリダクションギアの相対位置、タイミング調整テンショナとチェーンとの相対位置を示した概念図である。 実施例2に係る内燃機関の圧縮比を高圧縮比ε及び低圧縮比εの状態におけるタイミング調整テンショナとチェーンとの相対位置を示した概念図である。 実施例2に係る内燃機関の圧縮比と吸気弁のバルブタイミングTvinと排気弁のバルブタイミングTvexとの位相の差との関係を例示した図である。 実施例2に係る内燃機関の圧縮比と吸気弁バルブタイミングTvin及び排気弁のバルブタイミングTvexとの関係を例示した図である。 実施例2に係る内燃機関の圧縮比が変更されるときの第2カムシャフト可変回転位相機構の概念図である。(a)は内燃機関の圧縮比が高圧縮比εである状態を示した概念図である。(b)は内燃機関1の圧縮比が低圧縮比εである状態を示した概念図である。 実施例2に係る内燃機関の圧縮比が変更されるときの第3カムシャフト可変回転位相機構の概念図である。(a)は内燃機関の圧縮比が高圧縮比εである状態を示した概念図である。(b)は内燃機関1の圧縮比が低圧縮比εである状態を示した概念図である。 実施例3に係る内燃機関の圧縮比が変更されるときの、クランク側可変回転位相機構及びカムシャフト可変回転位相機構の概念図である。 実施例3に係る内燃機関の圧縮比と吸気弁のバルブタイミングTvin及び排気弁のバルブタイミングTvexとの関係を例示した図である。 実施例4に係るクランク側可変回転位相機構の概念図である。
符号の説明
1・・・可変圧縮比内燃機関(内燃機関)
2・・・シリンダ
3・・・シリンダブロック
4・・・クランクケース
5・・・吸気弁
6・・・排気弁
7・・・吸気側カム
8・・・排気側カム
13・・・クランクシャフト
15・・・ピストン
22・・・吸気側カムシャフト
23・・・吸気側VVT
24・・・吸気側ギア
25・・・排気側カムシャフト
26・・・排気側VVT
27・・・排気側ギア
36・・・クランク側ギア
37・・・リダクションギア
37a・・・吸気側リダクションギア
37b・・・排気側リダクションギア
38・・・チェーン
38a・・・吸気側チェーン
38b・・・排気側チェーン
39・・・タイミング調整テンショナ
40・・・張力調整テンショナ
41・・・テンショナ結合部材
41a・・・力点部
41b・・・支点部
41c・・・作用点部
42・・・第2テンショナ結合部材
90・・・ECU

Claims (10)

  1. 内燃機関のシリンダブロックとクランクケースとを相対移動させることで該内燃機関の圧縮比を変更する圧縮比変更手段を備える可変圧縮比内燃機関であって、
    前記クランクケース側に設けられるとともにクランク軸からの駆動力が伝達される第1被駆動回転体と、
    前記シリンダブロック側に設けられるとともに前記第1被駆動回転体に噛み合うことにより該第1被駆動回転体から前記駆動力が伝達される第2被駆動回転体と、
    前記シリンダブロック側に設けられるとともにタイミングチェーン又はタイミングベルトを介して前記第2被駆動回転体から前記駆動力が伝達されるとともに、前記内燃機関の吸気弁若しくは排気弁のうち少なくとも何れかの駆動弁を開閉させる駆動軸に前記駆動力を伝達する駆動回転体と、
    前記少なくとも何れかの前記駆動弁のバルブタイミングを変更するバルブタイミング変更手段と、
    を備え、
    前記バルブタイミング変更手段は、
    前記圧縮比変更手段によって前記圧縮比が変更される際に前記駆動回転体と前記駆動軸との相対的な回転位相を変更することによって前記駆動軸と前記クランク軸との回転位相を変更可能な第1位相変更機構と、
    前記圧縮比変更手段によって前記圧縮比が変更される際に前記第1被駆動回転体と前記第2被駆動回転体とが噛み合いながら相対移動することに起因して前記第1及び第2被駆動回転体の相対的な回転位相が変更されることによって前記駆動軸と前記クランク軸との回転位相を変更可能な第2位相変更機構と、
    を有し、
    前記第1及び第2位相変更機構によって前記駆動弁のバルブタイミングを前記圧縮比に応じて定められる所定の目標バルブタイミングに変更するものであって、
    前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が変更された場合に、該第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相が前記駆動軸の前記クランク軸に対する位相が前記目標バルブタイミングの方に移動する方向に変更されるべく配置され、
    前記目標バルブタイミングは、前記圧縮比の変更量が大きいほど、その変更量がより大
    きくなるように設定されることを特徴とする可変圧縮比内燃機関のバルブタイミング制御システム。
  2. 前記第1位相変更機構は、前記第2位相変更機構によって変更された前記駆動弁のバルブタイミングと前記目標バルブタイミングとの差を低減するように、前記駆動軸と前記クランク軸との回転位相を変更することを特徴とする請求項1に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  3. 前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相が前記駆動軸の前記クランク軸に対する位相が進角する方向に変更されるべく配置され、
    前記目標バルブタイミングは、前記圧縮比が高いほど、より大きく進角するように設定されることを特徴とする請求項1又は2に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  4. 前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体における前記第1被駆動回転体との接点が該第2被駆動回転体の回転方向に対して逆方向の位置に変更されるべく配置されることを特徴とする請求項3に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  5. 前記駆動回転体は、前記吸気弁を開閉させる吸気側の駆動軸に前記駆動力を伝達する吸気側駆動回転体と前記排気弁を開閉させる排気側の駆動軸に前記駆動力を伝達する排気側駆動回転体とからなり、単一の前記タイミングチェーン又はタイミングベルトにより前記吸気側駆動回転体及び前記排気側駆動回転体に前記第2被駆動回転体からの前記駆動力が伝達され、
    前記クランクケース側に設けられるとともに前記吸気側駆動回転体と前記排気側駆動回転体との間において前記タイミングチェーン又はタイミングベルトに当接することにより該タイミングチェーン又はタイミングベルトの張り具合を変更するタイミング変更テンショナを備え、
    前記バルブタイミング変更手段は、
    前記圧縮比変更手段によって前記圧縮比が変更される際に前記タイミング変更テンショナと前記タイミングチェーン又はタイミングベルトとが相対移動することに起因して、前記吸気側駆動回転体と前記排気側駆動回転体とを相対的に逆方向に回転させるとともに前記吸気側の駆動軸と前記排気側の駆動軸との回転位相を変更可能な第3位相変更機構を有することを特徴とする請求項1から4の何れかに記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  6. 前記第3位相変更機構は、前記圧縮比変更手段が圧縮比を高く変更するほど前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相を遅角させることを特徴とする請求項5に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  7. 前記第2位相変更機構による前記吸気側駆動回転体及び前記排気側駆動回転体の前記第1被駆動回転体に対する回転位相の変更量と、前記第3位相変更機構による前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相の変更量とを略等しくすることを特徴とする請求項6に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  8. 前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体の前記第1被駆動回転体に対する相対的な回転位相が前記駆動軸の前記クランク軸に対する位相が遅角する方向に変更されるべく配置され、
    前記目標バルブタイミングは、前記圧縮比が高いほど、より大きく遅角するように設定
    されることを特徴とする請求項1又は2に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  9. 前記第2被駆動回転体は、前記圧縮比変更手段によって前記圧縮比が高圧縮比側に変更された場合に、該第2被駆動回転体における前記第1被駆動回転体との接点が該第2被駆動回転体の回転方向と同じ方向の位置に変更されるべく配置されることを特徴とする請求項8に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
  10. 前記駆動回転体は、前記吸気弁を開閉させる吸気側の駆動軸に前記駆動力を伝達する吸気側駆動回転体と前記排気弁を開閉させる排気側の駆動軸に前記駆動力を伝達する排気側駆動回転体とからなり、単一の前記タイミングチェーン又はタイミングベルトにより前記吸気側駆動回転体及び前記排気側駆動回転体に前記第2被駆動回転体からの前記駆動力が伝達され、
    前記クランクケース側に設けられるとともに前記吸気側駆動回転体と前記排気側駆動回転体との間において前記タイミングチェーン又はタイミングベルトに当接することにより該タイミングチェーン又はタイミングベルトの張り具合を変更するタイミング変更テンショナを備え、
    前記バルブタイミング変更手段は、
    前記圧縮比変更手段によって前記圧縮比が変更される際に前記タイミング変更テンショナと前記タイミングチェーン又はタイミングベルトとが相対移動することに起因して、前記吸気側駆動回転体と前記排気側駆動回転体とを相対的に逆方向に回転させるとともに前記吸気側の駆動軸と前記排気側の駆動軸との回転位相を変更可能な第3位相変更機構を有し、
    前記第3位相変更機構は、前記圧縮比変更手段が圧縮比を高く変更するほど前記排気側駆動回転体の前記吸気側駆動回転体に対する回転位相を進角させることを特徴とする請求項8又は9に記載の可変圧縮比内燃機関のバルブタイミング制御システム。
JP2006162571A 2006-06-12 2006-06-12 可変圧縮比内燃機関のバルブタイミング制御システム Expired - Fee Related JP4687571B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162571A JP4687571B2 (ja) 2006-06-12 2006-06-12 可変圧縮比内燃機関のバルブタイミング制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162571A JP4687571B2 (ja) 2006-06-12 2006-06-12 可変圧縮比内燃機関のバルブタイミング制御システム

Publications (2)

Publication Number Publication Date
JP2007332798A JP2007332798A (ja) 2007-12-27
JP4687571B2 true JP4687571B2 (ja) 2011-05-25

Family

ID=38932518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162571A Expired - Fee Related JP4687571B2 (ja) 2006-06-12 2006-06-12 可変圧縮比内燃機関のバルブタイミング制御システム

Country Status (1)

Country Link
JP (1) JP4687571B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146721A1 (ja) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 可変圧縮比内燃機関
JP2012167701A (ja) * 2011-02-10 2012-09-06 Toyota Motor Corp 可変圧縮比機構を備える内燃機関
JP5585573B2 (ja) * 2011-12-14 2014-09-10 トヨタ自動車株式会社 可変圧縮比内燃機関
JP2014040775A (ja) * 2012-08-21 2014-03-06 Hitachi Automotive Systems Ltd エンジンの制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352903U (ja) * 1986-09-26 1988-04-09
JPH0617617A (ja) * 1992-01-11 1994-01-25 Dr Ing H C F Porsche Ag 多シリンダ形内燃機関のカム軸駆動装置
JP2003206771A (ja) * 2002-01-17 2003-07-25 Toyota Motor Corp 内燃機関
JP2005325702A (ja) * 2004-05-12 2005-11-24 Toyota Motor Corp 可変圧縮比内燃機関のバルブタイミング制御システム
JP2006083721A (ja) * 2004-09-14 2006-03-30 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352903U (ja) * 1986-09-26 1988-04-09
JPH0617617A (ja) * 1992-01-11 1994-01-25 Dr Ing H C F Porsche Ag 多シリンダ形内燃機関のカム軸駆動装置
JP2003206771A (ja) * 2002-01-17 2003-07-25 Toyota Motor Corp 内燃機関
JP2005325702A (ja) * 2004-05-12 2005-11-24 Toyota Motor Corp 可変圧縮比内燃機関のバルブタイミング制御システム
JP2006083721A (ja) * 2004-09-14 2006-03-30 Toyota Motor Corp 可変圧縮比機構を備えた内燃機関

Also Published As

Publication number Publication date
JP2007332798A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP3606237B2 (ja) 内燃機関
JP4727518B2 (ja) 内燃機関の制御装置
KR101396736B1 (ko) 가변 밸브 기어를 구비한 내연 기관
EP1288453B1 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
EP1293659B1 (en) Control system and method for an internal combustion engine
US7481199B2 (en) Start control apparatus of internal combustion engine
JP4827865B2 (ja) 内燃機関の可変動弁装置
KR100629201B1 (ko) 내연기관의 가변 밸브 구동장치
JP4682697B2 (ja) エンジンの吸気制御装置
JP4687571B2 (ja) 可変圧縮比内燃機関のバルブタイミング制御システム
JP4631830B2 (ja) 可変圧縮比内燃機関
JP2006336494A (ja) エンジンの吸気制御装置
JP2005325702A (ja) 可変圧縮比内燃機関のバルブタイミング制御システム
JP4622431B2 (ja) エンジンの可変動弁装置
JP4379273B2 (ja) 可変圧縮比機構を備えた内燃機関
JP4085886B2 (ja) 内燃機関の可変動弁装置
JP4325525B2 (ja) 可変動弁機構
JP4518010B2 (ja) 内燃機関の可変動弁装置
JP4432746B2 (ja) 内燃機関の吸気制御装置
JP2006105095A (ja) 可変圧縮比機構を備えた内燃機関
JP2006207488A (ja) 内燃機関の可変動弁機構の制御装置
JP2009264140A (ja) 開弁特性可変型内燃機関
JP5136332B2 (ja) 内燃機関を制御する方法及び内燃機関システム
JP2007154706A (ja) 可変動弁機構
JP2010242622A (ja) 可変動弁機構およびこれを用いた内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees