JP4654275B2 - Double-side polishing equipment - Google Patents

Double-side polishing equipment Download PDF

Info

Publication number
JP4654275B2
JP4654275B2 JP2008197478A JP2008197478A JP4654275B2 JP 4654275 B2 JP4654275 B2 JP 4654275B2 JP 2008197478 A JP2008197478 A JP 2008197478A JP 2008197478 A JP2008197478 A JP 2008197478A JP 4654275 B2 JP4654275 B2 JP 4654275B2
Authority
JP
Japan
Prior art keywords
wafer
polishing
thickness
surface plate
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008197478A
Other languages
Japanese (ja)
Other versions
JP2010030019A (en
Inventor
大輔 古川
一将 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008197478A priority Critical patent/JP4654275B2/en
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to US13/002,449 priority patent/US8834230B2/en
Priority to DE112009001875.0T priority patent/DE112009001875B4/en
Priority to PCT/JP2009/003021 priority patent/WO2010013390A1/en
Priority to SG2013053954A priority patent/SG192518A1/en
Priority to KR1020117002430A priority patent/KR101587226B1/en
Priority to CN200980127186.4A priority patent/CN102089121B/en
Priority to TW098122953A priority patent/TWI478226B/en
Publication of JP2010030019A publication Critical patent/JP2010030019A/en
Application granted granted Critical
Publication of JP4654275B2 publication Critical patent/JP4654275B2/en
Priority to US14/446,847 priority patent/US9108289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は両面研磨装置に関し、詳しくは、高い平坦性を有する半導体用のウェーハの研磨を低コストで効率よく行うことのできる両面研磨装置に関するものである。   The present invention relates to a double-side polishing apparatus, and more particularly, to a double-side polishing apparatus that can efficiently polish a semiconductor wafer having high flatness at low cost.

従来のウェーハの製造方法として、シリコンウェーハの製造方法を例に説明すると、例えば、先ず、チョクラルスキー法(CZ法)等によってシリコン単結晶インゴットを育成し、得られたシリコン単結晶インゴットをスライスしてシリコンウェーハを作製した後、このシリコンウェーハに対して面取り、ラッピング、エッチング等の各工程が順次なされ、次いで少なくともウェーハの一主面を鏡面化する研磨工程が施される。   As an example of a conventional wafer manufacturing method, a silicon wafer manufacturing method will be described. For example, first, a silicon single crystal ingot is grown by the Czochralski method (CZ method) and the obtained silicon single crystal ingot is sliced. Then, after the silicon wafer is manufactured, each process such as chamfering, lapping, etching and the like is sequentially performed on the silicon wafer, and then a polishing process is performed to mirror at least one main surface of the wafer.

このウェーハの研磨工程において、例えばシリコンウェーハの両面を研磨する場合に、両面研磨装置が用いられることがある。
このような両面研磨装置としては、通常、中心部のサンギヤと外周部のインターナルギヤの間にウェーハを保持するキャリアが配置された遊星歯車構造を有するいわゆる4ウェイ方式の両面研磨装置が用いられている。
In this wafer polishing step, for example, when polishing both sides of a silicon wafer, a double-side polishing apparatus may be used.
As such a double-side polishing apparatus, a so-called 4-way double-side polishing apparatus having a planetary gear structure in which a carrier for holding a wafer is disposed between a sun gear at a central portion and an internal gear at an outer peripheral portion is usually used. ing.

この4ウェイ方式の両面研磨装置は、ウェーハ保持孔が形成された複数のキャリアにシリコンウェーハを挿入・保持し、保持されたシリコンウェーハの上方から研磨スラリーを供給しながら、ウェーハの対向面に研磨布が貼付された上定盤および下定盤を各ウェーハの表裏面に押し付けて相対方向に回転させ、それと同時にキャリアをサンギヤとインターナルギヤとによって自転および公転させることで、シリコンウェーハの両面を同時に研磨することができるものである。   This 4-way double-side polishing machine inserts and holds a silicon wafer into a plurality of carriers in which wafer holding holes are formed, and polishes on the opposite surface of the wafer while supplying polishing slurry from above the held silicon wafer. The upper and lower surface plates with cloth applied are pressed against the front and back surfaces of each wafer and rotated in a relative direction. Simultaneously, the carrier is rotated and revolved by the sun gear and the internal gear, so that both sides of the silicon wafer are simultaneously It can be polished.

しかし、上述のような両面研磨装置を用いて研磨を行っても、ウェーハの研磨速度は、研磨布、キャリア等の加工治具、材料の劣化により、研磨のたびに異なってしまう。このため、研磨時間を固定して研磨を行うと、研磨速度の違いに起因する研磨後のウェーハの厚さが異なってくるという問題があった。
そこで、研磨中のウェーハの厚さを測定しながら研磨を行う両面研磨装置が開示されている。
However, even when polishing is performed using the above-described double-side polishing apparatus, the polishing rate of the wafer varies every time polishing is performed due to deterioration of a processing jig such as a polishing cloth and a carrier and a material. For this reason, when polishing is performed with the polishing time fixed, there is a problem in that the thickness of the wafer after polishing due to the difference in polishing rate differs.
Thus, a double-side polishing apparatus that performs polishing while measuring the thickness of the wafer being polished is disclosed.

例えば、特許文献1、2に記載の発明のように、光反射干渉法を用いて研磨中の半導体ウェーハの厚さを測定しながら研磨を行うものがある。
また、例えば特許文献1の発明によれば、ウェーハを透過する波長の光を用い、半導体ウェーハの表面から裏面に向かって厚さ方向に沿って測定光束を移動させて焦点を形成しながら厚さを測定することができる。
For example, as in the inventions described in Patent Documents 1 and 2, polishing is performed while measuring the thickness of a semiconductor wafer being polished by using a light reflection interference method.
Further, for example, according to the invention of Patent Document 1, the thickness of the semiconductor wafer is measured while forming the focal point by moving the measuring light beam along the thickness direction from the front surface to the back surface of the semiconductor wafer using light having a wavelength that passes through the wafer. Can be measured.

特開2002−59364号公報JP 2002-59364 A 特開平7−4921号公報JP 7-4921 A 特許3327817号Patent 3327817

上述のような光学反射干渉法によって研磨中のウェーハの厚さをリアルタイムで測定しながら研磨を行う両面研磨装置では、研磨定盤に、光路用の穴と、その穴に重なる位置に穴の開いた研磨布に、光学的に透過し、研磨物にキズ等の損傷を与えず、研磨剤等のスラリーに犯されにくい材質を窓材として取り付けて研磨布と一体化して研磨定盤に貼り付けて研磨布として使用している。   In a double-side polishing machine that performs polishing while measuring the thickness of the wafer being polished by optical reflection interferometry in real time as described above, a hole is made on the polishing platen at the position overlapping the hole for the optical path. Attached to the polishing surface plate as a window material by attaching a material that is optically transparent to the polishing cloth, does not damage the polished object, such as scratches, and is not easily violated by slurry such as abrasives. Used as a polishing cloth.

このような研磨装置によってウェーハの研磨中の厚さはこの窓材を通して反射干渉法により測定し、目標厚さに到達した時点で自動的に研磨を停止させていた。
例えば、特許文献2に記載の発明ではウェーハの非研磨面側に窓を設け、測定光にはウェーハを透過する波長の光が使用されている。また、特許文献3に記載の発明では膜付のウェーハの研磨面側に接する下定盤の上側面の研磨布と一体化した、窓材或いはプラグを用いたものをウェーハ厚さの測定窓として使用している。
With such a polishing apparatus, the thickness during polishing of the wafer was measured by the reflection interference method through this window material, and the polishing was automatically stopped when the target thickness was reached.
For example, in the invention described in Patent Document 2, a window is provided on the non-polished surface side of the wafer, and light having a wavelength that passes through the wafer is used as measurement light. The invention described in Patent Document 3 uses a window material or a plug integrated with a polishing cloth on the upper surface of the lower surface plate in contact with the polishing surface side of the film-coated wafer as a wafer thickness measurement window. is doing.

しかし、上述のような特許文献に記載の発明では、研磨布と窓材が一体化しているため、窓材が棄損しただけで研磨布も交換しなければならなかった。また、研磨布の消耗に比べて窓材は消耗が激しく、研磨布の寿命が来る前に窓材の寿命が来て、両方廃棄となってしまい、無駄が多く生じてしまった。
更に、特許文献3に記載の発明に見られるように、被研磨物の研磨面側、即ち定盤の上側に窓が位置し、光路系が鉛直下側にあるため、窓材の機密性を高めるために強固なシール材プラグを用いる必要があった。そのため、交換が容易でなく、メンテナンスに時間が掛かり、効率が低下していた。
However, in the invention described in the patent document as described above, since the polishing cloth and the window material are integrated, it is necessary to replace the polishing cloth only by destroying the window material. In addition, the window material is more consumed than the abrasive cloth is consumed, and the window material reaches the end of its life before the end of the life of the polishing cloth, both of which are discarded, resulting in a lot of waste.
Further, as seen in the invention described in Patent Document 3, since the window is located on the polishing surface side of the object to be polished, that is, on the upper side of the surface plate, and the optical path system is on the vertical lower side, the confidentiality of the window material is reduced. In order to increase it, it was necessary to use a strong sealing material plug. For this reason, the replacement is not easy, the maintenance takes time, and the efficiency is lowered.

本発明は、上記問題に鑑みなされたものであって、研磨中のウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置において、無駄が少なく、ランニングコストが安価であり、またメンテナンスを容易に行うことができる、高い精度でウェーハの厚さを測定しながら研磨することができる両面研磨装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in a double-side polishing apparatus capable of performing polishing while measuring the thickness of a wafer being polished, has little waste, low running cost, and maintenance. An object of the present invention is to provide a double-side polishing apparatus capable of performing polishing while measuring the thickness of a wafer with high accuracy.

上記課題を解決するため、本発明では、少なくとも、回転駆動する平坦な研磨上面を有する下定盤と、前記下定盤に対向して配置され回転駆動する平坦な研磨下面を有する上定盤と、ウェーハを保持するウェーハ保持孔を有するキャリアとを備える両面研磨装置において、前記上定盤または前記下定盤には、該定盤の回転中心と周縁との間に設けられた複数の孔が設けられ、前記上下定盤の研磨面には前記複数の孔に対応する位置に孔より径の大きい穴の開いた研磨布と、前記孔より径が大きく前記研磨布の穴より径が小さく前記研磨布より厚さの薄い窓材とが設けられたものであり、更に、前記複数の孔から前記ウェーハの厚さを研磨中にリアルタイムで測定するウェーハ厚さ測定機構とを備え、前記窓材は、前記研磨布とは分離されて、前記上定盤または前記下定盤に接着層を介して固定されたものであることを特徴とする両面研磨装置を提供する In order to solve the above-described problems, in the present invention, at least a lower surface plate having a flat polishing upper surface that is rotationally driven, an upper surface plate having a flat polishing lower surface that is disposed opposite to the lower surface plate and is rotationally driven, and a wafer In the double-side polishing apparatus provided with a carrier having a wafer holding hole for holding a plurality of holes provided between a rotation center and a peripheral edge of the surface plate, the upper surface plate or the lower surface plate, The polishing surface of the upper and lower surface plate has a polishing cloth having a hole having a diameter larger than the hole at a position corresponding to the plurality of holes, and a diameter larger than the hole and smaller than the hole of the polishing cloth than the polishing cloth. A thin window material, and further includes a wafer thickness measurement mechanism that measures the thickness of the wafer in real time during polishing from the plurality of holes. Separated from the polishing cloth, Providing a double-sided polishing apparatus characterized by a serial on the platen or the lower platen those fixed through an adhesive layer.

このように、ウェーハの厚さを測定するための孔が複数設けられた上定盤または下定盤の研磨面に、孔に対応する位置に孔より径の大きい穴の開いた研磨布と、孔より径が大きく研磨布の穴より径が小さく研磨布より厚さの薄い窓材が貼り付けられたものとする。
このよう構造であれば、窓材と研磨布を分離し、別々に接着することができる。そのため、窓材が棄損した場合、窓材のみを剥離し交換することで、寿命をむかえていない研磨布を無駄に廃棄する必要をなくすことができる。また消耗の激しい窓材のみを交換することができるため、廃棄物の処分のための費用を低減することができ、ランニングコストの低減を達成することができる。
また、窓材と研磨布が独立しているため、メンテナンスが容易である。更に窓材のみ交換可能であるため、窓材の寿命によって研磨中のウェーハの厚さの測定に支障をきたし始めたら、研磨布はそのままで窓材のみ交換することができる。このため、無駄を減少させ、かつ高い精度で厚さを測定しながらウェーハを研磨することのできる両面研磨機とすることができる。本発明では、複数の孔を有し、従って複数の窓材が必要であり、これによって厚さ測定が正確に行われるものであるため、上記のように、窓材と研磨布が分離していることによって、個々にライフが設定される必要性が高い。
更に、研磨中のウェーハの厚さをリアルタイムで測定することのできるウェーハ厚さ測定機構を設けることによって、研磨中のウェーハ厚さを随時知ることができるため、ウェーハの目標厚さに達したかどうかを研磨しながら判断することができる。よって、ウェーハ研磨量や厚さの過不足が発生することなく、高い平坦度を有するウェーハとすることができる。
Thus, on the polishing surface of the upper or lower surface plate provided with a plurality of holes for measuring the thickness of the wafer, a polishing cloth having a hole having a diameter larger than the hole at a position corresponding to the hole, and a hole It is assumed that a window material that is larger in diameter and smaller in diameter than the hole in the polishing cloth and thinner than the polishing cloth is attached.
With such a structure, the window material and the polishing cloth can be separated and bonded separately. Therefore, when the window material is destroyed, it is possible to eliminate the need to dispose of the polishing cloth that has not reached the end of its life by peeling and replacing only the window material. In addition, since only the window material that is heavily consumed can be replaced, the cost for disposal of the waste can be reduced, and the running cost can be reduced.
Further, since the window material and the polishing cloth are independent, maintenance is easy. Further, since only the window material can be replaced, if the measurement of the thickness of the wafer being polished begins to be hindered due to the lifetime of the window material, only the window material can be replaced without changing the polishing cloth. For this reason, it is possible to provide a double-side polishing machine capable of reducing the waste and polishing the wafer while measuring the thickness with high accuracy. In the present invention, since a plurality of holes are required, and thus a plurality of window materials are necessary, and thickness measurement is accurately performed, the window material and the polishing cloth are separated as described above. Therefore, it is highly necessary to set the life individually.
In addition, by providing a wafer thickness measurement mechanism that can measure the thickness of the wafer being polished in real time, it is possible to know the wafer thickness being polished at any time. It can be judged while polishing. Therefore, it is possible to obtain a wafer having high flatness without causing excess or deficiency of the wafer polishing amount or thickness.

また、前記ウェーハ厚さ測定機構は、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を具備することが好ましい
このように、ウェーハ厚さ測定機構として、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を用いることによって、ウェーハ表面での反射スペクトル(ウェーハ表面と裏面で反射する光の干渉の様子)を評価することができ、これによって、研磨中のウェーハの厚さをより高精度に測定することができる。
The wafer thickness measuring mechanism preferably includes a tunable infrared laser device having a wavelength that is optically transmitted to the wafer .
As described above, by using a wavelength tunable infrared laser device having a wavelength optically transmitted to the wafer as a wafer thickness measuring mechanism, the reflection spectrum on the wafer surface (the interference of light reflected on the wafer front surface and the back surface). The state of the wafer during polishing can be measured with higher accuracy.

また、前記窓材は、前記波長可変赤外線レーザー装置の発するレーザー光に対して光学的に透過なものであることが好ましい
このように、レーザー光に対し光学的に透過する窓材であれば、窓材でのレーザー光の吸収や反射を抑制することができるため、測定レーザー光の強度が減衰してしまうことを抑制することができる。これによってウェーハの測定精度を更に高いものとすることができる。
Moreover, it is preferable that the said window material is an optically transparent thing with respect to the laser beam which the said wavelength tunable infrared laser apparatus emits .
In this way, if the window material is optically transmissive to the laser light, the absorption and reflection of the laser light at the window material can be suppressed, so that the intensity of the measurement laser light is prevented from being attenuated. can do. Thereby, the measurement accuracy of the wafer can be further increased.

また、前記窓材は、プラスチック製とすることが好ましい
このように、安価で、安定性に優れるプラスチックを窓材として用いることによって、窓材の交換頻度を低減することができ、また交換に掛かる手間やコストを削減することができる。
The window material is preferably made of plastic .
Thus, by using an inexpensive plastic having excellent stability as the window material, it is possible to reduce the replacement frequency of the window material, and to reduce the labor and cost required for the replacement.

また、前記ウェーハ厚さ測定機構は、前記ウェーハのバルク厚さを測定するものとすることが好ましい
このように、ウェーハのバルク厚さを測定することによって、研磨中のウェーハの実際の厚さをモニターすることができ、これによって研磨後のウェーハの厚さをより目標に近いものとすることができる。
Further, it is preferable that the wafer thickness measuring mechanism measures a bulk thickness of the wafer .
Thus, by measuring the bulk thickness of the wafer, it is possible to monitor the actual thickness of the wafer being polished, thereby making the thickness of the polished wafer closer to the target. it can.

また、本発明に記載の両面研磨装置は、前記窓材の厚さをt[μm]、屈折率をn、前記接着層の厚さをt[μm]、前記ウェーハの厚さをt[μm]、屈折率をn、前記研磨布の厚さをt[μm]、圧縮率をζ[%/g/cm]、研磨最大荷重をP[g/cm]とすると、t×ζ×P/100>t+tであり、かつt>t或いはt<tの関係を満たすものとすることが好ましい
このように、t×ζ×P/100>t+tの関係を満たすものであれば、研磨中に、窓材が研磨布からはみ出すことを抑制することができるため、窓材の部分でウェーハの平坦度が悪化することを抑制することができる。
また、t>t或いはt<tの関係を満たすものであれば、例えば、ウェーハの厚さの測定にレーザー光を用いた場合に、窓材での反射光とウェーハでの反射光のピークが重なって測定しにくくなって、測定精度が低下することを抑制することができる。
これらによって、ウェーハの厚さを高精度に測定しながら、平坦度の高いウェーハとすることがより容易になる。
In the double-side polishing apparatus according to the present invention, the thickness of the window material is t w [μm], the refractive index is n w , the thickness of the adhesive layer is t 2 [μm], and the thickness of the wafer is t s [μm], refractive index is n s , thickness of the polishing cloth is t 1 [μm], compressibility is ζ 1 [% / g / cm 2 ], and maximum polishing load is P [g / cm 2 ]. When a t 1 × ζ 1 × P / 100> t w + t 2, and it is preferable to satisfy the relation of t w n w> t s n s or t w n w <t s n s .
In this way, if the relationship of t 1 × ζ 1 × P / 100> t w + t 2 is satisfied, the window material can be prevented from protruding from the polishing cloth during polishing. It can suppress that the flatness of a wafer deteriorates in a part.
Further, as long as it satisfies the relation of t w n w> t s n s or t w n w <t s n s, for example, in the case of using a laser beam to measure the thickness of the wafer, the window material It is possible to prevent the measurement accuracy from being deteriorated due to the fact that the reflected light and the peak of the reflected light from the wafer overlap and become difficult to measure.
By these, it becomes easier to make a wafer with high flatness while measuring the thickness of the wafer with high accuracy.

また、前記複数の孔は、前記上定盤の周辺に等間隔に設けられたものとすることが好ましい
このように、等間隔に複数の孔を設けることによって、たとえバッチ式で複数のウェーハを同時に研磨する場合であっても、全てのウェーハの厚さの測定が容易に行うことができるため、高精度な研磨が可能である。また、上定盤に設けることによって、窓材に特別な研磨スラリーの漏れ対策を行う必要がなく、孔からの研磨スラリーの漏れが発生することを抑制することができるため、定盤のメンテナンスを容易なものとすることができる。またウェーハの厚さの測定に支障が生じる可能性を抑制することができる。
The plurality of holes are preferably provided at equal intervals around the upper surface plate .
Thus, by providing a plurality of holes at equal intervals, even when batch polishing a plurality of wafers at the same time, it is possible to easily measure the thickness of all the wafers. Accurate polishing is possible. In addition, by providing the upper surface plate, it is not necessary to take special measures against the abrasive slurry leakage in the window material, and it is possible to suppress the occurrence of abrasive slurry leakage from the hole, so that maintenance of the surface plate can be performed. It can be easy. Further, it is possible to suppress the possibility of trouble in measuring the thickness of the wafer.

以上説明したように、本発明によれば、研磨中のウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置において、無駄が少なく、ランニングコストが安価であり、またメンテナンスを容易に行うことができる、高い精度でウェーハの厚さを測定しながら研磨することができる両面研磨装置が提供される。   As described above, according to the present invention, in the double-side polishing apparatus that can perform polishing while measuring the thickness of the wafer being polished, there is little waste, the running cost is low, and maintenance is easy. Provided is a double-side polishing apparatus capable of performing polishing while measuring the thickness of a wafer with high accuracy.

以下、本発明について図1、図2、図3を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
図1は、本発明の両面研磨装置の一例を示した概略図である。また、図2は、本発明の窓材の概略と、該窓材を上定盤に貼り付けた様子を示した図である。
Hereinafter, the present invention will be described in detail with reference to FIGS. 1, 2, and 3. However, the present invention is not limited to these.
FIG. 1 is a schematic view showing an example of the double-side polishing apparatus of the present invention. Moreover, FIG. 2 is the figure which showed the mode that the outline of the window material of this invention, and this window material was affixed on the upper surface plate.

本発明の両面研磨装置10は、少なくとも、回転駆動する平坦な研磨上面12aを有する下定盤12と、下定盤12に対向して配置され回転駆動する平坦な研磨下面11aを有する上定盤11と、ウェーハWを保持するウェーハ保持孔を有するキャリア13と、上定盤11に設けられた複数の孔14と、該複数の孔14からウェーハWの厚さを研磨中にリアルタイムで測定するためのウェーハ厚さ測定機構16と、研磨スラリーを供給するための研磨スラリー供給機構15とを備えている。
そして、上定盤11の研磨面には複数の孔14に対応する位置に孔14より径の大きい穴の開いた研磨布11b、下定盤12の研磨面には研磨布12bが貼り付けられている。また、複数の孔14の研磨面側には、複数の孔14より径が大きく研磨布11bの穴より径が小さく研磨布11bより厚さが薄い窓材17が接着層18を介して貼り合わされている。また窓材17は、研磨布11bとは分離されて、上定盤11に接着層18を介して固定されている。
The double-side polishing apparatus 10 of the present invention includes at least a lower surface plate 12 having a flat polishing upper surface 12a that is rotationally driven, and an upper surface plate 11 having a flat polishing lower surface 11a that is disposed opposite to the lower surface plate 12 and is rotationally driven. A carrier 13 having a wafer holding hole for holding the wafer W, a plurality of holes 14 provided in the upper surface plate 11, and a thickness for measuring the thickness of the wafer W from the plurality of holes 14 in real time during polishing. A wafer thickness measuring mechanism 16 and a polishing slurry supply mechanism 15 for supplying polishing slurry are provided.
A polishing cloth 11b having holes larger in diameter than the holes 14 is attached to the polishing surface of the upper surface plate 11 at positions corresponding to the plurality of holes 14, and a polishing cloth 12b is attached to the polishing surface of the lower surface plate 12. Yes. Further, a window material 17 having a diameter larger than that of the plurality of holes 14 and smaller than that of the polishing cloth 11b and thinner than that of the polishing cloth 11b is bonded to the polishing surface side of the plurality of holes 14 via an adhesive layer 18. ing. Further, the window member 17 is separated from the polishing pad 11 b and is fixed to the upper surface plate 11 via an adhesive layer 18.

また、ウェーハ厚さ測定機構16は、例えば、少なくともウェーハWにレーザー光を照射する光学ユニット16aと、ウェーハWから反射されたレーザー光を検出するフォトディテクタ16bと、レーザー光源ユニット16cと、検出したレーザー光からウェーハ厚さを計算する演算・制御ユニット16dとが備わっているものとすることができる。   The wafer thickness measuring mechanism 16 includes, for example, at least an optical unit 16a that irradiates the wafer W with laser light, a photodetector 16b that detects the laser light reflected from the wafer W, a laser light source unit 16c, and a detected laser. An arithmetic / control unit 16d for calculating the wafer thickness from light can be provided.

このように、本発明の両面研磨装置では、窓材と研磨布を分離した構造としたため、棄損した窓材のみ交換することで、寿命を迎えていない研磨布を廃棄する必要が無くなり、研磨布の交換頻度を大幅に減少することができる。このため、研磨布の無駄を大幅に減少することができる。特に、本発明のようにウェーハ厚さ測定用の孔及び窓を複数設けて、正確な測定をするので、この要求が強い。
また、窓材のみを定盤に貼り付けることができる構造であるため、交換が容易であり、メンテナンスも容易に行うことができる。
更に、ウェーハ厚さ測定機構によって研磨中のウェーハの厚さを測定することで、研磨中のウェーハの厚さが目標に達した時点で研磨を停止することができ、研磨の過不足によるウェーハの面荒れが発生することを防止することができ、平坦なウェーハを得ることができる。
Thus, since the double-side polishing apparatus of the present invention has a structure in which the window material and the polishing cloth are separated, it is not necessary to discard the polishing cloth that has not reached the end of life by replacing only the discarded window material, and the polishing cloth The replacement frequency can be greatly reduced. For this reason, the waste of the polishing cloth can be greatly reduced. In particular, since a plurality of holes and windows for measuring the wafer thickness are provided as in the present invention for accurate measurement, this requirement is strong.
Moreover, since it is a structure which can affix only a window material to a surface plate, replacement | exchange is easy and a maintenance can also be performed easily.
Furthermore, by measuring the thickness of the wafer being polished by the wafer thickness measuring mechanism, polishing can be stopped when the thickness of the wafer being polished reaches the target, The occurrence of surface roughness can be prevented, and a flat wafer can be obtained.

ここで、接着層18としては、両面テープを用いることが望ましい。
両面テープであれば、容易に窓材を貼り付けることができるし、また安価である。更に、ウェーハ厚さ測定機構として光学系を用いた場合、両面テープは薄くむらが小さい為、取り付け角度のバラツキが無視できるほど小さいため、光軸に対する取り付け調整が不要となり、交換が更に容易となる。
Here, as the adhesive layer 18, it is desirable to use a double-sided tape.
If it is a double-sided tape, a window material can be attached easily and is inexpensive. Furthermore, when an optical system is used as the wafer thickness measuring mechanism, the double-sided tape is thin and has little unevenness, so the variation in mounting angle is so small that it can be ignored. .

また、上定盤11とキャリア13を研磨面側から見た図を示した図3にあるように、複数の孔14は、上定盤の周辺に等間隔に設けられたものとすることができる。
このように、複数の孔を上定盤に設けることで、窓材も上定盤に固定することになり、スラリー漏れ等の対策が不要となり、また、飛び散った研磨スラリーを、窓材交換時に水などで容易に洗浄することもでき、メンテナンスが容易となる。
Further, as shown in FIG. 3 showing a view of the upper surface plate 11 and the carrier 13 as viewed from the polishing surface side, the plurality of holes 14 may be provided at equal intervals around the upper surface plate. it can.
In this way, by providing a plurality of holes in the upper surface plate, the window material is also fixed to the upper surface plate, so that measures such as slurry leakage are unnecessary, and the scattered polishing slurry can be removed when replacing the window material. It can be easily washed with water or the like, and maintenance becomes easy.

更に、ウェーハ厚さ測定機構16は、両面研磨装置10の上定盤11の上方もしくは下定盤12の下方から鉛直方向に人が安全に作業できる距離を保ち、両面研磨装置10本体とは別の固定端に固定することが望ましい。このように、ウェーハ厚さ測定機構を、上定盤または下定盤と連れ周りをしないようにすれば、上下定盤の振動を受けにくくすることができ、これによって高精度なウェーハ厚さ測定を行うことができる。さらにある程度距離をとることで、研磨スラリーによる汚染も少なくすることができる。   Furthermore, the wafer thickness measuring mechanism 16 maintains a distance that allows a person to work safely in the vertical direction from above the upper surface plate 11 or from the lower surface plate 12 of the double-side polishing device 10, and is different from the main body of the double-side polishing device 10. It is desirable to fix to the fixed end. In this way, if the wafer thickness measurement mechanism is not rotated with the upper or lower surface plate, it can be made less susceptible to vibrations from the upper and lower surface plates, thereby enabling highly accurate wafer thickness measurement. It can be carried out. Furthermore, the contamination by the polishing slurry can be reduced by taking a certain distance.

ここで、ウェーハ厚さ測定機構は、ウェーハのバルク厚さを測定するものとすることができる。
ウェーハ厚さ測定機構で測定するウェーハの厚さをバルク厚さとすれば、研磨中のウェーハの実際の厚さを測定することになり、従って、研磨後のウェーハの厚さをより目標に近いものとすることができる。
Here, the wafer thickness measuring mechanism can measure the bulk thickness of the wafer.
If the wafer thickness measured by the wafer thickness measurement mechanism is the bulk thickness, the actual thickness of the wafer being polished will be measured, and therefore the thickness of the polished wafer will be closer to the target. It can be.

また、ウェーハ厚さ測定機構は、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を具備することができる。
このように、ウェーハ厚さ測定機構として、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を用いると、ウェーハに入射させたレーザー光の、ウェーハ表面で反射した表面反射光と、ウェーハ裏面で反射した裏面反射光が干渉する様子を解析することができる。これによれば、数nmから数十μmオーダーの精度で研磨中のウェーハの厚さを測定することができる。
また、波長可変型の赤外線レーザー装置とすることによって、研磨するウェーハの厚さが大きく変化したとしても入射させるレーザー光の波長を変更すれば対応することができ、光源自体を変更する必要がない。このため、コストの低減を図ることができる。
Further, the wafer thickness measuring mechanism can include a wavelength tunable infrared laser device having a wavelength that is optically transmitted to the wafer.
Thus, as a wafer thickness measurement mechanism, when using a wavelength variable infrared laser device having a wavelength that is optically transmitted to the wafer, the surface reflected light reflected on the wafer surface of the laser light incident on the wafer, It is possible to analyze how the back surface reflected light reflected on the back surface of the wafer interferes. According to this, the thickness of the wafer being polished can be measured with an accuracy of the order of several nanometers to several tens of micrometers.
Moreover, even if the thickness of the wafer to be polished changes greatly by using a tunable infrared laser device, it can be coped with by changing the wavelength of the incident laser light, and there is no need to change the light source itself. . For this reason, cost can be reduced.

更に、窓材は、波長可変赤外線レーザー装置の発するレーザー光に対して光学的に透過するものとすることができる。
このように、窓材をレーザー光に対し光学的に透過するものとすることによって、窓材でのレーザー光の吸収や反射による測定レーザー光の強度の減衰が起こることを抑制することができる。これによって、ウェーハの厚さを更に高精度に測定することができる。
Further, the window material can be optically transmissive to laser light emitted from the wavelength tunable infrared laser device.
Thus, by making the window material optically transmit the laser beam, it is possible to suppress the attenuation of the intensity of the measurement laser beam due to the absorption and reflection of the laser beam at the window material. Thereby, the thickness of the wafer can be measured with higher accuracy.

そして、窓材は、プラスチック製とすることができる。ここで、このプラスチック製の窓材は、プラスチックで作製されたフィルムも含む。
このように、プラスチック製の窓材であれば、安定性に優れているため、窓材の交換頻度を低減することができる。また安価のため、交換にかかるコストを低減することができる。
The window material can be made of plastic. Here, the plastic window material includes a film made of plastic.
Thus, since the plastic window material is excellent in stability, the replacement frequency of the window material can be reduced. Moreover, since it is cheap, the cost for replacement can be reduced.

ここで、窓材の厚さをt[μm]、屈折率をn、接着層の厚さをt[μm]、ウェーハの厚さをt[μm]、屈折率をn、研磨布の厚さをt[μm]、圧縮率をζ[%/g/cm]、研磨最大荷重をP[g/cm]とすると、t×ζ×P/100>t+tであり、かつt>t或いはt<tの関係を満たすものとすることができる。
このように、t×ζ×P/100>t+tの関係を満たすことによって、研磨中に、窓材が、厚さ方向で研磨布からはみ出すことを抑制することができるため、窓材の部分でウェーハの平坦度が悪化することを抑制することができる。従って、平坦度のより優れたウェーハとすることができる。
また、t>t或いはt<tの関係を満たすことによって、例えば、ウェーハの厚さの測定にレーザー光を用いた場合に、窓材での反射光とウェーハでの反射光のピークが重なって検出強度が低下することを抑制することができる。このため、ウェーハ厚さをより高精度に測定することができる。
Here, the thickness of the window material is t w [μm], the refractive index is n w , the thickness of the adhesive layer is t 2 [μm], the thickness of the wafer is t s [μm], the refractive index is n s , When the thickness of the polishing cloth is t 1 [μm], the compressibility is ζ 1 [% / g / cm 2 ], and the maximum polishing load is P [g / cm 2 ], t 1 × ζ 1 × P / 100> t w a + t 2, and can be made to satisfy the relation of t w n w> t s n s or t w n w <t s n s.
Thus, by satisfying the relationship of t 1 × ζ 1 × P / 100> t w + t 2 , it is possible to suppress the window material from protruding from the polishing cloth in the thickness direction during polishing. It can suppress that the flatness of a wafer deteriorates in the window material part. Therefore, it is possible to obtain a wafer with more excellent flatness.
Further, by satisfying the relationship of t w n w> t s n s or t w n w <t s n s, for example, in the case of using a laser beam to measure the thickness of the wafer, the reflection on the window material It is possible to prevent the detection intensity from being lowered due to overlap of light and the peak of reflected light from the wafer. For this reason, the wafer thickness can be measured with higher accuracy.

そしてこのような両面研磨装置を用いたウェーハの研磨方法について、以下簡単に説明するが、もちろんこれに限定されるものではない。   A wafer polishing method using such a double-side polishing apparatus will be briefly described below, but is not limited to this.

まず、キャリア13のウェーハ保持孔に研磨を行いたいウェーハWをセットする。この時、ウェーハWは複数枚セットすることができる。
そして上定盤11の研磨下面11aと、下定盤12の研磨上面12aと、キャリア13によってウェーハWを挟持して、研磨スラリー供給機構15によって研磨スラリーを供給しながら、上定盤11及び下定盤12を水平面内で回転させながら、研磨を開始する。
First, the wafer W to be polished is set in the wafer holding hole of the carrier 13. At this time, a plurality of wafers W can be set.
The upper surface plate 11 and the lower surface plate 11 are sandwiched between the polishing lower surface 11 a of the upper surface plate 11, the upper surface 12 a of the lower surface plate 12 and the carrier 13, and the polishing slurry is supplied by the polishing slurry supply mechanism 15. Polishing is started while rotating 12 in a horizontal plane.

この際、上定盤11または下定盤12に設けられた複数の孔14から、ウェーハWの厚さをウェーハ厚さ測定機構16によって測定しながら研磨を行う。   At this time, polishing is performed while the thickness of the wafer W is measured by the wafer thickness measuring mechanism 16 from the plurality of holes 14 provided in the upper surface plate 11 or the lower surface plate 12.

このような両面研磨装置を用いたウェーハの研磨方法によれば、研磨を中断せずにウェーハの研磨面の状態を高い精度で知ることができる。このため、ウェーハの目標厚さに達したかどうかを研磨しながら判断することができる。特に、複数の孔から測定しているので、たとえ複数のウェーハを同時に研磨するバッチ式であっても、全ウェーハの厚さを正確に測定することができる。従って、目標厚さに到達したかどうかを、研磨を中断することなく判定することができ、研磨に掛かる時間を短くすることができ、また研磨の過不足が発生することを抑制することもできる。よって、高い平坦度のウェーハを容易にかつ安定して得ることができる。しかも、窓材や研磨布コストの低減を図ることができる。   According to the wafer polishing method using such a double-side polishing apparatus, the state of the polished surface of the wafer can be known with high accuracy without interrupting polishing. Therefore, it can be determined while polishing whether the target thickness of the wafer has been reached. In particular, since the measurement is performed from a plurality of holes, the thickness of all the wafers can be accurately measured even in a batch system in which a plurality of wafers are polished simultaneously. Therefore, it is possible to determine whether or not the target thickness has been reached without interrupting the polishing, to shorten the time required for polishing, and to suppress the occurrence of excessive or insufficient polishing. . Therefore, a wafer with high flatness can be obtained easily and stably. In addition, the cost of window material and polishing cloth can be reduced.

以下、実施例を示して本発明をより具体的に説明するが、もちろん本発明はこれに限定されるものではない。
(実施例)
図1のような両面研磨装置を準備した。
まず、複数の孔として、上定盤の中心を支点とする円周上に、直径20mmの孔を15個開けた。そして、孔の部分の外周部分よりも直径で20mm大きく切り取った穴(直径40mm)を有する研磨布(ニッタハース製研磨パッドMH、厚さ1500μm)と、窓材として、定盤に開けた孔より10mm径の大きい東レ製のPTSフィルム(直径30mm、厚さ150μm)を円板状に切り取り、両面テープ(住友スリーエム442JS3、厚さ110μm)をPTSフィルムの外周に沿って貼り付けたものを孔と同じ数準備した。そして両面テープによって上定盤の孔の部分に窓材を貼り付けた。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto.
(Example)
A double-side polishing apparatus as shown in FIG. 1 was prepared.
First, as a plurality of holes, 15 holes having a diameter of 20 mm were formed on the circumference with the center of the upper surface plate as a fulcrum. Then, a polishing cloth (Nitta Haas polishing pad MH, thickness 1500 μm) having a hole (diameter 40 mm) cut 20 mm larger in diameter than the outer peripheral portion of the hole portion, and 10 mm from the hole opened in the surface plate as a window material A large-diameter Toray PTS film (diameter 30 mm, thickness 150 μm) is cut into a disk shape, and double-sided tape (Sumitomo 3M 442JS3, thickness 110 μm) is pasted along the outer periphery of the PTS film. I prepared a few. And the window material was affixed on the hole part of the upper surface plate with the double-sided tape.

研磨するウェーハとして、CZ法で成長したインゴットより切り出した後、面取り、ラッピング、エッチングを施した直径300mmのp型のシリコン単結晶ウェーハを1000枚用意した。このp型とは、p型の高抵抗率のウェーハのことである。
また、ウェーハ厚さ測定機構として、レーザー光の波長を1575〜1755nmにチューニングできる波長可変赤外線レーザー装置が用いられた光学ユニットを備えたものを準備し、このようなウェーハ厚さ測定機構を用いてウェーハの厚さを測定しながら1000枚をバッチ式(1バッチ15枚)で研磨を行った。
As a wafer to be polished, 1000 p - type silicon single crystal wafers having a diameter of 300 mm, which were cut out from an ingot grown by the CZ method and then chamfered, lapped and etched, were prepared. This p - type is a p-type high resistivity wafer.
In addition, as a wafer thickness measurement mechanism, a mechanism equipped with an optical unit using a wavelength tunable infrared laser device that can tune the wavelength of laser light to 1575 to 1755 nm is prepared, and such a wafer thickness measurement mechanism is used. While measuring the thickness of the wafer, 1000 pieces were polished by a batch method (15 pieces per batch).

このような両面研磨装置を用いて研磨されたウェーハの表面形状をAFS(ADE社製静電容量型フラットネス測定装置)にて評価した結果、例えば、研磨布と窓材が一体化した従来の研磨装置に比べてバラツキが小さく、平坦なウェーハが得られた。
また、窓材の劣化は従来とさほど変わらず、交換頻度もさほど変わらなかったが、研磨布の交換頻度は従来に比べて約1/2になった。このように、従来に比べて大幅に無駄を省くことができ、研磨布のコスト低減を達成することができた。
As a result of evaluating the surface shape of a wafer polished by using such a double-side polishing apparatus with an AFS (capacitance flatness measuring apparatus manufactured by ADE), for example, a conventional structure in which a polishing cloth and a window material are integrated. A flat wafer was obtained with less variation than the polishing apparatus.
Further, the deterioration of the window material did not change so much and the replacement frequency did not change so much, but the replacement frequency of the polishing cloth became about ½ compared with the conventional case. As described above, waste can be greatly reduced as compared with the conventional case, and the cost of the polishing cloth can be reduced.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

本発明の両面研磨装置の一例を示した概略図である。It is the schematic which showed an example of the double-side polish apparatus of this invention. 本発明の窓材の概略(a)と、該窓材を上定盤に貼り付けた様子(b)を示した図である。It is the figure which showed the outline (a) of the window material of this invention, and the mode (b) which affixed this window material on the upper surface plate. 本発明の両面研磨装置の上定盤とキャリアを研磨面側から見た図である。It is the figure which looked at the upper surface plate and carrier of the double-side polish apparatus of this invention from the grinding | polishing surface side.

符号の説明Explanation of symbols

10…両面研磨装置、
11…上定盤、 11a…研磨下面、 11b…研磨布、 12…下定盤、 12a…研磨上面、 12b…研磨布、 13…キャリア、 14…複数の孔、 15…スラリー供給機構、
16…ウェーハ厚さ測定機構、 16a…光学ユニット、 16b…フォトディテクタ、 16c…レーザー光源ユニット、 16d…演算・制御機構、
17…窓材、 18…接着層、
W…ウェーハ。
10: Double-side polishing device,
DESCRIPTION OF SYMBOLS 11 ... Upper surface plate, 11a ... Polishing lower surface, 11b ... Polishing cloth, 12 ... Lower surface plate, 12a ... Polishing upper surface, 12b ... Polishing cloth, 13 ... Carrier, 14 ... Multiple holes, 15 ... Slurry supply mechanism,
16 ... Wafer thickness measurement mechanism, 16a ... Optical unit, 16b ... Photo detector, 16c ... Laser light source unit, 16d ... Calculation / control mechanism,
17 ... Window material, 18 ... Adhesive layer,
W: Wafer.

Claims (6)

少なくとも、回転駆動する平坦な研磨上面を有する下定盤と、前記下定盤に対向して配置され回転駆動する平坦な研磨下面を有する上定盤と、ウェーハを保持するウェーハ保持孔を有するキャリアとを備える両面研磨装置において、
前記上定盤または前記下定盤には、該定盤の回転中心と周縁との間に設けられた複数の孔が設けられ、前記上下定盤の研磨面には前記複数の孔に対応する位置に孔より径の大きい穴の開いた研磨布と、前記孔より径が大きく前記研磨布の穴より径が小さく前記研磨布より厚さの薄い窓材とが設けられたものであり、
更に、前記複数の孔から前記ウェーハの厚さを研磨中にリアルタイムで測定するウェーハ厚さ測定機構とを備え、
前記窓材は、前記研磨布とは分離されて、前記上定盤または前記下定盤に接着層を介して固定されたものであり、
かつ前記窓材の厚さをt [μm]、屈折率をn 、前記接着層の厚さをt [μm]、
前記ウェーハの厚さをt [μm]、屈折率をn
前記研磨布の厚さをt [μm]、圧縮率をζ [%/g/cm ]、
研磨最大荷重をP[g/cm ]とすると、
×ζ ×P/100>t +t であり、かつt >t 或いはt <t の関係を満たすものであることを特徴とする両面研磨装置。
At least a lower surface plate having a flat polishing upper surface to be rotationally driven, an upper surface plate having a flat polishing lower surface disposed opposite to the lower surface plate and rotationally driven, and a carrier having a wafer holding hole for holding a wafer. In the double-side polishing apparatus provided,
The upper surface plate or the lower surface plate is provided with a plurality of holes provided between a rotation center and a peripheral edge of the surface plate, and the polishing surface of the upper and lower surface plates has a position corresponding to the plurality of holes. And a polishing cloth having a hole larger in diameter than the hole, and a window material having a diameter larger than the hole and a diameter smaller than the hole of the polishing cloth and thinner than the polishing cloth,
And a wafer thickness measuring mechanism that measures the thickness of the wafer from the plurality of holes in real time during polishing,
The window material is separated from the polishing cloth and fixed to the upper surface plate or the lower surface plate via an adhesive layer ,
And the thickness of the window material is t w [μm], the refractive index is n w , and the thickness of the adhesive layer is t 2 [μm],
The thickness of the wafer is ts [μm], the refractive index is ns ,
The thickness of the polishing cloth is t 1 [μm], the compressibility is ζ 1 [% / g / cm 2 ],
When the polishing maximum load is P [g / cm 2 ],
sided, characterized in that t 1 × ζ 1 × P / 100> a t w + t 2, and satisfies the relation of t w n w> t s n s or t w n w <t s n s Polishing equipment.
前記ウェーハ厚さ測定機構は、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を具備することを特徴とする請求項1に記載の両面研磨装置。   The double-side polishing apparatus according to claim 1, wherein the wafer thickness measuring mechanism includes a wavelength tunable infrared laser apparatus having a wavelength that is optically transmitted to the wafer. 前記窓材は、前記波長可変赤外線レーザー装置の発するレーザー光に対して光学的に透過するものであることを特徴とする請求項2に記載の両面研磨装置。   The double-side polishing apparatus according to claim 2, wherein the window material optically transmits laser light emitted from the wavelength tunable infrared laser apparatus. 前記窓材は、プラスチック製であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の両面研磨装置。   The double-side polishing apparatus according to claim 1, wherein the window material is made of plastic. 前記ウェーハ厚さ測定機構は、前記ウェーハのバルク厚さを測定するものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の両面研磨装置。   The double-side polishing apparatus according to any one of claims 1 to 4, wherein the wafer thickness measuring mechanism measures a bulk thickness of the wafer. 前記複数の孔は、前記上定盤の周辺に等間隔に設けられたものであることを特徴とする請求項1ないし請求項のいずれか1項に記載の両面研磨装置。 The double-side polishing apparatus according to any one of claims 1 to 5 , wherein the plurality of holes are provided at equal intervals around the upper surface plate.
JP2008197478A 2008-07-31 2008-07-31 Double-side polishing equipment Active JP4654275B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008197478A JP4654275B2 (en) 2008-07-31 2008-07-31 Double-side polishing equipment
DE112009001875.0T DE112009001875B4 (en) 2008-07-31 2009-06-30 Wafer polishing method and double side polishing device
PCT/JP2009/003021 WO2010013390A1 (en) 2008-07-31 2009-06-30 Wafer polishing method and double side polishing apparatus
SG2013053954A SG192518A1 (en) 2008-07-31 2009-06-30 Wafer polishing method
US13/002,449 US8834230B2 (en) 2008-07-31 2009-06-30 Wafer polishing method and double-side polishing apparatus
KR1020117002430A KR101587226B1 (en) 2008-07-31 2009-06-30 Wafer polishing method and double side polishing apparatus
CN200980127186.4A CN102089121B (en) 2008-07-31 2009-06-30 Wafer polishing method and double side polishing apparatus
TW098122953A TWI478226B (en) 2008-07-31 2009-07-07 Grinding method of double - sided grinding device and wafer
US14/446,847 US9108289B2 (en) 2008-07-31 2014-07-30 Double-side polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197478A JP4654275B2 (en) 2008-07-31 2008-07-31 Double-side polishing equipment

Publications (2)

Publication Number Publication Date
JP2010030019A JP2010030019A (en) 2010-02-12
JP4654275B2 true JP4654275B2 (en) 2011-03-16

Family

ID=41735136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197478A Active JP4654275B2 (en) 2008-07-31 2008-07-31 Double-side polishing equipment

Country Status (1)

Country Link
JP (1) JP4654275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798767A (en) * 2011-03-15 2016-07-27 旭硝子株式会社 Method of polishing plate-shaped body and polishing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917994B2 (en) 2012-04-23 2016-05-18 スピードファム株式会社 Measuring window structure for polishing equipment
JP6146213B2 (en) 2013-08-30 2017-06-14 株式会社Sumco Double-side polishing apparatus and double-side polishing method for work
KR101660900B1 (en) * 2015-01-16 2016-10-10 주식회사 엘지실트론 An apparatus of polishing a wafer and a method of polishing a wafer using the same
DE102016116012A1 (en) * 2016-08-29 2018-03-01 Lapmaster Wolters Gmbh Method for measuring the thickness of flat workpieces
JP6844530B2 (en) 2017-12-28 2021-03-17 株式会社Sumco Work double-sided polishing device and double-sided polishing method
JP7010166B2 (en) 2018-07-24 2022-01-26 株式会社Sumco Work double-sided polishing device and double-sided polishing method
KR20240001252A (en) 2021-06-04 2024-01-03 가부시키가이샤 사무코 Double-sided polishing device and double-sided polishing method for workpieces
CN116494120B (en) * 2023-06-29 2023-09-19 苏州博宏源机械制造有限公司 Large disc detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009699A (en) * 1999-07-05 2001-01-16 Nichiden Mach Ltd Plane surface grinding device
JP2001287158A (en) * 1999-03-31 2001-10-16 Nikon Corp Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device
JP2003133270A (en) * 2001-10-26 2003-05-09 Jsr Corp Window material for chemical mechanical polishing and polishing pad
JP2004343090A (en) * 2003-04-22 2004-12-02 Jsr Corp Polishing pad and method for polishing semiconductor wafer
JP2004363451A (en) * 2003-06-06 2004-12-24 Tokyo Seimitsu Co Ltd Wafer polishing apparatus
JP2005081518A (en) * 2003-09-10 2005-03-31 Ebara Corp Polishing state monitoring device and polishing device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287158A (en) * 1999-03-31 2001-10-16 Nikon Corp Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device
JP2001009699A (en) * 1999-07-05 2001-01-16 Nichiden Mach Ltd Plane surface grinding device
JP2003133270A (en) * 2001-10-26 2003-05-09 Jsr Corp Window material for chemical mechanical polishing and polishing pad
JP2004343090A (en) * 2003-04-22 2004-12-02 Jsr Corp Polishing pad and method for polishing semiconductor wafer
JP2004363451A (en) * 2003-06-06 2004-12-24 Tokyo Seimitsu Co Ltd Wafer polishing apparatus
JP2005081518A (en) * 2003-09-10 2005-03-31 Ebara Corp Polishing state monitoring device and polishing device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798767A (en) * 2011-03-15 2016-07-27 旭硝子株式会社 Method of polishing plate-shaped body and polishing device
CN105798767B (en) * 2011-03-15 2018-01-30 旭硝子株式会社 The Ginding process and lapping device of plate body

Also Published As

Publication number Publication date
JP2010030019A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4654275B2 (en) Double-side polishing equipment
KR101587226B1 (en) Wafer polishing method and double side polishing apparatus
US7547243B2 (en) Method of making and apparatus having polishing pad with window
KR102494957B1 (en) Method for measuring the thickness of flat workpieces
KR102122841B1 (en) Method of polishing both sides of wafer
TW201515768A (en) Device and method for polishing workpiece at double sides
TWI569318B (en) Grinding apparatus and grinding method
JP2008110407A (en) Polishing head and polishing device
JP6255991B2 (en) Double-side polishing machine for workpieces
JP4955624B2 (en) Double-side polishing equipment
KR20070118617A (en) Bonded wafer manufacturing method, bonded wafer, and plane polishing apparatus
JP4324933B2 (en) Surface polishing machine
JP5028354B2 (en) Wafer polishing method
JP2006224233A (en) Manufacturing method of glass substrate for mask blanks and manufacturing method of mask blanks
JP2009060044A (en) Polish monitoring window of cmp device
JP2002100594A (en) Method and device for grinding plane
JPH1034522A (en) Polishing device for cmp and cmp device system
JP7168109B1 (en) Double-sided polishing machine
JP7466964B1 (en) Substrate thickness measuring device and substrate thickness measuring method
JP2006237098A (en) Double-sided polishing apparatus and method of double-sided polishing
JP2009027095A (en) Method of evaluating semiconductor wafer, method of grinding semiconductor wafer, and method of processing semiconductor wafer
JPH11285969A (en) Method and device for lapping or polishing equipped with optical sizing device
TW202320980A (en) Polishing pad, substrate polishing device, and method for manufacturing polishing pad
PH12013000245A1 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP2007061975A (en) Polishing device and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100906

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4654275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250