JP4672093B2 - 電力品質補償装置 - Google Patents

電力品質補償装置 Download PDF

Info

Publication number
JP4672093B2
JP4672093B2 JP19932898A JP19932898A JP4672093B2 JP 4672093 B2 JP4672093 B2 JP 4672093B2 JP 19932898 A JP19932898 A JP 19932898A JP 19932898 A JP19932898 A JP 19932898A JP 4672093 B2 JP4672093 B2 JP 4672093B2
Authority
JP
Japan
Prior art keywords
power converter
voltage
parallel
series
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19932898A
Other languages
English (en)
Other versions
JP2000032665A (ja
Inventor
清美 山崎
義介 渡邊
宏記 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP19932898A priority Critical patent/JP4672093B2/ja
Publication of JP2000032665A publication Critical patent/JP2000032665A/ja
Application granted granted Critical
Publication of JP4672093B2 publication Critical patent/JP4672093B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統の電圧と無効電力または力率を制御して電力品質を補償する電力品質補償装置に関するものである。
【0002】
【従来の技術】
公知の電力品質補償装置は、電力系統の途中に一次巻線が並列に接続された並列変圧器と、電力系統の途中に二次巻線が直列に接続された直列変圧器と、電力変換装置とを具備する。電力変換装置は、並列変圧器の二次巻線側に配置された並列側電力変換器と、直列変圧器の一次巻線側に配置された直列側電力変換器と、並列側電力変換器と直列側電力変換器とを接続する2本の直流線路間に接続されたコンデンサと、直列側電力変換器と並列側電力変換器を制御する電力変換器制御手段とを備えて、並列変圧器の二次巻線と直列変圧器の一次巻線との間に配置されている。そして電力変換装置の電力変換器制御手段は、系統電圧が規定値よりも低いときにはコンデンサの両端電圧に基いて発生した補償電圧を直列変圧器を通して系統電圧に重畳し且つ系統電圧が規定値よりも高いときには直列変圧器から直列側電力変換器を通してコンデンサを充電することにより系統電圧を規定値とすることにより負荷電圧を一定にする負荷電圧一定制御とコンデンサを並列側電力変換器を通して放電することにより無効電流を補償する補償電流を並列変圧器から電力系統に注入する力率1制御とを行うように直列側電力変換器及び並列側電力変換器を制御する。
【0003】
この電力品質補償装置のように直列変圧器と並列変圧器と電力変換装置とを用いて負荷電圧及び力率を制御する場合の基本原理については、平成8年電気学会論文B116巻8号の第1007頁〜第1014頁に「半導体化高速移相器による可変リアクタンス装置(電圧変動の補償)」と題して発表されている。また平成6年電気学会全国大会の予稿集5−119頁に論文番号568で「3相パラレルプロセシング方式受電端定電圧制御システムに関する検討」と題して発表された論文と、平成7年電気学会全国大会の予稿集4−157頁に論文番号775で「直列補償装置による受電端定電圧制御システムの検討」と題して発表された論文には、同じ基本原理で動作する補償装置を備えた無停電電源装置が示されている。
【0004】
【発明が解決しようとする課題】
従来の電力品質補償装置の電力変換装置では、並列側電力変換器と直列側電力変換器とを接続する2本の直流線路間に接続されたいわゆる電源コンデンサまたは平滑用コンデンサと呼ばれるコンデンサとして、アルミ電解コンデンサ等を用いている。しかしながらこのコンデンサがアルミ電解コンデンサで得られる程度の容量しかない場合には、電力系統において受電電圧に瞬時電圧低下や一時的な波形歪みなどが発生したときに、並列側電力変換器と直列側電力変換器との間に有効電力制御のアンバランスが生じると、コンデンサの両端間の直流電圧が大幅に変動して、補償精度と補償の信頼性が低下するという問題が発生する。また従来の電力品質補償装置では、比較的頻繁に発生する瞬時電圧低下に対しては特に対処していない。前述の「3相パラレルプロセシング方式受電端定電圧制御システムに関する検討」及び「直列補償装置による受電端定電圧制御システムの検討」と題する論文に掲載された無停電電源装置によれば、比較的頻繁に発生する瞬時電圧低下に対して対応することができるものの、無停電を実現するためには極めて大きな蓄電池を必要とするだけでなく、装置が複雑になりしかも大型化する問題が発生する。
【0005】
本発明の目的は、直流電圧の変動がなく、補償精度と補償の信頼性が高い電力品質補償装置を提供することにある。
【0006】
本発明の他の目的は、簡単な構成で、瞬時電圧低下(瞬時停電を含む)に対処できる電力品質補償装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明が改良の対象とする電力品質補償装置は、電力系統の途中に一次巻線が並列に接続された並列変圧器と、電力系統の途中に二次巻線が直列に接続された直列変圧器と、電力変換装置とを具備する。そして電力変換装置は、並列変圧器の二次巻線側に配置された並列側電力変換器と、直列変圧器の一次巻線側に配置された直列側電力変換器と、並列側電力変換器と直列側電力変換器とを接続する2本の直流線路間に接続されたコンデンサと、直列側電力変換器と並列側電力変換器を制御する電力変換器制御手段とを備えて、並列変圧器の二次巻線と直列変圧器の一次巻線との間に配置されている。そして電力変換装置の電力変換器制御手段は、系統電圧が規定値よりも低いときにはコンデンサの両端電圧に基いて直列側電力変換器を用いて発生した補償電圧を直列変圧器を通して系統電圧に重畳し且つ系統電圧が規定値よりも高いときには直列変圧器から直列側電力変換器を通してコンデンサを充電することにより系統電圧を規定値とすることにより負荷電圧を一定にする負荷電圧一定制御とコンデンサを並列側電力変換器を通して放電することにより無効電流を補償する補償電流を並列変圧器から電力系統に注入する力率1制御とを行うように直列側電力変換器及び並列側電力変換器を制御する。
【0008】
本発明では、コンデンサとして電気二重層コンデンサを用いる。現在市販されている電気二重層コンデンサには、アルミ電解コンデンサの1000倍程度の容量を有するものもあり、必要な容量分の電気二重層コンデンサを複数個直列に接続すれば所望の容量を簡単に得ることができる。したがってコンデンサとして電気二重層コンデンサを用いると、従来のように並列側電力変換器と直列側電力変換器との間に有効電力制御のアンバランスが生じても、コンデンサの両端間の直流電圧が大幅に変動することがなく、補償精度と補償の信頼性とを確保することができる。
【0009】
また本発明では、瞬時電圧低下(瞬時停電を含む)が発生したときに、電力変換装置の電力変換器制御手段が、電気二重層コンデンサに蓄積された電荷を並列側電力変換器を通して放電して並列変圧器から有効電力を電力系統に供給することにより負荷電圧を規定値に近付ける瞬時電圧低下補償制御と負荷電圧一定制御とを行うように直列側電力変換器と並列側電力変換器を制御する。
【0010】
電気二重層コンデンサであれば、容量が大きいために、電力系統で瞬時電圧低下が発生したときに、電気二重層コンデンサに蓄積された電荷を並列側電力変換器を通して放電して並列変圧器からも系統に有効電力を放出することができる。そのため、電力系統で瞬時電圧低下が発生したときに、瞬時電圧低下補償制御と負荷電圧一定制御とを協調させて、負荷電圧を規定値にすることが可能になる。
【0011】
並列変圧器を電力系統の電源側に配置し、直列変圧器を電力系統の負荷側に配置する場合には、電力変換装置の電力変換器制御手段は、並列変圧器の一次巻線側の電力系統の系統電圧及び系統電流と直列変圧器の二次巻線を流れる電流とを入力として直列側電力変換器と並列側電力変換器を制御する。並列変圧器の一次巻線側の系統電圧と系統電流との間の位相差と系統電圧の大きさとにより、直列変圧器から系統電圧に重畳する補償電圧ΔVの位相即ち補償角度θを決定して、負荷電圧を規定値内に補償する負荷電圧一定制御を行う。このときの負荷電圧一定制御では、負荷電流の位相が遅れであれば進み補償を行い、負荷電流の位相が進みであれば遅れ補償を行うことにより、力率を1にする力率1制御のための無効電力補償量を低減することができる。また系統電圧と系統電流との位相差を検出して(すなわち無効電流成分を検出して)、これを打ち消す(すなわち無効電流を補償する)ための補償電流を並列側電力変換器を通してコンデンサを充放電することにより得て並列変圧器から電力系統に注入する。そして瞬時電圧低下の発生で、系統電圧が予め定めた設定値以下に低下したときにも、並列側電力変換器を通してコンデンサの電荷を放電することにより得た有効電力を並列変圧器から電力系統に放出して、直列変圧器を用いた負荷電圧一定制御と協調して負荷電圧が規定値内に入るように補償する。補償電圧ΔVの位相(補償角度)は、系統電圧及び系統電流に基づいて定めてもよいが、補償精度を高めるためには、直列変圧器の二次巻線を流れる電流即ち負荷電流を測定し、この負荷電流を考慮して負荷電圧一定制御の補償電圧ΔVの位相を決定するのが好ましい。
【0012】
また並列変圧器を電力系統の負荷側に配置し、直列変圧器を電力系統の電源側に配置してもよい。この場合においても、基本的な動作は同じであるが、この場合には電力変換装置の電力変換器制御手段は、直流変圧器の二次巻線の電源側の系統電圧及び系統電流と直列変圧器の二次巻線の負荷側の電圧とを入力として直列側電力変換器と並列側電力変換器を制御する。
【0013】
【発明の実施の形態】
以下図面を参照して本発明の電力品質補償装置の実施の形態の一例を詳細に説明する。図1は、電力品質補償装置の構成を単線結線図を用いて概略的に示したものである。なおこの図において1は三相の電力系統であり、2は電力系統1の途中に一次巻線2aが並列に接続された三相の並列変圧器であり、3は電力系統1の途中に二次巻線3bが直列に接続された三相の直列変圧器である。並列変圧器2の二次巻線2bと直列変圧器3の一次巻線3aとの間には電力変換装置4が配置されている。電力変換装置4は、系統電圧Vinが規定値よりも低いときにはコンデンサ7の両端電圧に基いて直列側電力変換器6を用いて発生した補償電圧ΔVを直列変圧器3を通して系統電圧Vinに重畳し且つ系統電圧Vinが規定値よりも高いときには直列変圧器3から直列側電力変換器6を通してコンデンサ7を充電することにより系統電圧Vinを規定値とすることにより負荷電圧を一定にする負荷電圧一定制御と、系統電流I1 の無効電流を補償する(力率を1に近付ける)補償電流ΔIを並列変圧器2を通して電力系統1に注入する力率1制御とを行うように構成されている。
【0014】
具体的に電力変換装置4は、並列側電力変換器5と、直列側電力変換器6と、並列側電力変換器5と直列側電力変換器6とを接続する2本の直流線路間に接続されたコンデンサ7と、電力変換器制御手段8とを備えている。そして電力変換装置4には並列変圧器2の一次巻線2aが並列接続されている電力系統1の系統電圧Vin及び系統電流I1 をそれぞれ検出する電圧センサ9と電流センサ10の出力が入力され、また直列変圧器3の二次巻線3bを流れる負荷電流I2 を検出する電流センサ11の出力が入力されている。電圧センサ9としては計器用変圧器を用いることができる。電流センサ10及び11としては、変流器を用いることができる。
【0015】
なおこの例では、コンデンサ7として電気二重層コンデンサを用いている。具体的には、定格電圧2.3Vの電気二重層コンデンサを50個直列に接続してこの容量が30Fのコンデンサ7を構成した。そして各電気二重層コンデンサの充電のバラツキを抑制するために、各電気二重層コンデンサと並列にそれぞれ30オーム程度の抵抗体を接続した。
【0016】
並列側電力変換器5は、並列変圧器2の二次巻線2b側に配置されて補償電圧ΔV及び補償電流ΔIを発生させるのに必要な電力変換と後に詳しく説明する瞬時電圧低下補償制御を行うための電力変換とを行う。そして直列側電力変換器6は、直列変圧器3の一次巻線3a側に配置されて補償電圧ΔVを発生させるのに必要な電力変換と系統電圧Vinが規定値よりも高いときには直列変圧器3から直列側電力変換器6を通してコンデンサ7を充電するための電力変換とを行う。並列側電力変換器5及び直列側電力変換器6は交流と直流を双方向に電力変換可能に構成されており、一般的には複数の半導体スイッチがブリッジ接続されて構成されている。なおこのような半導体化された電力変換器を備えた電力変換装置については、前述の「半導体化高速移相器による可変リアクタンス装置(電圧変動の補償)」と題する論文に詳しく説明されている。
【0017】
また電力変換器制御手段8は、コンデンサ7の端子間電圧一定制御とともに、後述する負荷電圧一定制御、力率1制御及び瞬時電圧低下補償制御を行うように直列側電力変換器6と並列側電力変換器5を制御する。
【0018】
電力変換器制御手段8の並列側電力変換器制御部8Aは、電圧センサ9で検出した系統電圧Vinと電流センサ10で検出した電流I1 との間に位相差があり、しかも系統電圧Vinの大きさが所定の値以上(瞬時電圧低下が発生していると判断されるレベル以上)あるときには、基本的には並列側電力変換器5を整流回路(コンバータ)として動作させて並列側電力変換器5から直流電力を入力または出力させる駆動信号を並列電力変換器5に出力する。なお並列側電力変換器制御部8Aは、この制御状態においても、電力系統を流れる無効電流成分を打ち消すために、並列側電力変換器5を通してコンデンサ7を充放電することにより無効電流を補償するための補償電流ΔIを得て並列変圧器2を通して電力系統1に注入する動作を並列側電力変換器5に行わせている。
【0019】
直列側電力変換器制御部8Bは、系統電圧Vinが基準値即ち規定値よりも低い場合には、基本的には電圧センサ9で検出した系統電圧Vinと電流センサ10で検出した系統電流I1 との間の位相差と系統電圧Vinの大きさとに基いて、直列変圧器3から系統電圧Vinに重畳する補償電圧ΔVの位相即ち補償角度θを決定する。補償角度θは,例えば負荷電圧の大きさを100V一定にするとした場合には、下記の式(1)により導き出すことができる。
【0020】
θ=cos -1{(1002 −Vin2 −ΔV2 )/2VinΔV} …(1)
直列側電力変換器制御部8Bは、この式(1)により決定した補償角度θを有する補償電圧ΔVを直列変圧器3の二次巻線3bに発生させるように、直列側電力変換器6に駆動信号を出力する。このとき直列側電力変換器6は、コンデンサ7の両端の直流電圧を交流電圧に変換するインバータとして動作する。直列側電力変換器6が出力した交流電圧が直列変圧器3の一次巻線3aに印加されると、直列変圧器3の二次巻線に所定の補償角度θの補償電圧ΔVが現れ、この補償電圧ΔVが系統電圧Vinに重畳されて、負荷電圧が規定値の範囲に入る(一定になる)ように制御される。なお補償電圧ΔVの位相が系統電圧Vinに対して90度〜270度の位相角になっているとき、即ち系統電圧Vinが規定値よりも高くなっているときには、直列側電力変換器6がコンバータとなって有効電力が直列変圧器3を介して直流側に流れ込んでコンデンサ7を充電する。そして並列側電力変換器5はコンデンサ7の両端電圧を一定にするための動作をする過程でコンデンサ7の電荷を並列変圧器2を介して放電し、有効電力は再び電力系統に返される。したがって直列側電力変換器6は、直列変圧器3を介して補償電圧ΔVの系統電圧Vinに対する位相角の大きさに応じて、有効電力と無効電力の両方を電力系統との間でやりとりしている。このような一連の制御動作が負荷電圧Vout を規定値に維持する負荷電圧一定制御の動作である。なおこの負荷電圧一定制御の詳細に関しては、従来の技術の欄で説明した前述の公知の文献及び特開平10−42467号公報等に詳細に説明されているので説明は省略する。
【0021】
また並列側電力変換器制御部8Aは、電圧センサ9で検出した系統電圧Vinと電流センサ10で検出した系統電流I1 との位相差から無効電流成分を検出し、これを打ち消す(すなわち無効電流を補償する)ための補償電流ΔIを、並列側電力変換器5を通してコンデンサ7を充放電することにより得て並列変圧器2を通して電力系統1に注入する動作をするように並列側電力変換器5に駆動信号を出力する。これにより力率を1に近付ける力率1制御が行われる。なおこの力率1制御は、コンデンサ7の両端電圧を一定にする制御を行う動作過程において、前述の放電が行われて実施される。そしてこの力率1制御と前述の負荷電圧一定制御は並行して行われる。なおこの力率1制御についても、前述の公知の文献及び特開平10−42467号公報に詳細に説明されていて公知であるため、詳細な説明は省略する。
【0022】
またこの例では、電力変換装置4の電力変換器制御手段8は、系統電圧Vinに瞬時電圧低下が発生したときに、電気二重層コンデンサからなるコンデンサ7に蓄積された電荷を並列側電力変換器5を通して放電して並列変圧器2から有効電力を電力系統1に供給することにより負荷電圧Vinを規定値内の電圧に近付ける瞬時電圧低下補償制御を開始する。瞬時電圧低下は、電圧センサ9の出力を予め定めた基準電圧と比較することにより検出する。電圧センサ9の出力が予め定めた基準電圧から例えば10%以上低下(−10%以上の瞬時電圧低下)したときには、並列側電力変換器制御部8Aが瞬時電圧低下の発生と判断し、コンデンサ7の電荷を並列側電力変換器5を通して放電させて並列変圧器2から電力系統1に瞬時電圧低下に対応する量の電荷(エネルギ)を放電供給する。コンデンサ7を放電した当初に系統電圧が規定値よりも高くなっている場合には、直列側電力変換器6は整流機能を果たすコンバータとなってコンデンサ7を充電して、系統電圧を下げることにより系統電圧を規定値の範囲に入れるように動作する。コンデンサ7の電圧が低下して並列変圧器2から供給する電圧だけでは系統電圧を規定値にすることができなくなった場合には、直列変圧器3からの補償電圧ΔVが系統電圧Vinに重畳されて、系統電圧は規定値に維持される。このようにして瞬時電圧低下の発生に対しては、負荷電圧一定制御と協調する形で、瞬時電圧低下補償制御が実施される。瞬時電圧低下補償制御におけるコンデンサ7の放電量は、直列変圧器3から系統電圧に重畳する補償電圧ΔVによる補償では不足する分を補うことができる量である。したがって系統電圧Vinが予め定めた規定値から何%低下しているかを判定し、その低下量に応じてコンデンサ7の放電量を変えてもよい。しかしながらコンデンサ7の放電量を一定にしても、瞬時電圧低下補償をしない場合と比べれば、瞬時電圧低下による影響(例えばコンピュータのシャットダウン等)を殆ど無くすことができるので、実質的に問題はない。
【0023】
並列側電力変換器制御部8A及び直列側電力変換器制御部8Bの主要部分は、マイクロコンピュータによって構成することができる。そしてマイクロコンピュータを用いて、負荷電圧一定制御及び力率1制御を実現するためのソフトフウエアのアルゴリズムは、従来の公知の装置で用いられているものと同様のものを用いることができる。並列側電力変換器制御部8Aで実行する瞬時電圧低下補償制御を実現するためには、図2に示すようなアルゴリズムでソフトウエアを構成すればよい。図2のアルゴリズムをハードウエアによって実現してもよいのは勿論である。また直列側電力変換器制御部8Bで実行する瞬時電圧低下補償制御を実現するためには、図3に示すようなアルゴリズムでソフトウエアを構成すればよい。図3のアルゴリズムをハードウエアによって実現してもよいのは勿論である。
【0024】
この例にように、コンデンサ7として電気二重層コンデンサを用いると、容量が大きいために、従来のように並列側電力変換器と直列側電力変換器との間に有効電力制御のアンバランスが生じても、コンデンサの両端間の直流電圧が大幅に変動することがなく、補償精度と補償の信頼性とを確保することができる。また電力系統で瞬時電圧低下が発生したときに、電気二重層コンデンサに蓄積された電荷を並列側電力変換器を通して放電して並列変圧器からも電力系統に有効電力を放出することができる。そのため、電力系統で瞬時電圧低下が発生したときに、負荷電圧一定制御と協調して、負荷電圧を規定値内の電圧にすることが可能になる。
【0025】
上記説明においては、電圧センサ9と電流センサ10の出力に基いて補償電圧の位相(補償角度)を定めているが、直列変圧器3の二次巻線3bを流れる電流即ち負荷電流I2 を測定し、この負荷電流を考慮して負荷電圧一定制御の補償電圧ΔVの位相を決定するようにすれば、補償電圧ΔVの位相の決定精度が高くなる。
【0026】
図4は、本発明の他の実施の形態の電力品質補償装置の構成を単線結線図を用いて概略的に示したものである。この実施の形態が図1の実施の形態と異なるのは、並列変圧器2を電力系統1の負荷側に配置し、直列変圧器3を電力系統1の電源側に配置したものである。並列変圧器2と直列変圧器3の位置を逆にしても制御が可能なことは、前述の「3相パラレルプロセシング方式受電端定電圧制御システムに関する検討」と題する論文に説明されており、また前述の「半導体化高速移相器による可変リアクタンス装置(電圧変動の補償)」と題する論文の第1008頁の図1にも具体的には示されている。このように逆にした場合には、電力変換装置4´の特に電力変換器制御手段8´をマイクロコンピュータを用いて実現する場合に用いるソフトウエアが異なるため、図4においては、電力変換装置4´と電力変換器制御手段8´に図1の例とは異なる符号を付している。12は負荷電圧を確認するために設けた電圧センサである。図4の例においても、図1の例と同様に、負荷電圧一定制御と力率1制御に加えて瞬時電圧低下補償制御を行うことができる。
【0027】
【発明の効果】
請求項1の発明では、コンデンサとして電気二重層コンデンサを用いるため、従来のように並列側電力変換器と直列側電力変換器との間に有効電力制御のアンバランスが生じても、コンデンサの両端間の直流電圧が大幅に変動することがなく、補償精度と補償の信頼性とを確保することができる。
【0028】
また電気二重層コンデンサを用いれば、容量が大きいために、電力系統で瞬時電圧低下が発生したときに、電気二重層コンデンサに蓄積された電荷を並列側電力変換器を通して放電して並列変圧器からも系統に有効電力を放出することができる。そのため、請求項2の発明のように、電力系統で瞬時電圧低下が発生したときに、負荷電圧一定制御と協調して、電気二重層コンデンサに蓄積された電荷を並列側電力変換器を通して放電して並列変圧器からも電力系統に有効電力を供給すれば、負荷電圧を規定値にすることが可能になる。
【図面の簡単な説明】
【図1】本発明の電力品質補償装置の実施の形態の構成を単線結線図を用いて概略的に示したものである。
【図2】図1の例において、並列側電力変換器制御部の動作のアルゴリズムを示すフローチャートである。
【図3】図1の例において、直列側電力変換器制御部の動作のアルゴリズムを示すフローチャートである。
【図4】本発明の電力品質補償装置の他の実施の形態の構成を単線結線図を用いて概略的に示したものである。
【符号の説明】
1 電力系統
2 並列変圧器
3 直列変圧器
4 電力変換装置
5 並列側電力変換器
6 直列側電力変換器
7 コンデンサ(電気二重層コンデンサ)
8 電力変換器制御手段
9 電圧センサ
10 電流センサ

Claims (1)

  1. 電力系統の途中に一次巻線が並列に接続された並列変圧器と、
    前記電力系統の途中に二次巻線が直列に接続された直列変圧器と、
    前記並列変圧器の二次巻線側に配置された並列側電力変換器、前記直列変圧器の一次巻線側に配置された直列側電力変換器、前記並列側電力変換器と前記直列側電力変換器とを接続する2本の直流線路間に接続されたコンデンサ及び前記直列側電力変換器と前記並列側電力変換器を制御する電力変換器制御手段を備えて前記並列変圧器の二次巻線と前記直列変圧器の一次巻線との間に配置された電力変換装置とを具備し、
    前記電力変換装置の前記電力変換器制御手段が、系統電圧が規定値よりも低いときには前記コンデンサの両端電圧に基いて前記直列側電力変換器を用いて発生した補償電圧を前記直列変圧器を通して系統電圧に重畳し且つ前記系統電圧が前記規定値よりも高いときには前記直列変圧器から前記直列側電力変換器を通して前記コンデンサを充電することにより前記系統電圧を前記規定値とすることにより負荷電圧を一定にする負荷電圧一定制御と前記コンデンサを前記並列側電力変換器を通して放電することにより無効電流を補償する補償電流を前記並列変圧器から前記電力系統に注入する力率1制御とを行うように前記直列側電力変換器及び前記並列側電力変換器を制御する電力品質補償装置であって、
    前記コンデンサとして電気二重層コンデンサが用いられ、
    前記電力変換装置の前記電力変換器制御手段は、前記負荷電圧一定制御と前記力率1制御を行っているときに、瞬時電圧低下が発生すると前記力率1制御を瞬時電圧低下補償制御に変えて、前記電気二重層コンデンサに蓄積された電荷を前記並列側電力変換器を通して放電し、前記並列変圧器から有効電力を前記電力系統に供給することにより、前記直列変圧器から前記系統電圧に重畳する前記補償電圧による前記負荷電圧一定制御による補償では不足する分を補って、前記系統電圧を前記規定値に近付けるように前記直列側電力変換器と前記並列側電力変換器を制御することを特徴とする電力品質補償装置。
JP19932898A 1998-07-14 1998-07-14 電力品質補償装置 Expired - Lifetime JP4672093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19932898A JP4672093B2 (ja) 1998-07-14 1998-07-14 電力品質補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19932898A JP4672093B2 (ja) 1998-07-14 1998-07-14 電力品質補償装置

Publications (2)

Publication Number Publication Date
JP2000032665A JP2000032665A (ja) 2000-01-28
JP4672093B2 true JP4672093B2 (ja) 2011-04-20

Family

ID=16405977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19932898A Expired - Lifetime JP4672093B2 (ja) 1998-07-14 1998-07-14 電力品質補償装置

Country Status (1)

Country Link
JP (1) JP4672093B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156150B2 (ja) * 1999-11-01 2008-09-24 東京瓦斯株式会社 無停電電源システム
CA2622057C (en) * 2005-09-09 2017-01-17 Siemens Aktiengesellschaft Apparatus for electrical power transmission
EP1922804A1 (de) * 2005-09-09 2008-05-21 Siemens Aktiengesellschaft Vorrichtung für die elektroenergieübertragung
JP5233450B2 (ja) * 2008-07-02 2013-07-10 株式会社明電舎 瞬低補償装置
CN101807799B (zh) * 2010-04-27 2012-05-02 天津大学 超级电容储能型电能质量补偿器
JP6025769B2 (ja) * 2014-02-28 2016-11-16 三菱電機株式会社 エレベーターかご給電装置
JP6363391B2 (ja) 2014-05-16 2018-07-25 株式会社東芝 電圧調整装置
JP7005417B2 (ja) * 2018-04-13 2022-01-21 株式会社東芝 電力変換装置および電力変換装置の制御方法

Also Published As

Publication number Publication date
JP2000032665A (ja) 2000-01-28

Similar Documents

Publication Publication Date Title
US7889527B2 (en) Electrical power source, operational method of the same, inverter and operational method of the same
US7859871B2 (en) Method for controlling inverters
JP7228949B2 (ja) 電力変換装置
JP3805835B2 (ja) 配電線電圧及び無効電力調整装置
KR100205266B1 (ko) 가역 모우드로 작동하는 인버터를 장착한 백업 전원장치로 구성되는 에이.씨. 전원장치
JP4672093B2 (ja) 電力品質補償装置
Ismail et al. A multi-objective control scheme of a voltage source converter with battery–supercapacitor energy storage system used for power quality improvement
US11557899B2 (en) Feeding electric power from a photovoltaic system into an AC system having a low short-circuit capacity
JPH1167253A (ja) 燃料電池出力変動補償方法及びシステム
JPS62173913A (ja) 回路しや断器の電源装置
Vijayakumar et al. Photovoltaic interfaced three-phase four-wire unified power quality conditioner with extended reference current generation scheme
JP2004112954A (ja) 蓄電装置
JP7252878B2 (ja) 電源装置
CN113497562A (zh) 功率转换装置及其控制方法
JP3351631B2 (ja) 電気車制御装置
JP2003224978A (ja) 電源電圧変動補償装置およびその適用方法
JP3623766B2 (ja) 交流電源装置
JP7495654B1 (ja) 電力変換器制御装置、電力変換器の制御方法及び電力変換器の制御プログラム
JPH0487572A (ja) 電源装置
JP2000069763A (ja) 電鉄用電力供給装置
JP2680385B2 (ja) 電気車用補助電源装置
US20240128764A1 (en) Power supply system for independent system
JP3217564B2 (ja) 電力変換装置の出力電圧制御装置
JPH099509A (ja) 自励式無効電力補償装置
Yan et al. Normalized Control Strategy for Bidirectional Power Converter under Unbalanced Operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term