JP4659820B2 - プラズマ処理装置およびそれを用いた半導体薄膜の製造方法 - Google Patents

プラズマ処理装置およびそれを用いた半導体薄膜の製造方法 Download PDF

Info

Publication number
JP4659820B2
JP4659820B2 JP2007507038A JP2007507038A JP4659820B2 JP 4659820 B2 JP4659820 B2 JP 4659820B2 JP 2007507038 A JP2007507038 A JP 2007507038A JP 2007507038 A JP2007507038 A JP 2007507038A JP 4659820 B2 JP4659820 B2 JP 4659820B2
Authority
JP
Japan
Prior art keywords
heater
processing apparatus
plasma processing
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007507038A
Other languages
English (en)
Other versions
JPWO2006095575A1 (ja
Inventor
克史 岸本
裕介 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2006095575A1 publication Critical patent/JPWO2006095575A1/ja
Application granted granted Critical
Publication of JP4659820B2 publication Critical patent/JP4659820B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、反応性ガスのプラズマ放電により基板にエッチングまたは成膜を施すプラズマ処理装置およびそれを用いた半導体薄膜の製造方法に関する。
プラズマ処理装置は、半導体素子の製造において多用され、その目的に応じて様々な形態のものが実用化されている。
図6は、従来の一般的な縦型のプラズマ処理装置の概略断面図である。
このプラズマ処理装置は、外部大気圧の影響を受けて反応容器となるチャンバー11を備える。チャンバー11の内壁面には、プラズマ放電を起こすための対向するカソード2とアノード4、処理対象の基板1(例えば、ガラス基板)を加熱するヒータ24が設けられている。なお、ヒータ24は、チャンバー11の壁面を構成する構造体として兼用されている。
カソード2は、電気的な絶縁を得るために、絶縁物からなるカソード支持体5を介してチャンバー11の内壁面に支持されている。
また、カソード2は、内部に反応性ガスを導入させるための空洞部を有すると共に、基板1と対向する表面には、穴明け加工により形成された多数の微小な貫通穴を有する。また、カソード2の端部にはガス導入管10が接続されており、カソード2内に供給された反応性ガスが空洞部および貫通穴を通って基板1の表面に均一に供給される。
さらに、カソード2には、カソード2に高周波電力の供給するための高周波電源であるプラズマ励起電源12とインピーダンス整合器13とが接続されている。
アノード4は、チャンバー11の内壁面を構成するヒータ24の表面に固定されている。また、アノード4の他方の面には、基板1の周縁部を保持する基板保持部(ホルダー)15が設けられている。
基板1の表面に均質な膜厚と膜質とを備えた膜を形成するためには、カソード2とアノード4との間(プラズマ放電領域)の間隙距離を高い精度で設定する必要がある。そのため、カソード2の周辺部分は固定ネジ(図示せず)により一定間隔で固定されている。
チャンバー11、カソード2およびアノード4は、ステンレス鋼またはアルミニウム合金などで構成され、それらの断熱材としてセラミックスなどが用いられている。反応性ガスとしてエッチング用ガスを使用する場合には、チャンバー全体がアルミニウム合金で構成される。
処理対象の基板1は、基板保持部15に固定され、ヒータ24により一定温度(例えば、100℃〜600℃)に加熱される。
チャンバー内の真空を保持するために、チャンバー内の各接続部には真空シール部(図示せず)が設けられている。反応性ラジカルの影響が及ぶカソード2の真空シール部やヒータ24の真空シール部には、デュポン ダウ エラストロマー株式会社製のバイトン(登録商標)やカルレッツ(登録商標)などのフッ素系ゴムシール材が用いられている。
ヒータ24およびカソード支持体5の外側には、チャンバーや真空シール部の温度上昇を抑えるために、冷却部14が配置されている。
チャンバー内の反応性ガスの圧力を自在に制御するために、チャンバーにおけるプラズマ放電領域近傍の一壁部には排気口が設けられており、この排気口に排気管9を介して圧力制御器22、真空ポンプ21および排ガス中の有害物質を除去するための除害装置23が接続されている。
このようなプラズマ処理装置において、反応性ガスの圧力を制御した状態で、カソード2とアノード4との間にグロー放電を発生させ、基板1上に非晶質または結晶性の膜を形成する。
また、プラズマ化学技術においてエッチングあるいは成膜の均一性を改善したプラズマ反応装置も提案されている。
以上のような従来のプラズマ処理装置には、次のようないくつかの問題点がある。
(A)カソード、アノードおよびヒータがチャンバーの上壁および底壁に固定されているために、外部への熱伝導が大きくなり、接地とシール部の冷却装置(冷却部)が必要になる。
(B)カソードおよびアノードは、それ自体チャンバーとの高い絶縁性が要求されるが、外部大気圧の影響を受けるチャンバーの壁面に兼用されているために、装置全体が大きな構造体となり、各構成部材が高価になり、チャンバーの裏面側からの冷却装置(冷却部)が必要になる。
(C)ヒータはチャンバーの上壁および底壁に固定されているために、その固定部の冷却が必要になる。
(D)カソードおよびアノードは、絶縁物からなる構造体を介してチャンバーの内壁面に支持されている構造であるため、電力導入に対して壁面との接地距離を確保することが難しく、プラズマ放電も壁面などの影響を受け易い。この影響を最小限に抑えるためには、カソードからチャンバー壁面を可能な限り遠ざける必要があるが、このようにすると、チャンバーのサイズが大型化し、大幅なコスト高の要因になる。
(E)装置の構成部材の中で大型構造物となるカソードは、チャンバー壁面との間で電気的な絶縁を確保するだけでなく、反応性ガスの漏洩を防止しなければならない。そのため、大型の絶縁部材が必要となり、大幅なコスト高の要因になる。
(F)反応性ガスとしてフッ素系エッチングガスを使用する場合には、真空シール部やプラズマ放電領域近傍のカソードおよびアノードの真空シール部に、高価なフッ素系ゴムシール材を用いなければならず、大幅なコスト高の要因になる。
(G)排気口は、プラズマ放電領域の周囲の一方向にのみ設けられているために、反応性ガスのコンダクタンスが小さくなり、多量のガス置換が困難となる。
(H)高周波電力の供給がカソードの裏面側から行われるために、プラズマ放電領域がカソードの表面側の一面に制限される。
(I)縦型のプラズマ処理装置の場合には、基板を周囲で固定するため、接地が充分でないおそれがある。
米国特許第4,264,393号明細書(特許文献1)に記載されているプラズマ処理装置は、アノードとカソードが周囲の部材と接触することなく配置され、特別な冷却機構が備わっていない。
この装置は、従来の半導体処理装置のような冷却機構がないために、装置構造自体を簡略化できるという長所を有する。
しかしながら、この装置は、成膜やクリーニング(エッチング)で発生するプラズマによる発熱を十分に緩和できる機構を備えていないので、プロセスの安定性に大きな支障をきたすおそれがある。すなわち、プラズマ処理装置に高周波電力(RF)や直流電力(DC)を供給してプラズマを発生させると、大部分の電力はガス分解に使用されるが、一部100〜1000cal/分のジュール熱が発生する。このジュール熱は、基板温度を0.1〜1℃/分で上昇させ、例えばプラズマ放電を伴うプロセス時間が20分の場合、最大20℃の基板温度上昇をもたらすことになる。本発明の発明者らは、実験によりこのような温度上昇の事実を確認している。
米国特許第4,264,393号明細書
本発明は、簡便な構造でカソードおよびアノードを配置することができると共に、良好な膜堆積、膜厚分布を得ることができ、装置全体構造の簡略化、ひいては低価格化を実現し得るプラズマ処理装置およびそれを用いた半導体薄膜の製造方法を提供することを目的とする。
かくして、本発明によれば、密封可能なチャンバー内に、保持脚を介してチャンバーに取り付けられることによってチャンバーの内壁面から隔離して設けられ、かつ処理対象の基板を収容する内側空間を形成する枠状の内部構造体と、前記内側空間に前記基板を収容する基板保持部と、前記内側空間に反応性ガスを供給する反応性ガス供給手段と、前記内部構造体に支持され、前記内側空間で前記基板の両面側に配設され、かつ前記反応性ガスをプラズマ放電させるカソードおよびアノードと、前記内部構造体に支持され、前記内側空間で前記基板を加熱するヒータと、前記ヒータに接して設けられ、前記カソードおよびアノード間のプラズマ放電で発生するジュール熱を冷却ガスにより吸熱して前記内側空間外に放熱し得る空冷用ガス流通管と、前記ヒータとチャンバーの外壁との間に接続されてチャンバーを介して外部にジュール熱を放熱し得る放熱板とを備え、前記放熱板が、板状、格子状またはストライプ状の形状を有することを特徴とするプラズマ処理装置が提供される。
また、本発明によれば、上記のプラズマ処理装置を用いて基板の表面に半導体薄膜を製造することを特徴とする半導体薄膜の製造方法が提供される。
本発明のプラズマ処理装置は、カソード、アノードおよびヒータがチャンバーの壁面から隔離して内部構造体により支持されているので、大気圧に対する補強が不要であり、装
置全体の構造を簡略化し、装置の低価格化を実現することができる。
また、本発明のプラズマ処理装置は、プラズマ放電で発生するジュール熱による温度上昇を緩和するための放熱手段(空冷用ガス流通管)を備えているので、プラズマ処理中の温度を安定化して、プロセスを安定化させることができ、均一な膜質や膜厚を有する良好な膜形成を行うことができる。
さらに、放熱手段により装置外部への熱伝導が抑えられ、チャンバー外壁面の冷却装置を省略することができるので、装置を簡略化し、装置の低価格化を実現することができる。
また、本発明の半導体薄膜の製造方法によれば、半導体薄膜または光学的薄膜を用いた太陽電池、TFT、感光体などの半導体素子を低コストでしかも効率よく製造することができる。
本発明のプラズマ処理装置の実施の形態1であって、(a)は縦構造を示す概略断面図であり、(b)は平面構造を示す概略平面図である。 本発明のプラズマ処理装置の実施の形態2であって、(a)は縦構造を示す概略断面図であり、(b)は平面構造を示す概略平面図である。 実施の形態2における放熱手段を上方から見た図であって、(a)は波型フィンの突出寸法を変えた場合、(b)は波型フィンの波長を変えた場合、(c)は波型フィンの突出寸法および波長を変えた場合を示す。 本発明のプラズマ処理装置であって、(a)は実施の形態3−1の縦構造を示す概略断面図であり、(b)は実施の形態3−2の縦構造を示す概略断面図である。 実施の形態3−1および3−2における空冷用ガス流通管であって、(a)は側面側から見た構造を示す概略断面図であり、(b)は平面側から見た構造を示す概略断面図である。 従来のプラズマ処理装置の概略断面図である。
本発明のプラズマ処理装置は、
密封可能なチャンバー内に、
チャンバーの内壁面から隔離して設けられ、かつ処理対象の基板を収容する内側空間を形成する内部構造体と、
前記内側空間に前記基板を収容する基板保持部と、
前記内側空間に反応性ガスを供給する反応性ガス供給手段と、
前記内部構造体に支持され、前記内側空間で前記基板の両面側に配設され、かつ前記反応性ガスをプラズマ放電させるカソードおよびアノードと、
前記内部構造体に支持され、前記内側空間で前記基板を加熱するヒータと、
プラズマ放電で発生するジュール熱を前記内側空間外に放熱し得る放熱手段とを備える。
本発明のプラズマ処理装置は、第1の特徴として、カソード、アノードおよびヒータが内部構造体により支持されてなり、その内部構造体がチャンバーの内壁面から隔離して設けられている。
内部構造体は、カソード、アノードおよびヒータなどの部材を保持し得る強度を有し、かつチャンバー内部に導入する反応性ガスの置換を妨げない構造体であれば、特に限定されないが、例えば、角材などの枠状の構造体が好ましい。
また、内部構造体は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、ステンレス鋼またはアルミニウム合金などからなるのが好ましい。
内部構造体は、チャンバーの内壁面から隔離して設けられるが、例えば、内部構造体の重量を支えるのに十分な部材を介してチャンバーに設けられるのが好ましい。
このような部材としては、例えば、図1の図番25に示すような保持脚が挙げられる。
保持脚は、内部構造体とチャンバーを隔離して、内部構造体からの熱伝導を抑制するものであり、その長さはできるだけ長く、かつ設置面積はできるだけ小さいのが好ましい。図1の保持脚はチャンバーの底面に設置されているが、その位置は特に限定されず、チャンバーの側面、上面またはそれらの組み合わせであってもよい。
内部構造体の底面とアノードの下面との間には、アノードからの輻射熱による内部構造体の温度上昇を抑えるために、一定寸法の間隙が設けられているのが好ましい。
この間隙の寸法は、プラズマ処理装置および他の部材の大きさにより適宜決定すればよく、通常10〜30mm程度である。その他の内部構造体の寸法もプラズマ処理装置および他の部材の大きさにより適宜決定すればよい。
本発明のプラズマ処理装置は、第2の特徴として、プラズマ放電で発生するジュール熱を内側空間外に放熱し得る放熱手段を備えてなる。
この放熱手段は、プラズマによる内側空間の温度上昇を緩和できるものであれば特に限定されないが、
(1)チャンバーに接してチャンバーを介して外部にジュール熱を放熱し得る放熱板、
(2)ヒータに接してチャンバー内の内側空間外にジュール熱を放熱し得る放熱フィン、
(3)ヒータに接して設けられ、かつ冷却ガスによりジュール熱を吸熱する空冷用ガス流通管、または前記(1)〜(3)のいずれかの組み合わせであるのが好ましい。
このような放熱手段を備えることにより、プラズマ放電で発生するジュール熱が熱伝導によってヒータからチャンバー壁面に適度に放熱され、種々の条件でプラズマ放電を行っても、ヒータ温度が一定に保たれ、プロセスの安定性が向上し、均一な膜質や膜厚を有する良好な膜形成を行うことができ、かつ装置の連続運転が可能となる。
次に、各放熱手段について述べる。
(1)放熱板
放熱板は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、アルミニウム、アルミニウム合金、銅、鉄、ニッケルまたはステンレス鋼からなるのが特に好ましい。
放熱板は、板状、格子状(網状)、ストライプ状の形状を有するのが好ましい。
また、放熱板は、チャンバー内部に導入する反応性ガスの置換を妨げない形状であるのが好ましい。これにより、プラズマ放電領域におけるガスのコンダクタンスが大きくなり、多量のガス置換が可能となり、プロセスが安定化するので好ましい。
放熱板は、例えば、図1に示すように、内部構造体の基板側の外壁側に、チャンバーに接して設けられるのが好ましい。
放熱板は、100〜1000cal/分の熱量を放熱するのが好ましい。
(2)放熱フィン
放熱フィンは、一般に伝熱面積を増加させるために熱交換器などで用いられるひれ状のフィンを応用したものである。
放熱フィンは、熱伝導性および耐熱性を備えた材料からなるのが好ましく、アルミニウム、アルミニウム合金、銅、鉄、ニッケルまたはステンレス鋼からなるのが特に好ましい。
放熱フィンは、その形状は特に限定されないが、例えばヒータの裏面に接触する平板と、平板上に接続された2種類の波型フィンからなり、一方の波型フィンはヒータの中央部で密に、他方の波型フィンはヒータの周辺部で疎に形成されている構成とすることが好ましい。あるいは、ヒータの中央部に配設される一方の波型フィンは突出寸法が大きく、ヒータの周辺部に配設される他方の波型フィンは突出寸法が小さく設定された構成であることが好ましい。つまり、放熱フィンの表面積を、ヒータの中央部では大きく、ヒータの周辺部では小さくすればよい。
放熱フィンのその他の構造としては、上述の密に配置した波型フィンと疎に配置した波型フィンを1枚の金属板にて構成したものであってもよい。さらには、1枚の金属板にて波型フィンを平面的に見て蛇行状に形成し、中央部の波型フィンを周囲部の波型フィンよりも蛇行の周期を短くして密に配置してもよい。
このように、放熱フィンの密度、設計寸法、形状等を適宜調整することで、例えば、放熱量が中央部で大きく、周辺部で小さくように、ヒータ温度の面内分布が調整することができる。
放熱フィンは、例えば、図2に示すように、内部構造体の基板側の外壁に、ヒータに接して設けられるのが好ましい。
(3)空冷用ガス流通管
空冷用ガス流通管は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、アルミニウム、アルミニウム合金、銅、鉄、ニッケルまたはステンレス鋼からなるのが特に好ましい。
空冷用ガス流通管は、導入したガスを冷却用ガス導入管を通じて直接チャンバー外に放出する構造であるのが好ましい。
また、空冷用ガス流通管は、反応性ガス供給手段と接続され、導入したガスが反応性ガスとして内側空間に供給される構造であってもよい。
さらに、密封可能なチャンバーに、内部構造体と、反応性ガス供給手段と、カソードおよびアノードと、ヒータと、放熱手段とが2組以上備えられ、空冷用ガス流通管が、他の組の反応性ガス供給手段と接続され、導入したガスが反応性ガスとして他の組の内側空間に供給される構造であってもよい。
空冷用ガス流通管は、例えば、図4に示すように、ヒータの基板に相対する面に、ヒータに接して設けられる。図4(a)は、空冷用ガス流通管が冷却用ガス導入管を通じて反応性ガス供給手段と接続されない装置を示し、図4(b)は、前記の接続がある装置を示す。また、図5は、ヒータ内に設けられた空冷用ガス流通管の構造を示す。
次に、本発明のプラズマ処理装置の好適な実施形態について、図面を用いて説明する。実施の形態1〜3は、上記の放熱手段(1)〜(3)に対応する。
なお、これらの実施形態は一例であり、種々の形態での実施が本発明の範囲内で可能である。
(実施の形態1)
図1は、実施の形態1のプラズマ処理装置の(a)縦構造を示す概略断面図および(b)平面構造を示す概略平面図である。
チャンバー11は、真空容器としての強度を有し、熱伝導性および耐熱性を備えた材料からなるのが好ましく、ステンレス鋼またはアルミニウム合金などからなる。
チャンバー11は、その内部を任意の真空度に制御することができるように構成されている。このため、チャンバー11の嵌合部分はOリングなどによって完全に密閉されている。また、チャンバー11には、排気管9を介して圧力制御器22および真空ポンプ21が接続され、真空ポンプ21にはチャンバー11に導入された反応性ガスが反応した後の排ガス中に含まれる有害物質を除去するための除害装置23が接続されている。
チャンバー11の底面には、内部構造体8、カソード2、アノード4およびヒータ24などの部材の重量を支え得る十分な強度を有する保持脚25が固定され、その保持脚25に内部構造体8が固定されている。
内部構造体8は、カソード2、アノード4およびヒータ24などの部材の重量を支え得る十分な強度を有する、ステンレス鋼またはアルミニウム合金などからなる角材の枠状の構造体である。
内部構造体8の底面とアノード4の下面との間には、アノード4からの輻射熱による内部構造体8の熱上昇を抑えるために、一定寸法の間隙が設けられている。その間隙は、図1の装置では、10〜30mmである。
アノード4は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、ステンレス鋼、アルミニウム合金、カーボンなどからなるのが特に好ましい。
アノード4の寸法は、基板1の寸法に合わせて適宜設定すればよい。図1の装置では、ガラス基板1の寸法900〜1200×400〜900mmに対して、アノード4の寸法は1000〜1500mm×600〜1000mmである。
アノード4は、ヒータ24を内蔵している。
ヒータ24としては、例えば、アルミニウム合金中にシースヒータなどの密閉型加熱装置と熱電対などの密閉型温度センサとを内蔵したものが挙げられる。これにより、アノード4を、例えば室温〜300℃に加熱制御することができる。
ヒータ24とチャンバー外壁との間は、放熱板26で接続されている。すなわち、放熱板26は、内部構造体の基板側の外壁側に設けられ、チャンバーに接している。
放熱板26は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、アルミニウムまたはアルミニウム合金からなるのが特に好ましい。
放熱板26の寸法は、基板1の寸法に合わせて適宜設定すればよい。図1の装置では、長さ100〜500mm×幅1200〜1000mm×厚さ1〜3mm、長さ100〜500mm×幅800〜500mm×厚さ1〜3mmのアルミニウム板各2枚からなる放熱板である。
放熱板26は、チャンバー内部に導入する反応性ガスの置換を妨げない形状が好ましく、図1の装置では、格子状(網状)になっている。
上記のような放熱板26でヒータ温度を300℃、外壁温度を60℃とした場合、この放熱板からの放熱量は、プラズマ放電で発生するジュール熱よりも若干大きい、約1200cal/分となる。
これにより、プラズマ放電で発生するジュール熱を放熱することができるため、プロセス中の温度を面内での均一性を保ちながら、一定にすることができる。
アノード4は、その4隅に配されたアノード支持体6により支持されている。その支持寸法は、アノード4が撓むおそれがないように適宜設定すればよく、図1の装置では、30mm×50mmである。
アノード支持体6は、熱伝導による内部構造体8の熱上昇を抑えるために、熱伝導率の小さい材料からなるのが好ましく、例えば、ジルコニア(酸化ジルコニウム)が挙げられる。
アノード4とアノード支持体6との接触面積は、アノード支持体6の熱伝導によってアノード4の熱が内部構造体8に伝達されるのを抑えるために、できるだけ小さい方が好ましい。この接触面積を小さくするために、アノード支持体6には、アノード支持体6の強度を損なわない範囲で深さ1mm〜5mm程度の掘り込みが設けられていてもよい。
カソード2は、熱伝導性および耐熱性を備えた材料からなるのが好ましく、ステンレス鋼、アルミニウム合金、カーボンなどからなるのが特に好ましい。
カソード2の寸法は、基板1の寸法に合わせて適宜設定すればよい。図1の装置では、ガラス基板1の寸法900〜1200×400〜900mmに対して、アノード4の寸法を1000〜1500mm×600〜1000mmである。
カソード2は、その内部に反応性ガス導入管10を通じて反応性ガスが導入される空洞管を有している。反応性ガスとして、例えば、Hで希釈したSiHガスが挙げられる。
また、カソード2は、その表面に反応性ガスを基板1上に供給するための多数の貫通穴が設けられている。この貫通穴は、穴明け加工により形成することができ、その寸法は、例えば、直径0.1〜2mm程度、ピッチ数mm〜数cm程度である。
カソード2とアノード4との間隙(距離)は、数mm〜数十mm程度で、その寸法精度は数%以内が好ましい。図1の装置では、距離2mm〜30mm、寸法精度1%以下である。
カソード2は、アノード4と対向してカソード支持体5に設置されている。
カソード支持体5は、電気絶縁性と共に、カソード2を保持し得る強度が要求され、セラミックスなどの材料からなるのが好ましく、例えば、ジルコニア、アルミナ(酸化アルミニウム)およびガラスなどが挙げられる。
カソード2は、その4隅に配されたカソード支持体5により支持されているが、カソード2の周辺部全体が支持されてもよい。
カソード2とカソード支持体5との接触面積は、カソード支持体5の熱伝導によってカソード2の熱が内部構造体8に伝達されるのを抑えるために、カソード2に撓みが発生しない範囲で、できるだけ小さい方が好ましい。また、その配置も前記の条件を満たすように適宜設定すればよい。図1の装置では、100mm×50mmである。
カソード支持体5は、チャンバー11内に設けられた内部構造体8に取り付けられている。
カソード2には、プラズマ励起電源12がインピーダンス整合器13を介して電気的に接続されることで、電力が供給される。例えば、プラズマ励起電源12は、AC周波数1.00〜108.48MHz、出力電力10W〜100kWである。図1の装置では、AC周波数13.56〜81.42MHz、出力電力10W〜10kWである。
基板1としては、半導体薄膜または光学的薄膜を用いた太陽電池、TFT、感光体などの半導体素子などの製造用基板が挙げられ、半導体基板が特に好ましい。
基板1は、アノード4のカソード2に相対する面に、内部構造体8に固定された基板保持部(ホルダー)15により設置されている。
上記の構成のプラズマ処理装置において、反応性ガスを所定の流量および圧力でカソード2とアノード4との間隙に充填し、カソード2とアノード4とに高周波電力を印加したところ、カソード2とアノード4との間にグロー放電領域(プラズマ放電領域)を発生させることができた。そして、基板1上に、非晶質または結晶性の膜を形成することができた。
(実施の形態2)
図2は、実施の形態2のプラズマ処理装置の(a)縦構造を示す概略断面図および(b)平面構造を示す概略平面図である。
実施の形態2のプラズマ処理装置の構造は、放熱手段の構造以外は実施の形態1と同様であり、主として異なる点を説明する。なお、図2において、図1と同様の構成要素には同一の符号を付している。
アノード4は、実施の形態1と同様の寸法で、ヒータ24が内蔵されている。
そして、ヒータ24の裏面には、放熱フィン27が複数枚接続されている。すなわち、放熱フィン27は、内部構造体の基板側の外壁面に設けられている。なお、図2では、放熱フィン27はチャンバー11に接していないが、接していてもよい。
この放熱フィン27は、図2(a)、(b)および図3(a)に示すように、ヒータ24の裏面に接触する平板27cと、平板27c上に接触して固定された2種類の波型フィン27a、27bとからなる。この放熱フィン27では、ヒータ裏面において、プラズマ放電で発生するジュール熱が蓄熱され易い中央部に突出寸法T1の大きい波型フィン27aが配置され、周辺部に突出寸法T2の小さい波型フィン27bが配置されている。この場合、各波型フィン27a、27bの波の波長(間隔)L1、L2は略等しい。このような放熱フィン27をヒータ24の裏面に取り付け、ヒータ温度を300℃、外壁温度を60℃とする場合、放熱フィン27を以下のような設計とすることにより、放熱フィン27からの放熱量は、プラズマ放電で発生するジュール熱よりも若干大きい約1200cal/分となる。
放熱フィン27の材質:アルミニウム
平板27cのサイズ:縦1000〜1500mm×横600〜1000mm
平板27cの厚み:1〜10mm
各波型フィン27a、27bの厚さ:1〜5mm
波型フィン27aの突出寸法T1:5〜30mm
波型フィン27bの突出寸法T2:3〜10mm
各波型フィン27a、27bの波長:5〜30mm
波型フィン27aの平板27cに対する占有面積:300000〜1200000mm
波型フィン27bの平板27cに対する占有面積:300000〜1500000mm
このようにすることにより、プラズマ放電で発生するジュール熱を放熱することができるため、プロセス中の温度を面内での均一性を保ちながら、一定にすることができる。
図3(a)のように、中央部の波型フィン27aの突出寸法T1を大きくすることにより表面積を大きくする以外に、図3(b)に示すように、放熱フィン127において、ヒータ中央部で波型フィン127aを密になるように、かつヒータ周辺部で波型フィン127bを疎になるように構成してもよい。つまり、各波型フィン127a、127bにおいて、各突出寸法T1、T2を略等しくし、波型フィン127aの波長L1を波型フィン127bの波長L2よりも短くしてもよい。なお、この場合も、上述のように、必要な放熱量が得られるように各波型フィン127a、127bの各種寸法を設定する。
あるいは、図3(c)に示すように、放熱フィン227において、中央部の波型フィン227aの突出寸法T1を周辺部の波型フィン227bの突出寸法T2よりも大きくし、かつ中央部の波型フィン227aの波長L1を周辺部の波型フィン227bの波長L2よりも小さくしてもよい。なお、この場合も、上述のように、必要な放熱量が得られるように各波型フィン227a、227bの各種寸法を設定する。
上記の構成のプラズマ処理装置において、反応性ガスを所定の流量および圧力でカソード2とアノード4との間隙に充填し、カソード2とアノード4とに高周波電力を印加したところ、カソード2とアノード4との間にグロー放電領域(プラズマ放電領域)を発生させることができた。そして、基板1上に、非晶質または結晶性の膜を形成することができた。
(実施の形態3)
図4(a)は実施の形態3−1のプラズマ処理装置の縦構造を示す概略断面図であり、図4(b)は実施の形態3−2のプラズマ処理装置の縦構造を示す概略断面図である。
また、図5は、実施の形態3のプラズマ処理装置におけるヒータに設けられた空冷用ガス流通管7の構造を示す概略図であって、図5(a)は側面側から見た図であり、図5(b)は平面側から見た図である。
実施の形態3のプラズマ処理装置の構造は、放熱手段の構造以外は実施の形態1と同様であり、主として異なる点を説明する。なお、図4および図5において、図1と同様の構成要素には同一の符号を付している。
アノード4は、実施の形態1と同様の寸法で、ヒータ24が内蔵されている。例えば、図5に示されるように、アノード4がヒータ24および空冷用ガス流通管7と一体化している。すなわち、ヒータ24の基板1に相対する面には、空冷用ガス流通管7が内蔵されている。
図5(b)では、空冷用ガス流通管7は、冷却用ガス導入管29から3本に分岐してヒータ24の長手方向に平行に延び、再び1本に収束して冷却ガス排気管30に接続されている場合を例示している。この空冷用ガス流通管7は、プラズマ放電で発生するジュール熱が吸熱され易いように、図5(b)の形態に限らず、中央部にガス管が例えば蛇行状に形成されて密になるように設計されていてもよい。例えば、熱伝導性の良好なアルミニウムでこのように配管された空冷用ガス流通管7に原料ガスの一部である水素を導入した場合、空冷用ガス流通管7からの放熱量は、プラズマ放電で発生するジュール熱よりも若干大きい、約1000〜3000cal/分となる。
これにより、プラズマ放電で発生するジュール熱を放熱することができるため、プロセス中の温度を面内での均一性を保ちながら、一定にすることができる。
実施の形態3−1の装置では、図4(a)に示すように、冷却用ガスを冷却用ガス導入管29を通して空冷用ガス流通管7に導入し、冷却用ガス排気管30を通して排気している。
一方、実施の形態3−2の装置では、図4(b)に示すように、冷却用ガスの代わりに反応性ガス(原料ガス)を冷却用ガス導入管29を通して空冷用ガス流通管7に導入し、これを排気せず冷却ガス排気管31を通して、反応性ガスとして内側空間にカソード2を通じて供給する。一般に、原料ガスを適度に加熱することは、膜の高品質化やクリーニングレートの向上につながることから、原料ガスを空冷用ガス流通管7に通してジュール熱を吸収させるガス加熱はプロセスによい影響を与えるので、好ましい。
したがって、空冷用ガス流通管が、反応性ガス供給手段と接続され、導入したガスが反応性ガスとして内側空間に供給される構造であるのが好ましい。
実施の形態3−1では、冷却用ガスとして窒素などの不活性ガスを用いる。しかし、窒素の熱伝導率は水素に比べて約1/8であるため、実施の形態3−2の場合と同等の放熱を行うためにはほぼ1桁程度多い流量でガスを導入する必要がある。
したがって、通常、原料ガスの一部として使用する水素の希釈ガスとして使用される排気ガス希釈窒素を流用するのが好ましい。これにより、ガスによる放熱量が約1000〜3000cal/分になると共に、排気窒素ガスの温度を数十℃上昇させることができ、排気配管の保温効果により、パウダーの付着に伴う排気配管の詰まりを防止できるので好ましい。
実施の形態3−2の変形として、本発明のプラズマ処理装置は、密封可能なチャンバーに、枠状の内部構造体と、反応性ガス供給手段と、カソードおよびアノードと、ヒータと、空冷用ガス流通管とが2組以上備えられ、一の組の空冷用ガス流通管が、他の組の反応性ガス供給手段と接続され、導入したガスが反応性ガスとして他の組の内側空間に供給される構造であってもよい。つまり、一つのヒータに接続された冷却ガス排気管が複数に分岐して複数の反応性ガス供給手段(ガス導入管)と接続されるように構成することにより、一つのヒータ内の空冷用ガス流通管が複数のカソード内部と接続されることとなる。これによって、一つのヒータ内で加熱された反応性ガスを複数の内側空間に供給することができる。
上記の構成のプラズマ処理装置において、反応性ガスを所定の流量および圧力でカソード2とアノード4との間隙に充填し、カソード2とアノード4とに高周波電力を印加したところ、カソード2とアノード4との間にグロー放電領域(プラズマ放電領域)を発生させることができた。そして、基板1上に、非晶質または結晶性の膜を形成することができた。
このように、本発明によれば、上記のプラズマ処理装置を用いて基板の表面に半導体薄膜を製造することを特徴とする半導体薄膜の製造方法が提供される。
また、本発明の半導体薄膜の製造方法によれば、半導体薄膜または光学的薄膜を用いた太陽電池、TFT、感光体などの半導体素子を低コストでしかも効率よく製造することができる。

Claims (9)

  1. 密封可能なチャンバー内に、
    保持脚を介してチャンバーに取り付けられることによってチャンバーの内壁面から隔離して設けられ、かつ処理対象の基板を収容する内側空間を形成する枠状の内部構造体と、
    前記内側空間に前記基板を収容する基板保持部と、
    前記内側空間に反応性ガスを供給する反応性ガス供給手段と、
    前記内部構造体に支持され、前記内側空間で前記基板の両面側に配設され、かつ前記反応性ガスをプラズマ放電させるカソードおよびアノードと、
    前記内部構造体に支持され、前記内側空間で前記基板を加熱するヒータと、
    前記ヒータに接して設けられ、前記カソードおよびアノード間のプラズマ放電で発生するジュール熱を冷却ガスにより吸熱して前記内側空間外に放熱し得る空冷用ガス流通管と
    前記ヒータとチャンバーの外壁との間に接続されてチャンバーを介して外部にジュール熱を放熱し得る放熱板とを備え、
    前記放熱板が、格子状またはストライプ状の孔を有することを特徴とするプラズマ処理装置。
  2. 前記ヒータに接してチャンバー内の内側空間外にジュール熱を放熱し得る放熱フィンをさらに備えた請求項1に記載のプラズマ処理装置。
  3. 前記放熱フィンが、ヒータの中央部では密に、ヒータの周辺部では疎に配設されている請求項に記載のプラズマ処理装置。
  4. 前記放熱フィンはその突出寸法が、ヒータの中央部では大きく、ヒータの周辺部では小さい請求項に記載のプラズマ処理装置。
  5. 前記放熱フィンが、ヒータに面接触する平板と、この平板上に接続された波型フィンとからなる請求項2に記載のプラズマ処理装置。
  6. 前記空冷用ガス流通管が、導入したガスを直接チャンバー外に放出する構造である請求項1に記載のプラズマ処理装置。
  7. 前記空冷用ガス流通管が、反応性ガス供給手段と接続され、導入したガスが反応性ガスとして内側空間に供給される構造である請求項1に記載のプラズマ処理装置。
  8. 密封可能なチャンバーに、枠状の内部構造体と、反応性ガス供給手段と、カソードおよびアノードと、ヒータと、空冷用ガス流通管とが2組以上備えられ、一の組の前記空冷用ガス流通管が、他の組の前記反応性ガス供給手段と接続され、導入したガスが反応性ガスとして他の組の内側空間に供給される構造である請求項に記載のプラズマ処理装置。
  9. 請求項1に記載のプラズマ処理装置を用いて基板の表面に半導体薄膜を製造することを特徴とする半導体薄膜の製造方法。
JP2007507038A 2005-03-07 2006-02-23 プラズマ処理装置およびそれを用いた半導体薄膜の製造方法 Expired - Fee Related JP4659820B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005062701 2005-03-07
JP2005062701 2005-03-07
PCT/JP2006/303298 WO2006095575A1 (ja) 2005-03-07 2006-02-23 プラズマ処理装置およびそれを用いた半導体薄膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2006095575A1 JPWO2006095575A1 (ja) 2008-08-14
JP4659820B2 true JP4659820B2 (ja) 2011-03-30

Family

ID=36953176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007507038A Expired - Fee Related JP4659820B2 (ja) 2005-03-07 2006-02-23 プラズマ処理装置およびそれを用いた半導体薄膜の製造方法

Country Status (5)

Country Link
US (1) US20080164144A1 (ja)
EP (1) EP1858061B1 (ja)
JP (1) JP4659820B2 (ja)
ES (1) ES2373915T3 (ja)
WO (1) WO2006095575A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791303B2 (ja) * 2006-09-19 2011-10-12 株式会社日立国際電気 基板処理装置およびこの装置に用いられる冷却手段、icの製造方法
KR101046335B1 (ko) * 2008-07-29 2011-07-05 피에스케이 주식회사 할로우 캐소드 플라즈마 발생방법 및 할로우 캐소드플라즈마를 이용한 대면적 기판 처리방법
JP5136574B2 (ja) * 2009-05-01 2013-02-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP4746700B1 (ja) * 2010-02-16 2011-08-10 シャープ株式会社 真空処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831755A (ja) * 1994-07-08 1996-02-02 Tokyo Electron Ltd 処理装置
JP2000031119A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp ドライエッチング装置及びドライエッチング方法
JP2000306844A (ja) * 1999-04-19 2000-11-02 Canon Inc 処理装置
JP2004288984A (ja) * 2003-03-24 2004-10-14 Sharp Corp 成膜装置及び成膜方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264393A (en) * 1977-10-31 1981-04-28 Motorola, Inc. Reactor apparatus for plasma etching or deposition
JPS63110025U (ja) * 1987-01-08 1988-07-15
EP0297898B1 (en) * 1987-07-02 1995-10-11 Kabushiki Kaisha Toshiba Method of dry etching
JP2988122B2 (ja) * 1992-05-14 1999-12-06 日本電気株式会社 ドライエッチング装置および半導体装置の製造方法
US5383984A (en) * 1992-06-17 1995-01-24 Tokyo Electron Limited Plasma processing apparatus etching tunnel-type
JPH09129561A (ja) * 1995-11-06 1997-05-16 Teisan Kk ガス回収装置
JP4209057B2 (ja) * 1999-12-01 2009-01-14 東京エレクトロン株式会社 セラミックスヒーターならびにそれを用いた基板処理装置および基板処理方法
KR100735932B1 (ko) * 2001-02-09 2007-07-06 동경 엘렉트론 주식회사 성막 장치
WO2002068710A1 (de) * 2001-02-26 2002-09-06 Unaxis Balzers Aktiengesellschaft Verfahren zur herstellung von teilen und vakuumbehandlungssystem
US7032536B2 (en) * 2002-10-11 2006-04-25 Sharp Kabushiki Kaisha Thin film formation apparatus including engagement members for support during thermal expansion
JP3970815B2 (ja) * 2002-11-12 2007-09-05 シャープ株式会社 半導体素子製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831755A (ja) * 1994-07-08 1996-02-02 Tokyo Electron Ltd 処理装置
JP2000031119A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp ドライエッチング装置及びドライエッチング方法
JP2000306844A (ja) * 1999-04-19 2000-11-02 Canon Inc 処理装置
JP2004288984A (ja) * 2003-03-24 2004-10-14 Sharp Corp 成膜装置及び成膜方法

Also Published As

Publication number Publication date
JPWO2006095575A1 (ja) 2008-08-14
WO2006095575A1 (ja) 2006-09-14
US20080164144A1 (en) 2008-07-10
EP1858061A1 (en) 2007-11-21
EP1858061B1 (en) 2011-10-19
ES2373915T3 (es) 2012-02-10
EP1858061A4 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP5484650B2 (ja) 基板支持体の能動的冷却
TWI513374B (zh) 受到溫度控制之熱邊緣環組件
KR100757545B1 (ko) 상부 전극 및 플라즈마 처리 장치
KR101170005B1 (ko) 온도 조절 기구 및 온도 조절 기구를 이용한 반도체 제조 장치
JP4593652B2 (ja) マイクロ波プラズマ処理装置
JP7473700B2 (ja) 有機膜形成装置
JP2006324023A (ja) プラズマ処理装置
JP4659820B2 (ja) プラズマ処理装置およびそれを用いた半導体薄膜の製造方法
TWI797339B (zh) 用於在電漿增強化學氣相沉積腔室中抑制寄生電漿的設備
JP4185483B2 (ja) プラズマ処理装置
US6729261B2 (en) Plasma processing apparatus
JP3970815B2 (ja) 半導体素子製造装置
TWI385725B (zh) A structure that reduces the deposition of polymer on the backside of the substrate
JP2007273752A (ja) プラズマ処理装置およびプラズマ生成装置
JP2002158216A (ja) プラズマ処理装置及び方法
JP2007327097A (ja) プラズマ処理装置
JP3380824B2 (ja) 半導体処理装置
JP4290207B2 (ja) 半導体素子製造装置および半導体素子製造方法
JP2009064952A (ja) 表面処理装置
JP4786723B2 (ja) プラズマcvd装置とプラズマcvd装置用電極
JP2003038951A (ja) プラズマ処理装置
TWI785519B (zh) 微波產生器、紫外光源、與基板處理方法
JP2007129268A (ja) プラズマ処理装置
TW202349535A (zh) 基板處理設備
KR20240155342A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees