JP4660980B2 - 画像処理装置および方法、記録媒体、並びにプログラム - Google Patents

画像処理装置および方法、記録媒体、並びにプログラム Download PDF

Info

Publication number
JP4660980B2
JP4660980B2 JP2001181399A JP2001181399A JP4660980B2 JP 4660980 B2 JP4660980 B2 JP 4660980B2 JP 2001181399 A JP2001181399 A JP 2001181399A JP 2001181399 A JP2001181399 A JP 2001181399A JP 4660980 B2 JP4660980 B2 JP 4660980B2
Authority
JP
Japan
Prior art keywords
pixel
image
frame
background
foreground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001181399A
Other languages
English (en)
Other versions
JP2002373339A (ja
JP2002373339A5 (ja
Inventor
哲二郎 近藤
淳一 石橋
貴志 沢尾
直樹 藤原
隆浩 永野
成司 和田
徹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001181399A priority Critical patent/JP4660980B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to CA2418810A priority patent/CA2418810C/en
Priority to US10/344,735 priority patent/US7336818B2/en
Priority to EP02733492A priority patent/EP1396818B1/en
Priority to PCT/JP2002/005875 priority patent/WO2002103635A1/ja
Priority to KR1020037002092A priority patent/KR100904340B1/ko
Publication of JP2002373339A publication Critical patent/JP2002373339A/ja
Publication of JP2002373339A5 publication Critical patent/JP2002373339A5/ja
Application granted granted Critical
Publication of JP4660980B2 publication Critical patent/JP4660980B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Picture Signal Circuits (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像処理装置および方法、記録媒体、並びにプログラムに関し、特に、センサにより検出した信号と現実世界との違いを考慮した画像処理装置および方法、記録媒体、並びにプログラムに関する。
【0002】
【従来の技術】
入力画像を基に、より高解像度の画像を生成する処理の1つとして、クラス分類適応処理がある。クラス分類適応処理の例として、空間方向に、より高解像度の画像を生成する処理で使用される係数を予め生成し、生成した係数を基に、空間方向に、より高解像度の画像を生成する処理があげられる。
【0003】
図1は、SD(Standard Definition(標準精細度))画像からHD(High Definition(高精細度))画像を生成するクラス分類適応処理において使用される係数を生成する、従来の画像処理装置の構成を示すブロック図である。
【0004】
フレームメモリ11は、HD画像である入力画像を、フレーム単位で記憶する。
フレームメモリ11は、記憶しているHD画像を加重平均部12および対応画素取得部16に供給する。
【0005】
加重平均部12は、フレームメモリ11に記憶されているHD画像を4分の1加重平均して、SD画像を生成し、生成したSD画像をフレームメモリ13に供給する。
【0006】
フレームメモリ13は、加重平均部12から供給されたSD画像をフレーム単位で記憶し、記憶しているSD画像をクラス分類部14および予測タップ取得部15に供給する。
【0007】
クラス分類部14は、クラスタップ取得部21および波形分類部22で構成され、フレームメモリ13に記憶されているSD画像の、注目している画素である注目画素をクラス分類する。クラスタップ取得部21は、フレームメモリ13から、注目画素に対応するSD画像の画素である、所定の数のクラスタップを取得し、取得したクラスタップを波形分類部22に供給する。
【0008】
図2は、クラスタップ取得部21が取得するクラスタップを説明する図である。クラスタップ取得部21は、図2に示すように、所定の位置の11個のクラスタップを取得する。
【0009】
波形分類部22は、クラスタップを基に、注目画素を複数のクラスのうちの1つのクラスに分類し、分類されたクラスに対応するクラス番号を予測タップ取得部15に供給する。波形分類部22は、11個のクラスタップを基に、注目画素を、2048のクラスのうちの1つのクラスに分類する。
【0010】
予測タップ取得部15は、クラス番号を基に、フレームメモリ13から分類されたクラスに対応する、SD画像の画素である、所定の数の予測タップを取得し、取得した予測タップおよびクラス番号を対応画素取得部16に供給する。
【0011】
図3は、予測タップ取得部15が取得する予測タップを説明する図である。予測タップ取得部15は、図3に示すように、所定の位置の9個の予測タップを取得する。
【0012】
対応画素取得部16は、予測タップおよびクラス番号を基に、フレームメモリ11から、予測すべき画素値に対応するHD画像の画素を取得し、予測タップ、クラス番号、および取得した予測すべき画素値に対応するHD画像の画素を正規方程式生成部17に供給する。
【0013】
正規方程式生成部17は、予測タップ、クラス番号、および取得した予測すべき画素値を基に、各クラスに対応し、予測タップおよび予測すべき画素値の関係に対応する正規方程式を生成し、各クラスに対応する、生成した正規方程式を係数計算部18に供給する。
【0014】
係数計算部18は、正規方程式生成部17から供給された正規方程式を解いて、各クラスに対応する係数セットを計算し、クラス番号と共に、計算した係数セットを係数セットメモリ19に供給する。
【0015】
係数セットメモリ19は、クラス番号を基に、算出された係数セットをクラスに対応させて記憶する。
【0016】
図4は、クラス分類適応処理の概略を説明する図である。クラス分類適応処理において、HD画像である教師画像から、4分の1加重平均の処理により、対応するSD画像を生成する。生成されたSD画像は、生徒画像と称する。
【0017】
次に、HD画像である教師画像、および対応するSD画像である生徒画像を基に、SD画像からHD画像を生成するための係数セットが生成される。係数セットは、線形予測などにより、SD画像からHD画像を生成するための係数で構成される。
【0018】
このように生成された係数セットおよびSD画像から、線形予測などにより、4倍密画像が生成される。係数セットおよび入力画像から、より高密度な画像などを生成する処理をマッピングとも称する。
【0019】
生成された4倍密画像、および対応するHD画像を基に、SNRの比較、または目視による定性評価が行われる。
【0020】
特定の教師画像、および対応する生徒画像から生成された係数セットは、特定の教師画像、および対応する生徒画像のセルフの係数セットと称する。セルフの係数セットを使用したマッピングは、セルフマッピングと称する。複数の他の教師画像、および対応する生徒画像から生成された係数セットは、クロスの係数セットと称する。
【0021】
一方、静止している所定の背景の前で移動する前景である物体をビデオカメラで撮像して得られる画像には、物体の移動速度が比較的速い場合、動きボケが生じ、背景と前景の混ざり合いが生ずる。
【0022】
従来のクラス分類適応処理においては、図5に示すように、前景、背景、並びに前景および背景の混ざり合いが生じている部分の全てに対して、以上のような学習の処理により、1つの係数セットが生成され、この係数セットを基に、マッピングの処理が実行される。
【0023】
図6のフローチャートを参照して、SD画像からHD画像を生成する処理において使用される係数を生成する、従来の学習の処理を説明する。ステップS11において、画像処理装置は、生徒画像に未処理の画素があるか否かを判定し、生徒画像に未処理の画素があると判定された場合、ステップS12に進み、ラスタースキャン順に、生徒画像から注目画素を取得する。
【0024】
ステップS13において、クラス分類部14のクラスタップ取得部21は、フレームメモリ13に記憶されている生徒画像から、注目画素に対応するクラスタップを取得する。ステップS14において、クラス分類部14の波形分類部22は、クラスタップを基に、注目画素をクラス分類する。ステップS15において、予測タップ取得部15は、分類されたクラスを基に、フレームメモリ13に記憶されている生徒画像から、注目画素に対応する予測タップを取得する。
【0025】
ステップS16において、対応画素取得部16は、分類されたクラスを基に、フレームメモリ11に記憶されている教師画像から、予測すべき画素値に対応する画素を取得する。
【0026】
ステップS17において、正規方程式生成部17は、分類されたクラスを基に、クラス毎の行列に、予測タップおよび予測すべき画素値に対応する画素の画素値を足し込み、ステップS11に戻り、画像処理装置は、未処理の画素があるか否かの判定を繰り返す。予測タップおよび予測すべき画素値に対応する画素の画素値を足し込まれるクラス毎の行列は、クラス毎の係数を計算するための正規方程式に対応する。
【0027】
ステップS11において、生徒画像に未処理の画素がないと判定された場合、ステップS18に進み、正規方程式生成部17は、予測タップおよび予測すべき画素値に対応する画素の画素値が設定された、クラス毎の行列を係数計算部18に供給する。係数計算部18は、予測タップおよび予測すべき画素値に対応する画素の画素値が設定された、クラス毎の行列を解いて、クラス毎の係数セットを計算する。
【0028】
ステップS19において、係数計算部18は、計算されたクラス毎の係数を係数セットメモリ19に出力する。係数セットメモリ19は、クラス毎に係数セットを記憶し、処理は終了する。
【0029】
図7は、クラス分類適応処理により、SD画像からHD画像を生成する従来の画像処理装置の構成を示すブロック図である。
【0030】
フレームメモリ31は、SD画像である入力画像を、フレーム単位で記憶する。
フレームメモリ31は、記憶しているSD画像をマッピング部32に供給する。
【0031】
マッピング部32に入力されたSD画像は、クラス分類部41および予測タップ取得部42に供給される。
【0032】
クラス分類部41は、クラスタップ取得部51および波形分類部52で構成され、フレームメモリ31に記憶されているSD画像の、注目している画素である、注目画素をクラス分類する。クラスタップ取得部51は、フレームメモリ31から注目画素に対応する、所定の数のクラスタップを取得し、取得したクラスタップを波形分類部52に供給する。
【0033】
波形分類部52は、クラスタップを基に、所定の数のクラスのうちの、1つのクラスに注目画素を分類し、分類されたクラスに対応するクラス番号を予測タップ取得部42に供給する。
【0034】
予測タップ取得部42は、クラス番号を基に、フレームメモリ31に記憶されている入力画像から、分類されたクラスに対応する、所定の数の予測タップを取得し、取得した予測タップおよびクラス番号を予測演算部43に供給する。
【0035】
予測演算部43は、クラス番号を基に、係数セットメモリ33に記憶されている係数セットから、クラスに対応する係数セットを取得する。予測演算部43は、クラスに対応する係数セット、および予測タップを基に、線形予測により予測画像の画素値を予測する。予測演算部43は、予測した画素値をフレームメモリ34に供給する。
【0036】
フレームメモリ34は、予測演算部43から供給された予測された画素値を記憶し、予測された画素値が設定されたHD画像を出力する。
【0037】
図8は、入力画像の画素値、およびクラス分類適応処理により生成された出力画像の画素値を示す図である。図8に示すように、クラス分類適応処理により生成される画像は、SD画像の帯域制限で失われた波形を含む。その意味で、クラス分類適応処理による、より高解像度の画像の生成の処理は、解像度を創造していると言える。
【0038】
図9のフローチャートを参照して、クラス分類適応処理を実行する画像処理装置による、SD画像からHD画像を生成する、従来の画像の創造の処理を説明する。
【0039】
ステップS31において、画像処理装置は、入力画像に未処理の画素があるか否かを判定し、入力画像に未処理の画素があると判定された場合、ステップS32に進み、マッピング部32は、係数セットメモリ33に記憶されている係数セットを取得する。ステップS33において、画像処理装置は、ラスタースキャン順に、入力画像から注目画素を取得する。
【0040】
ステップS34において、クラス分類部41のクラスタップ取得部51は、フレームメモリ31に記憶されている入力画像から、注目画素に対応するクラスタップを取得する。ステップS35において、クラス分類部41の波形分類部52は、クラスタップを基に、注目画素を1つのクラスにクラス分類する。
【0041】
ステップS36において、予測タップ取得部42は、分類されたクラスを基に、フレームメモリ31に記憶されている入力画像から、注目画素に対応する予測タップを取得する。
【0042】
ステップS37において、予測演算部43は、分類されたクラスに対応する係数セット、および予測タップを基に、線形予測により、予測画像の画素値を予測する。
【0043】
ステップS38において、予測演算部43は、予測された画素値をフレームメモリ34に出力する。フレームメモリ34は、予測演算部43から供給された画素値を記憶する。手続きは、ステップS31に戻り、未処理の画素があるか否かの判定を繰り返す。
【0044】
ステップS31において、入力画像に未処理の画素がないと判定された場合、ステップS39に進み、フレームメモリ34は、予測値が設定された、記憶している予測画像を出力して、処理は終了する。
【0045】
また、入力画像をより解像度感を強調した画像に変換するため、エッジ強調の処理が利用される。エッジ強調の処理においても、以上で説明したクラス分類適応処理と同様に、同一の処理が画面全体に対して実行される。
【0046】
【発明が解決しようとする課題】
静止している背景の前で物体が移動するとき、移動する物体の画像自身の混ざり合いによる動きボケのみならず、背景の画像と移動する物体の画像との混ざり合いが生じる。従来、背景の画像と移動する物体の画像との混ざり合いに対応して画像を処理することは、考えられていなかった。
【0047】
本発明はこのような状況に鑑みてなされたものであり、背景の画像と移動する物体の画像との混ざり合いに対応して画像を処理することができるようにすることを目的とする。
【0048】
【課題を解決するための手段】
本発明の画像処理装置は、入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出手段と、複数の入力画像データを順次、注目フレームとし、注目フレームの各画素と、注目フレームの各画素の位置に対応する、背景画像データ上の位置に存在する画素の相関値を求める算出手段と、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前景オブジェクト成分からなる前景領域、および背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定手段とを含むことを特徴とする。
【0049】
画像処理装置は、注目フレームの各画素を順次、注目画素とし、注目画素において検出された相関値が、所定のしきい値以下である場合、相関値を第1の値または第2の値のいずれかに2値化して得られる2値オブジェクト画像上の注目画素の画素値を第1の値に設定し、注目画素において検出された相関値が、所定のしきい値よりも大きい場合、2値オブジェクト画像上の注目画素の画素値を、第2の値に設定することにより得られる2値オブジェクト画像に対して、入力画像データの動きベクトルに基づいて、動き補償を行う動き補償手段と、動き補償後の注目フレームに対応する2値オブジェクト画像と、注目フレームの前後の複数の近傍フレームそれぞれに対応する2値オブジェクト画像の各画素毎に、画素の画素それぞれを重み付け加算する加算手段とをさらに含み、領域特定手段は、重み付け加算の結果得られる各画素の画素値を所定のしきい値と比較することにより生成される新たな2値オブジェクト画像の画素値の各画素位置毎の時間変化に基づいて、注目フレームの混合領域および非混合領域特定するようにすることができる。
【0050】
領域特定手段は、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの前景領域および背景領域をさらに特定し、特定結果に対応する領域特定情報を出力するようにすることができる。
【0051】
領域特定手段は、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、混合領域のうちの背景オブジェクト成分から前景オブジェクト成分に変化する領域であるカバードバックグラウンド領域、および、前景オブジェクト成分から背景オブジェクト成分に変化する領域であるアンカバードバックグラウンド領域をさらに特定し、特定結果に対応する領域特定情報を出力するようにすることができる。
【0052】
画像処理装置は、注目フレームとその前後のフレームの画素データに基づいて注目フレームの混合領域の画素データを、前景オブジェクト成分と背景オブジェクト成分とに分離する分離手段をさらに含ことができる。
【0053】
本発明の画像処理方法は、入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、複数の入力画像データを順次、注目フレームとし、注目フレームの各画素と、注目フレームの各画素の位置に対応する、背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前景オブジェクト成分からなる前景領域、および背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップとを含むことを特徴とする。
【0058】
本発明の記録媒体のプログラムは、時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理するコンピュータに、入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、複数の入力画像データを順次、注目フレームとし、注目フレームの各画素と、注目フレームの各画素の位置に対応する、背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前景オブジェクト成分からなる前景領域、および背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップとを実行させるためのプログラムである。
【0063】
本発明のプログラムは、時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理するコンピュータに、入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、複数の入力画像データを順次、注目フレームとし、注目フレームの各画素と、注目フレームの各画素の位置に対応する、背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前景オブジェクト成分からなる前景領域、および背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップとを実行させるプログラムである。
【0068】
本発明の画像処理装置および方法、記録媒体、並びにプログラムにおいては、入力画像データから背景オブジェクトに対応する画像オブジェクトの成分が背景画像データとして抽出され、複数の入力画像データが順次、注目フレームとされ、注目フレームの各画素と、注目フレームの各画素の位置に対応する、背景画像データ上の位置に存在する画素の相関値が求められ、注目フレームされた複数の入力画像データの各画素において算出された相関値の各画素位置毎の時間変化に基づいて、注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前景オブジェクト成分からなる前景領域、および背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定され、特定結果に対応する領域特定情報が出力される。
【0069】
【発明の実施の形態】
図10は、本発明に係る画像処理装置の一実施の形態の構成を示すブロック図である。CPU(Central Processing Unit)71は、ROM(Read Only Memory)72、または記憶部78に記憶されているプログラムに従って各種の処理を実行する。RAM(Random Access Memory)73には、CPU71が実行するプログラムやデータなどが適宜記憶される。これらのCPU71、ROM72、およびRAM73は、バス74により相互に接続されている。
【0070】
CPU71にはまた、バス74を介して入出力インタフェース75が接続されている。入出力インタフェース75には、キーボード、マウス、マイクロホンなどよりなる入力部76、ディスプレイ、スピーカなどよりなる出力部77が接続されている。CPU71は、入力部76から入力される指令に対応して各種の処理を実行する。そして、CPU71は、処理の結果得られた画像や音声等を出力部77に出力する。
【0071】
入出力インタフェース75に接続されている記憶部78は、例えばハードディスクなどで構成され、CPU71が実行するプログラムや各種のデータを記憶する。通信部79は、インターネット、その他のネットワークを介して外部の装置と通信する。この例の場合、通信部79はセンサの出力を取り込む取得部として働く。
【0072】
また、通信部79を介してプログラムを取得し、記憶部78に記憶してもよい。
【0073】
入出力インタフェース75に接続されているドライブ80は、磁気ディスク91、光ディスク92、光磁気ディスク93、または半導体メモリ94などが装着されたとき、それらを駆動し、そこに記録されているプログラムやデータなどを取得する。取得されたプログラムやデータは、必要に応じて記憶部78に転送され、記憶される。
【0074】
図11は、本発明に係る画像処理装置の機能の構成を示すブロック図である。
【0075】
なお、画像処理装置の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本明細書の各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えても良い。
【0076】
ここで、動きボケとは、撮像の対象となる、現実世界におけるオブジェクトの動きと、センサの撮像の特性とにより生じる、動いているオブジェクトに対応する画像に含まれている歪みをいう。
【0077】
この明細書では、撮像の対象となる、現実世界におけるオブジェクトに対応する画像を、画像オブジェクトと称する。
【0078】
画像処理装置に供給された入力画像は、オブジェクト抽出部101、領域特定部103、混合比算出部104、および前景背景分離部105に供給される。
【0079】
オブジェクト抽出部101は、入力画像に含まれる前景のオブジェクトに対応する画像オブジェクトを粗く抽出して、抽出した画像オブジェクトを動き検出部102に供給する。オブジェクト抽出部101は、例えば、入力画像に含まれる前景のオブジェクトに対応する画像オブジェクトの輪郭を検出することで、前景のオブジェクトに対応する画像オブジェクトを粗く抽出する。
【0080】
オブジェクト抽出部101は、入力画像に含まれる背景のオブジェクトに対応する画像オブジェクトを粗く抽出して、抽出した画像オブジェクトを動き検出部102に供給する。オブジェクト抽出部101は、例えば、入力画像と、抽出された前景のオブジェクトに対応する画像オブジェクトとの差から、背景のオブジェクトに対応する画像オブジェクトを粗く抽出する。
【0081】
また、例えば、オブジェクト抽出部101は、内部に設けられている背景メモリに記憶されている背景の画像と、入力画像との差から、前景のオブジェクトに対応する画像オブジェクト、および背景のオブジェクトに対応する画像オブジェクトを粗く抽出するようにしてもよい。
【0082】
動き検出部102は、例えば、ブロックマッチング法、勾配法、位相相関法、およびペルリカーシブ法などの手法により、粗く抽出された前景のオブジェクトに対応する画像オブジェクトの動きベクトルを算出して、算出した動きベクトルおよび動きベクトルの位置情報(動きベクトルに対応する画素の位置を特定する情報)を領域特定部103に供給する。
【0083】
動き検出部102が出力する動きベクトルには、動き量vに対応する情報が含まれている。
【0084】
また、例えば、動き検出部102は、画像オブジェクトに画素を特定する画素位置情報と共に、画像オブジェクト毎の動きベクトルを領域特定部103に出力するようにしてもよい。
【0085】
動き量vは、動いているオブジェクトに対応する画像の位置の変化を画素間隔を単位として表す値である。例えば、前景に対応するオブジェクトの画像が、あるフレームを基準として次のフレームにおいて4画素分離れた位置に表示されるように移動しているとき、前景に対応するオブジェクトの画像の動き量vは、4とされる。
【0086】
領域特定部103は、入力された画像の画素のそれぞれを、前景領域、背景領域、または混合領域のいずれかに特定し、画素毎に前景領域、背景領域、または混合領域のいずれかに属するかを示す情報(以下、領域情報と称する)を混合比算出部104、および前景背景分離部105に供給する。前景領域、背景領域、または混合領域の詳細は、後述する。
【0087】
混合比算出部104は、入力画像、および領域特定部103から供給された領域情報を基に、混合領域に含まれる画素に対応する混合比(以下、混合比αと称する)を算出して、算出した混合比を前景背景分離部105に供給する。
【0088】
混合比αは、後述する式(3)に示されるように、画素値における、背景のオブジェクトに対応する画像の成分(以下、背景の成分とも称する)の割合を示す値である。
【0089】
前景背景分離部105は、領域特定部103から供給された領域情報、および混合比算出部104から供給された混合比αを基に、前景のオブジェクトに対応する画像の成分(以下、前景の成分とも称する)のみから成る前景成分画像と、背景の成分のみから成る背景成分画像とに入力画像を分離して、前景成分画像および背景成分画像を分離画像処理部106に供給する。
【0090】
分離画像処理部106は、前景成分画像および背景成分画像に、それぞれ異なる処理を適用する。例えば、分離画像処理部106は、背景成分画像を基に、より高解像度の画像を生成するクラス分類適応処理で使用される係数を生成する。
【0091】
例えば、分離画像処理部106は、背景成分画像に、クラス分類適応処理を適用して、より高解像度の画像を創造すると共に、前景成分画像に、線形補間の処理を適用して、画素を生成する。
【0092】
また、分離画像処理部106は、背景成分画像にのみ、エッジ強調の処理を適用し、前景成分画像をそのまま通過させる。
【0093】
次に、図12乃至図27を参照して、画像処理装置に供給される入力画像について説明する。
【0094】
図12は、センサによる撮像を説明する図である。センサは、例えば、固体撮像素子であるCCD(Charge-Coupled Device)エリアセンサを備えたCCDビデオカメラなどで構成される。現実世界における、前景に対応するオブジェクトは、現実世界における、背景に対応するオブジェクトと、センサとの間を、例えば、図中の左側から右側に水平に移動する。
【0095】
センサは、前景に対応するオブジェクトを、背景に対応するオブジェクトと共に撮像する。センサは、撮像した画像を1フレーム単位で出力する。例えば、センサは、1秒間に30フレームから成る画像を出力する。センサの露光時間は、1/30秒とすることができる。露光時間は、センサが入力された光の電荷への変換を開始してから、入力された光の電荷への変換を終了するまでの期間である。以下、露光時間をシャッタ時間とも称する。
【0096】
図13は、画素の配置を説明する図である。図13中において、A乃至Iは、個々の画素を示す。画素は、画像に対応する平面上に配置されている。1つの画素に対応する1つの検出素子は、センサ上に配置されている。センサが画像を撮像するとき、1つの検出素子は、画像を構成する1つの画素に対応する画素値を出力する。例えば、検出素子のX方向の位置は、画像上の横方向の位置に対応し、検出素子のY方向の位置は、画像上の縦方向の位置に対応する。
【0097】
図14に示すように、例えば、CCDである検出素子は、シャッタ時間に対応する期間、入力された光を電荷に変換して、変換された電荷を蓄積する。電荷の量は、入力された光の強さと、光が入力されている時間にほぼ比例する。検出素子は、シャッタ時間に対応する期間において、入力された光から変換された電荷を、既に蓄積されている電荷に加えていく。すなわち、検出素子は、シャッタ時間に対応する期間、入力される光を積分して、積分された光に対応する量の電荷を蓄積する。検出素子は、時間に対して、積分効果があるとも言える。
【0098】
検出素子に蓄積された電荷は、図示せぬ回路により、電圧値に変換され、電圧値は更にデジタルデータなどの画素値に変換されて出力される。従って、センサから出力される個々の画素値は、前景または背景に対応するオブジェクトの空間的に広がりを有するある部分を、シャッタ時間について積分した結果である、1次元の空間に射影された値を有する。
【0099】
画像処理装置は、このようなセンサの蓄積の動作により、出力信号に埋もれてしまった有意な情報、例えば、混合比αを抽出する。
【0100】
図15は、動いている前景に対応するオブジェクトと、静止している背景に対応するオブジェクトとを撮像して得られる画像を説明する図である。図15(A)は、動きを伴う前景に対応するオブジェクトと、静止している背景に対応するオブジェクトとを撮像して得られる画像を示している。図15(A)に示す例において、前景に対応するオブジェクトは、画面に対して水平に左から右に動いている。
【0101】
図15(B)は、図15(A)に示す画像の1つのラインに対応する画素値を時間方向に展開したモデル図である。図15(B)の横方向は、図15(A)の空間方向Xに対応している。
【0102】
背景領域の画素は、背景の成分、すなわち、背景のオブジェクトに対応する画像の成分のみから、その画素値が構成されている。前景領域の画素は、前景の成分、すなわち、前景のオブジェクトに対応する画像の成分のみから、その画素値が構成されている。
【0103】
混合領域の画素は、背景の成分、および前景の成分から、その画素値が構成されている。混合領域は、背景の成分、および前景の成分から、その画素値が構成されているので、歪み領域ともいえる。混合領域は、更に、カバードバックグラウンド領域およびアンカバードバックグラウンド領域に分類される。
【0104】
カバードバックグラウンド領域は、前景領域に対して、前景のオブジェクトの進行方向の前端部に対応する位置の混合領域であり、時間の経過に対応して背景成分が前景に覆い隠される領域をいう。
【0105】
これに対して、アンカバードバックグラウンド領域は、前景領域に対して、前景のオブジェクトの進行方向の後端部に対応する位置の混合領域であり、時間の経過に対応して背景成分が現れる領域をいう。
【0106】
このように、前景領域、背景領域、またはカバードバックグラウンド領域若しくはアンカバードバックグラウンド領域を含む画像が、領域特定部103、混合比算出部104、および前景背景分離部105に入力画像として入力される。
【0107】
図16は、以上のような、背景領域、前景領域、混合領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を説明する図である。図15に示す画像に対応する場合、背景領域は、静止部分であり、前景領域は、動き部分であり、混合領域のカバードバックグラウンド領域は、背景から前景に変化する部分であり、混合領域のアンカバードバックグラウンド領域は、前景から背景に変化する部分である。
【0108】
図17は、静止している前景に対応するオブジェクトおよび静止している背景に対応するオブジェクトを撮像した画像における、隣接して1列に並んでいる画素の画素値を時間方向に展開したモデル図である。例えば、隣接して1列に並んでいる画素として、画面の1つのライン上に並んでいる画素を選択することができる。
【0109】
図17に示すF01乃至F04の画素値は、静止している前景のオブジェクトに対応する画素の画素値である。図17に示すB01乃至B04の画素値は、静止している背景のオブジェクトに対応する画素の画素値である。
【0110】
図17における縦方向は、図中の上から下に向かって時間が経過する。図17中の矩形の上辺の位置は、センサが入力された光の電荷への変換を開始する時刻に対応し、図17中の矩形の下辺の位置は、センサが入力された光の電荷への変換を終了する時刻に対応する。すなわち、図17中の矩形の上辺から下辺までの距離は、シャッタ時間に対応する。
【0111】
以下において、シャッタ時間とフレーム間隔とが同一である場合を例に説明する。
【0112】
図17における横方向は、図15で説明した空間方向Xに対応する。より具体的には、図17に示す例において、図17中の”F01”と記載された矩形の左辺から”B04”と記載された矩形の右辺までの距離は、画素のピッチの8倍、すなわち、連続している8つの画素の間隔に対応する。
【0113】
前景のオブジェクトおよび背景のオブジェクトが静止している場合、シャッタ時間に対応する期間において、センサに入力される光は変化しない。
【0114】
ここで、シャッタ時間に対応する期間を2つ以上の同じ長さの期間に分割する。例えば、仮想分割数を4とすると、図17に示すモデル図は、図18に示すモデルとして表すことができる。仮想分割数は、前景に対応するオブジェクトのシャッタ時間内での動き量vなどに対応して設定される。例えば、4である動き量vに対応して、仮想分割数は、4とされ、シャッタ時間に対応する期間は4つに分割される。
【0115】
図中の最も上の行は、シャッタが開いて最初の、分割された期間に対応する。
図中の上から2番目の行は、シャッタが開いて2番目の、分割された期間に対応する。図中の上から3番目の行は、シャッタが開いて3番目の、分割された期間に対応する。図中の上から4番目の行は、シャッタが開いて4番目の、分割された期間に対応する。
【0116】
以下、動き量vに対応して分割されたシャッタ時間をシャッタ時間/vとも称する。
【0117】
前景に対応するオブジェクトが静止しているとき、センサに入力される光は変化しないので、前景の成分F01/vは、画素値F01を仮想分割数で除した値に等しい。同様に、前景に対応するオブジェクトが静止しているとき、前景の成分F02/vは、画素値F02を仮想分割数で除した値に等しく、前景の成分F03/vは、画素値F03を仮想分割数で除した値に等しく、前景の成分F04/vは、画素値F04を仮想分割数で除した値に等しい。
【0118】
背景に対応するオブジェクトが静止しているとき、センサに入力される光は変化しないので、背景の成分B01/vは、画素値B01を仮想分割数で除した値に等しい。同様に、背景に対応するオブジェクトが静止しているとき、背景の成分B02/vは、画素値B02を仮想分割数で除した値に等しく、B03/vは、画素値B03を仮想分割数で除した値に等しく、B04/vは、画素値B04を仮想分割数で除した値に等しい。
【0119】
すなわち、前景に対応するオブジェクトが静止している場合、シャッタ時間に対応する期間において、センサに入力される前景のオブジェクトに対応する光が変化しないので、シャッタが開いて最初の、シャッタ時間/vに対応する前景の成分F01/vと、シャッタが開いて2番目の、シャッタ時間/vに対応する前景の成分F01/vと、シャッタが開いて3番目の、シャッタ時間/vに対応する前景の成分F01/vと、シャッタが開いて4番目の、シャッタ時間/vに対応する前景の成分F01/vとは、同じ値となる。F02/v乃至F04/vも、F01/vと同様の関係を有する。
【0120】
背景に対応するオブジェクトが静止している場合、シャッタ時間に対応する期間において、センサに入力される背景のオブジェクトに対応する光は変化しないので、シャッタが開いて最初の、シャッタ時間/vに対応する背景の成分B01/vと、シャッタが開いて2番目の、シャッタ時間/vに対応する背景の成分B01/vと、シャッタが開いて3番目の、シャッタ時間/vに対応する背景の成分B01/vと、シャッタが開いて4番目の、シャッタ時間/vに対応する背景の成分B01/vとは、同じ値となる。B02/v乃至B04/vも、同様の関係を有する。
【0121】
次に、前景に対応するオブジェクトが移動し、背景に対応するオブジェクトが静止している場合について説明する。
【0122】
図19は、前景に対応するオブジェクトが図中の右側に向かって移動する場合の、カバードバックグラウンド領域を含む、1つのライン上の画素の画素値を時間方向に展開したモデル図である。図19において、前景の動き量vは、4である。1フレームは短い時間なので、前景に対応するオブジェクトが剛体であり、等速で移動していると仮定することができる。図19において、前景に対応するオブジェクトの画像は、あるフレームを基準として次のフレームにおいて4画素分右側に表示されるように移動する。
【0123】
図19において、最も左側の画素乃至左から4番目の画素は、前景領域に属する。図19において、左から5番目乃至左から7番目の画素は、カバードバックグラウンド領域である混合領域に属する。図19において、最も右側の画素は、背景領域に属する。
【0124】
前景に対応するオブジェクトが時間の経過と共に背景に対応するオブジェクトを覆い隠すように移動しているので、カバードバックグラウンド領域に属する画素の画素値に含まれる成分は、シャッタ時間に対応する期間のある時点で、背景の成分から、前景の成分に替わる。
【0125】
例えば、図19中に太線枠を付した画素値Mは、式(1)で表される。
【0126】
M=B02/v+B02/v+F07/v+F06/v (1)
【0127】
例えば、左から5番目の画素は、1つのシャッタ時間/vに対応する背景の成分を含み、3つのシャッタ時間/vに対応する前景の成分を含むので、左から5番目の画素の混合比αは、1/4である。左から6番目の画素は、2つのシャッタ時間/vに対応する背景の成分を含み、2つのシャッタ時間/vに対応する前景の成分を含むので、左から6番目の画素の混合比αは、1/2である。左から7番目の画素は、3つのシャッタ時間/vに対応する背景の成分を含み、1つのシャッタ時間/vに対応する前景の成分を含むので、左から7番目の画素の混合比αは、3/4である。
【0128】
前景に対応するオブジェクトが、剛体であり、前景の画像が次のフレームにおいて4画素右側に表示されるように等速で移動すると仮定できるので、例えば、図19中の左から4番目の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分F07/vは、図19中の左から5番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、前景の成分F07/vは、図19中の左から6番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分と、図19中の左から7番目の画素の、シャッタが開いて4番目のシャッタ時間/vに対応する前景の成分とに、それぞれ等しい。
【0129】
前景に対応するオブジェクトが、剛体であり、前景の画像が次のフレームにおいて4画素右側に表示されるように等速で移動すると仮定できるので、例えば、図19中の左から3番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分F06/vは、図19中の左から4番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、前景の成分F06/vは、図19中の左から5番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分と、図19中の左から6番目の画素の、シャッタが開いて4番目のシャッタ時間/vに対応する前景の成分とに、それぞれ等しい。
【0130】
前景に対応するオブジェクトが、剛体であり、前景の画像が次のフレームにおいて4画素右側に表示されるように等速で移動すると仮定できるので、例えば、図19中の左から2番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分F05/vは、図19中の左から3番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、前景の成分F05/vは、図19中の左から4番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分と、図19中の左から5番目の画素の、シャッタが開いて4番目のシャッタ時間/vに対応する前景の成分とに、それぞれ等しい。
【0131】
前景に対応するオブジェクトが、剛体であり、前景の画像が次のフレームにおいて4画素右側に表示されるように等速で移動すると仮定できるので、例えば、図19中の最も左側の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分F04/vは、図19中の左から2番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、前景の成分F04/vは、図19中の左から3番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分と、図19中の左から4番目の画素の、シャッタが開いて4番目のシャッタ時間/vに対応する前景の成分とに、それぞれ等しい。
【0132】
動いているオブジェクトに対応する前景の領域は、このように動きボケを含むので、歪み領域とも言える。
【0133】
図20は、前景が図中の右側に向かって移動する場合の、アンカバードバックグラウンド領域を含む、1つのライン上の画素の画素値を時間方向に展開したモデル図である。図20において、前景の動き量vは、4である。1フレームは短い時間なので、前景に対応するオブジェクトが剛体であり、等速で移動していると仮定することができる。図20において、前景に対応するオブジェクトの画像は、あるフレームを基準として次のフレームにおいて4画素分右側に移動する。
【0134】
図20において、最も左側の画素乃至左から4番目の画素は、背景領域に属する。図20において、左から5番目乃至左から7番目の画素は、アンカバードバックグラウンドである混合領域に属する。図20において、最も右側の画素は、前景領域に属する。
【0135】
背景に対応するオブジェクトを覆っていた前景に対応するオブジェクトが時間の経過と共に背景に対応するオブジェクトの前から取り除かれるように移動しているので、アンカバードバックグラウンド領域に属する画素の画素値に含まれる成分は、シャッタ時間に対応する期間のある時点で、前景の成分から、背景の成分に替わる。
【0136】
例えば、図20中に太線枠を付した画素値M'は、式(2)で表される。
【0137】
M'=F02/v+F01/v+B26/v+B26/v (2)
【0138】
例えば、左から5番目の画素は、3つのシャッタ時間/vに対応する背景の成分を含み、1つのシャッタ時間/vに対応する前景の成分を含むので、左から5番目の画素の混合比αは、3/4である。左から6番目の画素は、2つのシャッタ時間/vに対応する背景の成分を含み、2つのシャッタ時間/vに対応する前景の成分を含むので、左から6番目の画素の混合比αは、1/2である。左から7番目の画素は、1つのシャッタ時間/vに対応する背景の成分を含み、3つのシャッタ時間/vに対応する前景の成分を含むので、左から7番目の画素の混合比αは、1/4である。
【0139】
式(1)および式(2)をより一般化すると、画素値Mは、式(3)で表される。
【0140】
【数1】
Figure 0004660980
ここで、αは、混合比である。Bは、背景の画素値であり、Fi/vは、前景の成分である。
【0141】
前景に対応するオブジェクトが剛体であり、等速で動くと仮定でき、かつ、動き量vが4であるので、例えば、図20中の左から5番目の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分F01/vは、図20中の左から6番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、F01/vは、図20中の左から7番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分と、図20中の左から8番目の画素の、シャッタが開いて4番目のシャッタ時間/vに対応する前景の成分とに、それぞれ等しい。
【0142】
前景に対応するオブジェクトが剛体であり、等速で動くと仮定でき、かつ、仮想分割数が4であるので、例えば、図20中の左から6番目の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分F02/vは、図20中の左から7番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。同様に、前景の成分F02/vは、図20中の左から8番目の画素の、シャッタが開いて3番目のシャッタ時間/vに対応する前景の成分に等しい。
【0143】
前景に対応するオブジェクトが剛体であり、等速で動くと仮定でき、かつ、動き量vが4であるので、例えば、図20中の左から7番目の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分F03/vは、図20中の左から8番目の画素の、シャッタが開いて2番目のシャッタ時間/vに対応する前景の成分に等しい。
【0144】
図18乃至図20の説明において、仮想分割数は、4であるとして説明したが、仮想分割数は、動き量vに対応する。動き量vは、一般に、前景に対応するオブジェクトの移動速度に対応する。例えば、前景に対応するオブジェクトが、あるフレームを基準として次のフレームにおいて4画素分右側に表示されるように移動しているとき、動き量vは、4とされる。動き量vに対応し、仮想分割数は、4とされる。同様に、例えば、前景に対応するオブジェクトが、あるフレームを基準として次のフレームにおいて6画素分左側に表示されるように移動しているとき、動き量vは、6とされ、仮想分割数は、6とされる。
【0145】
図21および図22に、以上で説明した、前景領域、背景領域、カバードバックグラウンド領域若しくはアンカバードバックグラウンド領域から成る混合領域と、分割されたシャッタ時間に対応する前景の成分および背景の成分との関係を示す。
【0146】
図21は、静止している背景の前を移動しているオブジェクトに対応する前景を含む画像から、前景領域、背景領域、および混合領域の画素を抽出した例を示す。図21に示す例において、前景に対応するオブジェクトは、画面に対して水平に移動している。
【0147】
フレーム#n+1は、フレーム#nの次のフレームであり、フレーム#n+2は、フレーム#n+1の次のフレームである。
【0148】
フレーム#n乃至フレーム#n+2のいずれかから抽出した、前景領域、背景領域、および混合領域の画素を抽出して、動き量vを4として、抽出された画素の画素値を時間方向に展開したモデルを図22に示す。
【0149】
前景領域の画素値は、前景に対応するオブジェクトが移動するので、シャッタ時間/vの期間に対応する、4つの異なる前景の成分から構成される。例えば、図22に示す前景領域の画素のうち最も左側に位置する画素は、F01/v,F02/v,F03/v、およびF04/vから構成される。すなわち、前景領域の画素は、動きボケを含んでいる。
【0150】
背景に対応するオブジェクトが静止しているので、シャッタ時間に対応する期間において、センサに入力される背景に対応する光は変化しない。この場合、背景領域の画素値は、動きボケを含まない。
【0151】
カバードバックグラウンド領域若しくはアンカバードバックグラウンド領域から成る混合領域に属する画素の画素値は、前景の成分と、背景の成分とから構成される。
【0152】
次に、オブジェクトに対応する画像が動いているとき、複数のフレームにおける、隣接して1列に並んでいる画素であって、フレーム上で同一の位置の画素の画素値を時間方向に展開したモデルについて説明する。例えば、オブジェクトに対応する画像が画面に対して水平に動いているとき、隣接して1列に並んでいる画素として、画面の1つのライン上に並んでいる画素を選択することができる。
【0153】
図23は、静止している背景に対応するオブジェクトを撮像した画像の3つのフレームの、隣接して1列に並んでいる画素であって、フレーム上で同一の位置の画素の画素値を時間方向に展開したモデル図である。フレーム#nは、フレーム#n-1の次のフレームであり、フレーム#n+1は、フレーム#nの次のフレームである。他のフレームも同様に称する。
【0154】
図23に示すB01乃至B12の画素値は、静止している背景のオブジェクトに対応する画素の画素値である。背景に対応するオブジェクトが静止しているので、フレーム#n-1乃至フレームn+1において、対応する画素の画素値は、変化しない。例えば、フレーム#n-1におけるB05の画素値を有する画素の位置に対応する、フレーム#nにおける画素、およびフレーム#n+1における画素は、それぞれ、B05の画素値を有する。
【0155】
図24は、静止している背景に対応するオブジェクトと共に図中の右側に移動する前景に対応するオブジェクトを撮像した画像の3つのフレームの、隣接して1列に並んでいる画素であって、フレーム上で同一の位置の画素の画素値を時間方向に展開したモデル図である。図24に示すモデルは、カバードバックグラウンド領域を含む。
【0156】
図24において、前景に対応するオブジェクトが、剛体であり、等速で移動すると仮定でき、前景の画像が次のフレームにおいて4画素右側に表示されるように移動するので、前景の動き量vは、4であり、仮想分割数は、4である。
【0157】
例えば、図24中のフレーム#n-1の最も左側の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F12/vとなり、図24中の左から2番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F12/vとなる。図24中の左から3番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図24中の左から4番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F12/vとなる。
【0158】
図24中のフレーム#n-1の最も左側の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分は、F11/vとなり、図24中の左から2番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分も、F11/vとなる。図24中の左から3番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F11/vとなる。
【0159】
図24中のフレーム#n-1の最も左側の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分は、F10/vとなり、図24中の左から2番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分も、F10/vとなる。図24中のフレーム#n-1の最も左側の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F09/vとなる。
【0160】
背景に対応するオブジェクトが静止しているので、図24中のフレーム#n-1の左から2番目の画素の、シャッタが開いて最初のシャッタ時間/vの背景の成分は、B01/vとなる。図24中のフレーム#n-1の左から3番目の画素の、シャッタが開いて最初および2番目のシャッタ時間/vの背景の成分は、B02/vとなる。図24中のフレーム#n-1の左から4番目の画素の、シャッタが開いて最初乃至3番目のシャッタ時間/vの背景の成分は、B03/vとなる。
【0161】
図24中のフレーム#n-1において、最も左側の画素は、前景領域に属し、左側から2番目乃至4番目の画素は、カバードバックグラウンド領域である混合領域に属する。
【0162】
図24中のフレーム#n-1の左から5番目の画素乃至12番目の画素は、背景領域に属し、その画素値は、それぞれ、B04乃至B11となる。
【0163】
図24中のフレーム#nの左から1番目の画素乃至5番目の画素は、前景領域に属する。フレーム#nの前景領域における、シャッタ時間/vの前景の成分は、F05/v乃至F12/vのいずれかである。
【0164】
前景に対応するオブジェクトが、剛体であり、等速で移動すると仮定でき、前景の画像が次のフレームにおいて4画素右側に表示されるように移動するので、図24中のフレーム#nの左から5番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F12/vとなり、図24中の左から6番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F12/vとなる。図24中の左から7番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図24中の左から8番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F12/vとなる。
【0165】
図24中のフレーム#nの左から5番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分は、F11/vとなり、図24中の左から6番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分も、F11/vとなる。図24中の左から7番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F11/vとなる。
【0166】
図24中のフレーム#nの左から5番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分は、F10/vとなり、図24中の左から6番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分も、F10/vとなる。図24中のフレーム#nの左から5番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F09/vとなる。
【0167】
背景に対応するオブジェクトが静止しているので、図24中のフレーム#nの左から6番目の画素の、シャッタが開いて最初のシャッタ時間/vの背景の成分は、B05/vとなる。図24中のフレーム#nの左から7番目の画素の、シャッタが開いて最初および2番目のシャッタ時間/vの背景の成分は、B06/vとなる。図24中のフレーム#nの左から8番目の画素の、シャッタが開いて最初乃至3番目の、シャッタ時間/vの背景の成分は、B07/vとなる。
【0168】
図24中のフレーム#nにおいて、左側から6番目乃至8番目の画素は、カバードバックグラウンド領域である混合領域に属する。
【0169】
図24中のフレーム#nの左から9番目の画素乃至12番目の画素は、背景領域に属し、画素値は、それぞれ、B08乃至B11となる。
【0170】
図24中のフレーム#n+1の左から1番目の画素乃至9番目の画素は、前景領域に属する。フレーム#n+1の前景領域における、シャッタ時間/vの前景の成分は、F01/v乃至F12/vのいずれかである。
【0171】
前景に対応するオブジェクトが、剛体であり、等速で移動すると仮定でき、前景の画像が次のフレームにおいて4画素右側に表示されるように移動するので、図24中のフレーム#n+1の左から9番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F12/vとなり、図24中の左から10番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F12/vとなる。図24中の左から11番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図24中の左から12番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F12/vとなる。
【0172】
図24中のフレーム#n+1の左から9番目の画素の、シャッタが開いて2番目のシャッタ時間/vの期間の前景の成分は、F11/vとなり、図24中の左から10番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分も、F11/vとなる。図24中の左から11番目の画素の、シャッタが開いて4番目の、シャッタ時間/vの前景の成分は、F11/vとなる。
【0173】
図24中のフレーム#n+1の左から9番目の画素の、シャッタが開いて3番目の、シャッタ時間/vの前景の成分は、F10/vとなり、図24中の左から10番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分も、F10/vとなる。図24中のフレーム#n+1の左から9番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F09/vとなる。
【0174】
背景に対応するオブジェクトが静止しているので、図24中のフレーム#n+1の左から10番目の画素の、シャッタが開いて最初のシャッタ時間/vの背景の成分は、B09/vとなる。図24中のフレーム#n+1の左から11番目の画素の、シャッタが開いて最初および2番目のシャッタ時間/vの背景の成分は、B10/vとなる。図24中のフレーム#n+1の左から12番目の画素の、シャッタが開いて最初乃至3番目の、シャッタ時間/vの背景の成分は、B11/vとなる。
【0175】
図24中のフレーム#n+1において、左側から10番目乃至12番目の画素は、カバードバックグラウンド領域である混合領域に対応する。
【0176】
図25は、図24に示す画素値から前景の成分を抽出した画像のモデル図である。
【0177】
図26は、静止している背景と共に図中の右側に移動するオブジェクトに対応する前景を撮像した画像の3つのフレームの、隣接して1列に並んでいる画素であって、フレーム上で同一の位置の画素の画素値を時間方向に展開したモデル図である。図26において、アンカバードバックグラウンド領域が含まれている。
【0178】
図26において、前景に対応するオブジェクトは、剛体であり、かつ等速で移動していると仮定できる。前景に対応するオブジェクトが、次のフレームにおいて4画素分右側に表示されるように移動しているので、動き量vは、4である。
【0179】
例えば、図26中のフレーム#n-1の最も左側の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分は、F13/vとなり、図26中の左から2番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F13/vとなる。図26中の左から3番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図26中の左から4番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F13/vとなる。
【0180】
図26中のフレーム#n-1の左から2番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F14/vとなり、図26中の左から3番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F14/vとなる。図26中の左から3番目の画素の、シャッタが開いて最初の、シャッタ時間/vの前景の成分は、F15/vとなる。
【0181】
背景に対応するオブジェクトが静止しているので、図26中のフレーム#n-1の最も左側の画素の、シャッタが開いて2番目乃至4番目の、シャッタ時間/vの背景の成分は、B25/vとなる。図26中のフレーム#n-1の左から2番目の画素の、シャッタが開いて3番目および4番目の、シャッタ時間/vの背景の成分は、B26/vとなる。図26中のフレーム#n-1の左から3番目の画素の、シャッタが開いて4番目のシャッタ時間/vの背景の成分は、B27/vとなる。
【0182】
図26中のフレーム#n-1において、最も左側の画素乃至3番目の画素は、アンカバードバックグラウンド領域である混合領域に属する。
【0183】
図26中のフレーム#n-1の左から4番目の画素乃至12番目の画素は、前景領域に属する。フレームの前景の成分は、F13/v乃至F24/vのいずれかである。
【0184】
図26中のフレーム#nの最も左側の画素乃至左から4番目の画素は、背景領域に属し、画素値は、それぞれ、B25乃至B28となる。
【0185】
前景に対応するオブジェクトが、剛体であり、等速で移動すると仮定でき、前景の画像が次のフレームにおいて4画素右側に表示されるように移動するので、図26中のフレーム#nの左から5番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F13/vとなり、図26中の左から6番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F13/vとなる。図26中の左から7番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図26中の左から8番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F13/vとなる。
【0186】
図26中のフレーム#nの左から6番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F14/vとなり、図26中の左から7番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F14/vとなる。図26中の左から8番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F15/vとなる。
【0187】
背景に対応するオブジェクトが静止しているので、図26中のフレーム#nの左から5番目の画素の、シャッタが開いて2番目乃至4番目のシャッタ時間/vの背景の成分は、B29/vとなる。図26中のフレーム#nの左から6番目の画素の、シャッタが開いて3番目および4番目のシャッタ時間/vの背景の成分は、B30/vとなる。図26中のフレーム#nの左から7番目の画素の、シャッタが開いて4番目のシャッタ時間/vの背景の成分は、B31/vとなる。
【0188】
図26中のフレーム#nにおいて、左から5番目の画素乃至7番目の画素は、アンカバードバックグラウンド領域である混合領域に属する。
【0189】
図26中のフレーム#nの左から8番目の画素乃至12番目の画素は、前景領域に属する。フレーム#nの前景領域における、シャッタ時間/vの期間に対応する値は、F13/v乃至F20/vのいずれかである。
【0190】
図26中のフレーム#n+1の最も左側の画素乃至左から8番目の画素は、背景領域に属し、画素値は、それぞれ、B25乃至B32となる。
【0191】
前景に対応するオブジェクトが、剛体であり、等速で移動すると仮定でき、前景の画像が次のフレームにおいて4画素右側に表示されるように移動するので、図26中のフレーム#n+1の左から9番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F13/vとなり、図26中の左から10番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F13/vとなる。図26中の左から11番目の画素の、シャッタが開いて3番目のシャッタ時間/vの前景の成分、および図26中の左から12番目の画素の、シャッタが開いて4番目のシャッタ時間/vの前景の成分は、F13/vとなる。
【0192】
図26中のフレーム#n+1の左から10番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F14/vとなり、図26中の左から11番目の画素の、シャッタが開いて2番目のシャッタ時間/vの前景の成分も、F14/vとなる。図26中の左から12番目の画素の、シャッタが開いて最初のシャッタ時間/vの前景の成分は、F15/vとなる。
【0193】
背景に対応するオブジェクトが静止しているので、図26中のフレーム#n+1の左から9番目の画素の、シャッタが開いて2番目乃至4番目の、シャッタ時間/vの背景の成分は、B33/vとなる。図26中のフレーム#n+1の左から10番目の画素の、シャッタが開いて3番目および4番目のシャッタ時間/vの背景の成分は、B34/vとなる。図26中のフレーム#n+1の左から11番目の画素の、シャッタが開いて4番目のシャッタ時間/vの背景の成分は、B35/vとなる。
【0194】
図26中のフレーム#n+1において、左から9番目の画素乃至11番目の画素は、アンカバードバックグラウンド領域である混合領域に属する。
【0195】
図26中のフレーム#n+1の左から12番目の画素は、前景領域に属する。フレーム#n+1の前景領域における、シャッタ時間/vの前景の成分は、F13/v乃至F16/vのいずれかである。
【0196】
図27は、図26に示す画素値から前景の成分を抽出した画像のモデル図である。
【0197】
図28は、前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域に属する画素毎に分割された画像と、画素の画素値を時間方向に展開したモデル図との対応を示す図である。
【0198】
図28に示すように、領域特定部103は、入力画像の前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を特定する。
【0199】
図29は、前景領域の画像、背景領域の画像、カバードバックグラウンド領域の前景成分画像、カバードバックグラウンド領域の背景の成分、アンカバードバックグラウンド領域の前景の成分、およびアンカバードバックグラウンド領域の背景の成分に分離された入力画像と、画素の画素値を時間方向に展開したモデル図との対応を示す図である。
【0200】
図29に示すように、入力画像は、領域特定部103により、前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を特定される。入力画像は、前景背景分離部105により、特定された前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域、および混合比算出部104により検出された混合比αを基に、前景領域の画像、カバードバックグラウンド領域の前景の成分、およびアンカバードバックグラウンド領域の前景の成分からなる前景成分画像、並びに背景領域の画像、カバードバックグラウンド領域の背景の成分、およびアンカバードバックグラウンド領域の背景の成分からなる背景成分画像に分離される。
【0201】
分離された前景成分画像、および背景成分画像は、それぞれの画像毎に、処理される。
【0202】
図30は、前景領域、背景領域、および混合領域に分割された画像の例を示す図である。領域特定部103は、入力画像の、前景領域、背景領域、および混合領域を特定する。画像処理装置は、前景領域、背景領域、および混合領域を示す領域情報を基に、入力画像を、前景領域の画像、背景領域の画像、および混合領域の画像に分割することができる。
【0203】
図31に示すように、前景背景分離部105は、領域特定部103から供給された領域情報、および混合比算出部104から供給された混合比αを基に、混合領域の画像を、混合領域の前景成分画像および混合領域の背景成分画像に分離する。
【0204】
図32は、本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【0205】
ステップS101において、領域特定部103は、動き検出部102から供給された動きベクトルおよびその位置情報、並びに入力画像を基に、入力画像の前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を特定する。領域特定の処理の詳細は、後述する。
【0206】
ステップS102において、混合比算出部104は、領域特定部103から供給された領域情報および入力画像を基に、混合比αを算出する。混合比算出部104の混合比αを算出する処理の詳細は、後述する。
【0207】
ステップS103において、前景背景分離部105は、領域特定部103から供給された領域情報、および混合比算出部104から供給された混合比αを基に、入力画像を、前景の成分からなる前景成分画像、および背景の成分からなる背景成分画像に分離する。前景背景分離部105の画像の分離の処理の詳細は、後述する。
【0208】
ステップS104において、分離画像処理部106は、前景成分画像、および背景成分画像毎に、画像の処理を実行して、処理は終了する。分離画像処理部106が実行する画像処理の詳細は、後述する。
【0209】
このように、本発明に係る画像処理装置は、入力画像を、前景成分画像および背景成分画像に分離し、分離された前景成分画像、および背景成分画像毎に画像処理を実行する。
【0210】
以下、領域特定部103、混合比算出部104、前景背景分離部105、および分離画像処理部106のそれぞれの構成について説明する。
【0211】
図33は、領域特定部103の構成の一例を示すブロック図である。図33に構成を示す領域特定部103は、動きベクトルを利用しない。フレームメモリ201は、入力された画像をフレーム単位で記憶する。フレームメモリ201は、処理の対象がフレーム#nであるとき、フレーム#nの2つ前のフレームであるフレーム#n-2、フレーム#nの1つ前のフレームであるフレーム#n-1、フレーム#n、フレーム#nの1つ後のフレームであるフレーム#n+1、およびフレーム#nの2つ後のフレームであるフレーム#n+2を記憶する。
【0212】
静動判定部202−1は、フレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n+2の画素の画素値、およびフレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n+1の画素の画素値をフレームメモリ201から読み出して、読み出した画素値の差の絶対値を算出する。静動判定部202−1は、フレーム#n+2の画素値とフレーム#n+1の画素値との差の絶対値が、予め設定している閾値Thより大きいか否かを判定し、差の絶対値が閾値Thより大きいと判定された場合、動きを示す静動判定を領域判定部203−1に供給する。フレーム#n+2の画素の画素値とフレーム#n+1の画素の画素値との差の絶対値が閾値Th以下であると判定された場合、静動判定部202−1は、静止を示す静動判定を領域判定部203−1に供給する。
【0213】
静動判定部202−2は、フレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n+1の画素の画素値、およびフレーム#nの対象となる画素の画素値をフレームメモリ201から読み出して、画素値の差の絶対値を算出する。静動判定部202−2は、フレーム#n+1の画素値とフレーム#nの画素値との差の絶対値が、予め設定している閾値Thより大きいか否かを判定し、画素値の差の絶対値が、閾値Thより大きいと判定された場合、動きを示す静動判定を領域判定部203−1および領域判定部203−2に供給する。フレーム#n+1の画素の画素値とフレーム#nの画素の画素値との差の絶対値が、閾値Th以下であると判定された場合、静動判定部202−2は、静止を示す静動判定を領域判定部203−1および領域判定部203−2に供給する。
【0214】
静動判定部202−3は、フレーム#nの領域特定の対象である画素の画素値、およびフレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n-1の画素の画素値をフレームメモリ201から読み出して、画素値の差の絶対値を算出する。静動判定部202−3は、フレーム#nの画素値とフレーム#n-1の画素値との差の絶対値が、予め設定している閾値Thより大きいか否かを判定し、画素値の差の絶対値が、閾値Thより大きいと判定された場合、動きを示す静動判定を領域判定部203−2および領域判定部203−3に供給する。フレーム#nの画素の画素値とフレーム#n-1の画素の画素値との差の絶対値が、閾値Th以下であると判定された場合、静動判定部202−3は、静止を示す静動判定を領域判定部203−2および領域判定部203−3に供給する。
【0215】
静動判定部202−4は、フレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n-1の画素の画素値、およびフレーム#nの領域特定の対象である画素の画像上の位置と同一の位置にあるフレーム#n-2の画素の画素値をフレームメモリ201から読み出して、画素値の差の絶対値を算出する。静動判定部202−4は、フレーム#n-1の画素値とフレーム#n-2の画素値との差の絶対値が、予め設定している閾値Thより大きいか否かを判定し、画素値の差の絶対値が、閾値Thより大きいと判定された場合、動きを示す静動判定を領域判定部203−3に供給する。フレーム#n-1の画素の画素値とフレーム#n-2の画素の画素値との差の絶対値が、閾値Th以下であると判定された場合、静動判定部202−4は、静止を示す静動判定を領域判定部203−3に供給する。
【0216】
領域判定部203−1は、静動判定部202−1から供給された静動判定が静止を示し、かつ、静動判定部202−2から供給された静動判定が動きを示しているとき、フレーム#nにおける領域特定の対象である画素がアンカバードバックグラウンド領域に属すると判定し、領域の判定される画素に対応するアンカバードバックグラウンド領域判定フラグに、アンカバードバックグラウンド領域に属することを示す”1”を設定する。
【0217】
領域判定部203−1は、静動判定部202−1から供給された静動判定が動きを示すか、または、静動判定部202−2から供給された静動判定が静止を示しているとき、フレーム#nにおける領域特定の対象である画素がアンカバードバックグラウンド領域に属しないと判定し、領域の判定される画素に対応するアンカバードバックグラウンド領域判定フラグに、アンカバードバックグラウンド領域に属しないことを示す”0”を設定する。
【0218】
領域判定部203−1は、このように”1”または”0”が設定されたアンカバードバックグラウンド領域判定フラグを判定フラグ格納フレームメモリ204に供給する。
【0219】
領域判定部203−2は、静動判定部202−2から供給された静動判定が静止を示し、かつ、静動判定部202−3から供給された静動判定が静止を示しているとき、フレーム#nにおける領域特定の対象である画素が静止領域に属すると判定し、領域の判定される画素に対応する静止領域判定フラグに、静止領域に属することを示す”1”を設定する。
【0220】
領域判定部203−2は、静動判定部202−2から供給された静動判定が動きを示すか、または、静動判定部202−3から供給された静動判定が動きを示しているとき、フレーム#nにおける領域特定の対象である画素が静止領域に属しないと判定し、領域の判定される画素に対応する静止領域判定フラグに、静止領域に属しないことを示す”0”を設定する。
【0221】
領域判定部203−2は、このように”1”または”0”が設定された静止領域判定フラグを判定フラグ格納フレームメモリ204に供給する。
【0222】
領域判定部203−2は、静動判定部202−2から供給された静動判定が動きを示し、かつ、静動判定部202−3から供給された静動判定が動きを示しているとき、フレーム#nにおける領域特定の対象である画素が動き領域に属すると判定し、領域の判定される画素に対応する動き領域判定フラグに、動き領域に属することを示す”1”を設定する。
【0223】
領域判定部203−2は、静動判定部202−2から供給された静動判定が静止を示すか、または、静動判定部202−3から供給された静動判定が静止を示しているとき、フレーム#nにおける領域特定の対象である画素が動き領域に属しないと判定し、領域の判定される画素に対応する動き領域判定フラグに、動き領域に属しないことを示す”0”を設定する。
【0224】
領域判定部203−2は、このように”1”または”0”が設定された動き領域判定フラグを判定フラグ格納フレームメモリ204に供給する。
【0225】
領域判定部203−3は、静動判定部202−3から供給された静動判定が動きを示し、かつ、静動判定部202−4から供給された静動判定が静止を示しているとき、フレーム#nにおける領域特定の対象である画素がカバードバックグラウンド領域に属すると判定し、領域の判定される画素に対応するカバードバックグラウンド領域判定フラグに、カバードバックグラウンド領域に属することを示す”1”を設定する。
【0226】
領域判定部203−3は、静動判定部202−3から供給された静動判定が静止を示すか、または、静動判定部202−4から供給された静動判定が動きを示しているとき、フレーム#nにおける領域特定の対象である画素がカバードバックグラウンド領域に属しないと判定し、領域の判定される画素に対応するカバードバックグラウンド領域判定フラグに、カバードバックグラウンド領域に属しないことを示す”0”を設定する。
【0227】
領域判定部203−3は、このように”1”または”0”が設定されたカバードバックグラウンド領域判定フラグを判定フラグ格納フレームメモリ204に供給する。
【0228】
判定フラグ格納フレームメモリ204は、領域判定部203−1から供給されたアンカバードバックグラウンド領域判定フラグ、領域判定部203−2から供給された静止領域判定フラグ、領域判定部203−2から供給された動き領域判定フラグ、および領域判定部203−3から供給されたカバードバックグラウンド領域判定フラグをそれぞれ記憶する。
【0229】
判定フラグ格納フレームメモリ204は、記憶しているアンカバードバックグラウンド領域判定フラグ、静止領域判定フラグ、動き領域判定フラグ、およびカバードバックグラウンド領域判定フラグを合成部205に供給する。合成部205は、判定フラグ格納フレームメモリ204から供給された、アンカバードバックグラウンド領域判定フラグ、静止領域判定フラグ、動き領域判定フラグ、およびカバードバックグラウンド領域判定フラグを基に、各画素が、アンカバードバックグラウンド領域、静止領域、動き領域、およびカバードバックグラウンド領域のいずれかに属することを示す領域情報を生成し、判定フラグ格納フレームメモリ206に供給する。
【0230】
判定フラグ格納フレームメモリ206は、合成部205から供給された領域情報を記憶すると共に、記憶している領域情報を出力する。
【0231】
次に、領域特定部103の処理の例を図34乃至図38を参照して説明する。
【0232】
前景に対応するオブジェクトが移動しているとき、オブジェクトに対応する画像の画面上の位置は、フレーム毎に変化する。図34に示すように、フレーム#nにおいて、Yn(x,y)で示される位置に位置するオブジェクトに対応する画像は、次のフレームであるフレーム#n+1において、Yn+1(x,y)に位置する。
【0233】
前景のオブジェクトに対応する画像の動き方向に隣接して1列に並ぶ画素の画素値を時間方向に展開したモデル図を図37に示す。例えば、前景のオブジェクトに対応する画像の動き方向が画面に対して水平であるとき、図35におけるモデル図は、1つのライン上の隣接する画素の画素値を時間方向に展開したモデルを示す。
【0234】
図35において、フレーム#nにおけるラインは、フレーム#n+1におけるラインと同一である。
【0235】
フレーム#nにおいて、左から2番目の画素乃至13番目の画素に含まれているオブジェクトに対応する前景の成分は、フレーム#n+1において、左から6番目乃至17番目の画素に含まれる。
【0236】
フレーム#nにおいて、カバードバックグラウンド領域に属する画素は、左から11番目乃至13番目の画素であり、アンカバードバックグラウンド領域に属する画素は、左から2番目乃至4番目の画素である。フレーム#n+1において、カバードバックグラウンド領域に属する画素は、左から15番目乃至17番目の画素であり、アンカバードバックグラウンド領域に属する画素は、左から6番目乃至8番目の画素である。
【0237】
図35に示す例において、フレーム#nに含まれる前景の成分が、フレーム#n+1において4画素移動しているので、動き量vは、4である。仮想分割数は、動き量vに対応し、4である。
【0238】
次に、注目しているフレームの前後における混合領域に属する画素の画素値の変化について説明する。
【0239】
図36に示す、背景が静止し、前景の動き量vが4であるフレーム#nにおいて、カバードバックグラウンド領域に属する画素は、左から15番目乃至17番目の画素である。動き量vが4であるので、1つ前のフレーム#n-1において、左から15番目乃至17番目の画素は、背景の成分のみを含み、背景領域に属する。また、更に1つ前のフレーム#n-2において、左から15番目乃至17番目の画素は、背景の成分のみを含み、背景領域に属する。
【0240】
ここで、背景に対応するオブジェクトが静止しているので、フレーム#n-1の左から15番目の画素の画素値は、フレーム#n-2の左から15番目の画素の画素値から変化しない。同様に、フレーム#n-1の左から16番目の画素の画素値は、フレーム#n-2の左から16番目の画素の画素値から変化せず、フレーム#n-1の左から17番目の画素の画素値は、フレーム#n-2の左から17番目の画素の画素値から変化しない。
【0241】
すなわち、フレーム#nにおけるカバードバックグラウンド領域に属する画素に対応する、フレーム#n-1およびフレーム#n-2の画素は、背景の成分のみから成り、画素値が変化しないので、その差の絶対値は、ほぼ0の値となる。従って、フレーム#nにおける混合領域に属する画素に対応する、フレーム#n-1およびフレーム#n-2の画素に対する静動判定は、静動判定部202−4により、静止と判定される。
【0242】
フレーム#nにおけるカバードバックグラウンド領域に属する画素は、前景の成分を含むので、フレーム#n-1における背景の成分のみから成る場合と、画素値が異なる。従って、フレーム#nにおける混合領域に属する画素、および対応するフレーム#n-1の画素に対する静動判定は、静動判定部202−3により、動きと判定される。
【0243】
このように、領域判定部203−3は、静動判定部202−3から動きを示す静動判定の結果が供給され、静動判定部202−4から静止を示す静動判定の結果が供給されたとき、対応する画素がカバードバックグラウンド領域に属すると判定する。
【0244】
図37に示す、背景が静止し、前景の動き量vが4であるフレーム#nにおいて、アンカバードバックグラウンド領域に含まれる画素は、左から2番目乃至4番目の画素である。動き量vが4であるので、1つ後のフレーム#n+1において、左から2番目乃至4番目の画素は、背景の成分のみを含み、背景領域に属する。また、更に1つ後のフレーム#n+2において、左から2番目乃至4番目の画素は、背景の成分のみを含み、背景領域に属する。
【0245】
ここで、背景に対応するオブジェクトが静止しているので、フレーム#n+2の左から2番目の画素の画素値は、フレーム#n+1の左から2番目の画素の画素値から変化しない。同様に、フレーム#n+2の左から3番目の画素の画素値は、フレーム#n+1の左から3番目の画素の画素値から変化せず、フレーム#n+2の左から4番目の画素の画素値は、フレーム#n+1の左から4番目の画素の画素値から変化しない。
【0246】
すなわち、フレーム#nにおけるアンカバードバックグラウンド領域に属する画素に対応する、フレーム#n+1およびフレーム#n+2の画素は、背景の成分のみから成り、画素値が変化しないので、その差の絶対値は、ほぼ0の値となる。従って、フレーム#nにおける混合領域に属する画素に対応する、フレーム#n+1およびフレーム#n+2の画素に対する静動判定は、静動判定部202−1により、静止と判定される。
【0247】
フレーム#nにおけるアンカバードバックグラウンド領域に属する画素は、前景の成分を含むので、フレーム#n+1における背景の成分のみから成る場合と、画素値が異なる。従って、フレーム#nにおける混合領域に属する画素、および対応するフレーム#n+1の画素に対する静動判定は、静動判定部202−2により、動きと判定される。
【0248】
このように、領域判定部203−1は、静動判定部202−2から動きを示す静動判定の結果が供給され、静動判定部202−1から静止を示す静動判定の結果が供給されたとき、対応する画素がアンカバードバックグラウンド領域に属すると判定する。
【0249】
図38は、フレーム#nにおける領域特定部103の判定条件を示す図である。
フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n-2の画素と、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n-1の画素とが静止と判定され、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n-1の画素と、フレーム#nの画素とが動きと判定されたとき、領域特定部103は、フレーム#nの判定の対象となる画素がカバードバックグラウンド領域に属すると判定する。
【0250】
フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n-1の画素と、フレーム#nの画素とが静止と判定され、フレーム#nの画素と、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n+1の画素とが静止と判定されたとき、領域特定部103は、フレーム#nの判定の対象となる画素が静止領域に属すると判定する。
【0251】
フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n-1の画素と、フレーム#nの画素とが動きと判定され、フレーム#nの画素と、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n+1の画素とが動きと判定されたとき、領域特定部103は、フレーム#nの判定の対象となる画素が動き領域に属すると判定する。
【0252】
フレーム#nの画素と、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n+1の画素とが動きと判定され、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n+1の画素と、フレーム#nの判定の対象となる画素の画像上の位置と同一の位置にあるフレーム#n+2の画素とが静止と判定されたとき、領域特定部103は、フレーム#nの判定の対象となる画素がアンカバードバックグラウンド領域に属すると判定する。
【0253】
図39は、領域特定部103の領域の特定の結果の例を示す図である。図39(A)において、カバードバックグラウンド領域に属すると判定された画素は、白で表示されている。図39(B)において、アンカバードバックグラウンド領域に属すると判定された画素は、白で表示されている。
【0254】
図39(C)において、動き領域に属すると判定された画素は、白で表示されている。図39(D)において、静止領域に属すると判定された画素は、白で表示されている。
【0255】
図40は、判定フラグ格納フレームメモリ206が出力する領域情報の内、混合領域を示す領域情報を画像として示す図である。図40において、カバードバックグラウンド領域またはアンカバードバックグラウンド領域に属すると判定された画素、すなわち混合領域に属すると判定された画素は、白で表示されている。判定フラグ格納フレームメモリ206が出力する混合領域を示す領域情報は、混合領域、および前景領域内のテクスチャの無い部分に囲まれたテクスチャの有る部分を示す。
【0256】
次に、図41のフローチャートを参照して、領域特定部103の領域特定の処理を説明する。ステップS201において、フレームメモリ201は、判定の対象となるフレーム#nを含むフレーム#n-2乃至フレーム#n+2の画像を取得する。
【0257】
ステップS202において、静動判定部202−3は、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、静止か否かを判定し、静止と判定された場合、ステップS203に進み、静動判定部202−2は、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、静止か否かを判定する。
【0258】
ステップS203において、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、静止と判定された場合、ステップS204に進み、領域判定部203−2は、領域の判定される画素に対応する静止領域判定フラグに、静止領域に属することを示す”1”を設定する。領域判定部203−2は、静止領域判定フラグを判定フラグ格納フレームメモリ204に供給し、手続きは、ステップS205に進む。
【0259】
ステップS202において、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、動きと判定された場合、または、ステップS203において、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、動きと判定された場合、フレーム#nの画素が静止領域には属さないので、ステップS204の処理はスキップされ、手続きは、ステップS205に進む。
【0260】
ステップS205において、静動判定部202−3は、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、動きか否かを判定し、動きと判定された場合、ステップS206に進み、静動判定部202−2は、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、動きか否かを判定する。
【0261】
ステップS206において、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、動きと判定された場合、ステップS207に進み、領域判定部203−2は、領域の判定される画素に対応する動き領域判定フラグに、動き領域に属することを示す”1”を設定する。領域判定部203−2は、動き領域判定フラグを判定フラグ格納フレームメモリ204に供給し、手続きは、ステップS208に進む。
【0262】
ステップS205において、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、静止と判定された場合、または、ステップS206において、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、静止と判定された場合、フレーム#nの画素が動き領域には属さないので、ステップS207の処理はスキップされ、手続きは、ステップS208に進む。
【0263】
ステップS208において、静動判定部202−4は、フレーム#n-2の画素とフレーム#n-1の同一位置の画素とで、静止か否かを判定し、静止と判定された場合、ステップS209に進み、静動判定部202−3は、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、動きか否かを判定する。
【0264】
ステップS209において、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、動きと判定された場合、ステップS210に進み、領域判定部203−3は、領域の判定される画素に対応するカバードバックグラウンド領域判定フラグに、カバードバックグラウンド領域に属することを示す”1”を設定する。領域判定部203−3は、カバードバックグラウンド領域判定フラグを判定フラグ格納フレームメモリ204に供給し、手続きは、ステップS211に進む。
【0265】
ステップS208において、フレーム#n-2の画素とフレーム#n-1の同一位置の画素とで、動きと判定された場合、または、ステップS209において、フレーム#n-1の画素とフレーム#nの同一位置の画素とで、静止と判定された場合、フレーム#nの画素がカバードバックグラウンド領域には属さないので、ステップS210の処理はスキップされ、手続きは、ステップS211に進む。
【0266】
ステップS211において、静動判定部202−2は、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、動きか否かを判定し、動きと判定された場合、ステップS212に進み、静動判定部202−1は、フレーム#n+1の画素とフレーム#n+2の同一位置の画素とで、静止か否かを判定する。
【0267】
ステップS212において、フレーム#n+1の画素とフレーム#n+2の同一位置の画素とで、静止と判定された場合、ステップS213に進み、領域判定部203−1は、領域の判定される画素に対応するアンカバードバックグラウンド領域判定フラグに、アンカバードバックグラウンド領域に属することを示す”1”を設定する。領域判定部203−1は、アンカバードバックグラウンド領域判定フラグを判定フラグ格納フレームメモリ204に供給し、手続きは、ステップS214に進む。
【0268】
ステップS211において、フレーム#nの画素とフレーム#n+1の同一位置の画素とで、静止と判定された場合、または、ステップS212において、フレーム#n+1の画素とフレーム#n+2の同一位置の画素とで、動きと判定された場合、フレーム#nの画素がアンカバードバックグラウンド領域には属さないので、ステップS213の処理はスキップされ、手続きは、ステップS214に進む。
【0269】
ステップS214において、領域特定部103は、フレーム#nの全ての画素について領域を特定したか否かを判定し、フレーム#nの全ての画素について領域を特定していないと判定された場合、手続きは、ステップS202に戻り、他の画素について、領域特定の処理を繰り返す。
【0270】
ステップS214において、フレーム#nの全ての画素について領域を特定したと判定された場合、ステップS215に進み、合成部205は、判定フラグ格納フレームメモリ204に記憶されているアンカバードバックグラウンド領域判定フラグ、およびカバードバックグラウンド領域判定フラグを基に、混合領域を示す領域情報を生成し、更に、各画素が、アンカバードバックグラウンド領域、静止領域、動き領域、およびカバードバックグラウンド領域のいずれかに属することを示す領域情報を生成し、生成した領域情報を判定フラグ格納フレームメモリ206に設定し、処理は終了する。
【0271】
このように、領域特定部103は、フレームに含まれている画素のそれぞれについて、動き領域、静止領域、アンカバードバックグラウンド領域、またはカバードバックグラウンド領域に属することを示す領域情報を生成することができる。
【0272】
なお、領域特定部103は、アンカバードバックグラウンド領域およびカバードバックグラウンド領域に対応する領域情報に論理和を適用することにより、混合領域に対応する領域情報を生成して、フレームに含まれている画素のそれぞれについて、動き領域、静止領域、または混合領域に属することを示すフラグから成る領域情報を生成するようにしてもよい。
【0273】
前景に対応するオブジェクトがテクスチャを有す場合、領域特定部103は、より正確に動き領域を特定することができる。
【0274】
領域特定部103は、動き領域を示す領域情報を前景領域を示す領域情報として、また、静止領域を示す領域情報を背景領域を示す領域情報として出力することができる。
【0275】
なお、背景に対応するオブジェクトが静止しているとして説明したが、背景領域に対応する画像が動きを含んでいても上述した領域を特定する処理を適用することができる。例えば、背景領域に対応する画像が一様に動いているとき、領域特定部103は、この動きに対応して画像全体をシフトさせ、背景に対応するオブジェクトが静止している場合と同様に処理する。また、背景領域に対応する画像が局所毎に異なる動きを含んでいるとき、領域特定部103は、動きに対応した画素を選択して、上述の処理を実行する。
【0276】
図42は、領域特定部103の構成の他の例を示すブロック図である。図42に示す領域特定部103は、動きベクトルを使用しない。背景画像生成部301は、入力画像に対応する背景画像を生成し、生成した背景画像を2値オブジェクト画像抽出部302に供給する。背景画像生成部301は、例えば、入力画像に含まれる背景のオブジェクトに対応する画像オブジェクトを抽出して、背景画像を生成する。
【0277】
前景のオブジェクトに対応する画像の動き方向に隣接して1列に並ぶ画素の画素値を時間方向に展開したモデル図の例を図43に示す。例えば、前景のオブジェクトに対応する画像の動き方向が画面に対して水平であるとき、図43におけるモデル図は、1つのライン上の隣接する画素の画素値を時間方向に展開したモデルを示す。
【0278】
図43において、フレーム#nにおけるラインは、フレーム#n-1およびフレーム#n+1におけるラインと同一である。
【0279】
フレーム#nにおいて、左から6番目の画素乃至17番目の画素に含まれているオブジェクトに対応する前景の成分は、フレーム#n-1において、左から2番目乃至13番目の画素に含まれ、フレーム#n+1において、左から10番目乃至21番目の画素に含まれる。
【0280】
フレーム#n-1において、カバードバックグラウンド領域に属する画素は、左から11番目乃至13番目の画素であり、アンカバードバックグラウンド領域に属する画素は、左から2番目乃至4番目の画素である。フレーム#nにおいて、カバードバックグラウンド領域に属する画素は、左から15番目乃至17番目の画素であり、アンカバードバックグラウンド領域に属する画素は、左から6番目乃至8番目の画素である。フレーム#n+1において、カバードバックグラウンド領域に属する画素は、左から19番目乃至21番目の画素であり、アンカバードバックグラウンド領域に属する画素は、左から10番目乃至12番目の画素である。
【0281】
フレーム#n-1において、背景領域に属する画素は、左から1番目の画素、および左から14番目乃至21番目の画素である。フレーム#nにおいて、背景領域に属する画素は、左から1番目乃至5番目の画素、および左から18番目乃至21番目の画素である。フレーム#n+1において、背景領域に属する画素は、左から1番目乃至9番目の画素である。
【0282】
背景画像生成部301が生成する、図43の例に対応する背景画像の例を図44に示す。背景画像は、背景のオブジェクトに対応する画素から構成され、前景のオブジェクトに対応する画像の成分を含まない。
【0283】
2値オブジェクト画像抽出部302は、背景画像および入力画像の相関を基に、2値オブジェクト画像を生成し、生成した2値オブジェクト画像を時間変化検出部303に供給する。
【0284】
図45は、2値オブジェクト画像抽出部302の構成を示すブロック図である。相関値演算部321は、背景画像生成部301から供給された背景画像および入力画像の相関を演算し、相関値を生成して、生成した相関値をしきい値処理部322に供給する。
【0285】
相関値演算部321は、例えば、図46(A)に示すように、X4を中心とした3×3の背景画像の中のブロックと、図46(B)に示すように、背景画像の中のブロックに対応するY4を中心とした3×3の入力画像の中のブロックに、式(4)を適用して、Y4に対応する相関値を算出する。
【0286】
【数2】
Figure 0004660980
【数3】
Figure 0004660980
【数4】
Figure 0004660980
【0287】
相関値演算部321は、このように各画素に対応して算出された相関値をしきい値処理部322に供給する。
【0288】
また、相関値演算部321は、例えば、図47(A)に示すように、X4を中心とした3×3の背景画像の中のブロックと、図47(B)に示すように、背景画像の中のブロックに対応するY4を中心とした3×3の入力画像の中のブロックに、式(7)を適用して、Y4に対応する差分絶対値を算出するようにしてもよい。
【0289】
【数5】
Figure 0004660980
【0290】
相関値演算部321は、このように算出された差分絶対値を相関値として、しきい値処理部322に供給する。
【0291】
しきい値処理部322は、相関画像の画素値としきい値th0とを比較して、相関値がしきい値th0以下である場合、2値オブジェクト画像の画素値に1を設定し、相関値がしきい値th0より大きい場合、2値オブジェクト画像の画素値に0を設定して、0または1が画素値に設定された2値オブジェクト画像を出力する。しきい値処理部322は、しきい値th0を予め記憶するようにしてもよく、または、外部から入力されたしきい値th0を使用するようにしてもよい。
【0292】
図48は、図43に示す入力画像のモデルに対応する2値オブジェクト画像の例を示す図である。2値オブジェクト画像において、背景画像と相関の高い画素には、画素値に0が設定される。
【0293】
図49は、時間変化検出部303の構成を示すブロック図である。フレームメモリ341は、フレーム#nの画素について領域を判定するとき、2値オブジェクト画像抽出部302から供給された、フレーム#n-1、フレーム#n、およびフレーム#n+1の2値オブジェクト画像を記憶する。
【0294】
領域判定部342は、フレームメモリ341に記憶されているフレーム#n-1、フレーム#n、およびフレーム#n+1の2値オブジェクト画像を基に、フレーム#nの各画素について領域を判定して、領域情報を生成し、生成した領域情報を出力する。
【0295】
図50は、領域判定部342の判定を説明する図である。フレーム#nの2値オブジェクト画像の注目している画素が0であるとき、領域判定部342は、フレーム#nの注目している画素が背景領域に属すると判定する。
【0296】
フレーム#nの2値オブジェクト画像の注目している画素が1であり、フレーム#n-1の2値オブジェクト画像の対応する画素が1であり、フレーム#n+1の2値オブジェクト画像の対応する画素が1であるとき、領域判定部342は、フレーム#nの注目している画素が前景領域に属すると判定する。
【0297】
フレーム#nの2値オブジェクト画像の注目している画素が1であり、フレーム#n-1の2値オブジェクト画像の対応する画素が0であるとき、領域判定部342は、フレーム#nの注目している画素がカバードバックグラウンド領域に属すると判定する。
【0298】
フレーム#nの2値オブジェクト画像の注目している画素が1であり、フレーム#n+1の2値オブジェクト画像の対応する画素が0であるとき、領域判定部342は、フレーム#nの注目している画素がアンカバードバックグラウンド領域に属すると判定する。
【0299】
図51は、図43に示す入力画像のモデルに対応する2値オブジェクト画像について、時間変化検出部303の判定した例を示す図である。時間変化検出部303は、2値オブジェクト画像のフレーム#nの対応する画素が0なので、フレーム#nの左から1番目乃至5番目の画素を背景領域に属すると判定する。
【0300】
時間変化検出部303は、2値オブジェクト画像のフレーム#nの画素が1であり、フレーム#n+1の対応する画素が0なので、左から6番目乃至9番目の画素をアンカバードバックグラウンド領域に属すると判定する。
【0301】
時間変化検出部303は、2値オブジェクト画像のフレーム#nの画素が1であり、フレーム#n-1の対応する画素が1であり、フレーム#n+1の対応する画素が1なので、左から10番目乃至13番目の画素を前景領域に属すると判定する。
【0302】
時間変化検出部303は、2値オブジェクト画像のフレーム#nの画素が1であり、フレーム#n-1の対応する画素が0なので、左から14番目乃至17番目の画素をカバードバックグラウンド領域に属すると判定する。
【0303】
時間変化検出部303は、2値オブジェクト画像のフレーム#nの対応する画素が0なので、左から18番目乃至21番目の画素を背景領域に属すると判定する。
【0304】
次に、図52のフローチャートを参照して、領域判定部103の領域特定の処理を説明する。ステップS301において、領域判定部103の背景画像生成部301は、入力画像を基に、例えば、入力画像に含まれる背景のオブジェクトに対応する画像オブジェクトを抽出して背景画像を生成し、生成した背景画像を2値オブジェクト画像抽出部302に供給する。
【0305】
ステップS302において、2値オブジェクト画像抽出部302は、例えば、図46を参照して説明した演算により、入力画像と背景画像生成部301から供給された背景画像との相関値を演算する。ステップS303において、2値オブジェクト画像抽出部302は、例えば、相関値としきい値th0とを比較することにより、相関値およびしきい値th0から2値オブジェクト画像を演算する。
【0306】
ステップS304において、時間変化検出部303は、領域判定の処理を実行して、処理は終了する。
【0307】
図53のフローチャートを参照して、ステップS304に対応する領域判定の処理の詳細を説明する。ステップS321において、時間変化検出部303の領域判定部342は、フレームメモリ341に記憶されているフレーム#nにおいて、注目する画素が0であるか否かを判定し、フレーム#nにおいて、注目する画素が0であると判定された場合、ステップS322に進み、フレーム#nの注目する画素が背景領域に属すると設定して、処理は終了する。
【0308】
ステップS321において、フレーム#nにおいて、注目する画素が1であると判定された場合、ステップS323に進み、時間変化検出部303の領域判定部342は、フレームメモリ341に記憶されているフレーム#nにおいて、注目する画素が1であり、かつ、フレーム#n-1において、対応する画素が0であるか否かを判定し、フレーム#nにおいて、注目する画素が1であり、かつ、フレーム#n-1において、対応する画素が0であると判定された場合、ステップS324に進み、フレーム#nの注目する画素がカバードバックグラウンド領域に属すると設定して、処理は終了する。
【0309】
ステップS323において、フレーム#nにおいて、注目する画素が0であるか、または、フレーム#n-1において、対応する画素が1であると判定された場合、ステップS325に進み、時間変化検出部303の領域判定部342は、フレームメモリ341に記憶されているフレーム#nにおいて、注目する画素が1であり、かつ、フレーム#n+1において、対応する画素が0であるか否かを判定し、フレーム#nにおいて、注目する画素が1であり、かつ、フレーム#n+1において、対応する画素が0であると判定された場合、ステップS326に進み、フレーム#nの注目する画素がアンカバードバックグラウンド領域に属すると設定して、処理は終了する。
【0310】
ステップS325において、フレーム#nにおいて、注目する画素が0であるか、または、フレーム#n+1において、対応する画素が1であると判定された場合、ステップS327に進み、時間変化検出部303の領域判定部342は、フレーム#nの注目する画素を前景領域と設定して、処理は終了する。
【0311】
このように、領域特定部103は、入力された画像と対応する背景画像との相関値を基に、入力画像の画素が前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域のいずれかに属するかを特定して、特定した結果に対応する領域情報を生成することができる。
【0312】
図54は、領域特定部103の他の構成を示すブロック図である。図54に示す領域特定部103は、動き検出部102から供給される動きベクトルとその位置情報を使用する。図42に示す場合と同様の部分には、同一の番号を付してあり、その説明は省略する。
【0313】
ロバスト化部361は、2値オブジェクト画像抽出部302から供給された、N個のフレームの2値オブジェクト画像を基に、ロバスト化された2値オブジェクト画像を生成して、時間変化検出部303に出力する。
【0314】
図55は、ロバスト化部361の構成を説明するブロック図である。動き補償部381は、動き検出部102から供給された動きベクトルとその位置情報を基に、N個のフレームの2値オブジェクト画像の動きを補償して、動きが補償された2値オブジェクト画像をスイッチ382に出力する。
【0315】
図56および図57の例を参照して、動き補償部381の動き補償について説明する。例えば、フレーム#nの領域を判定するとき、図56に例を示すフレーム#n-1、フレーム#n、およびフレーム#n+1の2値オブジェクト画像が入力された場合、動き補償部381は、動き検出部102から供給された動きベクトルを基に、図57に例を示すように、フレーム#n-1の2値オブジェクト画像、およびフレーム#n+1の2値オブジェクト画像を動き補償して、動き補償された2値オブジェクト画像をスイッチ382に供給する。
【0316】
スイッチ382は、1番目のフレームの動き補償された2値オブジェクト画像をフレームメモリ383−1に出力し、2番目のフレームの動き補償された2値オブジェクト画像をフレームメモリ383−2に出力する。同様に、スイッチ382は、3番目乃至N−1番目のフレームの動き補償された2値オブジェクト画像のそれぞれをフレームメモリ383−3乃至フレームメモリ383−(N−1)のいずれかに出力し、N番目のフレームの動き補償された2値オブジェクト画像をフレームメモリ383−Nに出力する。
【0317】
フレームメモリ383−1は、1番目のフレームの動き補償された2値オブジェクト画像を記憶し、記憶されている2値オブジェクト画像を重み付け部384−1に出力する。フレームメモリ383−2は、2番目のフレームの動き補償された2値オブジェクト画像を記憶し、記憶されている2値オブジェクト画像を重み付け部384−2に出力する。
【0318】
同様に、フレームメモリ383−3乃至フレームメモリ383−(N−1)のそれぞれは、3番目のフレーム乃至N−1番目のフレームの動き補償された2値オブジェクト画像のいずれかを記憶し、記憶されている2値オブジェクト画像を重み付け部384−3乃至重み付け部384−(N−1)のいずれかに出力する。フレームメモリ383−Nは、N番目のフレームの動き補償された2値オブジェクト画像を記憶し、記憶されている2値オブジェクト画像を重み付け部384−Nに出力する。
【0319】
重み付け部384−1は、フレームメモリ383−1から供給された1番目のフレームの動き補償された2値オブジェクト画像の画素値に予め定めた重みw1を乗じて、積算部385に供給する。重み付け部384−2は、フレームメモリ383−2から供給された2番目のフレームの動き補償された2値オブジェクト画像の画素値に予め定めた重みw2を乗じて、積算部385に供給する。
【0320】
同様に、重み付け部384−3乃至重み付け部384−(N−1)のそれぞれは、フレームメモリ383−3乃至フレームメモリ383−(N−1)のいずれかから供給された3番目乃至N−1番目のいずれかのフレームの動き補償された2値オブジェクト画像の画素値に予め定めた重みw3乃至重みw(N-1)のいずれかを乗じて、積算部385に供給する。重み付け部384−Nは、フレームメモリ383−Nから供給されたN番目のフレームの動き補償された2値オブジェクト画像の画素値に予め定めた重みwNを乗じて、積算部385に供給する。
【0321】
積算部385は、1乃至N番目のフレームの動き補償され、それぞれ重みw1乃至wNのいずれかが乗じられた、2値オブジェクト画像の対応する画素値を積算して、積算された画素値を予め定めたしきい値th0と比較することにより2値オブジェクト画像を生成する。
【0322】
このように、ロバスト化部361は、N個の2値オブジェクト画像からロバスト化された2値オブジェト画像を生成して、時間変化検出部303に供給するので、図54に構成を示す領域特定部103は、入力画像にノイズが含まれていても、図42に示す場合に比較して、より正確に領域を特定することができる。
【0323】
次に、図54に構成を示す領域特定部103の領域特定の処理について、図58のフローチャートを参照して説明する。ステップS341乃至ステップS343の処理は、図52のフローチャートで説明したステップS301乃至ステップS303とそれぞれ同様なのでその説明は省略する。
【0324】
ステップS344において、ロバスト化部361は、ロバスト化の処理を実行する。
【0325】
ステップS345において、時間変化検出部303は、領域判定の処理を実行して、処理は終了する。ステップS345の処理の詳細は、図53のフローチャートを参照して説明した処理と同様なのでその説明は省略する。
【0326】
次に、図59のフローチャートを参照して、図58のステップS344の処理に対応する、ロバスト化の処理の詳細について説明する。ステップS361において、動き補償部381は、動き検出部102から供給される動きベクトルとその位置情報を基に、入力された2値オブジェクト画像の動き補償の処理を実行する。ステップS362において、フレームメモリ383−1乃至383−Nのいずれかは、スイッチ382を介して供給された動き補償された2値オブジェクト画像を記憶する。
【0327】
ステップS363において、ロバスト化部361は、N個の2値オブジェクト画像が記憶されたか否かを判定し、N個の2値オブジェクト画像が記憶されていないと判定された場合、ステップS361に戻り、2値オブジェクト画像の動き補償の処理および2値オブジェクト画像の記憶の処理を繰り返す。
【0328】
ステップS363において、N個の2値オブジェクト画像が記憶されたと判定された場合、ステップS364に進み、重み付け部384−1乃至384−Nのそれぞれは、N個の2値オブジェクト画像のそれぞれにw1乃至wNのいずれかの重みを乗じて、重み付けする。
【0329】
ステップS365において、積算部385は、重み付けされたN個の2値オブジェクト画像を積算する。
【0330】
ステップS366において、積算部385は、例えば、予め定められたしきい値th1との比較などにより、積算された画像から2値オブジェクト画像を生成して、処理は終了する。
【0331】
このように、図54に構成を示す領域特定部103は、ロバスト化された2値オブジェクト画像を基に、領域情報を生成することができる。
【0332】
以上のように、領域特定部103は、フレームに含まれている画素のそれぞれについて、動き領域、静止領域、アンカバードバックグラウンド領域、またはカバードバックグラウンド領域に属することを示す領域情報を生成することができる。
【0333】
図60は、混合比算出部104の構成の一例を示すブロック図である。推定混合比処理部401は、入力画像を基に、カバードバックグラウンド領域のモデルに対応する演算により、画素毎に推定混合比を算出して、算出した推定混合比を混合比決定部403に供給する。
【0334】
推定混合比処理部402は、入力画像を基に、アンカバードバックグラウンド領域のモデルに対応する演算により、画素毎に推定混合比を算出して、算出した推定混合比を混合比決定部403に供給する。
【0335】
前景に対応するオブジェクトがシャッタ時間内に等速で動いていると仮定できるので、混合領域に属する画素の混合比αは、以下の性質を有する。すなわち、混合比αは、画素の位置の変化に対応して、直線的に変化する。画素の位置の変化を1次元とすれば、混合比αの変化は、直線で表現することができ、画素の位置の変化を2次元とすれば、混合比αの変化は、平面で表現することができる。
【0336】
なお、1フレームの期間は短いので、前景に対応するオブジェクトが剛体であり、等速で移動していると仮定が成り立つ。
【0337】
この場合、混合比αの傾きは、前景のシャッタ時間内での動き量vの逆比となる。
【0338】
理想的な混合比αの例を図61に示す。理想的な混合比αの混合領域における傾きlは、動き量vの逆数として表すことができる。
【0339】
図61に示すように、理想的な混合比αは、背景領域において、1の値を有し、前景領域において、0の値を有し、混合領域において、0を越え1未満の値を有する。
【0340】
図62の例において、フレーム#nの左から7番目の画素の画素値C06は、フレーム#n-1の左から7番目の画素の画素値P06を用いて、式(8)で表すことができる。
【0341】
【数6】
Figure 0004660980
【0342】
式(8)において、画素値C06を混合領域の画素の画素値Mと、画素値P06を背景領域の画素の画素値Bと表現する。すなわち、混合領域の画素の画素値Mおよび背景領域の画素の画素値Bは、それぞれ、式(9)および式(10)のように表現することができる。
【0343】
M=C06 (9)
B=P06 (10)
【0344】
式(8)中の2/vは、混合比αに対応する。動き量vが4なので、フレーム#nの左から7番目の画素の混合比αは、0.5となる。
【0345】
以上のように、注目しているフレーム#nの画素値Cを混合領域の画素値と見なし、フレーム#nの前のフレーム#n-1の画素値Pを背景領域の画素値と見なすことで、混合比αを示す式(3)は、式(11)のように書き換えられる。
【0346】
C=α・P+f (11)
式(11)のfは、注目している画素に含まれる前景の成分の和ΣiFi/vである。式(11)に含まれる変数は、混合比αおよび前景の成分の和fの2つである。
【0347】
同様に、アンカバードバックグラウンド領域における、動き量vが4であり、時間方向の仮想分割数が4である、画素値を時間方向に展開したモデルを図63に示す。
【0348】
アンカバードバックグラウンド領域において、上述したカバードバックグラウンド領域における表現と同様に、注目しているフレーム#nの画素値Cを混合領域の画素値と見なし、フレーム#nの後のフレーム#n+1の画素値Nを背景領域の画素値と見なすことで、混合比αを示す式(3)は、式(12)のように表現することができる。
【0349】
C=α・N+f (12)
【0350】
なお、背景のオブジェクトが静止しているとして説明したが、背景のオブジェクトが動いている場合においても、背景の動き量vに対応させた位置の画素の画素値を利用することにより、式(8)乃至式(12)を適用することができる。例えば、図62において、背景に対応するオブジェクトの動き量vが2であり、仮想分割数が2であるとき、背景に対応するオブジェクトが図中の右側に動いているとき、式(10)における背景領域の画素の画素値Bは、画素値P04とされる。
【0351】
式(11)および式(12)は、それぞれ2つの変数を含むので、そのままでは混合比αを求めることができない。ここで、画像は一般的に空間的に相関が強いので近接する画素同士でほぼ同じ画素値となる。
【0352】
そこで、前景成分は、空間的に相関が強いので、前景の成分の和fを前または後のフレームから導き出せるように式を変形して、混合比αを求める。
【0353】
図64のフレーム#nの左から7番目の画素の画素値Mcは、式(13)で表すことができる。
【0354】
【数7】
Figure 0004660980
式(13)の右辺第1項の2/vは、混合比αに相当する。式(13)の右辺第2項は、後のフレーム#n+1の画素値を利用して、式(14)のように表すこととする。
【0355】
【数8】
Figure 0004660980
【0356】
ここで、前景の成分の空間相関を利用して、式(15)が成立するとする。
【0357】
F=F05=F06=F07=F08=F09=F10=F11=F12 (15)
式(14)は、式(15)を利用して、式(16)のように置き換えることができる。
【0358】
【数9】
Figure 0004660980
【0359】
結果として、βは、式(17)で表すことができる。
【0360】
β=2/4 (17)
【0361】
一般的に、式(15)に示すように混合領域に関係する前景の成分が等しいと仮定すると、混合領域の全ての画素について、内分比の関係から式(18)が成立する。
【0362】
β=1-α (18)
【0363】
式(18)が成立するとすれば、式(11)は、式(19)に示すように展開することができる。
【0364】
【数10】
Figure 0004660980
【0365】
同様に、式(18)が成立するとすれば、式(12)は、式(20)に示すように展開することができる。
【0366】
【数11】
Figure 0004660980
【0367】
式(19)および式(20)において、C,N、およびPは、既知の画素値なので、式(19)および式(20)に含まれる変数は、混合比αのみである。式(19)および式(20)における、C,N、およびPの関係を図65に示す。Cは、混合比αを算出する、フレーム#nの注目している画素の画素値である。Nは、注目している画素と空間方向の位置が対応する、フレーム#n+1の画素の画素値である。Pは、注目している画素と空間方向の位置が対応する、フレーム#n-1の画素の画素値である。
【0368】
従って、式(19)および式(20)のそれぞれに1つの変数が含まれることとなるので、3つのフレームの画素の画素値を利用して、混合比αを算出することができる。式(19)および式(20)を解くことにより、正しい混合比αが算出されるための条件は、混合領域に関係する前景の成分が等しい、すなわち、前景のオブジェクトが静止しているとき撮像された前景の画像オブジェクトにおいて、前景のオブジェクトの動きの方向に対応する、画像オブジェクトの境界に位置する画素であって、動き量vの2倍の数の連続している画素の画素値が、一定であることである。
【0369】
以上のように、カバードバックグラウンド領域に属する画素の混合比αは、式(21)により算出され、アンカバードバックグラウンド領域に属する画素の混合比αは、式(22)により算出される。
【0370】
α=(C-N)/(P-N) (21)
α=(C-P)/(N-P) (22)
【0371】
図66は、推定混合比処理部401の構成を示すブロック図である。フレームメモリ421は、入力された画像をフレーム単位で記憶し、入力画像として入力されているフレームから1つ後のフレームをフレームメモリ422および混合比演算部423に供給する。
【0372】
フレームメモリ422は、入力された画像をフレーム単位で記憶し、フレームメモリ421から供給されているフレームから1つ後のフレームを混合比演算部423に供給する。
【0373】
従って、入力画像としてフレーム#n+1が混合比演算部423に入力されているとき、フレームメモリ421は、フレーム#nを混合比演算部423に供給し、フレームメモリ422は、フレーム#n-1を混合比演算部423に供給する。
【0374】
混合比演算部423は、式(21)に示す演算により、フレーム#nの注目している画素の画素値C、注目している画素と空間的位置が対応する、フレーム#n+1の画素の画素値N、および注目している画素と空間的位置が対応する、フレーム#n-1の画素の画素値Pを基に、注目している画素の推定混合比を算出して、算出した推定混合比を出力する。例えば、背景が静止しているとき、混合比演算部423は、フレーム#nの注目している画素の画素値C、注目している画素とフレーム内の位置が同じ、フレーム#n+1の画素の画素値N、および注目している画素とフレーム内の位置が同じ、フレーム#n-1の画素の画素値Pを基に、注目している画素の推定混合比を算出して、算出した推定混合比を出力する。
【0375】
このように、推定混合比処理部401は、入力画像を基に、推定混合比を算出して、混合比決定部403に供給することができる。
【0376】
なお、推定混合比処理部402は、推定混合比処理部401が式(21)に示す演算により、注目している画素の推定混合比を算出するのに対して、式(22)に示す演算により、注目している画素の推定混合比を算出する部分が異なることを除き、推定混合比処理部401と同様なので、その説明は省略する。
【0377】
図67は、推定混合比処理部401により算出された推定混合比の例を示す図である。図67に示す推定混合比は、等速で動いているオブジェクトに対応する前景の動き量vが11である場合の結果を、1ラインに対して示すものである。
【0378】
推定混合比は、混合領域において、図61に示すように、ほぼ直線的に変化していることがわかる。
【0379】
図60に戻り、混合比決定部403は、領域特定部103から供給された、混合比αの算出の対象となる画素が、前景領域、背景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域のいずれかに属するかを示す領域情報を基に、混合比αを設定する。混合比決定部403は、対象となる画素が前景領域に属する場合、0を混合比αに設定し、対象となる画素が背景領域に属する場合、1を混合比αに設定し、対象となる画素がカバードバックグラウンド領域に属する場合、推定混合比処理部401から供給された推定混合比を混合比αに設定し、対象となる画素がアンカバードバックグラウンド領域に属する場合、推定混合比処理部402から供給された推定混合比を混合比αに設定する。混合比決定部403は、領域情報を基に設定した混合比αを出力する。
【0380】
図68は、混合比算出部104の他の構成を示すブロック図である。選択部441は、領域特定部103から供給された領域情報を基に、カバードバックグラウンド領域に属する画素および、これに対応する前および後のフレームの画素を推定混合比処理部442に供給する。選択部441は、領域特定部103から供給された領域情報を基に、アンカバードバックグラウンド領域に属する画素および、これに対応する前および後のフレームの画素を推定混合比処理部443に供給する。
【0381】
推定混合比処理部442は、選択部441から入力された画素値を基に、式(21)に示す演算により、カバードバックグラウンド領域に属する、注目している画素の推定混合比を算出して、算出した推定混合比を選択部444に供給する。
【0382】
推定混合比処理部443は、選択部441から入力された画素値を基に、式(22)に示す演算により、アンカバードバックグラウンド領域に属する、注目している画素の推定混合比を算出して、算出した推定混合比を選択部444に供給する。
【0383】
選択部444は、領域特定部103から供給された領域情報を基に、対象となる画素が前景領域に属する場合、0である推定混合比を選択して、混合比αに設定し、対象となる画素が背景領域に属する場合、1である推定混合比を選択して、混合比αに設定する。選択部444は、対象となる画素がカバードバックグラウンド領域に属する場合、推定混合比処理部442から供給された推定混合比を選択して混合比αに設定し、対象となる画素がアンカバードバックグラウンド領域に属する場合、推定混合比処理部443から供給された推定混合比を選択して混合比αに設定する。選択部444は、領域情報を基に選択して設定した混合比αを出力する。
【0384】
このように、図68に示す他の構成を有する混合比算出部104は、画像の含まれる画素毎に混合比αを算出して、算出した混合比αを出力することができる。
【0385】
図69のフローチャートを参照して、図60に構成を示す混合比算出部104の混合比αの算出の処理を説明する。ステップS401において、混合比算出部104は、領域特定部103から供給された領域情報を取得する。ステップS402において、推定混合比処理部401は、カバードバックグラウンド領域に対応するモデルにより推定混合比の演算の処理を実行し、算出した推定混合比を混合比決定部403に供給する。混合比推定の演算の処理の詳細は、図70のフローチャートを参照して、後述する。
【0386】
ステップS403において、推定混合比処理部402は、アンカバードバックグラウンド領域に対応するモデルにより推定混合比の演算の処理を実行し、算出した推定混合比を混合比決定部403に供給する。
【0387】
ステップS404において、混合比算出部104は、フレーム全体について、混合比αを推定したか否かを判定し、フレーム全体について、混合比αを推定していないと判定された場合、ステップS402に戻り、次の画素について混合比αを推定する処理を実行する。
【0388】
ステップS404において、フレーム全体について、混合比αを推定したと判定された場合、ステップS405に進み、混合比決定部403は、画素が、前景領域、背景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域のいずれかに属するかを示す、領域特定部103から供給された領域情報を基に、混合比αを設定する。混合比決定部403は、対象となる画素が前景領域に属する場合、0を混合比αに設定し、対象となる画素が背景領域に属する場合、1を混合比αに設定し、対象となる画素がカバードバックグラウンド領域に属する場合、推定混合比処理部401から供給された推定混合比を混合比αに設定し、対象となる画素がアンカバードバックグラウンド領域に属する場合、推定混合比処理部402から供給された推定混合比を混合比αに設定し、処理は終了する。
【0389】
このように、混合比算出部104は、領域特定部103から供給された領域情報、および入力画像を基に、各画素に対応する特徴量である混合比αを算出することができる。
【0390】
図68に構成を示す混合比算出部104の混合比αの算出の処理は、図69のフローチャートで説明した処理と同様なので、その説明は省略する。
【0391】
次に、図69のステップS402に対応する、カバードバックグラウンド領域に対応するモデルによる混合比推定の処理を図70のフローチャートを参照して説明する。
【0392】
ステップS421において、混合比演算部423は、フレームメモリ421から、フレーム#nの注目画素の画素値Cを取得する。
【0393】
ステップS422において、混合比演算部423は、フレームメモリ422から、注目画素に対応する、フレーム#n-1の画素の画素値Pを取得する。
【0394】
ステップS423において、混合比演算部423は、入力画像に含まれる注目画素に対応する、フレーム#n+1の画素の画素値Nを取得する。
【0395】
ステップS424において、混合比演算部423は、フレーム#nの注目画素の画素値C、フレーム#n-1の画素の画素値P、およびフレーム#n+1の画素の画素値Nを基に、推定混合比を演算する。
【0396】
ステップS425において、混合比演算部423は、フレーム全体について、推定混合比を演算する処理を終了したか否かを判定し、フレーム全体について、推定混合比を演算する処理を終了していないと判定された場合、ステップS421に戻り、次の画素について推定混合比を算出する処理を繰り返す。
【0397】
ステップS425において、フレーム全体について、推定混合比を演算する処理を終了したと判定された場合、処理は終了する。
【0398】
このように、推定混合比処理部401は、入力画像を基に、推定混合比を演算することができる。
【0399】
図69のステップS403におけるアンカバードバックグラウンド領域に対応するモデルによる混合比推定の処理は、アンカバードバックグラウンド領域のモデルに対応する式を利用した、図70のフローチャートに示す処理と同様なので、その説明は省略する。
【0400】
なお、図68に示す推定混合比処理部442および推定混合比処理部443は、図70に示すフローチャートと同様の処理を実行して推定混合比を演算するので、その説明は省略する。
【0401】
また、背景に対応するオブジェクトが静止しているとして説明したが、背景領域に対応する画像が動きを含んでいても上述した混合比αを求める処理を適用することができる。例えば、背景領域に対応する画像が一様に動いているとき、推定混合比処理部401は、背景の動きに対応して画像全体をシフトさせ、背景に対応するオブジェクトが静止している場合と同様に処理する。また、背景領域に対応する画像が局所毎に異なる背景の動きを含んでいるとき、推定混合比処理部401は、混合領域に属する画素に対応する画素として、背景の動きに対応した画素を選択して、上述の処理を実行する。
【0402】
また、混合比算出部104は、全ての画素について、カバードバックグラウンド領域に対応するモデルによる混合比推定の処理のみを実行して、算出された推定混合比を混合比αとして出力するようにしてもよい。この場合において、混合比αは、カバードバックグラウンド領域に属する画素について、背景の成分の割合を示し、アンカバードバックグラウンド領域に属する画素について、前景の成分の割合を示す。アンカバードバックグラウンド領域に属する画素について、このように算出された混合比αと1との差分の絶対値を算出して、算出した絶対値を混合比αに設定すれば、信号処理装置は、アンカバードバックグラウンド領域に属する画素について、背景の成分の割合を示す混合比αを求めることができる。
【0403】
なお、同様に、混合比算出部104は、全ての画素について、アンカバードバックグラウンド領域に対応するモデルによる混合比推定の処理のみを実行して、算出された推定混合比を混合比αとして出力するようにしてもよい。
【0404】
次に、混合比算出部104の他の処理について説明する。
【0405】
シャッタ時間内において、前景に対応するオブジェクトが等速で動くことによる、画素の位置の変化に対応して、混合比αが直線的に変化する性質を利用して、空間方向に、混合比αと前景の成分の和fとを近似した式を立てることができる。混合領域に属する画素の画素値および背景領域に属する画素の画素値の組の複数を利用して、混合比αと前景の成分の和fとを近似した式を解くことにより、混合比αを算出する。
【0406】
混合比αの変化を、直線として近似すると、混合比αは、式(23)で表される。
【0407】
α=il+p (23)
式(23)において、iは、注目している画素の位置を0とした空間方向のインデックスである。lは、混合比αの直線の傾きである。pは、混合比αの直線の切片である共に、注目している画素の混合比αである。式(23)において、インデックスiは、既知であるが、傾きlおよび切片pは、未知である。
【0408】
インデックスi、傾きl、および切片pの関係を図71に示す。
【0409】
混合比αを式(23)のように近似することにより、複数の画素に対して複数の異なる混合比αは、2つの変数で表現される。図71に示す例において、5つの画素に対する5つの混合比は、2つの変数である傾きlおよび切片pにより表現される。
【0410】
図72に示す平面で混合比αを近似すると、画像の水平方向および垂直方向の2つの方向に対応する動きvを考慮したとき、式(23)を平面に拡張して、混合比αは、式(24)で表される。
【0411】
α=jm+kq+p (24)
式(24)において、jは、注目している画素の位置を0とした水平方向のインデックスであり、kは、垂直方向のインデックスである。mは、混合比αの面の水平方向の傾きであり、qは、混合比αの面の垂直方向の傾きである。pは、混合比αの面の切片である。
【0412】
例えば、図62に示すフレーム#nにおいて、C05乃至C07について、それぞれ、式(25)乃至式(27)が成立する。
【0413】
C05=α05・B05/v+f05 (25)
C06=α06・B06/v+f06 (26)
C07=α07・B07/v+f07 (27)
【0414】
前景の成分が近傍で一致する、すなわち、F01乃至F03が等しいとして、F01乃至F03をFcに置き換えると式(28)が成立する。
【0415】
f(x)=(1-α(x))・Fc (28)
式(28)において、xは、空間方向の位置を表す。
【0416】
α(x)を式(24)で置き換えると、式(28)は、式(29)として表すことができる。
【0417】
Figure 0004660980
【0418】
式(29)において、(-m・Fc)、(-q・Fc)、および(1-p)・Fcは、式(30)乃至式(32)に示すように置き換えられている。
【0419】
s=-m・Fc (30)
t=-q・Fc (31)
u=(1-p)・Fc (32)
【0420】
式(29)において、jは、注目している画素の位置を0とした水平方向のインデックスであり、kは、垂直方向のインデックスである。
【0421】
このように、前景に対応するオブジェクトがシャッタ時間内において等速に移動し、前景に対応する成分が近傍において一定であるという仮定が成立するので、前景の成分の和は、式(29)で近似される。
【0422】
なお、混合比αを直線で近似する場合、前景の成分の和は、式(33)で表すことができる。
【0423】
f(x)=is+u (33)
【0424】
式(13)の混合比αおよび前景成分の和を、式(24)および式(29)を利用して置き換えると、画素値Mは、式(34)で表される。
【0425】
Figure 0004660980
【0426】
式(34)において、未知の変数は、混合比αの面の水平方向の傾きm、混合比αの面の垂直方向の傾きq、混合比αの面の切片p、s、t、およびuの6つである。
【0427】
注目している画素の近傍の画素に対応させて、式(34)に示す正規方程式に、画素値Mまたは画素値Bを設定し、画素値Mまたは画素値Bが設定された複数の正規方程式を最小自乗法で解いて、混合比αを算出する。
【0428】
例えば、注目している画素の水平方向のインデックスjを0とし、垂直方向のインデックスkを0とし、注目している画素の近傍の3×3の画素について、式(34)に示す正規方程式に画素値Mまたは画素値Bを設定すると、式(35)乃至式(43)を得る。
M-1,-1=(-1)・B-1,-1・m+(-1)・B-1,-1・q+B-1,-1・p+(-1)・s+(-1)・t+u(35)
M0,-1=(0)・B0,-1・m+(-1)・B0,-1・q+B0,-1・p+(0)・s+(-1)・t+u(36)
M+1,-1=(+1)・B+1,-1・m+(-1)・B+1,-1・q+B+1,-1・p+(+1)・s+(-1)・t+u(37)
M-1,0=(-1)・B-1,0・m+(0)・B-1,0・q+B-1,0・p+(-1)・s+(0)・t+u(38)
M0,0=(0)・B0,0・m+(0)・B0,0・q+B0,0・p+(0)・s+(0)・t+u(39)
M+1,0=(+1)・B+1,0・m+(0)・B+1,0・q+B+1,0・p+(+1)・s+(0)・t+u(40)
M-1,+1=(-1)・B-1,+1・m+(+1)・B-1,+1・q+B-1,+1・p+(-1)・s+(+1)・t+u(41)
M0,+1=(0)・B0,+1・m+(+1)・B0,+1・q+B0,+1・p+(0)・s+(+1)・t+u(42)
M+1,+1=(+1)・B+1,+1・m+(+1)・B+1,+1・q+B+1,+1・p+(+1)・s+(+1)・t+u(43)
【0429】
注目している画素の水平方向のインデックスjが0であり、垂直方向のインデックスkが0であるので、注目している画素の混合比αは、式(24)より、j=0およびk=0のときの値、すなわち、切片pに等しい。
【0430】
従って、式(35)乃至式(43)の9つの式を基に、最小自乗法により、水平方向の傾きm、垂直方向の傾きq、切片p、s、t、およびuのそれぞれの値を算出し、切片pを混合比αとして出力すればよい。
【0431】
次に、最小自乗法を適用して混合比αを算出するより具体的な手順を説明する。
【0432】
インデックスiおよびインデックスkを1つのインデックスxで表現すると、インデックスi、インデックスk、およびインデックスxの関係は、式(44)で表される。
【0433】
x=(j+1)・3+(k+1) (44)
【0434】
水平方向の傾きm、垂直方向の傾きq、切片p、s、t、およびuをそれぞれ変数w0,w1,w2,w3,w4、およびW5と表現し、jB,kB,B,j,k、および1をそれぞれa0,a1,a2,a3,a4、およびa5と表現する。誤差exを考慮すると、式(35)乃至式(43)は、式(45)に書き換えることができる。
【0435】
【数12】
Figure 0004660980
式(45)において、xは、0乃至8の整数のいずれかの値である。
【0436】
式(45)から、式(46)を導くことができる。
【0437】
【数13】
Figure 0004660980
【0438】
ここで、最小自乗法を適用するため、誤差の自乗和Eを式(47)に示すようにに定義する。
【0439】
【数14】
Figure 0004660980
【0440】
誤差が最小になるためには、誤差の自乗和Eに対する、変数Wvの偏微分が0になればよい。ここで、vは、0乃至5の整数のいずれかの値である。従って、式(48)を満たすようにwyを求める。
【0441】
【数15】
Figure 0004660980
【0442】
式(48)に式(46)を代入すると、式(49)を得る。
【0443】
【数16】
Figure 0004660980
【0444】
式(49)のvに0乃至5の整数のいずれか1つを代入して得られる6つの式に、例えば、掃き出し法(Gauss-Jordanの消去法)などを適用して、wyを算出する。上述したように、w0は水平方向の傾きmであり、w1は垂直方向の傾きqであり、w2は切片pであり、w3はsであり、w4はtであり、w5はuである。
【0445】
以上のように、画素値Mおよび画素値Bを設定した式に、最小自乗法を適用することにより、水平方向の傾きm、垂直方向の傾きq、切片p、s、t、およびuを求めることができる。
【0446】
式(35)乃至式(43)に対応する説明において、混合領域に含まれる画素の画素値をMとし、背景領域に含まれる画素の画素値をBとして説明したが、注目している画素が、カバードバックグラウンド領域に含まれる場合、またはアンカバードバックグラウンド領域に含まれる場合のそれぞれに対して、正規方程式を立てる必要がある。
【0447】
例えば、図62に示す、フレーム#nのカバードバックグラウンド領域に含まれる画素の混合比αを求める場合、フレーム#nの画素のC04乃至C08、およびフレーム#n-1の画素の画素値P04乃至P08が、正規方程式に設定される。
【0448】
図63に示す、フレーム#nのアンカバードバックグラウンド領域に含まれる画素の混合比αを求める場合、フレーム#nの画素のC28乃至C32、およびフレーム#n+1の画素の画素値N28乃至N32が、正規方程式に設定される。
【0449】
また、例えば、図73に示す、カバードバックグラウンド領域に含まれる画素の混合比αを算出するとき、以下の式(50)乃至式(58)が立てられる。混合比αを算出する画素の画素値は、Mc5である。
Mc1=(-1)・Bc1・m+(-1)・Bc1・q+Bc1・p+(-1)・s+(-1)・t+u (50)
Mc2=(0)・Bc2・m+(-1)・Bc2・q+Bc2・p+(0)・s+(-1)・t+u (51)
Mc3=(+1)・Bc3・m+(-1)・Bc3・q+Bc3・p+(+1)・s+(-1)・t+u (52)
Mc4=(-1)・Bc4・m+(0)・Bc4・q+Bc4・p+(-1)・s+(0)・t+u (53)
Mc5=(0)・Bc5・m+(0)・Bc5・q+Bc5・p+(0)・s+(0)・t+u (54)
Mc6=(+1)・Bc6・m+(0)・Bc6・q+Bc6・p+(+1)・s+(0)・t+u (55)
Mc7=(-1)・Bc7・m+(+1)・Bc7・q+Bc7・p+(-1)・s+(+1)・t+u (56)
Mc8=(0)・Bc8・m+(+1)・Bc8・q+Bc8・p+(0)・s+(+1)・t+u (57)
Mc9=(+1)・Bc9・m+(+1)・Bc9・q+Bc9・p+(+1)・s+(+1)・t+u (58)
【0450】
フレーム#nのカバードバックグラウンド領域に含まれる画素の混合比αを算出するとき、式(50)乃至式(58)において、フレーム#nの画素に対応する、フレーム#n-1の画素の背景領域の画素の画素値Bc1乃至Bc9が使用される。
【0451】
図73に示す、アンカバードバックグラウンド領域に含まれる画素の混合比αを算出するとき、以下の式(59)乃至式(67)が立てられる。混合比αを算出する画素の画素値は、Mu5である。
Mu1=(-1)・Bu1・m+(-1)・Bu1・q+Bu1・p+(-1)・s+(-1)・t+u (59)
Mu2=(0)・Bu2・m+(-1)・Bu2・q+Bu2・p+(0)・s+(-1)・t+u (60)
Mu3=(+1)・Bu3・m+(-1)・Bu3・q+Bu3・p+(+1)・s+(-1)・t+u (61)
Mu4=(-1)・Bu4・m+(0)・Bu4・q+Bu4・p+(-1)・s+(0)・t+u (62)
Mu5=(0)・Bu5・m+(0)・Bu5・q+Bu5・p+(0)・s+(0)・t+u (63)
Mu6=(+1)・Bu6・m+(0)・Bu6・q+Bu6・p+(+1)・s+(0)・t+u (64)
Mu7=(-1)・Bu7・m+(+1)・Bu7・q+Bu7・p+(-1)・s+(+1)・t+u (65)
Mu8=(0)・Bu8・m+(+1)・Bu8・q+Bu8・p+(0)・s+(+1)・t+u (66)
Mu9=(+1)・Bu9・m+(+1)・Bu9・q+Bu9・p+(+1)・s+(+1)・t+u (67)
【0452】
フレーム#nのアンカバードバックグラウンド領域に含まれる画素の混合比αを算出するとき、式(59)乃至式(67)において、フレーム#nの画素に対応する、フレーム#n+1の画素の背景領域の画素の画素値Bu1乃至Bu9が使用される。
【0453】
図74は、推定混合比処理部401の構成を示すブロック図である。推定混合比処理部401に入力された画像は、遅延部501および足し込み部502に供給される。
【0454】
遅延回路221は、入力画像を1フレーム遅延させ、足し込み部502に供給する。足し込み部502に、入力画像としてフレーム#nが入力されているとき、遅延回路221は、フレーム#n-1を足し込み部502に供給する。
【0455】
足し込み部502は、混合比αを算出する画素の近傍の画素の画素値、およびフレーム#n-1の画素値を、正規方程式に設定する。例えば、足し込み部502は、式(50)乃至式(58)に基づいて、正規方程式に画素値Mc1乃至Mc9および画素値Bc1乃至Bc9を設定する。足し込み部502は、画素値が設定された正規方程式を演算部503に供給する。
【0456】
演算部503は、足し込み部502から供給された正規方程式を掃き出し法などにより解いて推定混合比を求め、求められた推定混合比を出力する。
【0457】
このように、推定混合比処理部401は、入力画像を基に、推定混合比を算出して、混合比決定部403に供給することができる。
【0458】
なお、推定混合比処理部402は、推定混合比処理部401と同様の構成を有するので、その説明は省略する。
【0459】
図75は、推定混合比処理部401により算出された推定混合比の例を示す図である。図75に示す推定混合比は、等速で動いているオブジェクトに対応する前景の動きvが11であり、7×7画素のブロックを単位として方程式を生成して算出された結果を、1ラインに対して示すものである。
【0460】
推定混合比は、混合領域において、図61に示すように、ほぼ直線的に変化していることがわかる。
【0461】
混合比決定部403は、領域特定部101から供給された、混合比が算出される画素が、前景領域、背景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域のいずれかに属するかを示す領域情報を基に、混合比を設定する。混合比決定部403は、対象となる画素が前景領域に属する場合、0を混合比に設定し、対象となる画素が背景領域に属する場合、1を混合比に設定し、対象となる画素がカバードバックグラウンド領域に属する場合、推定混合比処理部401から供給された推定混合比を混合比に設定し、対象となる画素がアンカバードバックグラウンド領域に属する場合、推定混合比処理部402から供給された推定混合比を混合比に設定する。混合比決定部403は、領域情報を基に設定した混合比を出力する。
【0462】
図76のフローチャートを参照して、推定混合比処理部401が図74に示す構成を有する場合における、混合比算出部102の混合比の算出の処理を説明する。ステップS501において、混合比算出部102は、領域特定部101から供給された領域情報を取得する。ステップS502において、推定混合比処理部401は、カバードバックグラウンド領域に対応するモデルによる混合比推定の処理を実行し、推定混合比を混合比決定部403に供給する。混合比推定の処理の詳細は、図77のフローチャートを参照して、後述する。
【0463】
ステップS503において、推定混合比処理部402は、アンカバードバックグラウンド領域に対応するモデルによる混合比推定の処理を実行し、推定混合比を混合比決定部403に供給する。
【0464】
ステップS504において、混合比算出部102は、フレーム全体について、混合比を推定したか否かを判定し、フレーム全体について、混合比を推定していないと判定された場合、ステップS502に戻り、次の画素について混合比を推定する処理を実行する。
【0465】
ステップS504において、フレーム全体について、混合比を推定したと判定された場合、ステップS505に進み、混合比決定部403は、領域特定部101から供給された、混合比が算出される画素が、前景領域、背景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域のいずれかに属するかを示す領域情報を基に、混合比を設定する。混合比決定部403は、対象となる画素が前景領域に属する場合、0を混合比に設定し、対象となる画素が背景領域に属する場合、1を混合比に設定し、対象となる画素がカバードバックグラウンド領域に属する場合、推定混合比処理部401から供給された推定混合比を混合比に設定し、対象となる画素がアンカバードバックグラウンド領域に属する場合、推定混合比処理部402から供給された推定混合比を混合比に設定し、処理は終了する。
【0466】
このように、混合比算出部102は、領域特定部101から供給された領域情報、および入力画像を基に、各画素に対応する特徴量である混合比αを算出することができる。
【0467】
混合比αを利用することにより、動いているオブジェクトに対応する画像に含まれる動きボケの情報を残したままで、画素値に含まれる前景の成分と背景の成分とを分離することが可能になる。
【0468】
また、混合比αに基づいて画像を合成すれば、実世界を実際に撮影し直したような動いているオブジェクトのスピードに合わせた正しい動きボケを含む画像を作ることが可能になる。
【0469】
次に、図76のステップS502に対応する、カバードバックグラウンド領域に対応するモデルによる混合比推定の処理を図77のフローチャートを参照して説明する。
【0470】
ステップS521において、足し込み部502は、入力された画像に含まれる画素値、および遅延回路221から供給される画像に含まれる画素値を、カバードバックグラウンド領域のモデルに対応する正規方程式に設定する。
【0471】
ステップS522において、推定混合比処理部401は、対象となる画素についての設定が終了したか否かを判定し、対象となる画素についての設定が終了していないと判定された場合、ステップS521に戻り、正規方程式への画素値の設定の処理を繰り返す。
【0472】
ステップS522において、対象となる画素についての画素値の設定が終了したと判定された場合、ステップS523に進み、演算部173は、画素値が設定された正規方程式を基に、推定混合比を演算して、求められた推定混合比を出力する。
【0473】
このように、推定混合比処理部401は、入力画像を基に、推定混合比を演算することができる。
【0474】
図76のステップS153におけるアンカバードバックグラウンド領域に対応するモデルによる混合比推定の処理は、アンカバードバックグラウンド領域のモデルに対応する正規方程式を利用した、図77のフローチャートに示す処理と同様なので、その説明は省略する。
【0475】
なお、背景に対応するオブジェクトが静止しているとして説明したが、背景領域に対応する画像が動きを含んでいても上述した混合比を求める処理を適用することができる。例えば、背景領域に対応する画像が一様に動いているとき、推定混合比処理部401は、この動きに対応して画像全体をシフトさせ、背景に対応するオブジェクトが静止している場合と同様に処理する。また、背景領域に対応する画像が局所毎に異なる動きを含んでいるとき、推定混合比処理部401は、混合領域に属する画素に対応する画素として、動きに対応した画素を選択して、上述の処理を実行する。
【0476】
次に、前景背景分離部105について説明する。図78は、前景背景分離部105の構成の一例を示すブロック図である。前景背景分離部105に供給された入力画像は、分離部601、スイッチ602、およびスイッチ604に供給される。カバードバックグラウンド領域を示す情報、およびアンカバードバックグラウンド領域を示す、領域特定部103から供給された領域情報は、分離部601に供給される。前景領域を示す領域情報は、スイッチ602に供給される。背景領域を示す領域情報は、スイッチ604に供給される。
【0477】
混合比算出部104から供給された混合比αは、分離部601に供給される。
【0478】
分離部601は、カバードバックグラウンド領域を示す領域情報、アンカバードバックグラウンド領域を示す領域情報、および混合比αを基に、入力画像から前景の成分を分離して、分離した前景の成分を合成部603に供給するとともに、入力画像から背景の成分を分離して、分離した背景の成分を合成部605に供給する。
【0479】
スイッチ602は、前景領域を示す領域情報を基に、前景に対応する画素が入力されたとき、閉じられ、入力画像に含まれる前景に対応する画素のみを合成部603に供給する。
【0480】
スイッチ604は、背景領域を示す領域情報を基に、背景に対応する画素が入力されたとき、閉じられ、入力画像に含まれる背景に対応する画素のみを合成部605に供給する。
【0481】
合成部603は、分離部601から供給された前景に対応する成分、スイッチ602から供給された前景に対応する画素を基に、前景成分画像を合成し、合成した前景成分画像を出力する。前景領域と混合領域とは重複しないので、合成部603は、例えば、前景に対応する成分と、前景に対応する画素とに論理和の演算を適用して、前景成分画像を合成する。
【0482】
合成部603は、前景成分画像の合成の処理の最初に実行される初期化の処理において、内蔵しているフレームメモリに全ての画素値が0である画像を格納し、前景成分画像の合成の処理において、前景成分画像を格納(上書き)する。従って、合成部603が出力する前景成分画像の内、背景領域に対応する画素には、画素値として0が格納されている。
【0483】
合成部605は、分離部601から供給された背景に対応する成分、スイッチ604から供給された背景に対応する画素を基に、背景成分画像を合成して、合成した背景成分画像を出力する。背景領域と混合領域とは重複しないので、合成部605は、例えば、背景に対応する成分と、背景に対応する画素とに論理和の演算を適用して、背景成分画像を合成する。
【0484】
合成部605は、背景成分画像の合成の処理の最初に実行される初期化の処理において、内蔵しているフレームメモリに全ての画素値が0である画像を格納し、背景成分画像の合成の処理において、背景成分画像を格納(上書き)する。従って、合成部605が出力する背景成分画像の内、前景領域に対応する画素には、画素値として0が格納されている。
【0485】
図79は、前景背景分離部105に入力される入力画像、並びに前景背景分離部105から出力される前景成分画像および背景成分画像を示す図である。
【0486】
図79(A)は、表示される画像の模式図であり、図79(B)は、図79(A)に対応する前景領域に属する画素、背景領域に属する画素、および混合領域に属する画素を含む1ラインの画素を時間方向に展開したモデル図を示す。
【0487】
図79(A)および図79(B)に示すように、前景背景分離部105から出力される背景成分画像は、背景領域に属する画素、および混合領域の画素に含まれる背景の成分から構成される。
【0488】
図79(A)および図79(B)に示すように、前景背景分離部105から出力される前景成分画像は、前景領域に属する画素、および混合領域の画素に含まれる前景の成分から構成される。
【0489】
混合領域の画素の画素値は、前景背景分離部105により、背景の成分と、前景の成分とに分離される。分離された背景の成分は、背景領域に属する画素と共に、背景成分画像を構成する。分離された前景の成分は、前景領域に属する画素と共に、前景成分画像を構成する。
【0490】
このように、前景成分画像は、背景領域に対応する画素の画素値が0とされ、前景領域に対応する画素および混合領域に対応する画素に意味のある画素値が設定される。同様に、背景成分画像は、前景領域に対応する画素の画素値が0とされ、背景領域に対応する画素および混合領域に対応する画素に意味のある画素値が設定される。
【0491】
次に、分離部601が実行する、混合領域に属する画素から前景の成分、および背景の成分を分離する処理について説明する。
【0492】
図80は、図中の左から右に移動するオブジェクトに対応する前景を含む、2つのフレームの前景の成分および背景の成分を示す画像のモデルである。図80に示す画像のモデルにおいて、前景の動き量vは4であり、仮想分割数は、4とされている。
【0493】
フレーム#nにおいて、最も左の画素、および左から14番目乃至18番目の画素は、背景の成分のみから成り、背景領域に属する。フレーム#nにおいて、左から2番目乃至4番目の画素は、背景の成分および前景の成分を含み、アンカバードバックグラウンド領域に属する。フレーム#nにおいて、左から11番目乃至13番目の画素は、背景の成分および前景の成分を含み、カバードバックグラウンド領域に属する。フレーム#nにおいて、左から5番目乃至10番目の画素は、前景の成分のみから成り、前景領域に属する。
【0494】
フレーム#n+1において、左から1番目乃至5番目の画素、および左から18番目の画素は、背景の成分のみから成り、背景領域に属する。フレーム#n+1において、左から6番目乃至8番目の画素は、背景の成分および前景の成分を含み、アンカバードバックグラウンド領域に属する。フレーム#n+1において、左から15番目乃至17番目の画素は、背景の成分および前景の成分を含み、カバードバックグラウンド領域に属する。フレーム#n+1において、左から9番目乃至14番目の画素は、前景の成分のみから成り、前景領域に属する。
【0495】
図81は、カバードバックグラウンド領域に属する画素から前景の成分を分離する処理を説明する図である。図81において、α1乃至α18は、フレーム#nにおける画素のぞれぞれに対応する混合比である。図81において、左から15番目乃至17番目の画素は、カバードバックグラウンド領域に属する。
【0496】
フレーム#nの左から15番目の画素の画素値C15は、式(68)で表される。
【0497】
Figure 0004660980
ここで、α15は、フレーム#nの左から15番目の画素の混合比である。P15は、フレーム#n-1の左から15番目の画素の画素値である。
【0498】
式(68)を基に、フレーム#nの左から15番目の画素の前景の成分の和f15は、式(69)で表される。
【0499】
Figure 0004660980
【0500】
同様に、フレーム#nの左から16番目の画素の前景の成分の和f16は、式(70)で表され、フレーム#nの左から17番目の画素の前景の成分の和f17は、式(71)で表される。
【0501】
f16=C16-α16・P16 (70)
f17=C17-α17・P17 (71)
【0502】
このように、カバードバックグラウンド領域に属する画素の画素値Cに含まれる前景の成分fcは、式(72)で計算される。
【0503】
fc=C-α・P (72)
Pは、1つ前のフレームの、対応する画素の画素値である。
【0504】
図82は、アンカバードバックグラウンド領域に属する画素から前景の成分を分離する処理を説明する図である。図82において、α1乃至α18は、フレーム#nにおける画素のぞれぞれに対応する混合比である。図82において、左から2番目乃至4番目の画素は、アンカバードバックグラウンド領域に属する。
【0505】
フレーム#nの左から2番目の画素の画素値C02は、式(73)で表される。
【0506】
Figure 0004660980
ここで、α2は、フレーム#nの左から2番目の画素の混合比である。N02は、フレーム#n+1の左から2番目の画素の画素値である。
【0507】
式(73)を基に、フレーム#nの左から2番目の画素の前景の成分の和f02は、式(74)で表される。
【0508】
Figure 0004660980
【0509】
同様に、フレーム#nの左から3番目の画素の前景の成分の和f03は、式(75)で表され、フレーム#nの左から4番目の画素の前景の成分の和f04は、式(76)で表される。
【0510】
f03=C03-α3・N03 (75)
f04=C04-α4・N04 (76)
【0511】
このように、アンカバードバックグラウンド領域に属する画素の画素値Cに含まれる前景の成分fuは、式(77)で計算される。
【0512】
fu=C-α・N (77)
Nは、1つ後のフレームの、対応する画素の画素値である。
【0513】
このように、分離部601は、領域情報に含まれる、カバードバックグラウンド領域を示す情報、およびアンカバードバックグラウンド領域を示す情報、並びに画素毎の混合比αを基に、混合領域に属する画素から前景の成分、および背景の成分を分離することができる。
【0514】
図83は、以上で説明した処理を実行する分離部601の構成の一例を示すブロック図である。分離部601に入力された画像は、フレームメモリ621に供給され、混合比算出部104から供給されたカバードバックグラウンド領域およびアンカバードバックグラウンド領域を示す領域情報、並びに混合比αは、分離処理ブロック622に入力される。
【0515】
フレームメモリ621は、入力された画像をフレーム単位で記憶する。フレームメモリ621は、処理の対象がフレーム#nであるとき、フレーム#nの1つ前のフレームであるフレーム#n-1、フレーム#n、およびフレーム#nの1つ後のフレームであるフレーム#n+1を記憶する。
【0516】
フレームメモリ621は、フレーム#n-1、フレーム#n、およびフレーム#n+1の対応する画素を分離処理ブロック622に供給する。
【0517】
分離処理ブロック622は、カバードバックグラウンド領域およびアンカバードバックグラウンド領域を示す領域情報、並びに混合比αを基に、フレームメモリ621から供給されたフレーム#n-1、フレーム#n、およびフレーム#n+1の対応する画素の画素値に図81および図82を参照して説明した演算を適用して、フレーム#nの混合領域に属する画素から前景の成分および背景の成分を分離して、フレームメモリ623に供給する。
【0518】
分離処理ブロック622は、アンカバード領域処理部631、カバード領域処理部632、合成部633、および合成部634で構成されている。
【0519】
アンカバード領域処理部631の乗算器641は、混合比αを、フレームメモリ621から供給されたフレーム#n+1の画素の画素値に乗じて、スイッチ642に出力する。スイッチ642は、フレームメモリ621から供給されたフレーム#nの画素(フレーム#n+1の画素に対応する)がアンカバードバックグラウンド領域であるとき、閉じられ、乗算器641から供給された混合比αを乗じた画素値を演算器643および合成部634に供給する。スイッチ642から出力されるフレーム#n+1の画素の画素値に混合比αを乗じた値は、フレーム#nの対応する画素の画素値の背景の成分に等しい。
【0520】
演算器643は、フレームメモリ621から供給されたフレーム#nの画素の画素値から、スイッチ642から供給された背景の成分を減じて、前景の成分を求める。演算器643は、アンカバードバックグラウンド領域に属する、フレーム#nの画素の前景の成分を合成部633に供給する。
【0521】
カバード領域処理部632の乗算器651は、混合比αを、フレームメモリ621から供給されたフレーム#n-1の画素の画素値に乗じて、スイッチ652に出力する。スイッチ652は、フレームメモリ621から供給されたフレーム#nの画素(フレーム#n-1の画素に対応する)がカバードバックグラウンド領域であるとき、閉じられ、乗算器651から供給された混合比αを乗じた画素値を演算器653および合成部634に供給する。スイッチ652から出力されるフレーム#n-1の画素の画素値に混合比αを乗じた値は、フレーム#nの対応する画素の画素値の背景の成分に等しい。
【0522】
演算器653は、フレームメモリ621から供給されたフレーム#nの画素の画素値から、スイッチ652から供給された背景の成分を減じて、前景の成分を求める。演算器653は、カバードバックグラウンド領域に属する、フレーム#nの画素の前景の成分を合成部633に供給する。
【0523】
合成部633は、フレーム#nの、演算器643から供給された、アンカバードバックグラウンド領域に属する画素の前景の成分、および演算器653から供給された、カバードバックグラウンド領域に属する画素の前景の成分を合成して、フレームメモリ623に供給する。
【0524】
合成部634は、フレーム#nの、スイッチ642から供給された、アンカバードバックグラウンド領域に属する画素の背景の成分、およびスイッチ652から供給された、カバードバックグラウンド領域に属する画素の背景の成分を合成して、フレームメモリ623に供給する。
【0525】
フレームメモリ623は、分離処理ブロック622から供給された、フレーム#nの混合領域の画素の前景の成分と、背景の成分とをそれぞれに記憶する。
【0526】
フレームメモリ623は、記憶しているフレーム#nの混合領域の画素の前景の成分、および記憶しているフレーム#nの混合領域の画素の背景の成分を出力する。
【0527】
特徴量である混合比αを利用することにより、画素値に含まれる前景の成分と背景の成分とを完全に分離することが可能になる。
【0528】
合成部603は、分離部601から出力された、フレーム#nの混合領域の画素の前景の成分と、前景領域に属する画素とを合成して前景成分画像を生成する。
合成部605は、分離部601から出力された、フレーム#nの混合領域の画素の背景の成分と、背景領域に属する画素とを合成して背景成分画像を生成する。
【0529】
図84は、図80のフレーム#nに対応する、前景成分画像の例と、背景成分画像の例を示す図である。
【0530】
図84(A)は、図80のフレーム#nに対応する、前景成分画像の例を示す。
最も左の画素、および左から14番目の画素は、前景と背景が分離される前において、背景の成分のみから成っていたので、画素値が0とされる。
【0531】
左から2番目乃至4番目の画素は、前景と背景とが分離される前において、アンカバードバックグラウンド領域に属し、背景の成分が0とされ、前景の成分がそのまま残されている。左から11番目乃至13番目の画素は、前景と背景とが分離される前において、カバードバックグラウンド領域に属し、背景の成分が0とされ、前景の成分がそのまま残されている。左から5番目乃至10番目の画素は、前景の成分のみから成るので、そのまま残される。
【0532】
図84(B)は、図80のフレーム#nに対応する、背景成分画像の例を示す。
最も左の画素、および左から14番目の画素は、前景と背景とが分離される前において、背景の成分のみから成っていたので、そのまま残される。
【0533】
左から2番目乃至4番目の画素は、前景と背景とが分離される前において、アンカバードバックグラウンド領域に属し、前景の成分が0とされ、背景の成分がそのまま残されている。左から11番目乃至13番目の画素は、前景と背景とが分離される前において、カバードバックグラウンド領域に属し、前景の成分が0とされ、背景の成分がそのまま残されている。左から5番目乃至10番目の画素は、前景と背景とが分離される前において、前景の成分のみから成っていたので、画素値が0とされる。
【0534】
次に、図85に示すフローチャートを参照して、前景背景分離部105による前景と背景との分離の処理を説明する。ステップS601において、分離部601のフレームメモリ621は、入力画像を取得し、前景と背景との分離の対象となるフレーム#nを、その前のフレーム#n-1およびその後のフレーム#n+1と共に記憶する。
【0535】
ステップS602において、分離部601の分離処理ブロック622は、混合比算出部104から供給された領域情報を取得する。ステップS603において、分離部601の分離処理ブロック622は、混合比算出部104から供給された混合比αを取得する。
【0536】
ステップS604において、アンカバード領域処理部631は、領域情報および混合比αを基に、フレームメモリ621から供給された、アンカバードバックグラウンド領域に属する画素の画素値から、背景の成分を抽出する。
【0537】
ステップS605において、アンカバード領域処理部631は、領域情報および混合比αを基に、フレームメモリ621から供給された、アンカバードバックグラウンド領域に属する画素の画素値から、前景の成分を抽出する。
【0538】
ステップS606において、カバード領域処理部632は、領域情報および混合比αを基に、フレームメモリ621から供給された、カバードバックグラウンド領域に属する画素の画素値から、背景の成分を抽出する。
【0539】
ステップS607において、カバード領域処理部632は、領域情報および混合比αを基に、フレームメモリ621から供給された、カバードバックグラウンド領域に属する画素の画素値から、前景の成分を抽出する。
【0540】
ステップS608において、合成部633は、ステップS605の処理で抽出されたアンカバードバックグラウンド領域に属する画素の前景の成分と、ステップS607の処理で抽出されたカバードバックグラウンド領域に属する画素の前景の成分とを合成する。合成された前景の成分は、合成部603に供給される。更に、合成部603は、スイッチ602を介して供給された前景領域に属する画素と、分離部601から供給された前景の成分とを合成して、前景成分画像を生成する。
【0541】
ステップS609において、合成部634は、ステップS604の処理で抽出されたアンカバードバックグラウンド領域に属する画素の背景の成分と、ステップS606の処理で抽出されたカバードバックグラウンド領域に属する画素の背景の成分とを合成する。合成された背景の成分は、合成部605に供給される。更に、合成部605は、スイッチ604を介して供給された背景領域に属する画素と、分離部601から供給された背景の成分とを合成して、背景成分画像を生成する。
【0542】
ステップS610において、合成部603は、前景成分画像を出力する。ステップS611において、合成部605は、背景成分画像を出力し、処理は終了する。
【0543】
このように、前景背景分離部105は、領域情報および混合比αを基に、入力画像から前景の成分と、背景の成分とを分離し、前景の成分のみから成る前景成分画像、および背景の成分のみから成る背景成分画像を出力することができる。
【0544】
図86は、背景成分画像に対応する、空間方向に、より高解像度な画像を生成するクラス分類適応処理において使用される係数セットを生成する分離画像処理部106の構成を示すブロック図である。例えば、図86に構成を示す分離画像処理部106は、入力されたHD画像を基に、背景成分画像に対応し、SD画像からHD画像を生成するクラス分類適応処理において使用される係数セットを生成する。
【0545】
図86に構成を示す分離画像処理部106は、前景成分画像を使用しない。
【0546】
教師画像フレームメモリ701は、前景背景分離部105から供給された背景成分画像を記憶する。教師画像フレームメモリ701は、記憶している背景成分画像、すなわち教師画像を加重平均部702および学習部704に供給する。
【0547】
加重平均部702は、教師画像フレームメモリ701から供給された、例えば、教師画像である、HD画像の背景成分画像を4分の1加重平均して、生徒画像であるSD画像を生成し、生成したSD画像を生徒画像フレームメモリ703に供給する。
【0548】
例えば、加重平均部702は、図87に示すように、教師画像の2×2(横×縦)の4つの画素(同図において、白丸で示す部分)を1単位とし、各単位の4つの画素の画素値を加算して、加算された結果を4で除算する。加重平均部702は、このように、4分の1加重平均された結果を、各単位の中心に位置する生徒画像の画素(同図において、黒丸で示す部分)に設定する。
【0549】
生徒画像フレームメモリ703は、加重平均部702から供給された、教師画像である背景成分画像に対応する、生徒画像を記憶する。生徒画像フレームメモリ703は、記憶している生徒画像を学習部704に供給する。
【0550】
学習部704は、教師画像フレームメモリ701から供給された教師画像である背景成分画像、および生徒画像フレームメモリ703から供給された、背景成分画像に対応する生徒画像を基に、背景成分画像に対応する係数セットを生成し、生成した係数セットを係数セットメモリ705に供給する。
【0551】
係数セットメモリ705は、学習部704から供給された背景成分画像に対応する係数セットを記憶する。
【0552】
図88は、学習部704の構成を示すブロック図である。
【0553】
クラス分類部721は、クラスタップ取得部731および波形分類部732で構成され、入力された生徒画像の、注目している画素である、注目画素をクラス分類する。クラスタップ取得部731は、注目画素に対応する、生徒画像の画素である、所定の数のクラスタップを取得し、取得したクラスタップを波形分類部732に供給する。
【0554】
例えば、図87において、上からi番目で、左からj番目の生徒画像の画素(図中、黒丸で示す部分)をXijと表すとすると、クラスタップ取得部731は、注目画素Xijの左上、上、右上、左、右、左下、下、右下に隣接する8つの画素X(i-1)(j-1),X(i-1)j,X(i-1)(j+1),Xi(j-1),Xi(j+1),X(i-1)(j-1),X(i-1)j,X(i+1)(j+1)に、自身を含め、合計9画素で構成されるクラスタップを取得する。このクラスタップは、波形分類部732に供給される。
【0555】
なお、この場合、クラスタップは、3×3画素でなる正方形状のブロックで構成されることとなるが、クラス分類用ブロックの形状は、正方形である必要はなく、その他、例えば、長方形や、十文字形、その他の任意な形とすることが可能である。また、クラスタップを構成する画素数も、3×3の9画素に限定されるものではない。
【0556】
波形分類部732は、入力信号を、その特徴に基づいていくつかのクラスに分類する、クラス分類処理を実行して、クラスタップを基に、注目画素を1つのクラスに分類する。波形分類部732は、例えば、注目画素を512のクラスのうちの1つのクラスに分類し、分類されたクラスに対応するクラス番号を予測タップ取得部722に供給する。
【0557】
ここで、クラス分類処理について簡単に説明する。
【0558】
いま、例えば、図89(A)に示すように、ある注目画素と、それに隣接する3つの画素により、2×2画素でなるクラスタップを構成し、また、各画素は、1ビットで表現される(0または1のうちのいずれかのレベルをとる)ものとする。この場合、注目画素を含む2×2の4画素のブロックは、各画素のレベル分布により、図89(B)に示すように、16(=(214)パターンに分類することができる。従って、いまの場合、注目画素は、16のパターンに分類することができ、このようなパターン分けが、クラス分類処理であり、クラス分類部721において行われる。
【0559】
なお、クラス分類処理は、画像(クラスタップ)のアクティビティ(画像の複雑さ)(変化の激しさ)などをも考慮して行うようにすることが可能である。
【0560】
ここで、通常、各画素には、例えば8ビット程度が割り当てられる。また、本実施の形態においては、上述したように、クラスタップは、3×3の9画素で構成される。従って、このようなクラスタップを対象にクラス分類処理を行ったのでは、(289という膨大な数のクラスに分類されることになる。
【0561】
そこで、本実施の形態においては、波形分類部732において、クラスタップに対して、ADRC処理が施され、これにより、クラスタップを構成する画素のビット数を小さくすることで、クラス数を削減する。
【0562】
説明を簡単にするため、図90(A)に示すように、直線上に並んだ4画素で構成されるクラスタップを考えると、ADRC処理においては、その画素値の最大値MAXと最小値MINが検出される。そして、DR=MAX−MINを、クラスタップで構成されるブロックの局所的なダイナミックレンジとし、このダイナミックレンジDRに基づいて、クラスタップのブロックを構成する画素の画素値がKビットに再量子化される。
【0563】
即ち、ブロック内の各画素値から、最小値MINを減算し、その減算値をDR/2Kで除算する。そして、その結果得られる除算値に対応するコード(ADRCコード)に変換される。具体的には、例えば、K=2とした場合、図90(B)に示すように、除算値が、ダイナミックレンジDRを4(=22)等分して得られるいずれの範囲に属するかが判定され、除算値が、最も下のレベルの範囲、下から2番目のレベルの範囲、下から3番目のレベルの範囲、または最も上のレベルの範囲に属する場合には、それぞれ、例えば、00B,01B,10B、または11Bなどの2ビットにコード化される(Bは2進数であることを表す)。そして、復号側においては、ADRCコード00B,01B,10B、または11Bは、ダイナミックレンジDRを4等分して得られる最も下のレベルの範囲の中心値L00、下から2番目のレベルの範囲の中心値L01、下から3番目のレベルの範囲の中心値L10、または最も上のレベルの範囲の中心値L11に変換され、その値に、最小値MINが加算されることで復号が行われる。
【0564】
ここで、このようなADRC処理はノンエッジマッチングと呼ばれる。
【0565】
なお、ADRC処理については、本件出願人が先に出願した、例えば、特開平3−53778号公報などに、その詳細が開示されている。
【0566】
クラスタップを構成する画素に割り当てられているビット数より少ないビット数で再量子化を行うADRC処理を施すことにより、上述したように、クラス数を削減することができ、このようなADRC処理が、波形分類部732において行われる。
【0567】
なお、本実施の形態では、波形分類部732において、ADRCコードに基づいて、クラス分類処理が行われるが、クラス分類処理は、その他、例えば、DPCM(予測符号化)や、BTC(Block Truncation Coding)、VQ(ベクトル量子化)、DCT(離散コサイン変換)、アダマール変換などを施したデータを対象に行うようにすることも可能である。
【0568】
予測タップ取得部722は、クラス番号を基に、生徒画像の画素から、クラスに対応し、元の画像(教師画像)の予測値を計算するための単位である、予測タップを取得し、取得した予測タップおよびクラス番号を対応画素取得部723に供給する。
【0569】
例えば、図87において、生徒画像の画素Xij(図中、黒丸で示す部分)を中心とする、元の画像(教師画像)における2×2の9画素の画素値を、その最も左から右方向、かつ上から下方向に、Yij(1),Yij(2),Yij(3),Yij(4)と表すとすると、画素Yij(1)乃至Yij(4)の予測値の計算に必要な係数を算出するために、予測タップ取得部722は、例えば、生徒画像の画素Xijを中心とする3×3の9画素X(i-1)(j-1),X(i-1)j,X(i-1)(j+1),Xi(j-1),Xij,Xi(j+1),X(i+1)(j-1),X(i+1)j,X(i+1)(j+1)で構成される正方形状の予測タップを取得する。
【0570】
具体的には、例えば、図87において四角形で囲む、教師画像における画素Y33(1)乃至Y33(4)の4画素の予測値の計算に必要な係数を算出するには、画素X22,X23,X24,X32,X33,X34,X42,X43,X44により、予測タップが構成される(この場合の注目画素は、X33となる)。
【0571】
対応画素取得部723は、予測タップおよびクラス番号を基に、予測すべき画素値に対応する教師画像の画素の画素値を取得し、予測タップ、クラス番号、および取得した予測すべき画素値に対応する教師画像の画素の画素値を正規方程式生成部724に供給する。
【0572】
例えば、対応画素取得部723は、教師画像における画素Y33(1)乃至Y33(4)の4画素の予測値の計算に必要な係数を算出するとき、予測すべき画素値に対応する教師画像の画素として、画素Y33(1)乃至Y33(4)の画素値を取得する。
【0573】
正規方程式生成部724は、予測タップ、クラス番号、および取得した予測すべき画素値を基に、予測タップおよび予測すべき画素値の関係に対応する、適応処理において使用される係数セットを算出するための正規方程式を生成し、クラス番号と共に、生成した正規方程式を係数計算部725に供給する。
【0574】
係数計算部725は、正規方程式生成部724から供給された正規方程式を解いて、分類されたクラスに対応する、適応処理において使用される係数セットを計算する。係数計算部725は、クラス番号と共に、計算した係数セットを係数セットメモリ705に供給する。
【0575】
正規方程式生成部724は、このような正規方程式に対応する行列を生成し、係数計算部725は、生成された行列を基に、係数セットを計算するようにしてもよい。
【0576】
ここで、適応処理について説明する。
【0577】
例えば、いま、教師画像の画素値yの予測値E[y]を、その周辺の幾つかの画素の画素値(以下、適宜、生徒データという)x1,x2,・・・と、所定の予測係数w1,w2,・・・の線形結合により規定される線形1次結合モデルにより求めることを考える。この場合、予測値E[y]は、次式で表すことができる。
【0578】
E[y]=w11+w22+・・・ (78)
【0579】
そこで、一般化するために、予測係数wの集合でなる行列W、生徒データの集合でなる行列X、および予測値E[y]の集合でなる行列Y’を、
【数17】
Figure 0004660980
で定義すると、次のような観測方程式が成立する。
【0580】
XW=Y’ (79)
【0581】
そして、この観測方程式に最小自乗法を適用して、元の画像の画素値yに近い予測値E[y]を求めることを考える。この場合、元の画像の画素値(以下、適宜、教師データという)yの集合でなる行列Y、および元の画像の画素値yに対する予測値E[y]の残差eの集合でなる行列Eを、
【数18】
Figure 0004660980
で定義すると、式(79)から、次のような残差方程式が成立する。
【0582】
XW=Y+E (80)
【0583】
この場合、元の画像の画素値yに近い予測値E[y]を求めるための予測係数wiは、自乗誤差
【数19】
Figure 0004660980
を最小にすることで求めることができる。
【0584】
従って、上述の自乗誤差を予測係数wiで微分したものが0になる場合、即ち、次式を満たす予測係数wiが、元の画像の画素値yに近い予測値E[y]を求めるため最適値ということになる。
【0585】
【数20】
Figure 0004660980
【0586】
そこで、まず、式(80)を、予測係数wiで微分することにより、次式が成立する。
【0587】
【数21】
Figure 0004660980
【0588】
式(81)および(82)より、式(83)が得られる。
【0589】
【数22】
Figure 0004660980
【0590】
さらに、式(80)の残差方程式における生徒データx、予測係数w、教師データy、および残差eの関係を考慮すると、式(83)から、次のような正規方程式を得ることができる。
【0591】
【数23】
Figure 0004660980
【0592】
式(84)の正規方程式は、求めるべき予測係数wの数と同じ数だけたてることができ、従って、式(84)を解くことで、最適な予測係数wを求めることができる。なお、式(84)を解くにあたっては、例えば、掃き出し法(Gauss-Jordanの消去法)などを適用することが可能である。
【0593】
以上のようにして、クラスごとに最適な予測係数wを求め、さらに、その予測係数wを用い、式(78)により、教師画像の画素値yに近い予測値E[y]を求めるのが適応処理である。
【0594】
正規方程式生成部724は、クラスごとに最適な予測係数wを算出するための正規方程式を生成し、係数計算部725は、生成された正規方程式を基に、予測係数wを算出する。
【0595】
なお、適応処理は、間引かれた画像には含まれていない、元の画像に含まれる成分が再現される点で、補間処理とは異なる。即ち、適応処理は、式(78)だけを見る限りは、いわゆる補間フィルタを用いての補間処理と同一であるが、その補間フィルタのタップ係数に相当する予測係数wが、教師データyを用いての、いわば学習により求められるため、元の画像に含まれる成分を再現することができる。このことから、適応処理は、いわば画像の創造作用がある処理ということができる。
【0596】
また、適応処理は、空間方向により解像度の高い画像を創造する処理に限らず、例えば、画像の解像度をそのままに、ノイズをより低減した画像を創造するようにすることもできる。
【0597】
図91のフローチャートを参照して、図86に構成を示す分離画像処理部106による、クラス分類適応処理による画素値の予測に使用される係数セットを生成する学習の処理を説明する。
【0598】
ステップS701において、加重平均部702は、教師画像フレームメモリ701に記憶されている、教師画像である背景成分画像を、例えば、4分の1加重平均して、教師画像である背景成分画像に対応する生徒画像を生成する。
【0599】
ステップS702において、学習部704は、教師画像フレームメモリ701に記憶されている教師画像である背景成分画像、および生徒画像フレームメモリ703に記憶されている、背景成分画像に対応する生徒画像を基に、背景成分画像に対応する係数セットを生成し、生成した係数セットを係数セットメモリ705に供給する。係数セットメモリ705は、背景成分画像に対応する係数セットを記憶して、処理は終了する。ステップS702における係数セットの生成の処理の詳細は、図92のフローチャートを参照して後述する。
【0600】
このように、図86に構成を示す分離画像処理部106は、背景成分画像に対応する係数セットを生成することができる。
【0601】
次に、図92のフローチャートを参照して、ステップS702の処理に対応する、学習部704が実行する背景成分画像に対応する係数セットの生成の処理を説明する。
【0602】
ステップS721において、学習部704は、背景成分画像に対応する生徒画像に未処理の画素があるか否かを判定し、背景成分画像に対応する生徒画像に未処理の画素があると判定された場合、ステップS722に進み、ラスタースキャン順に、背景成分画像に対応する生徒画像から注目画素を取得する。
【0603】
ステップS723において、クラス分類部721のクラスタップ取得部731は、生徒画像フレームメモリ703に記憶されている生徒画像から、注目画素に対応するクラスタップを取得する。ステップS724において、クラス分類部721の波形分類部732は、クラスタップに対して、ADRC処理を適用し、これにより、クラスタップを構成する画素のビット数を小さくして、注目画素をクラス分類する。ステップS725において、予測タップ取得部722は、分類されたクラスを基に、生徒画像フレームメモリ703に記憶されている生徒画像から、注目画素に対応する予測タップを取得する。
【0604】
ステップS726において、対応画素取得部723は、分類されたクラスを基に、教師画像フレームメモリ701に記憶されている教師画像である背景成分画像から、予測すべき画素値に対応する画素を取得する。
【0605】
ステップS727において、正規方程式生成部724は、分類されたクラスを基に、クラス毎の行列に、予測タップおよび予測すべき画素値に対応する画素の画素値を足し込み、ステップS721に戻り、学習部704は、未処理の画素があるか否かの判定を繰り返す。予測タップおよび予測すべき画素値に対応する画素の画素値を足し込まれるクラス毎の行列は、クラス毎の係数セットを計算するための正規方程式に対応している。
【0606】
ステップS721において、生徒画像に未処理の画素がないと判定された場合、ステップS728に進み、正規方程式生成部724は、予測タップおよび予測すべき画素値に対応する画素の画素値が設定された、クラス毎の行列を係数計算部725に供給する。係数計算部725は、予測タップおよび予測すべき画素値に対応する画素の画素値が設定された、クラス毎の行列を解いて、背景成分画像に対応する、クラス毎の係数セットを計算する。
【0607】
なお、係数計算部725は、線形予測により画素値を予測するための係数セットに限らず、非線形予測により画素値を予測するための係数セットを計算するようにしてもよい。
【0608】
ステップS729において、係数計算部725は、背景成分画像に対応する、クラス毎の係数セットを係数セットメモリ705に出力し、処理は終了する。
【0609】
このように、学習部704は、背景成分画像に対応する係数セットを生成することができる。
【0610】
このように、図86に構成を示す分離画像処理部106は、背景成分画像に対応する係数セットを生成することができる。
【0611】
図93は、背景成分画像に、クラス分類適応処理を実行して、空間方向に、より高解像度な画像を生成し、前景成分画像を線形補間する分離画像処理部106の構成を示すブロック図である。例えば、図93に構成を示す分離画像処理部106は、SD画像である入力画像の背景成分画像に、クラス分類適応処理を適用し、SD画像である入力画像の前景成分画像に、線形補間の処理を適用し、HD画像を生成する。
【0612】
フレームメモリ801は、分離画像処理部105から供給された背景成分画像を記憶する。フレームメモリ801は、記憶している背景成分画像をマッピング部802に供給する。
【0613】
マッピング部802は、係数セットメモリ803に記憶されている、背景成分画像に対応する係数セットを基に、クラス分類適応処理により、フレームメモリ801に記憶されている背景成分画像に対応する予測画像を生成する。マッピング部802は、生成した予測画像をフレームメモリ804に供給する。
【0614】
フレームメモリ804は、記憶している背景成分画像に対応する予測画像を記憶し、記憶している予測画像を合成部808に供給する。
【0615】
フレームメモリ805は、分離画像処理部105から供給された前景成分画像を記憶する。フレームメモリ805は、記憶している前景成分画像を線形補間処理部806に供給する。
【0616】
線形補間処理部806は、線形補間の処理により、フレームメモリ805に記憶されている前景成分画像に対応する補間された画像を生成する。
【0617】
例えば、図87において四角形で囲む、補間される画像における画素Y33(1)の画素値を算出するとき、線形補間処理部806は、画素X22,X23,X24,X32,X33,X34,X42,X43,X44のそれぞれに、対応する所定の重みを乗算して、乗算された結果の和を画素Y33(1)の画素値とする。同様に、補間される画像における画素Y33(2)の画素値を算出するとき、線形補間処理部806は、画素X22,X23,X24,X32,X33,X34,X42,X43,X44のそれぞれに、画素Y33(1)の画素値を算出する場合と異なる、所定の重みを乗算して、乗算された結果の和を画素Y33(2)の画素値とする。
【0618】
線形補間処理部806は、同様の補間の処理で、画素X22,X23,X24,X32,X33,X34,X42,X43,X44を基に、画素Y33(3)および画素Y33(4)の画素値を算出する。
【0619】
線形補間処理部806は、補間した画像をフレームメモリ807に供給する。
【0620】
フレームメモリ807は、前景成分画像を基に補間された画像を記憶し、記憶している画像を合成部808に供給する。
【0621】
合成部808は、フレームメモリ804から供給された、背景成分画像に対応する予測画像、およびフレームメモリ807から供給された、前景成分画像を基に補間された画像を合成し、合成した画像を出力画像として出力する。
【0622】
図94は、マッピング部802の構成を示すブロック図である。
【0623】
マッピング処理部821は、クラス分類処理を実行するクラス分類部831、並びに適応処理を実行する予測タップ取得部832および予測演算部833で構成されている。
【0624】
クラス分類部831は、クラスタップ取得部851および波形分類部852で構成され、背景成分画像の注目している画素である、注目画素をクラス分類する。
【0625】
クラスタップ取得部851は、入力画像の注目画素に対応する、所定の数のクラスタップを取得し、取得したクラスタップを波形分類部852に供給する。例えば、クラスタップ取得部851は、9個のクラスタップを取得し、取得したクラスタップを波形分類部852に供給する。
【0626】
波形分類部852は、クラスタップに対して、ADRC処理を適用し、これにより、クラスタップを構成する画素のビット数を小さくして、注目画素を所定の数のクラスのうちの1つのクラスに分類し、分類されたクラスに対応するクラス番号を予測タップ取得部832に供給する。例えば、波形分類部852は、注目画素を512のクラスのうちの1つのクラスに分類し、分類されたクラスに対応するクラス番号を予測タップ取得部832に供給する。
【0627】
予測タップ取得部832は、クラス番号を基に、入力画像から、クラスに対応する、所定の数の予測タップを取得し、取得した予測タップおよびクラス番号を予測演算部833に供給する。
【0628】
予測演算部833は、クラス番号を基に、係数セットメモリ803に記憶されている背景成分画像に対応する係数セットから、クラスに対応する係数セットを取得する。予測演算部833は、クラスに対応する係数セット、および予測タップを基に、線形予測により予測画像の画素値を予測する。予測演算部833は、予測した画素値をフレームメモリ822に供給する。
【0629】
なお、予測演算部833は、非線形予測により予測画像の画素値を予測するようしてもよい。
【0630】
フレームメモリ822は、マッピング処理部821から供給された、予測された画素値を記憶し、予測された画素値からなる画像を出力する。
【0631】
図95は、図93に構成を示す分離画像処理部106の処理を説明する図である。
【0632】
図95に示すように、入力画像は、領域に分割され、前景の成分と背景の成分とに分離される。分離された入力画像は、前景成分画像および背景成分画像に合成される。
【0633】
分離画像処理部106により、分離された背景成分画像には、クラス分類適応処理が適用される。分離画像処理部106により、分離された前景成分画像には、線形補間処理が適用される。
【0634】
次に、図96のフローチャートを参照して、図93に構成を示す分離画像処理部106の画像の創造の処理を説明する。
【0635】
ステップS801において、マッピング部802は、係数セットメモリ803に記憶されている、背景成分画像に対応する係数セットを基に、クラス分類適応処理により、フレームメモリ801に記憶されている背景成分画像に対応する画像を予測する。背景成分画像に対応する画像の予測の処理の詳細は、図97のフローチャートを参照して後述する。
【0636】
マッピング部802は、背景成分画像に対応する予測された画像をフレームメモリ804に供給する。フレームメモリ804は、背景成分画像に対応する予測された画像を記憶し、記憶している予測された画像を合成部808に供給する。
【0637】
ステップS802において、線形補間処理部806は、フレームメモリ805に記憶されている前景成分画像を線形補間する。線形補間処理部806は、線形補間された画像をフレームメモリ807に供給する。フレームメモリ807は、線形補間された画像を記憶し、記憶している線形補間された画像を合成部808に供給する。
【0638】
ステップS803において、合成部808は、背景成分画像に対応する予測画像、および前景成分画像を線形補間した画像を合成する。合成部808は、記憶している、合成された画像を出力し、処理は終了する。
【0639】
このように、図93に構成を示す分離画像処理部106を有する画像処理装置は、背景成分画像に対応する予測画像を生成し、前景成分画像に対応する線形補間された画像を個々に生成し、生成された画像を合成して出力することができる。
【0640】
なお、ステップS801およびステップS802の処理を、シリアルに実行しても、パラレルに実行しても良いことは勿論である。
【0641】
図97のフローチャートを参照して、ステップS801に対応する、マッピング部802による背景成分画像に対応する画像の予測の処理を説明する。
【0642】
ステップS821において、マッピング部802は、背景成分画像に未処理の画素があるか否かを判定し、背景成分画像に未処理の画素があると判定された場合、ステップS822に進み、マッピング処理部821は、係数セットメモリ803に記憶されている、背景成分画像に対応する係数セットを取得する。ステップS823において、マッピング処理部821は、ラスタースキャン順に、フレームメモリ801に記憶されている背景成分画像から注目画素を取得する。
【0643】
ステップS824において、クラス分類部831のクラスタップ取得部851は、フレームメモリ801に記憶されている背景成分画像から、注目画素に対応するクラスタップを取得する。ステップS825において、クラス分類部831の波形分類部852は、クラスタップに対して、ADRC処理を適用し、これにより、クラスタップを構成する画素のビット数を小さくして、注目画素をクラス分類する。ステップS826において、予測タップ取得部832は、分類されたクラスを基に、フレームメモリ801に記憶されている背景成分画像から、注目画素に対応する予測タップを取得する。
【0644】
ステップS827において、予測演算部833は、背景成分画像および分類されたクラスに対応する係数セット、および予測タップを基に、線形予測により、予測画像の画素値を予測する。
【0645】
なお、予測演算部833は、線形予測に限らず、非線形予測により予測画像の画素値を予測するようにしてもよい。
【0646】
ステップS828において、予測演算部833は、予測された画素値をフレームメモリ822に出力する。フレームメモリ822は、予測演算部833から供給された画素値を記憶する。手続きは、ステップS821に戻り、未処理の画素があるか否かの判定を繰り返す。
【0647】
ステップS821において、背景成分画像に未処理の画素がないと判定された場合、ステップS829に進み、フレームメモリ822は、記憶されている背景成分画像に対応する予測画像を出力して、処理は終了する。
【0648】
このように、マッピング部802は、背景成分画像を基に、背景成分画像に対応する画像を予測することができる。
【0649】
このように、図93に構成を示す分離画像処理部106は、背景成分画像に対応する予測画像を生成し、前景成分画像を線形補間することができるので、動きボケを含む前景成分画像に不自然な画像の劣化を発生させることなく、空間方向の解像度を増加させた画像を生成することができる。
【0650】
図98は、背景成分画像にエッジ強調の処理を適用する分離画像処理部106の他の構成を示すブロック図である。図98に構成を示す分離画像処理部106は、背景成分画像にエッジ強調の処理を適用し、そのままの前景成分画像と、エッジ強調の処理が適用された背景成分画像とを合成する。
【0651】
前景背景分離部105から供給された背景成分画像は、エッジ強調部901に入力され、前景背景分離部105から供給された前景成分画像は、合成部902に入力される。
【0652】
エッジ強調部901は、前景背景分離部105から供給された背景成分画像に、背景成分画像に適したエッジ強調の処理を適用して、エッジ強調した背景成分画像を合成部902に供給する。
【0653】
例えば、エッジ強調部901は、静止している画像である背景成分画像に、エッジをより強調するエッジ強調の処理を実行する。このようにすることで、動いている画像にエッジ強調の処理を適用したときの不自然な画像の劣化を発生させることなく、背景成分画像の解像度感をより増加させることができる。
【0654】
また、例えば、背景が動いているとき、エッジ強調部901は、背景成分画像に、背景が静止している場合に比較して、エッジ強調の度合いの少ないエッジ強調の処理を実行する。このようにすることで、動いている画像にエッジ強調の処理を適用したときの不自然な画像の劣化を発生させることなく、背景成分画像の解像度感をより増加させることができる。
【0655】
合成部902は、エッジ強調部901から供給された、エッジ強調された背景成分画像、および前景背景分離部105から供給された前景成分画像を合成し、合成された画像を出力する。
【0656】
このように、図98に構成を示す分離画像処理部106は、そのままの前景成分画像と、背景成分画像の性質に対応したエッジ強調の処理が適用された背景成分画像とを合成するので、画像を不自然に劣化させることなく、画像の解像度感を増すことができる。
【0657】
図99は、エッジ強調部901の構成を示すブロック図である。領域毎に分割された入力画像は、ハイパスフィルタ921および加算部923に入力される。
【0658】
ハイパスフィルタ921は、入力されたフィルタ係数を基に、入力画像から、画素位置に対して画素値が急激に変化している、いわゆる画像の周波数の高い成分を抽出し、画素位置に対して画素値の変化が少ない、いわゆる画像の周波数の低い成分を除去して、エッジ画像を生成する。
【0659】
例えば、ハイパスフィルタ921は、図100(A)に示す画像が入力されたとき、図100(B)に示すエッジ画像を生成する。
【0660】
入力されるフィルタ係数が変化したとき、ハイパスフィルタ921は、抽出する画像の周波数、除去する画像の周波数、および抽出する画像のゲインを変化させる。
【0661】
図101乃至図104を参照して、フィルタ係数とエッジ画像との関係を説明する。
【0662】
図101は、フィルタ係数の第1の例を示す図である。図101において、Eは、10の階乗を示す。例えば、E-04は、10-4を示し、E-02は、10-2を示す。
【0663】
例えば、ハイパスフィルタ921は、入力画像の、注目している画素である注目画素の画素値、注目画素を基準として、空間方向Yの所定の方向に1画素乃至15画素の距離だけ離れている画素の画素値、および注目画素を基準として、空間方向Yの他の方向に1画素乃至15画素の距離だけ離れている画素の画素値のそれぞれに、図101に示すフィルタ係数のうち、対応する係数を乗算する。ハイパスフィルタ921は、それぞれの画素の画素値に対応する係数を乗算して得られた結果の総和を算出して、算出された総和を注目画素の画素値に設定する。
【0664】
例えば、図101に示すフィルタ係数を使用するとき、ハイパスフィルタ921は、注目画素の画素値に1.2169396を乗算し、注目画素から画面の上方向に1画素の距離だけ離れている画素の画素値に-0.52530356を乗算し、注目画素から画面の上方向に2画素の距離だけ離れている画素の画素値に-0.22739914を乗算する。
【0665】
図101に示すフィルタ係数を使用するとき、ハイパスフィルタ921は、同様に、注目画素から画面の上方向に3画素乃至13画素の距離だけ離れている画素に対応する係数を乗算し、注目画素から画面の上方向に14画素の距離だけ離れている画素の画素値に-0.00022540586を乗算し、注目画素から画面の上方向に15画素の距離だけ離れている画素の画素値に-0.00039273163を乗算する。
【0666】
図101に示すフィルタ係数を使用するとき、ハイパスフィルタ921は、注目画素から画面の下方向に1画素乃至15画素の距離だけ離れている画素に同様に対応する係数を乗算する。
【0667】
ハイパスフィルタ921は、注目画素の画素値、注目画素から画面の上方向に1画素乃至15画素の距離だけ離れている画素の画素値、および注目画素から画面の下方向に1画素乃至15画素の距離だけ離れている画素の画素値のそれぞれに、対応する係数を乗算して得られた結果の総和を算出する。ハイパスフィルタ921は、算出された総和を注目画素の画素値に設定する。
【0668】
ハイパスフィルタ921は、注目画素の位置を空間方向Xに順次移動させて、上述した処理を繰り返し、画面全体の画素について、画素値を算出する。
【0669】
次に、ハイパスフィルタ921は、上述のように係数を基に画素値が算出された画像の、注目している画素である注目画素の画素値、注目画素を基準として、空間方向Xの所定の方向に1画素乃至15画素の距離だけ離れている画素の画素値、および注目画素を基準として、空間方向Xの他の方向に1画素乃至15画素の距離だけ離れている画素の画素値のそれぞれに、図101に示すフィルタ係数のうち、対応する係数を乗算する。ハイパスフィルタ921は、それぞれの画素の画素値に対応する係数を乗算して得られた結果の総和を算出して、算出された総和を注目画素の画素値に設定する。
【0670】
ハイパスフィルタ921は、注目画素の位置を空間方向Yに順次移動させて、上述した処理を繰り返し、画面全体の画素について、画素値を算出する。
【0671】
すなわち、この例において、ハイパスフィルタ921は、図101に示す係数を使用する、いわゆる1次元フィルタである。
【0672】
図102は、図101の係数を使用するときのハイパスフィルタ921の動作を示す図である。図102に示すように、図101の係数を使用するとき、ハイパスフィルタ921における、抽出される画像成分の最大のゲインは、1である。
【0673】
図103は、フィルタ係数の第2の例を示す図である。
【0674】
図104は、図101に示すフィルタ係数を使用した処理と同様の処理を、図103の係数を使用して実行したときのハイパスフィルタ921の動作を示す図である。図104に示すように、図103の係数を使用するとき、ハイパスフィルタ921における、抽出される画像成分の最大のゲインは、1.5である。
【0675】
このように、ハイパスフィルタ921は、供給されるフィルタ係数により、抽出する画像成分のゲインを変化させる。
【0676】
例えば、図99に構成を示すエッジ強調部901は、背景が静止しているとき、図103に示す係数を使用して、エッジ強調の度合いのより強いエッジ強調処理を、背景成分画像に適用する。図99に構成を示すエッジ強調部901は、背景が動いているとき、図101に示す係数を使用して、エッジ強調の度合いの比較的弱いエッジ強調処理を、背景成分画像に適用する。
【0677】
ここでは例示しないが、同様に、異なるフィルタ係数が供給されたとき、ハイパスフィルタ921は、抽出する画像の周波数、および除去する画像の周波数を変化させることができる。
【0678】
図99に戻り、ハイパスフィルタ921は、生成したエッジ画像をゲイン調整部922に供給する。
【0679】
ゲイン調整部922は、入力されたゲイン調整係数を基に、ハイパスフィルタ921から供給されたエッジ画像を増幅するか、または減衰する。入力されるゲイン調整係数が変化したとき、ゲイン調整部922は、エッジ画像の増幅率(減衰率)を変化させる。例えば、ゲイン調整部922は、1以上の増幅率を指定するゲイン調整係数が入力されたとき、エッジ画像を増幅し、1未満の増幅率を指定するゲイン調整係数が入力されたとき、エッジ画像を減衰する。
【0680】
ゲイン調整部922は、ゲインが調整されたエッジ画像を加算部923に供給する。
【0681】
加算部923は、分割された入力画像と、ゲイン調整部922から供給された、ゲインが調整されたエッジ画像とを加算して、加算された画像を出力する。
【0682】
例えば、加算部923は、図100(A)に示す入力画像が入力され、図100(B)に示すエッジ画像がハイパスフィルタ921から供給されたとき、図100(A)の入力画像と図100(B)のエッジ画像とを加算して、図100(C)に示す画像を出力する。
【0683】
このように、エッジ強調部901は、分割された画像にエッジ強調の処理を適用する。
【0684】
図105は、エッジ強調部901の他の構成を示すブロック図である。図105に示す例において、エッジ強調部901は、フィルタ741から構成されている。
【0685】
フィルタ741は、入力されたフィルタ係数を基に、入力画像の、画素位置に対して画素値が急激に変化している、いわゆる画像の周波数の高い成分を増幅して、エッジ強調画像を生成する。
【0686】
例えば、フィルタ741は、図106に例を示す係数が供給されたとき、図106に例を示す係数を基に、ハイパスフィルタ921で説明した処理と同様の処理を実行する。
【0687】
図107は、図106の係数を使用するときのフィルタ741の動作を示す図である。図107に示すように、図106の係数を使用するとき、フィルタ741は、画像の周波数の高い成分を2倍に増幅し、画像の周波数の低い成分をそのまま通過させて、エッジ強調画像を生成する。
【0688】
図106の係数を使用するときのフィルタ741は、図101の係数を利用し、ゲイン調整部922のゲインが1であるときの、図99に構成を示すエッジ強調部901の出力画像と同一の出力画像を出力する。
【0689】
図108は、フィルタ741に供給されるフィルタ係数の第2の例を示す図である。
【0690】
図109は、図108の係数を使用するときのフィルタ741の動作を示す図である。図109に示すように、図108の係数を使用するとき、フィルタ741は、画像の周波数の高い成分を2.5倍に増幅し、画像の周波数の低い成分をそのまま通過させて、エッジ強調画像を生成する。
【0691】
図108の係数を使用するときのフィルタ741は、図103の係数を利用し、ゲイン調整部922のゲインが1であるときの、図99に構成を示すエッジ強調部901の出力画像と同一の出力画像を出力する。
【0692】
このように、図105に構成を示すエッジ強調部901は、入力されるフィルタ係数により、画像の高周波成分のゲインを変化させて、画像のエッジの強調の度合いを変更することができる。
【0693】
以上のように、エッジ強調部901は、例えば、異なるフィルタ係数またはゲイン調整係数を基に、分割された画像の性質に対応したエッジ強調の処理を実行する。
【0694】
図110は、図98に構成を示す分離画像処理部106の処理を説明する図である。
【0695】
図110に示すように、入力画像は、領域に分割され、前景の成分と背景の成分とに分離される。分離された入力画像は、前景成分画像および背景成分画像に合成される。
【0696】
分離画像処理部106により、分離された背景成分画像には、エッジ強調の処理が適用され、エッジ強調された背景成分画像が出力される。分離された前景成分画像は、そのまま出力される。
【0697】
次に、図111のフローチャートを参照して、図98に構成を示す分離画像処理部106の処理を説明する。
【0698】
ステップS901において、エッジ強調部901は、背景成分画像にエッジ強調の処理を適用する。エッジ強調部901は、エッジ強調された背景成分画像を合成部902に供給する。
【0699】
ステップS902において、合成部902は、エッジ強調された背景成分画像と、前景背景分離部105から供給された前景成分画像とを合成し、合成された画像を出力し、処理は終了する。
【0700】
このように、図98に構成を示す分離画像処理部106を有する画像処理装置は、背景成分画像をエッジ強調し、エッジ強調された背景成分画像と、そのままの前景成分画像とを合成して、合成された画像を出力することができるので、動きボケを含む前景成分画像に不自然な画像の劣化を発生させることなく、解像度感を増加させた画像を生成することができる。
【0701】
図112は、画像処理装置の機能の他の構成を示すブロック図である。図11に示す画像処理装置が領域特定と混合比αの算出を順番に行うのに対して、図112に示す画像処理装置は、領域特定と混合比αの算出を並行して行う。
【0702】
図11のブロック図に示す機能と同様の部分には同一の番号を付してあり、その説明は省略する。
【0703】
入力画像は、オブジェクト抽出部101、領域特定部103、混合比算出部1001、および前景背景分離部1002に供給される。
【0704】
混合比算出部1001は、入力画像を基に、画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比を、入力画像に含まれる画素のそれぞれに対して算出し、算出した画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比を前景背景分離部1002に供給する。
【0705】
図113は、混合比算出部1001の構成の一例を示すブロック図である。
【0706】
図113に示す推定混合比処理部401は、図60に示す推定混合比処理部401と同じである。図113に示す推定混合比処理部402は、図60に示す推定混合比処理部402と同じである。
【0707】
推定混合比処理部401は、入力画像を基に、カバードバックグラウンド領域のモデルに対応する演算により、画素毎に推定混合比を算出して、算出した推定混合比を出力する。
【0708】
推定混合比処理部402は、入力画像を基に、アンカバードバックグラウンド領域のモデルに対応する演算により、画素毎に推定混合比を算出して、算出した推定混合比を出力する。
【0709】
前景背景分離部1002は、混合比算出部1001から供給された、画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比、並びに領域特定部103から供給された領域情報を基に、入力画像を、背景成分画像、および前景成分画像に分離し、分離された画像を分離画像処理部106に供給する。
【0710】
図114は、前景背景分離部1002の構成の一例を示すブロック図である。
【0711】
図78に示す前景背景分離部105と同様の部分には同一の番号を付してあり、その説明は省略する。
【0712】
選択部1021は、領域特定部103から供給された領域情報を基に、混合比算出部1001から供給された、画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比のいずれか一方を選択して、選択した推定混合比を混合比αとして分離部601に供給する。
【0713】
分離部601は、選択部1021から供給された混合比αおよび領域情報を基に、混合領域に属する画素の画素値から前景の成分および背景の成分を抽出し、アンカバードバックグラウンド領域の背景の成分、アンカバードバックグラウンド領域の前景の成分、カバードバックグラウンド領域の背景の成分、およびカバードバックグラウンド領域の前景の成分に分離する。
【0714】
分離部601は、図83に示す構成と同じ構成とすることができる。
【0715】
このように、図112に構成を示す画像処理装置は、背景成分画像、および前景成分画像毎に、それぞれの性質に対応して処理を実行することができる。
【0716】
以上のように、本発明の画像処理装置においては、背景成分画像および前景成分画像に入力画像が分離され、分離された画像に適した処理が実行されるので、例えば、不自然な画像を生成することなく、より解像度の高い画像が生成される。
【0717】
図115は、本発明に係る画像処理装置の機能の他の構成を示すブロック図である。
【0718】
図11に示す場合と同様の部分には、同一の番号を付してあり、その説明は省略する。
【0719】
前景背景分離部105は、領域特定部103から供給された領域情報、および混合比算出部104から供給された混合比αを基に、前景のオブジェクトに対応する画像の成分のみから成る前景成分画像と、背景の成分のみから成る背景成分画像とに入力画像を分離して、前景成分画像を動きボケ除去部2001に供給し、背景成分画像を補正部2002に供給する。
【0720】
動きボケ除去部2001は、動きベクトルからわかる動き量vおよび領域情報を基に、前景成分画像に含まれる1以上の画素を示す処理単位を決定する。処理単位は、動きボケの量の調整の処理の対象となる1群の画素を指定するデータである。
【0721】
動きボケ除去部2001は、前景背景分離部105から供給された前景成分画像、動き検出部102から供給された動きベクトルおよびその位置情報、並びに処理単位を基に、前景成分画像に含まれる動きボケを除去して、動きボケを除去した前景成分画像を動きボケ除去画像処理部2003に出力する。
【0722】
補正部2002は、背景成分画像における、混合領域に対応する画素の画素値を補正する。背景成分画像の混合領域に対応する画素の画素値は、分離される前の混合領域の画素の画素値から、前景の成分が除去されることにより、算出される。従って、背景成分画像の混合領域に対応する画素の画素値は、隣接する背景領域の画素の画素値に比較し、混合比αに対応して、減少している。
【0723】
補正部2002は、このような、背景成分画像における、混合領域に対応する画素の画素値の混合比αに対応するゲインの低下を補正し、補正した背景成分画像を動きボケ除去画像処理部2003に供給する。
【0724】
背景成分画像の補正について説明する。
【0725】
図116は、背景成分画像のモデルの例を示す図である。
【0726】
図116に示すように、前景の成分が除去されているので、元の入力画像の混合領域に対応する、背景成分画像の画素の画素値は、元の入力画像の背景領域に対応する画素に比較して、混合比αに対応して、少ない数の背景の成分により構成されている。
【0727】
例えば、図116に例を示す背景成分画像において、画素値C01は、4つの背景の成分B02/Vで構成され、画素値C02は、3つの背景の成分B03/Vで構成され、画素値C03は、2つの背景の成分B04/Vで構成され、画素値C04は、1つの背景の成分B05/Vで構成される。
【0728】
また、図116に例を示す背景成分画像において、画素値C09は、1つの背景の成分B10/Vで構成され、画素値C10は、2つの背景の成分B11/Vで構成され、画素値C11は、3つの背景の成分B12/Vで構成され、画素値C12は、4つの背景の成分B13/Vで構成される。
【0729】
このように、元の入力画像の混合領域に対応する、画素の画素値が、元の入力画像の背景領域に対応する画素に比較して、少ない数の背景の成分により構成されているので、前景成分画像の混合領域に対応する画像は、背景領域の画像に比較して、例えば、暗い画像となる。
【0730】
補正部2002は、このような、背景成分画像の混合領域に対応する画素の画素値のそれぞれに、混合比αに対応する定数を乗じて、背景成分画像の混合領域に対応する画素の画素値を補正する。
【0731】
例えば、図116に示す背景成分画像が入力されたとき、補正部2002は、画素値C01に5/4を乗算し、画素値C02に5/3を乗算し、画素値C11に5/3を乗算し、画素値C12に5/4を乗算する。動きボケが除去された前景成分画像との画素の位置を整合させるために、補正部2002は、画素値C03乃至C11の画素値を0とする。
【0732】
このように、補正部2002は、図117に示すように、背景成分画像の混合領域に対応する画素の画素値を補正すると共に、動きボケが除去された前景成分画像との画素の位置を整合させる。
【0733】
動きボケ除去画像処理部2003は、動きボケが除去された前景成分画像、および補正された背景成分画像を個々に処理する。
【0734】
例えば、動きボケ除去画像処理部2003は、動きボケが除去された前景成分画像を基に、ノイズを除去するクラス分類適応処理で使用される係数を生成する。
【0735】
例えば、動きボケ除去画像処理部2003は、動きボケが除去された前景成分画像にクラス分類適応処理を適用して、前景成分画像からノイズを除去すると共に、補正された背景成分画像にエッジ強調の処理を適用する。
【0736】
図118および図119は、図115の画像処理装置の処理を説明する図である。
【0737】
図118に示すように、分離された背景成分画像は、混合領域の画素値が補正され、分離された前景成分画像は、動きボケが除去される。
【0738】
図119に示すように、入力画像は、領域に分割され、前景の成分と背景の成分とに分離される。分離された入力画像は、前景成分画像および背景成分画像に合成される。
【0739】
前景成分画像に含まれる動きボケは、除去される。背景成分画像は、混合領域に対応する画素値が補正される。
【0740】
動きボケが除去された前景成分画像、および補正された背景成分画像は、個々に処理される。
【0741】
図120は、図115に構成を示す、本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【0742】
ステップS2001において、領域特定部103は、動き検出部102から供給された動きベクトルおよびその位置情報、並びに入力画像を基に、入力画像の前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を特定する。
【0743】
ステップS2002において、混合比算出部104は、領域特定部103から供給された領域情報および入力画像を基に、混合比αを算出する。
【0744】
ステップS2003において、前景背景分離部105は、領域特定部103から供給された領域情報、および混合比算出部104から供給された混合比αを基に、入力画像を、前景領域の画像、背景領域の画像、カバードバックグラウンド領域の前景成分画像、カバードバックグラウンド領域の背景成分画像、アンカバードバックグラウンド領域の前景成分画像、およびアンカバードバックグラウンド領域の背景成分画像に分離する。
【0745】
ステップS2004において、動きボケ除去部2001は、動き検出部102から供給された動きベクトルおよびその位置情報、並びに領域特定部103から供給された領域情報を基に、前景背景分離部105から供給された前景成分画像の動きボケを除去する。動きボケを除去する処理の詳細は、後述する。
【0746】
ステップS2005において、補正部2002は、前景背景分離部105から供給された背景成分画像の混合領域に対応する画素値を補正する。
【0747】
ステップS2006において、動きボケ除去画像処理部2003は、動きボケが除去された前景成分画像、および補正された背景成分画像毎に、画像の処理を実行して、処理は終了する。動きボケ除去画像処理部2003が実行する画像処理の詳細は、後述する。
【0748】
このように、本発明に係る画像処理装置は、入力画像を、前景成分画像および背景成分画像に分離し、前景成分画像から動きボケを除去して、動きボケが除去された前景成分画像、および背景成分画像毎に画像処理を実行する。
【0749】
図121は、動きボケ除去部2001の構成の一例を示すブロック図である。
動き検出部102から供給された動きベクトルとその位置情報、および領域特定部103から供給された領域情報は、処理単位決定部2101およびモデル化部2102に供給される。前景背景分離部105から供給された前景成分画像は、足し込み部2104に供給される。
【0750】
処理単位決定部2101は、動きベクトルとその位置情報、および領域情報を基に、動きベクトルと共に、生成した処理単位をモデル化部2102に供給する。処理単位決定部2101は、生成した処理単位を足し込み部2104に供給する。
【0751】
処理単位決定部2101が生成する処理単位は、図122に例を示すように、前景成分画像のカバードバックグラウンド領域に対応する画素から始まり、アンカバードバックグラウンド領域に対応する画素までの動き方向に並ぶ連続する画素、またはアンカバードバックグラウンド領域に対応する画素から始まり、カバードバックグラウンド領域に対応する画素までの動き方向に並ぶ連続する画素を示す。処理単位は、例えば、左上点(処理単位で指定される画素であって、画像上で最も左または最も上に位置する画素の位置)および右下点の2つのデータから成る。
【0752】
モデル化部2102は、動きベクトルおよび入力された処理単位を基に、モデル化を実行する。より具体的には、例えば、モデル化部2102は、処理単位に含まれる画素の数、画素値の時間方向の仮想分割数、および画素毎の前景の成分の数に対応する複数のモデルを予め記憶しておき、処理単位、および画素値の時間方向の仮想分割数を基に、図123に示すような、画素値と前景の成分との対応を指定するモデルを選択するようにしても良い。
【0753】
例えば、処理単位に対応する画素の数が12でありシャッタ時間内の動き量vが5であるときにおいては、モデル化部2102は、仮想分割数を5とし、最も左に位置する画素が1つの前景の成分を含み、左から2番目の画素が2つの前景の成分を含み、左から3番目の画素が3つの前景の成分を含み、左から4番目の画素が4つの前景の成分を含み、左から5番目の画素が5つの前景の成分を含み、左から6番目の画素が5つの前景の成分を含み、左から7番目の画素が5つの前景の成分を含み、左から8番目の画素が5つの前景の成分を含み、左から9番目の画素が4つの前景の成分を含み、左から10番目の画素が3つの前景の成分を含み、左から11番目の画素が2つの前景の成分を含み、左から12番目の画素が1つの前景の成分を含み、全体として8つの前景の成分から成るモデルを選択する。
【0754】
なお、モデル化部2102は、予め記憶してあるモデルから選択するのではなく、動きベクトル、および処理単位が供給されたとき、動きベクトル、および処理単位を基に、モデルを生成するようにしてもよい。
【0755】
モデル化部2102は、選択したモデルを方程式生成部2103に供給する。
【0756】
方程式生成部2103は、モデル化部2102から供給されたモデルを基に、方程式を生成する。図123に示す前景成分画像のモデルを参照して、前景の成分の数が8であり、処理単位に対応する画素の数が12であり、動き量vが5であり、仮想分割数が5であるときの、方程式生成部2103が生成する方程式について説明する。
【0757】
前景成分画像に含まれるシャッタ時間/vに対応する前景成分がF01/v乃至F08/vであるとき、F01/v乃至F08/vと画素値C01乃至C12との関係は、式(85)乃至式(96)で表される。
【0758】
C01=F01/v (85)
C02=F02/v+F01/v (86)
C03=F03/v+F02/v+F01/v (87)
C04=F04/v+F03/v+F02/v+F01/v (88)
C05=F05/v+F04/v+F03/v+F02/v+F01/v (89)
C06=F06/v+F05/v+F04/v+F03/v+F02/v (90)
C07=F07/v+F06/v+F05/v+F04/v+F03/v (91)
C08=F08/v+F07/v+F06/v+F05/v+F04/v (92)
C09=F08/v+F07/v+F06/v+F05/v (93)
C10=F08/v+F07/v+F06/v (94)
C11=F08/v+F07/v (95)
C12=F08/v (96)
【0759】
方程式生成部2103は、生成した方程式を変形して方程式を生成する。方程式生成部2103が生成する方程式を、式(97)乃至式(108)に示す。
Figure 0004660980
【0760】
式(97)乃至式(108)は、式(109)として表すこともできる。
【0761】
【数24】
Figure 0004660980
式(109)において、jは、画素の位置を示す。この例において、jは、1乃至12のいずれか1つの値を有する。また、iは、前景値の位置を示す。この例において、iは、1乃至8のいずれか1つの値を有する。aijは、iおよびjの値に対応して、0または1の値を有する。
【0762】
誤差を考慮して表現すると、式(109)は、式(110)のように表すことができる。
【0763】
【数25】
Figure 0004660980
式(110)において、ejは、注目画素Cjに含まれる誤差である。
【0764】
式(110)は、式(111)に書き換えることができる。
【0765】
【数26】
Figure 0004660980
【0766】
ここで、最小自乗法を適用するため、誤差の自乗和Eを式(112)に示すように定義する。
【0767】
【数27】
Figure 0004660980
【0768】
誤差が最小になるためには、誤差の自乗和Eに対する、変数Fkによる偏微分の値が0になればよい。式(113)を満たすようにFkを求める。
【0769】
【数28】
Figure 0004660980
【0770】
式(113)において、動き量vは固定値であるから、式(114)を導くことができる。
【0771】
【数29】
Figure 0004660980
【0772】
式(114)を展開して、移項すると、式(115)を得る。
【0773】
【数30】
Figure 0004660980
【0774】
式(115)のkに1乃至8の整数のいずれか1つを代入して得られる8つの式に展開する。得られた8つの式を、行列により1つの式により表すことができる。この式を正規方程式と呼ぶ。
【0775】
このような最小自乗法に基づく、方程式生成部2103が生成する正規方程式の例を式(116)に示す。
【0776】
【数31】
Figure 0004660980
【0777】
式(116)をA・F=v・Cと表すと、C,A,vが既知であり、Fは未知である。また、A,vは、モデル化の時点で既知だが、Cは、足し込み動作において画素値を入力することで既知となる。
【0778】
最小自乗法に基づく正規方程式により前景成分を算出することにより、画素Cに含まれている誤差を分散させることができる。
【0779】
方程式生成部2103は、このように生成された正規方程式を足し込み部2104に供給する。
【0780】
足し込み部2104は、処理単位決定部2101から供給された処理単位を基に、前景成分画像に含まれる画素値Cを、方程式生成部2103から供給された行列の式に設定する。足し込み部2104は、画素値Cを設定した行列を演算部2105に供給する。
【0781】
演算部2105は、掃き出し法(Gauss-Jordanの消去法)などの解法に基づく処理により、動きボケが除去された前景成分Fi/vを算出して、動きボケが除去された前景の画素値である、0乃至8の整数のいずれかのiに対応するFiを算出して、図124に例を示す、動きボケが除去された画素値であるFiから成る、動きボケが除去された前景成分画像を出力する。
【0782】
なお、図124に示す動きボケが除去された前景成分画像において、C03乃至C10のそれぞれにF01乃至F08のそれぞれが設定されているのは、画面に対する前景成分画像の位置を変化させないためであり、任意の位置に対応させることができる。
【0783】
また、例えば、図125に示すように、処理単位に対応する画素の数が8であり、動き量vが4であるとき、動きボケ除去部2001は、式(117)に示す行列の式を生成する。
【0784】
【数32】
Figure 0004660980
【0785】
動きボケ除去部2001は、このように処理単位の長さに対応した数の式を立てて、動きボケの量が調整された画素値であるFiを算出する。同様に、例えば、処理単位に含まれる画素の数が100あるとき、100個の画素に対応する式を生成して、Fiを算出する。
【0786】
以上のように、動きボケ除去部2001は、動き量vおよび処理単位に対応して、式を生成し、生成した式に前景成分画像の画素値を設定して、動きボケが除去された前景成分画像を算出する。
【0787】
次に、図126のフローチャートを参照して、動きボケ除去部2001による前景成分画像に含まれる動きボケの除去の処理を説明する。
【0788】
ステップS2101において、動きボケ除去部2001の処理単位決定部2101は、動きベクトルおよび領域情報を基に、処理単位を生成し、生成した処理単位をモデル化部2102に供給する。
【0789】
ステップS2102において、動きボケ除去部2001のモデル化部2102は、動き量vおよび処理単位に対応して、モデルの選択や生成を行う。ステップS2103において、方程式生成部2103は、選択されたモデルを基に、正規方程式を作成する。
【0790】
ステップS2104において、足し込み部2104は、作成された正規方程式に前景成分画像の画素値を設定する。ステップS2105において、足し込み部2104は、処理単位に対応する全ての画素の画素値の設定を行ったか否かを判定し、処理単位に対応する全ての画素の画素値の設定を行っていないと判定された場合、ステップS2104に戻り、正規方程式への画素値の設定の処理を繰り返す。
【0791】
ステップS2105において、処理単位の全ての画素の画素値の設定を行ったと判定された場合、ステップS2106に進み、演算部2105は、足し込み部2104から供給された画素値が設定された正規方程式を基に、動きボケを除去した前景の画素値を算出して、処理は終了する。
【0792】
このように、動きボケ除去部2001は、動きベクトルおよび領域情報を基に、動きボケを含む前景成分画像から動きボケを除去することができる。
【0793】
すなわち、サンプルデータである画素値に含まれる動きボケを除去することができる。
【0794】
図127は、動きボケが除去された前景成分画像に対応する、ノイズを除去するクラス分類適応処理において使用される係数セットを生成するボケ除去画像処理部2003の構成を示すブロック図である。
【0795】
図127に構成を示すボケ除去画像処理部2003は、補正された背景成分画像を使用しない。
【0796】
教師画像フレームメモリ2201は、動きボケ除去部2001から供給された、動きボケが除去された前景成分画像を記憶する。教師画像フレームメモリ2201は、記憶している教師画像である、動きボケが除去された前景成分画像をノイズ付加部2202および学習部2204に供給する。
【0797】
ノイズ付加部2202は、乱数を生成して、教師画像フレームメモリ2201から供給された前景成分画像の各画素値に乱数を加算して、前景成分画像にノイズを付加する。ノイズ付加部2202は、ノイズが付加された前景成分画像を生徒画像フレームメモリ2203に供給する。
【0798】
生徒画像フレームメモリ2203は、ノイズ付加部2202から供給された、ノイズが付加された前景成分画像である生徒画像を記憶する。生徒画像フレームメモリ2203は、記憶している生徒画像を学習部2204に供給する。
【0799】
学習部2204は、教師画像フレームメモリ2201から供給された前景成分画像である教師画像、および生徒画像フレームメモリ2203から供給された、ノイズが付加された前景成分画像である生徒画像を基に、ノイズが付加された前景成分画像に対応する係数セットを生成し、生成した係数セットを係数セットメモリ2205に供給する。
【0800】
係数セットメモリ2205は、学習部2204から供給された背景成分画像に対応する係数セットを記憶する。
【0801】
図128のフローチャートを参照して、図127に構成を示すボケ除去画像処理部2003による、ノイズを除去するクラス分類適応処理に使用される係数セットを生成する学習の処理を説明する。
【0802】
ステップS2201において、ノイズ付加部2202は、教師画像フレームメモリ2201に記憶されている、教師画像である前景成分画像の画素値に乱数を加算して、教師画像である前景成分画像に対応する生徒画像を生成する。
【0803】
ステップS2202において、学習部2204は、教師画像フレームメモリ2201に記憶されている前景成分画像である教師画像、および生徒画像フレームメモリ2203に記憶されている、ノイズが付加された前景成分画像である生徒画像を基に、ノイズが付加された前景成分画像に対応する係数セットを生成し、生成した係数セットを係数セットメモリ2205に供給する。係数セットを生成する処理の詳細は、図92のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0804】
係数セットメモリ2205は、ノイズが付加された前景成分画像に対応する係数セットを記憶して、処理は終了する。
【0805】
このように、図127に構成を示すボケ除去画像処理部2003は、ノイズが付加された前景成分画像に対応する係数セットを生成することができる。
【0806】
図129は、動きボケが除去された前景成分画像に、クラス分類適応処理を実行して、ノイズを除去し、背景成分画像をエッジ強調するボケ除去画像処理部2003の構成を示すブロック図である。
【0807】
フレームメモリ2301は、動きボケ除去部2001から供給された、動きボケが除去された前景成分画像を記憶する。フレームメモリ2301は、記憶している、動きボケが除去された前景成分画像をマッピング部2302に供給する。
【0808】
マッピング部2302は、係数セットメモリ2303に記憶されている、前景成分画像に対応する係数セットを基に、クラス分類適応処理により、フレームメモリ2301に記憶されている前景成分画像に対応する、ノイズが除去された予測画像を生成する。マッピング部2302は、生成した予測画像をフレームメモリ2304に供給する。
【0809】
フレームメモリ2304は、ノイズが除去された予測画像を記憶し、記憶している予測画像を合成部2308に供給する。
【0810】
フレームメモリ2305は、補正部2002から供給された背景成分画像を記憶する。フレームメモリ2305は、記憶している背景成分画像をエッジ強調部2306に供給する。
【0811】
エッジ強調部2306は、エッジ強調の処理により、フレームメモリ2305に記憶されている背景成分画像のエッジを強調し、エッジ強調した背景成分画像をフレームメモリ2307に供給する。
【0812】
フレームメモリ2307は、エッジ強調された背景成分画像を記憶し、記憶している背景成分画像を合成部2308に供給する。
【0813】
合成部2308は、フレームメモリ2304から供給された、前景成分画像に対応する、ノイズが除去された予測画像、およびフレームメモリ2307から供給された、エッジ強調された背景成分画像を合成し、合成した画像を出力画像として出力する。
【0814】
図130は、ボケ除去画像処理部2003の処理を説明する図である。
【0815】
図130に示すように、入力画像は、領域に分割され、前景の成分と背景の成分とに分離される。分離された入力画像は、前景成分画像および背景成分画像に合成される。
【0816】
前景成分画像に含まれる動きボケは、除去される。背景成分画像は、混合領域に対応する画素値が補正される。
【0817】
動きボケが除去された前景成分画像は、ボケ除去画像処理部2003により、クラス分類適応処理が適用されて、ノイズが除去され、補正された背景成分画像は、ボケ除去画像処理部2003により、エッジが強調される。
【0818】
次に、図131のフローチャートを参照して、図129に構成を示すボケ除去画像処理部2003の画像の創造の処理を説明する。
【0819】
ステップS2301において、マッピング部2302は、係数セットメモリ2303に記憶されている、前景成分画像に対応する係数セットを基に、クラス分類適応処理により、フレームメモリ801に記憶されている前景成分画像からノイズを除去した画像を予測する。画像の予測の処理の詳細は、図97のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0820】
マッピング部2302は、前景成分画像からノイズが除去された画像をフレームメモリ2304に供給する。フレームメモリ2304は、前景成分画像に対応する、ノイズが除去された予測画像を記憶し、記憶している予測画像を合成部2308に供給する。
【0821】
ステップS2302において、エッジ強調部2306は、フレームメモリ2305に記憶されている背景成分画像をエッジ強調する。エッジ強調部2306は、エッジ強調された画像をフレームメモリ2307に供給する。フレームメモリ2307は、エッジ強調された画像を記憶し、記憶しているエッジ強調された画像を合成部2308に供給する。
【0822】
ステップS2303において、合成部2308は、前景成分画像に対応する、ノイズが除去された予測画像、およびエッジ強調された背景成分画像を合成する。合成部2308は、記憶している、合成された画像を出力し、処理は終了する。
【0823】
このように、図129に構成を示すボケ除去画像処理部2003を有する画像処理装置は、前景成分画像に対応する、ノイズが除去された予測画像を生成し、背景成分画像をエッジ強調し、ノイズが除去された予測画像およびエッジ強調された背景成分画像を合成して出力することができるので、動きボケの除去の処理による前景成分画像のノイズを低減させると共に、画像全体の解像度感を増加させることができる。
【0824】
なお、ステップS2301およびステップS2302の処理を、シリアルに実行しても、パラレルに実行しても良いことは勿論である。
【0825】
図132は、画像処理装置の機能の他の構成を示すブロック図である。図115に示す画像処理装置が領域特定と混合比αの算出を順番に行うのに対して、図132に示す画像処理装置は、領域特定と混合比αの算出を並行して行う。
【0826】
図115のブロック図に示す機能と同様の部分には同一の番号を付してあり、その説明は省略する。
【0827】
入力画像は、オブジェクト抽出部101、領域特定部103、混合比算出部1001、および前景背景分離部1002に供給される。
【0828】
混合比算出部1001は、入力画像を基に、画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比を、入力画像に含まれる画素のそれぞれに対して算出し、算出した画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比を前景背景分離部1002に供給する。
【0829】
前景背景分離部1002は、混合比算出部1001から供給された、画素がカバードバックグラウンド領域に属すると仮定した場合における推定混合比、および画素がアンカバードバックグラウンド領域に属すると仮定した場合における推定混合比、並びに領域特定部103から供給された領域情報を基に、入力画像を、背景成分画像、および前景成分画像に分離し、分離された画像を動きボケ除去部2001に供給する。
【0830】
このように、図132に構成を示す画像処理装置は、背景成分画像、および前景成分画像毎に、それぞれの性質に対応して処理を実行することができる。
【0831】
図133は、画像処理装置の機能のさらに他の構成を示すブロック図である。
【0832】
図133に示す画像処理装置に供給された入力画像は、オブジェクト抽出部101、領域特定部103、および領域処理部3001に供給される。
【0833】
オブジェクト抽出部101は、入力画像に含まれる前景のオブジェクトに対応する画像オブジェクトを粗く抽出して、抽出した画像オブジェクトを動き検出部102に供給する。オブジェクト抽出部101は、例えば、入力画像に含まれる前景のオブジェクトに対応する画像オブジェクトの輪郭を検出することで、前景のオブジェクトに対応する画像オブジェクトを粗く抽出する。
【0834】
オブジェクト抽出部101は、入力画像に含まれる背景のオブジェクトに対応する画像オブジェクトを粗く抽出して、抽出した画像オブジェクトを動き検出部102に供給する。オブジェクト抽出部101は、例えば、入力画像と、抽出された前景のオブジェクトに対応する画像オブジェクトとの差から、背景のオブジェクトに対応する画像オブジェクトを粗く抽出する。
【0835】
動き検出部102は、例えば、ブロックマッチング法、勾配法、位相相関法、およびペルリカーシブ法などの手法により、粗く抽出された前景のオブジェクトに対応する画像オブジェクトの動きベクトルを算出して、算出した動きベクトルおよび動きベクトルの位置情報(動きベクトルに対応する画素の位置を特定する情報)を領域特定部103に供給する。
【0836】
領域特定部103は、入力された画像の画素のそれぞれを、前景領域、背景領域、または混合領域のいずれかに特定し、画素毎に前景領域、背景領域、または混合領域のいずれかに属するかを示す領域情報を領域処理部3001に供給する。
【0837】
領域処理部3001は、領域特定部103から供給された領域情報を基に、前景領域、背景領域、または混合領域毎に、入力画像を分割し、分割された入力画像毎に画像処理を実行する。例えば、領域処理部3001は、前景領域、背景領域、または混合領域毎に、入力画像を分割し、分割された前景領域、および背景領域のそれぞれに対応する、ノイズを除去するクラス分類適応処理で使用される係数を生成する。
【0838】
例えば、領域処理部3001は、前景領域、背景領域、または混合領域毎に、入力画像を分割し、分割された前景領域、または背景領域にクラス分類適応処理を適用して、ノイズが除去された画像を創造するとともに、分割された混合領域をそのまま通過させる。
【0839】
図134は、図133に示す画像処理装置の処理を説明する図である。
【0840】
図134に示すように、入力画像は、前景領域、背景領域、および混合領域が特定され、特定された前景領域、背景領域、および混合領域毎の画像に分割される。
【0841】
分割された前景領域の画像、および背景領域の画像は、それぞれに、例えば、係数の生成の処理、またはノイズ除去の処理などが適用される。
【0842】
図135は、図133に構成を示す、本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【0843】
ステップS3001において、領域特定部103は、動き検出部102から供給された動きベクトルおよびその位置情報を基に、入力画像の前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を特定する。
【0844】
ステップS3002において、領域処理部3001は、入力画像を、特定された前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域に分割して、分割された、前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域毎に、画像の処理を実行して、処理は終了する。
【0845】
このように、本発明に係る画像処理装置は、入力画像を、前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域に分割し、分割された、前景領域、背景領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域毎に画像処理を実行する。
【0846】
図136は、ノイズを除去するクラス分類適応処理において使用される係数セットを生成する領域処理部3001の構成を示すブロック図である。教師画像フレームメモリ3101は、入力画像をフレーム単位で記憶する。教師画像フレームメモリ3101は、記憶している入力画像を領域分割部3102に供給する。
【0847】
領域分割部3102は、領域特定部103から供給された領域情報を基に、背景領域、または前景領域に、入力画像である教師画像を分割する。
【0848】
図136に構成を示す領域処理部3001は、アンカバードバックグラウンド領域の画像、およびカバードバックグラウンド領域の画像を使用しない。
【0849】
領域分割部3102は、分割された教師画像である、教師画像の背景領域の画像を背景領域教師画像フレームメモリ3103に供給し、教師画像の前景領域の画像を前景領域教師画像フレームメモリ3104に供給する。
【0850】
背景領域教師画像フレームメモリ3103は、領域分割部3102から供給された、教師画像の背景領域の画像を記憶する。背景領域教師画像フレームメモリ3103は、記憶している教師画像の背景領域の画像をノイズ付加部3105−1および学習部3108−1に供給する。
【0851】
前景領域教師画像フレームメモリ3104は、領域分割部3102から供給された、教師画像の前景領域の画像を記憶する。前景領域教師画像フレームメモリ3104は、記憶している教師画像の前景領域の画像をノイズ付加部3105−2および学習部3108−2に供給する。
【0852】
ノイズ付加部3105−1は、例えば、乱数を生成して、背景領域教師画像フレームメモリ3103から供給された、教師画像の背景領域の画像の画素値に乱数を加算して、背景領域の画像にノイズを付加する。ノイズ付加部3105−1は、ノイズを付加した背景領域の画像を背景領域生徒画像フレームメモリ3106に供給する。
【0853】
背景領域生徒画像フレームメモリ3106は、ノイズ付加部3105−1から供給された、ノイズが付加された背景領域の画像を、生徒画像として記憶する。背景領域生徒画像フレームメモリ3106は、記憶している、教師画像の背景領域の画像に対応する生徒画像を学習部3108−1に供給する。
【0854】
ノイズ付加部3105−2は、例えば、乱数を生成して、前景領域教師画像フレームメモリ3104から供給された、教師画像の前景領域の画像の画素値に乱数を加算して、前景領域の画像にノイズを付加する。ノイズ付加部3105−2は、ノイズを付加した前景領域の画像を前景領域生徒画像フレームメモリ3107に供給する。
【0855】
前景領域生徒画像フレームメモリ3107は、ノイズ付加部3105−2から供給された、ノイズが付加された前景領域の画像を、生徒画像として記憶する。前景領域生徒画像フレームメモリ3107は、記憶している、教師画像の前景領域の画像に対応する生徒画像を学習部3108−2に供給する。
【0856】
学習部3108−1は、背景領域教師画像フレームメモリ3103から供給されたの背景領域の画像である教師画像、および背景領域生徒画像フレームメモリ3106から供給された、ノイズが付加されている生徒画像を基に、背景領域に対応する係数セットを生成し、生成した係数セットを係数セットメモリ3109に供給する。
【0857】
学習部3108−2は、前景領域教師画像フレームメモリ3104から供給された前景領域の画像である教師画像、および前景領域生徒画像フレームメモリ3107から供給された、ノイズが付加されている生徒画像を基に、前景領域に対応する係数セットを生成し、生成した係数セットを係数セットメモリ3109に供給する。
【0858】
係数セットメモリ3109は、学習部3108−1から供給された背景領域に対応する係数セット、および学習部3108−2から供給された前景領域に対応する係数セットを記憶する。
【0859】
図137は、図136に構成を示す領域処理部3001が生成する係数セットを説明する図である。領域処理部3001は、背景領域に対応する係数セット、および前景領域に対応する係数セットを個々に算出する。領域処理部3001は、アンカバードバックグラウンド領域またはカバードバックグラウンド領域に対応する係数セットを生成しない。
【0860】
すなわち、領域分割部3102は、入力画像を、背景領域の画像、アンカバードバックグラウンド領域に属する画素からなる画像、カバードバックグラウンド領域に属する画素からなる画像、および前景領域の画像に分割する。
【0861】
学習部3108−1は、分割された背景領域の画像を基に、背景領域に対応する係数セットを算出し、学習部3108−2は、分割された前景領域の画像を基に、前景領域に対応する係数セットを算出する。
【0862】
背景領域に対応する係数セットは、ノイズが除去された画素値を予測するクラス分類適応処理において、背景領域の画素値の予測に使用される。前景領域に対応する係数セットは、ノイズが除去された画素値を予測するクラス分類適応処理において、前景領域の画素値の予測に使用される。
【0863】
背景領域の画像に対応する予測画像、アンカバードバックグラウンド領域に対応する画像、カバードバックグラウンド領域に対応する画像、および前景領域の画像に対応する予測画像は、合成され、1つの画像とされる。
【0864】
図138のフローチャートを参照して、図136に構成を示す領域処理部3001による、クラス分類適応処理による画素値の予測に使用される係数セットを生成する学習の処理を説明する。
【0865】
ステップS3101において、領域分割部3102は、領域特定部103から供給された領域情報を基に、教師画像フレームメモリ3101に記憶されている教師画像を領域分割する。すなわち、領域分割部3102は、領域分割された教師画像である、教師画像の背景領域の画像を背景領域教師画像フレームメモリ3103に供給する。領域分割部3102は、領域分割された教師画像である、教師画像の前景領域の画像を前景領域教師画像フレームメモリ3104に供給する。
【0866】
ステップS3102において、ノイズ付加部3105−1および3105−2は、背景領域、および前景領域それぞれの生徒画像を生成する。すなわち、例えば、ノイズ付加部3105−1は、乱数を生成して、背景領域教師画像フレームメモリ3103に記憶されている、背景領域の画像の画素値に乱数を加算して、背景領域の画像にノイズを付加する。ノイズ付加部3105−2は、乱数を生成して、前景領域教師画像フレームメモリ3104に記憶されている、前景領域の画像の画素値に乱数を加算して、前景領域の画像にノイズを付加する。
【0867】
ステップS3103において、学習部3108−1は、背景領域教師画像フレームメモリ3103に記憶されている、背景領域の画像である教師画像、および背景領域生徒画像フレームメモリ3106に記憶されている、ノイズが付加された生徒画像を基に、背景領域に対応する係数セットを生成する。係数セットの生成の処理の詳細は、図92のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0868】
ステップS3104において、学習部3108−2は、前景領域教師画像フレームメモリ3104に記憶されている、前景領域の画像である教師画像、および前景領域生徒画像フレームメモリ3107に記憶されている、ノイズが付加された生徒画像を基に、前景領域に対応する係数セットを生成する。係数セットの生成の処理の詳細は、図92のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0869】
ステップS3105において、学習部3108−1および3108−2は、それぞれ、背景領域に対応する係数セット、または前景領域に対応する係数セットを係数セットメモリ3109に供給する。係数セットメモリ3109は、背景領域、または前景領域のそれぞれに対応する係数セットを記憶して、処理は終了する。
【0870】
このように、図136に構成を示す領域処理部3001は、背景領域に対応する係数セット、および前景領域に対応する係数セットを生成することができる。
【0871】
なお、ステップS3103およびステップS3104の処理を、シリアルに実行しても、パラレルに実行しても良いことは勿論である。
【0872】
図139は、クラス分類適応処理を実行して、ノイズを除去した画像を生成する領域処理部3001の構成を示すブロック図である。フレームメモリ3201は、入力画像をフレーム単位で記憶する。フレームメモリ3201は、記憶している入力画像を領域分割部3202に供給する。
【0873】
領域分割部3202は、領域特定部103から供給された領域情報を基に、背景領域、および前景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域毎に入力画像を分割する。すなわち、領域分割部3202は、分割された入力画像である、背景領域の画像を背景領域フレームメモリ3203に供給し、前景領域の画像を前景領域フレームメモリ3204に供給する。
【0874】
領域分割部3202は、分割された入力画像である、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域の画像を、合成部3207に供給する。
【0875】
背景領域フレームメモリ3203は、領域分割部3202から供給された、背景領域に属する画素からなる背景領域の画像を記憶する。背景領域フレームメモリ3203は、記憶している背景領域の画像をマッピング部3205−1に供給する。
【0876】
前景領域フレームメモリ3204は、領域分割部3202から供給された、前景領域に属する画素からなる前景領域の画像を記憶する。前景領域入力画像フレームメモリ506は、記憶している前景領域の画像をマッピング部3205−2に供給する。
【0877】
マッピング部3205−1は、係数セットメモリ3206に記憶されている、背景領域に対応する係数セットを基に、クラス分類適応処理により、背景領域フレームメモリ3203に記憶されている背景領域の画像に対応する、ノイズを除去した予測画像を生成する。マッピング部3205−1は、生成した予測画像を合成部3207に供給する。
【0878】
マッピング部3205−2は、係数セットメモリ3206に記憶されている、前景領域に対応する係数セットを基に、クラス分類適応処理により、前景領域フレームメモリ3204に記憶されている前景領域の画像に対応する、ノイズを除去した予測画像を生成する。マッピング部3205−2は、生成した予測画像を合成部3207に供給する。
【0879】
合成部3207は、マッピング部3205−1から供給された背景領域の画像に対応する予測画像、マッピング部3205−2から供給された前景領域の画像に対応する予測画像、並びに領域分割部3202から供給されたカバードバックグラウンド領域、およびアンカバードバックグラウンド領域の画像を合成し、合成された画像をフレームメモリ3208に供給する。
【0880】
フレームメモリ3208は、合成部3207から供給された画像を記憶すると共に、記憶している画像を出力画像として出力する。
【0881】
次に、図140のフローチャートを参照して、図139に構成を示す領域処理部3001の画像の創造の処理を説明する。
【0882】
ステップS3201において、領域分割部3202は、領域特定部103から供給された領域情報を基に、背景領域、前景領域、カバードバックグラウンド領域、またはアンカバードバックグラウンド領域に入力画像を分割する。すなわち、領域分割部3202は、分割された入力画像である、背景領域に属する画素からなる背景領域の画像を背景領域フレームメモリ3203に供給し、前景領域に属する画素からなる前景領域の画像を前景領域フレームメモリ3204に供給する。領域分割部3202は、アンカバードバックグラウンド領域に属する画素からなる画像、およびカバードバックグラウンド領域に属する画素を合成部3207に供給する。
【0883】
ステップS3202において、マッピング部3205−1は、係数セットメモリ3206に記憶されている、背景領域に対応する係数セットを基に、クラス分類適応処理により、背景領域フレームメモリ3203に記憶されている背景領域の画像に対応する、ノイズを除去した画像を予測する。ノイズを除去した画像の予測の処理の詳細は、図97のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0884】
ステップS3203において、マッピング部3205−2は、係数セットメモリ3206に記憶されている、前景領域に対応する係数セットを基に、クラス分類適応処理により、前景領域フレームメモリ3204に記憶されている前景領域の画像に対応する、ノイズを除去した画像を予測する。ノイズを除去した画像の予測の処理の詳細は、図97のフローチャートを参照して説明した処理と同様なので、その説明は省略する。
【0885】
ステップS3204において、合成部3207は、背景領域の画像に対応する予測画像、および前景領域に対応する予測画像、並びにアンカバードバックグラウンド領域の画像、およびカバードバックグラウンド領域の画像を合成する。合成部3207は、合成された画像をフレームメモリ3208に供給する。フレームメモリ3208は、合成部3207から供給された画像を記憶する。
【0886】
ステップS3205において、フレームメモリ3208は、記憶している、合成された画像を出力し、処理は終了する。
【0887】
このように、図139に構成を示す領域処理部3001を有する画像処理装置は、背景領域、アンカバードバックグラウンド領域、カバードバックグラウンド領域、および前景領域毎に、入力画像を分割し、分割された背景領域の画像、および前景領域の画像毎に予測画像を生成し、生成した予測画像を、アンカバードバックグラウンド領域、およびカバードバックグラウンド領域の画像と合成することができるので、混合領域において、不自然な画像の劣化を発生させることなく、画像全体のノイズを低減させることができる。
【0888】
なお、ステップS3202およびステップS3203の処理を、シリアルに実行しても、パラレルに実行しても良いことは勿論である。
【0889】
また、本発明において、画像処理は、そのまま画像を通過させる処理を含む。
【0890】
なお、前景となるオブジェクトの動きの方向は左から右として説明したが、その方向に限定されないことは勿論である。
【0891】
また、クラス分類適応処理は、所定の情報から係数を生成して、生成した係数を基に実行するようにしてもよい。
【0892】
以上においては、3次元空間と時間軸情報を有する現実空間の画像をビデオカメラを用いて2次元空間と時間軸情報を有する時空間への射影を行った場合を例としたが、本発明は、この例に限らず、より多くの第1の次元の第1の情報を、より少ない第2の次元の第2の情報に射影した場合に適応することが可能である。
【0893】
なお、センサは、CCDに限らす、固体撮像素子である、例えば、BBD(Bucket Brigade Device)、CID(Charge Injection Device)、またはCPD(Charge Priming Device)などのセンサでもよく、また、検出素子がマトリックス状に配置されているセンサに限らず、検出素子が1列に並んでいるセンサでもよい。
【0894】
本発明の信号処理を行うプログラムを記録した記録媒体は、図10に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク91(フロッピ(登録商標)ディスクを含む)、光ディスク92(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク93(MD(Mini-Disc)(商標)を含む)、もしくは半導体メモリ94などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記録されているROM72や、記憶部78に含まれるハードディスクなどで構成される。
【0895】
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0896】
【発明の効果】
本発明の画像処理装置および方法、記録媒体、並びにプログラムによれば背景の画像と移動する物体の画像との混ざり合い対応して画像を処理することができるようになる。
【図面の簡単な説明】
【図1】従来の画像処理装置の構成を示すブロック図である。
【図2】クラスタップを説明する図である。
【図3】予測タップを説明する図である。
【図4】クラス分類適応処理の概略を説明する図である。
【図5】従来の係数セットを説明する図である。
【図6】従来の学習の処理を説明するフローチャートである。
【図7】従来の画像処理装置の構成を示すブロック図である。
【図8】入力画像の画素値、およびクラス分類適応処理により生成された出力画像の画素値を示す図である。
【図9】従来の画像の創造の処理を説明するフローチャートである。
【図10】本発明に係る画像処理装置の一実施の形態の構成を示すブロック図である。
【図11】画像処理装置の機能の構成を示すブロック図である。
【図12】センサによる撮像を説明する図である。
【図13】画素の配置を説明する図である。
【図14】検出素子の動作を説明する図である。
【図15】動いている前景に対応するオブジェクトと、静止している背景に対応するオブジェクトとを撮像して得られる画像を説明する図である。
【図16】背景領域、前景領域、混合領域、カバードバックグラウンド領域、およびアンカバードバックグラウンド領域を説明する図である。
【図17】静止している前景に対応するオブジェクトおよび静止している背景に対応するオブジェクトを撮像した画像における、隣接して1列に並んでいる画素の画素値を時間方向に展開したモデル図である。
【図18】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図19】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図20】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図21】前景領域、背景領域、および混合領域の画素を抽出した例を示す図である。
【図22】画素と画素値を時間方向に展開したモデルとの対応を示す図である。
【図23】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図24】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図25】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図26】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図27】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図28】分割された画像と、画素の画素値を時間方向に展開したモデル図との対応を示す図である。
【図29】分離された画像と、画素の画素値を時間方向に展開したモデル図との対応を示す図である。
【図30】分割された画像の例を示す図である。
【図31】分離された画像の例を示す図である。
【図32】本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【図33】領域特定部103の構成の一例を示すブロック図である。
【図34】前景に対応するオブジェクトが移動しているときの画像を説明する図である。
【図35】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図36】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図37】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図38】領域判定の条件を説明する図である。
【図39】領域特定部103の領域の特定の結果の例を示す図である。
【図40】領域特定部103の領域の特定の結果の例を示す図である。
【図41】領域特定の処理を説明するフローチャートである。
【図42】領域特定部103の構成の他の一例を示すブロック図である。
【図43】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図44】背景画像の例を示す図である。
【図45】2値オブジェクト画像抽出部302の構成を示すブロック図である。
【図46】相関値の算出を説明する図である。
【図47】相関値の算出を説明する図である。
【図48】2値オブジェクト画像の例を示す図である。
【図49】時間変化検出部303の構成を示すブロック図である。
【図50】領域判定部342の判定を説明する図である。
【図51】時間変化検出部303の判定の例を示す図である。
【図52】領域判定部103の領域特定の処理を説明するフローチャートである。
【図53】領域判定の処理の詳細を説明するフローチャートである。
【図54】領域特定部103のさらに他の構成を示すブロック図である。
【図55】ロバスト化部361の構成を説明するブロック図である。
【図56】動き補償部381の動き補償を説明する図である。
【図57】動き補償部381の動き補償を説明する図である。
【図58】領域特定の処理を説明するフローチャートである。
【図59】ロバスト化の処理の詳細を説明するフローチャートである。
【図60】混合比算出部104の構成の一例を示すブロック図である。
【図61】理想的な混合比αの例を示す図である。
【図62】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図63】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図64】前景の成分の相関を利用した近似を説明する図である。
【図65】 C,N、およびPの関係を説明する図である。
【図66】推定混合比処理部401の構成を示すブロック図である。
【図67】推定混合比の例を示す図である。
【図68】混合比算出部104の他の構成を示すブロック図である。
【図69】混合比の算出の処理を説明するフローチャートである。
【図70】推定混合比の演算の処理を説明するフローチャートである。
【図71】混合比αを近似する直線を説明する図である。
【図72】混合比αを近似する平面を説明する図である。
【図73】混合比αを算出するときの複数のフレームの画素の対応を説明する図である。
【図74】混合比推定処理部401の他の構成を示すブロック図である。
【図75】推定混合比の例を示す図である。
【図76】混合比の算出の処理を説明するフローチャートである。
【図77】カバードバックグラウンド領域に対応するモデルによる混合比推定の処理を説明するフローチャートである。
【図78】前景背景分離部105の構成の一例を示すブロック図である。
【図79】入力画像、前景成分画像、および背景成分画像を示す図である。
【図80】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図81】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図82】画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図83】分離部601の構成の一例を示すブロック図である。
【図84】分離された前景成分画像、および背景成分画像の例を示す図である。
【図85】前景と背景との分離の処理を説明するフローチャートである。
【図86】係数セットを生成する分離画像処理部106の構成を示すブロック図である。
【図87】教師画像と生徒画像との関係を説明する図である。
【図88】学習部704の構成を示すブロック図である。
【図89】クラス分類処理を説明する図である。
【図90】ADRC処理を説明する図である。
【図91】分離画像処理部106による、係数セットを生成する学習の処理を説明するフローチャートである。
【図92】背景成分画像に対応する係数セットの生成の処理を説明するフローチャートである。
【図93】背景成分画像にクラス分類適応処理を適応して、空間方向に、より高解像度な画像を生成すると共に、前景成分画像を線形補間する分離画像処理部106の構成を示すブロック図である。
【図94】マッピング部802の構成を示すブロック図である。
【図95】図93に構成を示す分離画像処理部106の処理を説明する図である。
【図96】図93の分離画像処理部106の処理を説明するフローチャートである。
【図97】背景成分画像に対応する画像の予測の処理を説明するフローチャートである。
【図98】背景成分画像にのみエッジ強調処理を適用する分離画像処理部106の構成を示すブロック図である。
【図99】エッジ強調部901の構成を示すブロック図である。
【図100】エッジ強調の処理を説明する図である。
【図101】フィルタ係数を示す図である。
【図102】ハイパスフィルタ921の動作を説明する図である。
【図103】フィルタ係数を示す図である。
【図104】ハイパスフィルタ921の動作を説明する図である。
【図105】エッジ強調部901の他の構成を示すブロック図である。
【図106】フィルタ係数を示す図である。
【図107】フィルタ741の動作を説明する図である。
【図108】フィルタ係数を示す図である。
【図109】フィルタ741の動作を説明する図である。
【図110】図98に構成を示す分離画像処理部106の処理を説明する図である。
【図111】図98に構成を示す分離画像処理部106の処理を説明するフローチャートである。
【図112】画像処理装置の機能の他の構成を示すブロック図である。
【図113】混合比算出部1001の構成の一例を示すブロック図である。
【図114】前景背景分離部1002の構成の一例を示すブロック図である。
【図115】本発明に係る画像処理装置の機能の他の構成を示すブロック図である。
【図116】背景成分画像のモデルの例を示す図である。
【図117】補正された背景成分画像のモデルの例を示す図である。
【図118】図115の画像処理装置の処理を説明する図である。
【図119】図115の画像処理装置の処理を説明する図である。
【図120】図115に構成を示す、本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【図121】動きボケ除去部2001の構成の一例を示すブロック図である。
【図122】処理単位を説明する図である。
【図123】前景成分画像の画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図124】前景成分画像の画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図125】前景成分画像の画素値を時間方向に展開し、シャッタ時間に対応する期間を分割したモデル図である。
【図126】前景成分画像に含まれる動きボケの除去の処理を説明するフローチャートである。
【図127】係数セットを生成するボケ除去画像処理部2003の構成を示すブロック図である。
【図128】ノイズを除去するクラス分類適応処理に使用される係数セットを生成する学習の処理を説明するフローチャートである。
【図129】ボケ除去画像処理部2003の構成を示すブロック図である。
【図130】ボケ除去画像処理部2003の処理を説明する図である。
【図131】図129に構成を示すボケ除去画像処理部2003の画像の処理を説明するフローチャートである。
【図132】画像処理装置の機能の他の構成を示すブロック図である。
【図133】画像処理装置の機能のさらに他の構成を示すブロック図である。
【図134】図133に示す画像処理装置の処理を説明する図である。
【図135】図133に構成を示す、本発明に係る画像処理装置の画像の処理を説明するフローチャートである。
【図136】係数セットを生成する領域処理部3001の構成を示すブロック図である。
【図137】図136に構成を示す領域処理部3001が生成する係数セットを説明する図である。
【図138】係数セットを生成する学習の処理を説明するフローチャートである。
【図139】ノイズが除去された画像を生成する領域処理部3001の構成を示すブロック図である。
【図140】図139に構成を示す領域処理部3001の画像の創造の処理を説明するフローチャートである。
【符号の説明】
71 CPU, 72 ROM, 73 RAM, 76 入力部, 77 出力部,78 記憶部, 79 通信部, 91 磁気ディスク, 92 光ディスク, 93 光磁気ディスク, 94 半導体メモリ, 101 オブジェクト抽出部, 102 動き検出部, 103 領域特定部, 104 混合比算出部, 105 前景背景分離部, 106 分離画像処理部, 201 フレームメモリ, 202−1乃至202−4 静動判定部, 203−1乃至203−3 領域判定部, 204 判定フラグ格納フレームメモリ, 205 合成部, 206 判定フラグ格納フレームメモリ, 301 背景画像生成部, 302 2値オブジェクト画像抽出部, 303 時間変化検出部, 321 相関値演算部, 322 しきい値処理部, 341 フレームメモリ, 342領域判定部, 361 ロバスト化部, 381 動き補償部, 382 スイッチ, 383−1乃至383−N フレームメモリ、 384−1乃至384−N 重み付け部, 385 積算部, 401 推定混合比処理部, 402 推定混合比処理部, 403 混合比決定部, 421 フレームメモリ,422 フレームメモリ, 423 混合比演算部, 441 選択部, 442 推定混合比処理部, 443 推定混合比処理部, 444 選択部, 501 遅延回路, 502 足し込み部, 503 演算部, 601 分離部, 602 スイッチ, 603 合成部, 604 スイッチ, 605 合成部, 621 フレームメモリ, 622 分離処理ブロック, 623 フレームメモリ, 631 アンカバード領域処理部, 632 カバード領域処理部, 633 合成部, 634 合成部, 701 教師画像フレームメモリ, 702 加重平均部, 703 生徒画像フレームメモリ, 704 学習部, 705 係数セットメモリ, 721 クラス分類部, 722 予測タップ取得部, 723 対応画素取得部, 724 正規方程式生成部, 725 係数計算部, 731 クラスタップ取得部, 732 波形分類部,802 マッピング部, 803 係数セットメモリ, 806 線形補間処理部, 808 合成部, 821 マッピング処理部, 831 クラス分類部, 832 予測タップ取得部, 833 予測演算部, 851 クラスタップ取得部, 852 波形分類部, 901 エッジ強調部, 902 合成部, 921 ハイパスフィルタ, 922 ゲイン調整部, 923 加算部, 941 フィルタ, 1001 混合比算出部, 1002 前景背景分離部, 1021 選択部, 2001 動きボケ除去部, 2002 補正部,2003 ボケ除去画像処理部, 2101 処理単位決定部, 2102 モデル化部, 2103 方程式生成部, 2104 足し込み部, 2105演算部, 2201 教師画像フレームメモリ, 2202 ノイズ付加部,2203 生徒画像フレームメモリ, 2204 学習部, 2205 係数セットメモリ, 2302 マッピング部, 2303 係数セットメモリ, 2306 エッジ強調部, 2308 合成部, 3001 領域処理部, 3102 領域分割部, 3103 背景領域教師画像フレームメモリ, 3104 前景領域教師画像フレームメモリ, 3105−1および3105−2 ノイズ付加部, 3106 背景領域生徒画像フレームメモリ, 3107 前景領域生徒画像フレームメモリ, 3108−1および3108−2 学習部, 3109 係数セットメモリ, 3202 領域分割部, 3203 背景領域フレームメモリ, 3204 前景領域フレームメモリ, 3205−1および3205−2 マッピング部, 3206 係数セットメモリ, 3207 合成部

Claims (8)

  1. 時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理する画像処理装置において、
    前記入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出手段と、
    複数の前記入力画像データを順次、注目フレームとし、前記注目フレームの各画素と、前記注目フレームの各画素の位置に対応する、前記背景画像データ上の位置に存在する画素の相関値を求める算出手段と、
    前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および前記背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前記前景オブジェクト成分からなる前景領域、および前記背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定手段と
    を含むことを特徴とする画像処理装置。
  2. 前記注目フレームの各画素を順次、注目画素とし、前記注目画素において検出された前記相関値が、所定のしきい値以下である場合、前記相関値を第1の値または第2の値のいずれかに2値化して得られる2値オブジェクト画像上の前記注目画素の画素値を前記第1の値に設定し、前記注目画素において検出された前記相関値が、前記所定のしきい値よりも大きい場合、前記2値オブジェクト画像上の前記注目画素の画素値を、前記第2の値に設定することにより得られる前記2値オブジェクト画像に対して、前記入力画像データの動きベクトルに基づいて、動き補償を行う動き補償手段と、
    前記動き補償後の前記注目フレームに対応する前記2値オブジェクト画像と、前記注目フレームの前後の複数の近傍フレームそれぞれに対応する前記2値オブジェクト画像の各画素毎に、前記画素の画素それぞれを重み付け加算する加算手段と
    をさらに含み、
    前記領域特定手段は、前記重み付け加算の結果得られる各画素の画素値を所定のしきい値と比較することにより生成される新たな2値オブジェクト画像の画素値の各画素位置毎の時間変化に基づいて、前記注目フレームの前記混合領域および前記非混合領域特定する
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記領域特定手段は、前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの前記前景領域および前記背景領域をさらに特定し、特定結果に対応する前記領域特定情報を出力する
    ことを特徴とする請求項1に記載の画像処理装置。
  4. 前記領域特定手段は、前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの、前記混合領域のうちの前記背景オブジェクト成分から前記前景オブジェクト成分に変化する領域であるカバードバックグラウンド領域、および、前記前景オブジェクト成分から前記背景オブジェクト成分に変化する領域であるアンカバードバックグラウンド領域をさらに特定し、特定結果に対応する前記領域特定情報を出力する
    ことを特徴とする請求項1に記載の画像処理装置。
  5. 前記注目フレームとその前後のフレームの画素データに基づいて、前記注目フレームの前記混合領域の前記画素データを、前記前景オブジェクト成分と前記背景オブジェクト成分とに分離する分離手段
    をさらに含むことを特徴とする請求項1に記載の画像処理装置。
  6. 時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理する画像処理方法において、
    前記入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、
    複数の前記入力画像データを順次、注目フレームとし、前記注目フレームの各画素と、前記注目フレームの各画素の位置に対応する、前記背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、
    前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および前記背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前記前景オブジェクト成分からなる前景領域、および前記背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップと
    を含むことを特徴とする画像処理方法。
  7. 時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理するコンピュータに、
    前記入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、
    複数の前記入力画像データを順次、注目フレームとし、前記注目フレームの各画素と、前記注目フレームの各画素の位置に対応する、前記背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、
    前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および前記背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前記前景オブジェクト成分からなる前景領域、および前記背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップと
    を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  8. 時間積分効果を有する所定数の画素を有する撮像素子によって取得された所定数の画素データからなる入力画像データを処理するコンピュータに、
    前記入力画像データから背景オブジェクトに対応する画像オブジェクトの成分を背景画像データとして抽出する抽出ステップと、
    複数の前記入力画像データを順次、注目フレームとし、前記注目フレームの各画素と、前記注目フレームの各画素の位置に対応する、前記背景画像データ上の位置に存在する画素の相関値を求める算出ステップと、
    前記注目フレームされた前記複数の入力画像データの各画素において算出された前記相関値の各画素位置毎の時間変化に基づいて、前記注目フレームの、前景オブジェクトを構成する前景オブジェクト成分、および前記背景オブジェクトを構成する背景オブジェクト成分が混合されてなる混合領域、並びに前記前景オブジェクト成分からなる前景領域、および前記背景オブジェクト成分からなる背景領域の一方により構成される非混合領域特定し、特定結果に対応する領域特定情報を出力する領域特定ステップと
    を実行させるプログラム。
JP2001181399A 2001-06-15 2001-06-15 画像処理装置および方法、記録媒体、並びにプログラム Expired - Fee Related JP4660980B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001181399A JP4660980B2 (ja) 2001-06-15 2001-06-15 画像処理装置および方法、記録媒体、並びにプログラム
US10/344,735 US7336818B2 (en) 2001-06-15 2002-06-13 Image processing device and method, and image-taking device
EP02733492A EP1396818B1 (en) 2001-06-15 2002-06-13 Image processing apparatus and method and image pickup apparatus
PCT/JP2002/005875 WO2002103635A1 (fr) 2001-06-15 2002-06-13 Dispositif et procede de traitement d'images et dispositif de prises de vue
CA2418810A CA2418810C (en) 2001-06-15 2002-06-13 Image processing apparatus and method and image pickup apparatus
KR1020037002092A KR100904340B1 (ko) 2001-06-15 2002-06-13 화상 처리 장치 및 방법과 촬상 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181399A JP4660980B2 (ja) 2001-06-15 2001-06-15 画像処理装置および方法、記録媒体、並びにプログラム

Publications (3)

Publication Number Publication Date
JP2002373339A JP2002373339A (ja) 2002-12-26
JP2002373339A5 JP2002373339A5 (ja) 2008-04-24
JP4660980B2 true JP4660980B2 (ja) 2011-03-30

Family

ID=19021678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181399A Expired - Fee Related JP4660980B2 (ja) 2001-06-15 2001-06-15 画像処理装置および方法、記録媒体、並びにプログラム

Country Status (1)

Country Link
JP (1) JP4660980B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596218B2 (ja) * 2001-06-22 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP4596217B2 (ja) * 2001-06-22 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP4596215B2 (ja) * 2001-06-19 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP4596209B2 (ja) * 2001-06-05 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP4596216B2 (ja) * 2001-06-20 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP4596219B2 (ja) * 2001-06-25 2010-12-08 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
JP5904069B2 (ja) * 2012-09-13 2016-04-13 オムロン株式会社 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
EP3404611A1 (en) * 2017-05-19 2018-11-21 RetinAI Medical GmbH Reducing noise in an image
US10477220B1 (en) * 2018-04-20 2019-11-12 Sony Corporation Object segmentation in a sequence of color image frames based on adaptive foreground mask upsampling
CN113506207A (zh) * 2021-06-07 2021-10-15 微梦创科网络科技(中国)有限公司 一种图片增强方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336688A (ja) * 1994-06-06 1995-12-22 Nippon Hoso Kyokai <Nhk> アンカバー領域の検出方法
JPH10164436A (ja) * 1996-12-04 1998-06-19 Sony Corp 輪郭抽出装置、輪郭抽出方法、キー信号生成装置及びキー信号生成方法
JP2000030040A (ja) * 1998-07-14 2000-01-28 Canon Inc 画像処理装置及びコンピュータ読み取り可能な記憶媒体
JP2002230556A (ja) * 2001-02-01 2002-08-16 Sony Corp 画像処理装置および方法、並びに記録媒体
JP4491965B2 (ja) * 1999-12-28 2010-06-30 ソニー株式会社 信号処理装置および方法、並びに記録媒体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025847A (ja) * 1999-07-09 2001-01-30 Sumitomo Metal Ind Ltd 連続鋳造方法
JP4329195B2 (ja) * 1999-12-28 2009-09-09 チッソ株式会社 ポリオルガノシロキサン
KR20010057579A (ko) * 1999-12-23 2001-07-04 맥켈러 로버트 루이스 폴리우레탄 연질 성형 발포체 제조용 실리콘 폴리에테르공중합체
JP2001181396A (ja) * 1999-12-24 2001-07-03 Jsr Corp シロキサン変性重合体粒子およびその製造方法
JP4608715B2 (ja) * 1999-12-24 2011-01-12 Dic株式会社 ポリアリーレンスルフィドの製造方法
JP2001181398A (ja) * 1999-12-28 2001-07-03 Dow Corning Toray Silicone Co Ltd 含ケイ素重合体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336688A (ja) * 1994-06-06 1995-12-22 Nippon Hoso Kyokai <Nhk> アンカバー領域の検出方法
JPH10164436A (ja) * 1996-12-04 1998-06-19 Sony Corp 輪郭抽出装置、輪郭抽出方法、キー信号生成装置及びキー信号生成方法
JP2000030040A (ja) * 1998-07-14 2000-01-28 Canon Inc 画像処理装置及びコンピュータ読み取り可能な記憶媒体
JP4491965B2 (ja) * 1999-12-28 2010-06-30 ソニー株式会社 信号処理装置および方法、並びに記録媒体
JP2002230556A (ja) * 2001-02-01 2002-08-16 Sony Corp 画像処理装置および方法、並びに記録媒体

Also Published As

Publication number Publication date
JP2002373339A (ja) 2002-12-26

Similar Documents

Publication Publication Date Title
JP4596212B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
KR100859381B1 (ko) 화상 처리 장치 및 방법 및 촬상 장치
CA2418810C (en) Image processing apparatus and method and image pickup apparatus
KR100846261B1 (ko) 화상 처리 장치, 화상 처리 방법, 기록 매체 및 촬상 장치
JP4596222B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596220B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596221B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4106874B2 (ja) 画像処理装置および方法、並びに記録媒体
JP4596213B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
KR100875780B1 (ko) 화상 처리 장치 및 방법, 및 촬상 장치
JP4660980B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596214B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596223B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
KR100835443B1 (ko) 화상 처리 장치, 방법 및 그를 위한 기록 매체와 촬상 장치
KR100894923B1 (ko) 화상 처리 장치, 방법 및 기록 매체와 촬상 장치
JP4596211B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596215B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4150949B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4660979B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596209B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4596205B2 (ja) 画像処理装置および方法、並びにプログラム
JP4596225B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4333183B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
KR100895744B1 (ko) 화상 처리 장치, 방법 및 기록 매체, 및 촬상 장치
JP4325252B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees