JP4666542B2 - 内燃機関の排気浄化制御装置 - Google Patents

内燃機関の排気浄化制御装置 Download PDF

Info

Publication number
JP4666542B2
JP4666542B2 JP2000201431A JP2000201431A JP4666542B2 JP 4666542 B2 JP4666542 B2 JP 4666542B2 JP 2000201431 A JP2000201431 A JP 2000201431A JP 2000201431 A JP2000201431 A JP 2000201431A JP 4666542 B2 JP4666542 B2 JP 4666542B2
Authority
JP
Japan
Prior art keywords
rich
fuel
fuel cut
amount
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000201431A
Other languages
English (en)
Other versions
JP2002013429A (ja
Inventor
修 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000201431A priority Critical patent/JP4666542B2/ja
Publication of JP2002013429A publication Critical patent/JP2002013429A/ja
Application granted granted Critical
Publication of JP4666542B2 publication Critical patent/JP4666542B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排出ガス中の窒素酸化物(以下「NOx」と表記する)を吸蔵する触媒を備えた内燃機関の排気浄化制御装置に関するものである。
【0002】
【従来の技術】
直噴エンジンやリーンバーンエンジンのようにリーン燃焼が可能なエンジンでは、低負荷域で、混合気の空燃比を理論空燃比よりもリーン側に制御するリーン運転を行うことで燃費を向上させ、高負荷域では、空燃比をリッチ側に制御するリッチ運転を行うことでエンジン出力を高めるようにしている。
【0003】
また、リーン運転中は、排出ガス中のNOx量が多くなり、三元触媒ではNOxを十分に浄化できないため、特許第2586738号公報、特許第2600492号公報に示すように、排気管にNOx吸蔵還元型の触媒(いわゆるリーンNOx触媒)を設置したものがある。このリーンNOx触媒は、排出ガスがリーンとなるリーン運転中に排出ガス中のNOxを吸蔵し、リッチ運転に切り換わった時に、それまでに吸蔵したNOxをリッチガスで還元浄化する。従って、リーン運転が連続して行われる場合には、リーンNOx触媒のNOx吸蔵量が飽和量に達する前に、リーンNOx触媒のNOx吸蔵能力を回復させるために、一時的にリッチ運転に切り換えるようにしている。
【0004】
【発明が解決しようとする課題】
ところで、減速時等には、燃費節減のために燃料カットが行われるが、燃料カット中は、筒内で燃焼が発生せず、筒内に吸入された空気の酸素が消費されずにそのまま排気管内に排出されるため、排気管内の酸素濃度が著しく高くなる。このため、リーン運転中の燃料カット復帰直後にリッチ運転に切り換えても、排気管内の酸素濃度が低下するまでには、暫く時間がかかり、それまでは、リッチ運転を行っても、リーンNOx触媒に吸蔵したNOxを還元浄化することができず、無駄に燃料を消費して燃費を悪化させる結果となる。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃料カット復帰後に無駄な燃料消費を避けながら触媒に吸蔵したNOxを還元浄化して触媒のNOx吸蔵能力を早期に回復させることができ、NOx浄化率向上と燃費向上とを両立させることができる内燃機関の排気浄化制御装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の排気浄化制御装置は、リーン運転中に排出ガスのNOxを触媒に吸蔵すると共に、排気浄化制御手段によってリーン運転中に一時的にリッチ運転に切り換えて触媒に吸蔵したNOxを還元浄化する。そして、リーン運転中に燃料カットされた時には、該燃料カット復帰から所定期間が経過するまでリッチ運転への切り換えを運転切換禁止手段によって禁止する。このようにすれば、燃料カット復帰後は、排気管内の酸素濃度が低下するまでリッチ運転への切り換えを遅らせることができるので、従来のような燃料カット復帰直後のリッチ運転への切り換えによる無駄な燃料消費を避けることができ、燃費を向上できると共に、燃料カット復帰後に排気管内の酸素濃度が低下した段階で速やかにリッチ運転に切り換えて、触媒に吸蔵したNOxを還元浄化して触媒のNOx吸蔵能力を早期に回復させることができ、NOx浄化率を良好に維持することができる。
【0007】
一般に、燃料カット中は、触媒のNOx吸蔵量が通常のリーン運転中よりも増加する傾向があるため、請求項2のように、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、触媒へのリッチ成分供給量を通常のリッチ運転切換時のリッチ成分供給量よりも増量するようにすると良い。このようにすれば、燃料カットによる触媒のNOx吸蔵量の増加分を考慮してリッチ成分供給量を増量することができ、燃料カット復帰後の所定期間経過後に触媒のNOx吸蔵能力を速やかに回復させることができる。尚、リッチ成分供給量の増量は燃料噴射量の増量補正によって行えば良い。
【0008】
この場合、燃料カット実行時間が長くなるほど、触媒のNOx吸蔵量が増加することを考慮して、請求項3のように、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、触媒へのリッチ成分供給量を燃料カット実行時間に応じて増量するようにしても良い。このようにすれば、燃料カットによるNOx吸蔵量の増加分に応じてリッチ成分供給量を精度良く増量することができる。
【0009】
更に、請求項4のように、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、燃料カット中に触媒のNOx吸蔵量が所定量以上となった時間に応じて触媒へのリッチ成分供給量を増量するようにしても良い。つまり、燃料カットが行われても、触媒のNOx吸蔵量があまり多くなっていなければ、まだ触媒にNOxを吸蔵する余裕があるため、リッチ運転に切り換える必要はない。従って、燃料カット中に触媒のNOx吸蔵量が所定量以上となった時間に基づいて、触媒から取り除くべきNOx量(還元浄化すべきNOx量)を判断して触媒へのリッチ成分供給量を増量すれば、リッチ成分供給量を更に精度良く設定することができる。
【0010】
【発明の実施の形態】
《実施形態(1)》
以下、本発明を筒内噴射式内燃機関(直噴エンジン)に適用した実施形態(1)を図1乃至図4に基づいて説明する。
【0011】
図1に示すように、直噴エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、ステップモータ14によって開度調節されるスロットルバルブ15が設けられている。ステップモータ14がエンジン電子制御回路(以下「ECU」と表記する)16からの出力信号に基づいて駆動されることで、スロットルバルブ15の開度(スロットル開度)が制御され、そのスロットル開度に応じて各気筒ヘの吸入空気量が調節される。スロットルバルブ15の近傍には、スロットル開度を検出するスロットルセンサ17が設けられている。
【0012】
このスロットルバルブ15の下流側には、サージタンク19が設けられ、このサージタンク19に、エンジン11の各気筒に空気を導入する吸気マニホールド20が接続されている。各気筒の吸気マニホールド20内には、それぞれ第1吸気路21と第2吸気路22が仕切り形成され、これら第1吸気路21と第2吸気路22が、エンジン11の各気筒に形成された2つの吸気ポート23にそれぞれ連結されている。各気筒の第2吸気路22内には、スワールコントロール弁24が配置されている。各気筒のスワールコントロール弁24は、共通のシャフト25を介してステップモータ26に連結されている。このステップモータ26がECU16からの出力信号に基づいて駆動されることで、スワールコントロール弁24の開度が制御され、その開度に応じて各気筒内のスワール流強度が調整される。ステップモータ26には、スワールコントロール弁24の開度を検出するスワールコントロール弁センサ27が取り付けられている。
【0013】
また、エンジン11の各気筒の上部には、燃料を筒内に直接噴射する燃料噴射弁28が取り付けられている。燃料タンク(図示せず)から燃料配管45を通して燃料デリバリパイプ29に送られてくる燃料は、各気筒の燃料噴射弁28から燃焼室内に噴射され、吸気ポート23から導入される吸入空気と混合して混合気が形成される。燃料デリバリパイプ29には、燃料の圧力を検出する燃圧センサ30が取り付けられている。
【0014】
更に、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの点火によって燃焼室内の混合気が着火される。また、気筒判別センサ32は、特定気筒が吸気上死点に達した時に気筒判別信号パルスを出力し、クランク角センサ33は、エンジン11のクランクシャフトが所定クランク角(例えば30℃A)回転する毎にクランク角信号パルスを出力し、このクランク角信号パルスの出力周波数によってエンジン回転速度Neが検出される。更に、このクランク角信号パルスと気筒判別信号パルスによって、クランク角の検出や気筒判別が行われる。
【0015】
一方、エンジン11の排気ポート35には、排気マニホールド36を介して排気管37が接続されている。この排気管37には、理論空燃比付近で排気を効率良く浄化する三元触媒38とNOx吸蔵型のリーンNOx触媒39とが直列に配置されている。このリーンNOx触媒39は、排出ガス中の酸素濃度が高いリーン運転中に、排出ガス中のNOxを吸蔵し、リッチ運転に切り換えられて排出ガス中の酸素濃度が低下した時に、吸蔵NOxを還元浄化して放出する。
【0016】
また、排気管37のうちの三元触媒38の上流側とサージタンク19との間には、排出ガスの一部を還流させるEGR配管40が接続され、このEGR配管40の途中に、EGR量(排気還流量)を制御するEGR弁41が設けられている。また、アクセルペダル18には、アクセル開度を検出するアクセルセンサ42が設けられている。
【0017】
上述した各種センサの出力信号は、ECU16に入力される。このECU16は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された制御プログラムに従い、各種センサ出力に基づき、前述したステップモータ14,26、EGR弁41、燃料噴射弁28、点火プラグの動作を制御する。例えば、低・中負荷運転時は、空燃比がリーンとなるように少量の燃料を圧縮行程で噴射し、点火プラグの近傍に成層混合気を形成して成層燃焼させることで、燃費を向上させる(成層燃焼運転)。また、高負荷運転時は、理論空燃比付近又はそれよりも若干リッチとなるように燃料噴射量を増量し、燃料を吸気行程で噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高める(均質燃焼運転)。尚、成層燃焼運転領域では、空燃比がリーンに制御されるが、均質燃焼運転領域でも、成層燃焼運転領域に近い領域では、空燃比がリーンに制御されるリーンバーン領域が存在する。
【0018】
ところで、リーンNOx触媒39は、排出ガス中の酸素濃度が高いリーン運転(成層燃焼運転及びリーンバーン運転)中に、排出ガス中のNOxを吸蔵し、リッチ運転に切り換えられて排出ガス中の酸素濃度が低下した時に、吸蔵NOxを還元浄化して放出する。従って、リーン運転が連続して行われる場合には、リーンNOx触媒39のNOx吸蔵量が飽和量に達する前に、リーンNOx触媒39のNOx吸蔵能力を回復させるために、一時的にリッチ運転に切り換える必要がある。
【0019】
しかし、リーン運転中に減速等で燃料カットが発生すると、排気管37内の酸素濃度が高くなるため、燃料カット復帰直後にリッチ運転に切り換えても、排気管37内の酸素濃度が低下するまでには、暫く時間がかかり、それまでは、リッチ運転を行っても、リーンNOx触媒39に吸蔵したNOxを還元浄化することができず、無駄に燃料を消費して燃費を悪化させる結果となる。
【0020】
そこで、本実施形態(1)では、ECU16は、後述する図2乃至図4の各プログラムを実行することで、リーン運転中に燃料カットされた時に、該燃料カット復帰から所定時間が経過するまでリッチ運転への切り換えを禁止し、燃料カット復帰後に排気管37内の酸素濃度が低下するまでリッチ運転への切り換えを遅らせる。以下、これら各プログラムの処理内容を説明する。
【0021】
[NOx吸蔵量算出]
図2のNOx吸蔵量算出プログラムは、所定時間毎に実行され、次のようにしてリーンNOx触媒39のNOx吸蔵量QNOxを算出する。本プログラムが起動されると、まず、ステップ101で、現在、リーン運転中であるか否かを判定し、リーン運転中であれば、ステップ102に進み、エンジン回転速度Neと要求トルクを読み込む。そして、次のステップ103で、前回演算時から今回演算時までのNOx吸蔵量増加分tNOxを、エンジン回転速度Neと要求トルクに応じてマップ等により算出する。この後、ステップ104に進み、前回演算したNOx吸蔵量QNOx(i-1) に今回のNOx吸蔵量増加分tNOxを加算して、現在のNOx吸蔵量QNOx(i) を求める。
QNOx(i) ←QNOx(i-1) +tNOx
【0022】
一方、ステップ101で、リッチ運転と判定された場合は、ステップ105に進み、前回演算したNOx吸蔵量QNOx(i-1) がプラス値であるか否かを判定し、NOx吸蔵量QNOx(i-1) がプラス値であれば、ステップ106に進み、前回演算したNOx吸蔵量QNOx(i-1) から所定値αを減算して現在のNOx吸蔵量QNOx(i) を求める。つまり、リッチ運転中は、排気管37内の酸素濃度が低下してリーンNOx触媒39にリッチガスが供給されるため、リーンNOx触媒39に吸蔵したNOxが還元浄化されて放出され、NOx吸蔵量が徐々に減少する。この際、前回演算時から今回演算時までのNOx吸蔵量減少分(所定値α)は、演算処理の簡略化のために固定値としても良いが、排出ガスの空燃比や排出ガス流量等(つまりリーンNOx触媒39へのリッチ成分供給量)に応じてマップ又は数式によってNOx吸蔵量減少分(所定値α)を算出するようにしても良い。
【0023】
尚、上記ステップ105で、前回演算したNOx吸蔵量QNOx(i-1) が0又はマイナス値の場合は、リーンNOx触媒39にNOxが吸蔵されていないと判断し、NOx吸蔵量の減算処理(ステップ106)を行わずに本プログラムを終了する。
【0024】
[燃料カット復帰後経過時間算出]
図3の燃料カット復帰後経過時間算出プログラムは、所定時間毎に実行され、燃料カット復帰後の経過時間(FCTime)を次のようにして算出する。本プログラムが起動されると、まずステップ201で、現在、燃料カット中であるか否かを判定し、燃料カット中であれば、ステップ202に進み、燃料カット復帰後経過時間をカウントするカウンタFCTimeをクリアして本プログラムを終了する。
【0025】
一方、燃料カット中でなければ、ステップ203に進み、燃料カット復帰後経過時間カウンタFCTimeの値を所定値Cmaxと比較し、燃料カット復帰後経過時間カウンタFCTimeの値が所定値Cmax以下であれば、燃料カット復帰後経過時間カウンタFCTimeをカウントアップし(ステップ205)、燃料カット復帰後経過時間カウンタFCTimeの値が所定値Cmaxを越えていれば、燃料カット復帰後経過時間カウンタの値FCTimeを所定値Cmaxにセットする(ステップ204)。ここで、所定値Cmaxは、燃料カット復帰後にリッチ運転への切り換えを禁止する時間よりも長い時間に相当する値に設定されている。
【0026】
以上説明した処理により、燃料カット復帰後経過時間カウンタFCTimeは、燃料カット中にリセットされて、燃料カット復帰直後からカウントアップを開始し、その後、リッチ運転への切換禁止時間よりも長い時間が経過した時点で、カウントアップを停止して所定値Cmaxに維持される。
【0027】
[排気浄化制御]
図4の排気浄化制御プログラムは、所定時間毎に実行され、特許請求の範囲でいう排気浄化制御手段としての役割を果たす。本プログラムが起動されると、まずステップ301で、燃料カット復帰後経過時間カウンタFCTimeの値がリッチ運転への切換禁止時間に相当する所定値C以上であるか否かを判定し、燃料カット復帰後経過時間カウンタFCTimeの値が所定値Cに達していなければ、ステップ303に進み、リッチ要求フラグXRICHをOFFに維持して、リッチ運転への切り換えを禁止する。これらステップ301,303の処理が特許請求の範囲でいう運転切換禁止手段としての役割を果たす。
【0028】
その後、燃料カット復帰後経過時間カウンタFCTimeの値がリッチ運転への切換禁止時間に相当する所定値C以上になった時点で、ステップ302に進み、現在のリーンNOx触媒39のNOx吸蔵量QNOxが所定の切換判定値A以上になったか否かを判定する。ここで、切換判定値Aは、リーンNOx触媒39のNOx吸蔵量がNOx還元浄化を必要とする量、つまり、NOx吸蔵量の飽和量に設定されている。従って、NOx吸蔵量QNOxが切換判定値Aよりも少なければ、リーンNOx触媒39にまだNOx吸蔵能力が残っていると判断して、ステップ303に進み、リッチ要求フラグXRICHをOFFに維持して、リッチ運転への切り換えを禁止する。
【0029】
これに対し、NOx吸蔵量QNOxが切換判定値A以上であれば、リーンNOx触媒39の吸蔵NOxを還元浄化する必要があると判断して、ステップ304に進み、リッチ要求フラグXRICHをONに切り換えて、リッチ運転に切り換える。これにより、リーンNOx触媒39にリッチガスを供給して、リーンNOx触媒39の吸蔵NOxを還元浄化して放出し、リーンNOx触媒39のNOx吸蔵能力を回復させる。このリッチ運転は、リーンNOx触媒39の吸蔵NOxの還元浄化に必要な所定時間だけ実施された後に、リーン運転に戻される。
【0030】
以上説明した本実施形態(1)によれば、リーン運転中に燃料カットされた時に、該燃料カット復帰から所定時間が経過するまでリッチ運転への切り換えを禁止するようにしたので、燃料カット復帰後は、排気管37内の酸素濃度が低下するまでリッチ運転への切り換えを遅らせることができる。その結果、従来のような燃料カット復帰直後のリッチ運転への切り換えによる無駄な燃料消費を避けることができ、燃費を向上できると共に、燃料カット復帰後に排気管37内の酸素濃度が低下した段階で速やかにリッチ運転に切り換えて、リーンNOx触媒39に吸蔵したNOxを還元浄化してリーンNOx触媒39のNOx吸蔵能力を早期に回復させることができ、NOx浄化率を良好に維持することができる。
【0031】
尚、本実施形態(1)では、図2のNOx吸蔵量算出プログラムによって、リーンNOx触媒39のNOx吸蔵量をエンジン運転条件(エンジン回転速度Ne、要求トルク等)に基づいて算出するようにしたが、リーンNOx触媒39の下流側に、リーンNOx触媒39から流出する排出ガス中のNOx濃度を検出するNOx濃度センサ(図示せず)を設置して、排出ガス中のNOx濃度からリーンNOx触媒39のNOx吸着量を推定するようにしても良い。
【0032】
《実施形態(2)》
一般に、燃料カット中は、リーンNOx触媒39のNOx吸蔵量が通常のリーン運転中よりも増加する傾向がある。この点を考慮して、本発明の実施形態(2)では、図5及び図6のプログラムを実行することで、燃料カット復帰から所定時間が経過した後にリッチ運転に切り換える場合は、リーンNOx触媒39へのリッチ成分供給量(燃料噴射量)を通常のリッチ運転切換時のリッチ成分供給量よりも増量するようにしている。尚、本実施形態(2)においても、図2のNOx吸蔵量算出プログラムによってNOx吸蔵量QNOxを算出し、図3の燃料カット復帰後経過時間算出プログラムによって燃料カット復帰後の経過時間FCTimeを算出する。以下、図5及び図6のプログラムの処理内容を説明する。
【0033】
[排気浄化制御]
図5の排気浄化制御プログラムは、所定時間毎に実行され、まずステップ401で、現在のリーンNOx触媒39のNOx吸蔵量QNOxが所定の切換判定値A以上になったか否かを判定し、NOx吸蔵量QNOxが切換判定値Aよりも少なければ、リーンNOx触媒39にまだNOx吸蔵能力が残っていると判断して、ステップ405に進み、リッチ要求フラグXRICHをOFFに維持して、リッチ運転への切り換えを禁止し、更に、次のステップ406で、増量フラグXFCRICHをOFFに維持する。この増量フラグXFCRICHは、リーンNOx触媒39へのリッチ成分供給量を増量するか否かを判別するためのフラグであり、この増量フラグXFCRICHがOFFの場合には、リッチ成分供給量は増量されない。
【0034】
上記ステップ401で、NOx吸蔵量QNOxが切換判定値A以上と判定された場合は、ステップ402に進み、燃料カット復帰後経過時間カウンタFCTimeの値がリッチ運転への切換禁止時間に相当する所定値C以上であるか否かを判定し、燃料カット復帰後経過時間カウンタFCTimeの値が所定値Cに達していなければ、ステップ403に進み、リッチ要求フラグXRICHをOFFに維持して、リッチ運転への切り換えを禁止する。そして、次のステップ404で、増量フラグXFCRICHをONに切り換えて、本プログラムを終了する。
【0035】
これに対し、上記ステップ402で、燃料カット復帰後経過時間カウンタFCTimeの値がリッチ運転への切換禁止時間に相当する所定値C以上であれば、ステップ407に進み、リッチ要求フラグXRICHをONに切り換えて、リッチ運転に切り換える。
【0036】
以上説明した処理により、燃料カット復帰から所定時間Cが経過した後にリッチ運転に切り換える場合は、所定時間Cが経過する前にステップ404で増量フラグXFCRICHがONに切り換えられているため、リッチ運転に切り換えられた時に、後述する図6の燃料噴射量算出プログラムによって燃料噴射量が増量補正され、リーンNOx触媒39へのリッチ成分供給量が通常のリッチ運転切換時のリッチ成分供給量よりも増量される。
【0037】
尚、通常のリッチ運転切換時は、ステップ406で、増量フラグXFCRICHがOFFにセットされているため、リーンNOx触媒39へのリッチ成分供給量(燃料噴射量)は増量されない。
【0038】
[燃料噴射量算出]
図6の燃料噴射量算出プログラムは、所定時間毎又は所定クランク角毎に実行され、次のようにして燃料噴射量TAUを算出する。本プログラムが起動されると、まずステップ501で、エンジン回転速度Ne、負荷(吸入空気量、吸気管圧力、要求トルク等)を読み込み、次のステップ502で、エンジン回転速度Neと負荷に応じてマップ等からベース噴射量TAUBを算出する。この後、ステップ503に進み、リッチ要求フラグXRICHがONであるか否かを判定し、リッチ要求フラグXRICHがONであれば、ステップ504に進み、噴射量増量値TAURを所定値TAURICHにセットする。この所定値TAURICHは、通常のリッチ運転切換時の噴射量増量値に相当する値に設定されている。また、この所定値TAURICHは、演算処理の簡略化のために固定値としても良いが、ベース噴射量TAUBやエンジン運転条件等に応じて変化させても良い。
【0039】
この後、ステップ506に進み、増量フラグXFCRICHがONであるか否かを判定し、増量フラグXFCRICHがONであれば、ステップ507に進み、噴射量増量値TAURを、所定値TAURICHに増量係数Kを乗算した値に設定する。
TAUR←TAURICH×K
ここで、増量係数Kは1より大きい値に設定されている。従って、噴射量増量値TAURICH×Kは、通常のリッチ運転切換時の噴射量増量値TAURICHよりも大きい値となる。
【0040】
一方、上記ステップ503で、リッチ要求フラグXRICHがOFFと判定されると、ステップ505に進み、噴射量増量値TAURを0に設定する。
以上の処理により、噴射量増量値TAURを0又はTAURICH又はTAURICH×Kに設定した後、ステップ508に進み、ベース噴射量TAUBに噴射量増量値TAURを加算して最終的な燃料噴射量TAUを求める。
【0041】
これにより、通常のリーン運転中は、燃料噴射量TAUがベース噴射量TAUBに等しくなり、通常のリッチ運転切換時は、燃料噴射量TAUがベース噴射量TAUBよりも噴射量増量値TAUR分だけ増量され、更に、燃料カット復帰から所定時間が経過した後にリッチ運転に切り換える場合は、燃料噴射量TAUがベース噴射量TAUBよりも噴射量増量値TAUR×Kだけ増量される。
【0042】
以上説明した本実施形態(2)では、燃料カット中は、リーンNOx触媒39のNOx吸蔵量が通常のリーン運転中よりも増加する傾向があることを考慮して、燃料カット復帰から所定時間が経過した後にリッチ運転に切り換える場合は、リーンNOx触媒39へのリッチ成分供給量(燃料噴射量)を通常のリッチ運転切換時のリッチ成分供給量(燃料噴射量)よりも増量するようにしたので、燃料カットによるNOx吸蔵量の増加分に応じてリッチ成分供給量を精度良く増量することができ、リーンNOx触媒39のNOx吸蔵能力を速やかに回復させることができる。
【0043】
《実施形態(3)》
上記実施形態(2)では、燃料カット復帰から所定時間が経過した後にリッチ運転に切り換える場合の噴射量増量値TAURに対する増量係数Kは、演算処理の簡略化のために固定値としたが、燃料カット実行時間が長くなるほど、リーンNOx触媒39のNOx吸蔵量が増加することを考慮して、燃料カット実行時間が長くなるほど、増量係数Kを大きくするように設定しても良い。
【0044】
また、燃料カットが行われても、リーンNOx触媒39のNOx吸蔵量があまり多くなっていなければ、まだリーンNOx触媒39にNOxを吸蔵する余裕があるため、リッチ運転に切り換える必要はない。この点を考慮して、燃料カット中にリーンNOx触媒39のNOx吸蔵量が所定量以上となった時間に応じて増量係数Kを設定しても良い。
【0045】
これを具体化した本発明の実施形態(3)では、図7の増量係数算出プログラムを所定時間毎に実行することで、次のようにして増量係数Kを算出する。本プログラムが起動されると、まずステップ601で、現在のリーンNOx触媒39のNOx吸蔵量QNOxが所定値A以上であるか否かを判定し、NOx吸蔵量QNOxが所定値Aよりも少なければ、ステップ602に進み、燃料カット中にNOx吸蔵量が所定値A以上となった時間をカウントするカウンタCFCを0にリセットして本プログラムを終了する。
【0046】
その後、NOx吸蔵量QNOxが所定値A以上になった時点で、ステップ603に進み、燃料カット中であるか否かを判定し、燃料カット中であれば、ステップ604に進み、カウンタCFCをカウントアップする。これにより、燃料カット中にNOx吸蔵量が所定値A以上となった時間をカウントする。
【0047】
一方、上記ステップ603で、燃料カット中でないと判定された場合は、ステップ605に進み、燃料カット復帰直後であるか否かを判定し、燃料カット復帰直後であれば、ステップ606に進み、その時点のカウンタCFCの値に応じて図8のマップにより増量係数Kを算出する。図8のマップは、カウンタCFCの値が大きくなるほど、増量係数Kが大きくなるように設定されている。但し、増量係数Kは1よりも大きい値となる。
【0048】
以上説明した本実施形態(3)では、燃料カット中にリーンNOx触媒39のNOx吸蔵量が所定値A以上となった時間に応じて増量係数Kを設定するようにしたので、リーンNOx触媒39へのリッチ成分供給量を更に精度良く設定することができる。
【0049】
尚、上記実施形態(2),(3)では、燃料カット復帰から所定時間が経過した後にリッチ運転に切り換える場合に、通常のリッチ運転切換時の噴射量増量値TAURICHに増量係数Kを乗算することで、通常のリッチ運転切換時よりも増量した噴射量増量値TAURICH×Kを求めるようにしたが、この噴射量増量値TAURICH×Kをマップ等により直接算出するようにしても良い。
【0050】
上記各実施形態(1)〜(3)は、本発明を筒内噴射式内燃機関(直噴エンジン)に適用したものであるが、リーンバーンエンジンにも同様に適用して実施できる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御系システム全体の概略構成を示す図
【図2】実施形態(1)のNOx吸蔵量算出プログラムの処理の流れを示すフローチャート
【図3】実施形態(1)の燃料カット復帰後経過時間算出プログラムの処理の流れを示すフローチャート
【図4】実施形態(1)の排気浄化制御プログラムの処理の流れを示すフローチャート
【図5】実施形態(2)の排気浄化制御プログラムの処理の流れを示すフローチャート
【図6】実施形態(2)の燃料噴射量算出プログラムの処理の流れを示すフローチャート
【図7】実施形態(3)の増量係数算出プログラムの処理の流れを示すフローチャート
【図8】カウンタCFCの値に応じて増量係数Kを求めるマップを概念的に示す図
【符号の説明】
11…直噴エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、16…ECU(排気浄化制御手段,運転切換禁止手段)、24…スワールコントロール弁、28…燃料噴射弁、37…排気管、38…三元触媒、39…リーンNOx触媒、41…EGR弁。

Claims (4)

  1. 混合気の空燃比をリーン側に制御するリーン運転と、該空燃比をリッチ側に制御するリッチ運転とを運転条件に応じて切り換えると共に、所定の燃料カット実行条件が成立した時に燃料カットを実行する内燃機関におい て、
    リーン運転中に排出ガスの窒素酸化物を吸蔵する触媒と、
    リーン運転中に一時的にリッチ運転に切り換えて前記触媒に吸蔵した窒素酸化物を還元浄化するように制御する排気浄化制御手段と、
    リーン運転中に燃料カットされた時に該燃料カット復帰から所定期間が経過するまでリッチ運転への切り換えを禁止する運転切換禁止手段と
    を備えていることを特徴とする内燃機関の排気浄化制御装置。
  2. 前記排気浄化制御手段は、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、前記触媒へのリッチ成分供給量を通常のリッチ運転切換時のリッチ成分供給量よりも増量することを特徴とする請求項1に記載の内燃機関の排気浄化制御装置。
  3. 前記排気浄化制御手段は、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、前記触媒へのリッチ成分供給量を燃料カット実行時間に応じて増量することを特徴とする請求項2に記載の内燃機関の排気浄化制御装置。
  4. 前記排気浄化制御手段は、燃料カット復帰から所定期間が経過した後にリッチ運転に切り換える場合は、前記触媒へのリッチ成分供給量を燃料カット中に前記触媒の窒素酸化物吸蔵量が所定量以上となった時間に応じて増量することを特徴とする請求項2に記載の内燃機関の排気浄化制御装置。
JP2000201431A 2000-06-29 2000-06-29 内燃機関の排気浄化制御装置 Expired - Lifetime JP4666542B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201431A JP4666542B2 (ja) 2000-06-29 2000-06-29 内燃機関の排気浄化制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201431A JP4666542B2 (ja) 2000-06-29 2000-06-29 内燃機関の排気浄化制御装置

Publications (2)

Publication Number Publication Date
JP2002013429A JP2002013429A (ja) 2002-01-18
JP4666542B2 true JP4666542B2 (ja) 2011-04-06

Family

ID=18699125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201431A Expired - Lifetime JP4666542B2 (ja) 2000-06-29 2000-06-29 内燃機関の排気浄化制御装置

Country Status (1)

Country Link
JP (1) JP4666542B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE397147T1 (de) * 2002-12-31 2008-06-15 Volkswagen Ag Verfahren zur steuerung einer verbrennungskraftmaschine sowie magerlauffahige verbrennungskraftmaschine
JP4577656B2 (ja) * 2006-02-15 2010-11-10 株式会社デンソー 過給機付き内燃機関の制御装置
EP3052775B1 (en) * 2013-10-03 2018-11-14 Umicore AG & Co. KG Exhaust aftertreatment system

Also Published As

Publication number Publication date
JP2002013429A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
US20030159434A1 (en) Emission control apparatus for engine
JP4997177B2 (ja) 内燃機関の排ガス浄化装置
JP3693855B2 (ja) 内燃機関の空燃比制御装置
US6766640B2 (en) Engine exhaust purification device
JPH1144234A (ja) 内燃機関の排気浄化装置
JP3033449B2 (ja) 火花点火式内燃エンジンの燃焼制御装置
JP2004324538A (ja) エンジンの制御装置
JP4254021B2 (ja) 筒内噴射式内燃機関の触媒早期暖機制御装置
JP4453060B2 (ja) 内燃機関の排出ガス浄化制御装置
JP4666542B2 (ja) 内燃機関の排気浄化制御装置
JPH10184418A (ja) 希薄燃焼エンジンの排気浄化装置
JP3873537B2 (ja) 内燃機関の排気浄化装置
JP4492776B2 (ja) 内燃機関の排気浄化装置
US7591986B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP4154596B2 (ja) 内燃機関の排気浄化装置
JP2000130221A (ja) 内燃機関の燃料噴射制御装置
JP4608758B2 (ja) 内燃機関の空燃比制御装置
JP3843847B2 (ja) 内燃機関の空燃比制御装置
JP4389139B2 (ja) 内燃機関の排出ガス浄化制御装置
JP4345202B2 (ja) 内燃機関の排気浄化装置
JP4339599B2 (ja) 筒内噴射式内燃機関の制御装置
JP4269279B2 (ja) 内燃機関の制御装置
JPH1162666A (ja) 内燃機関の排気浄化装置
JP2006242170A (ja) 内燃機関の排ガス浄化装置
JPH11107828A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term