JP2009027095A - Method of evaluating semiconductor wafer, method of grinding semiconductor wafer, and method of processing semiconductor wafer - Google Patents

Method of evaluating semiconductor wafer, method of grinding semiconductor wafer, and method of processing semiconductor wafer Download PDF

Info

Publication number
JP2009027095A
JP2009027095A JP2007191079A JP2007191079A JP2009027095A JP 2009027095 A JP2009027095 A JP 2009027095A JP 2007191079 A JP2007191079 A JP 2007191079A JP 2007191079 A JP2007191079 A JP 2007191079A JP 2009027095 A JP2009027095 A JP 2009027095A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
grinding
nanotopography
surface shape
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191079A
Other languages
Japanese (ja)
Other versions
JP5074845B2 (en
Inventor
Yoshiaki Kurosawa
義明 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP2007191079A priority Critical patent/JP5074845B2/en
Publication of JP2009027095A publication Critical patent/JP2009027095A/en
Application granted granted Critical
Publication of JP5074845B2 publication Critical patent/JP5074845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating semiconductor wafers, which is capable of evaluating nanotopography of a surface of a semiconductor wafer with a high precision without mirror surface grinding of the semiconductor wafer. <P>SOLUTION: The method of evaluating semiconductor wafers, which evaluates nanotopography of a surface of a semiconductor wafer before a grinding step, includes: a step S4 of using a surface shape measuring means to measure a surface shape of a region having predetermined dimensions from an outer peripheral end part to the inside of the semiconductor wafer before the grinding step in a free state of not making a force act thereon; a step S5 of obtaining an approximation function representing a curve which gives an end part surface shape of the semiconductor wafer, on the basis of measurement results of the surface shape measuring means; and a step S6 of calculating an amount of warpage of he region having the predetermined dimensions from the outer peripheral end part to the inside of the semiconductor wafer, on the basis of the obtained approximation function and evaluating nanotopography of the semiconductor wafer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体ウェハの評価方法、半導体ウェハの平面研削方法、及び半導体ウェハの加工方法に関する。   The present invention relates to a semiconductor wafer evaluation method, a semiconductor wafer surface grinding method, and a semiconductor wafer processing method.

シリコンウェハ等の半導体ウェハを製造する場合、チョクラルスキー法等で引き上げられた半導体インゴットを、ワイヤーソー等で切断スライスして薄円板状の半導体ウェハに加工する。
次に、半導体ウェハの外周縁の面取りを行い、ラッピングにより半導体ウェハの表裏面を同時に研削し、さらに、片面ずつを平面研削した後、半導体ウェハ表層に残留した加工歪みをエッチングにより除去する。
最後に、半導体ウェハ表面をCMP等で鏡面化し、洗浄により、研磨加工で付着した研磨剤や異物等の汚染物を除去している。
また、さらに必要に応じてこれらの工程の他に熱処理や研削等の工程が加わったり、工程順が入れ換えられたり、同じ工程を複数回行う場合もある。
When manufacturing a semiconductor wafer such as a silicon wafer, a semiconductor ingot pulled up by the Czochralski method or the like is cut and sliced with a wire saw or the like and processed into a thin disk-shaped semiconductor wafer.
Next, the outer peripheral edge of the semiconductor wafer is chamfered, and the front and back surfaces of the semiconductor wafer are ground simultaneously by lapping. Further, after grinding one surface at a time, processing strain remaining on the surface layer of the semiconductor wafer is removed by etching.
Finally, the surface of the semiconductor wafer is mirror-finished by CMP or the like, and contaminants such as abrasives and foreign matters attached by polishing are removed by cleaning.
Further, in addition to these processes, processes such as heat treatment and grinding may be added as necessary, the process order may be changed, and the same process may be performed multiple times.

近年、半導体デバイスの高集積化に伴い、半導体ウェハの表面粗さ(微細なうねり)の品質が重視され、このような表面粗さを表すパラメータとしてナノトポグラフィが用いられている。
従来、このナノトポグラフィは、一般にADE社製Nanomapper、Raytex社製NanoPro等のナノトポグラフィ測定装置で測定することができるが、これらの装置は光学式で、半導体ウェハ表面の表面反射を利用して測定しているため、半導体ウェハの表面を、鏡面に近い状態に作り込まなければ測定することはできない。
これに対して、製造段階の初期で半導体ウェハのナノトポグラフィを評価する方法として、研磨前の半導体ウェハの断面形状から、半導体ウェハの厚さ方向の中心を基準として半導体ウェハの反りの変化の傾きの最大値を求め、求めた最大値に基づいてナノトポグラフィを評価する方法が知られている(例えば、特許文献1参照)。
ここで、前記特許文献1の方法では、半導体ウェハの断面を、切断方向にそって複数のデータ区間に区画し、各データ区間の断面形状を移動平均値法等によりスムージング処理した後、反りの変化の傾きの最大値を求めている。
In recent years, with the high integration of semiconductor devices, the quality of the surface roughness (fine undulation) of a semiconductor wafer is emphasized, and nanotopography is used as a parameter representing such surface roughness.
Conventionally, this nanotopography can be measured with a nanotopography measuring device such as Nanomapper made by ADE, NanoPro made by Raytex, etc., but these devices are optical and measure using surface reflection on the surface of a semiconductor wafer. Therefore, measurement cannot be performed unless the surface of the semiconductor wafer is made close to a mirror surface.
On the other hand, as a method for evaluating the nanotopography of a semiconductor wafer at the initial stage of the manufacturing stage, the inclination of the change in warpage of the semiconductor wafer based on the center in the thickness direction of the semiconductor wafer from the cross-sectional shape of the semiconductor wafer before polishing. There is known a method for obtaining the maximum value of the nanotopography and evaluating the nanotopography based on the obtained maximum value (see, for example, Patent Document 1).
Here, in the method of Patent Document 1, the cross section of the semiconductor wafer is divided into a plurality of data sections along the cutting direction, and the cross-sectional shape of each data section is smoothed by a moving average method or the like, and then warped. The maximum value of the slope of change is obtained.

特開2006−294774号公報JP 2006-294774 A

しかしながら、前記特許文献1の方法では、移動平均によって削除されるデータがあるため、高い精度でナノトポグラフィを評価することが必ずしもできないという問題がある。   However, the method of Patent Document 1 has a problem that nanotopography cannot always be evaluated with high accuracy because there is data deleted by moving average.

本発明の目的は、半導体ウェハの鏡面研磨を行わずに、高い精度で半導体ウェハ表面のナノトポグラフィを評価することのできる、半導体ウェハの評価方法、半導体ウェハの平面研削方法、及び半導体ウェハの加工方法を提供することにある。   An object of the present invention is to provide a semiconductor wafer evaluation method, a semiconductor wafer surface grinding method, and a semiconductor wafer processing capable of evaluating nanotopography of a semiconductor wafer surface with high accuracy without performing mirror polishing of the semiconductor wafer. It is to provide a method.

本発明に係る半導体ウェハの評価方法は、
研磨工程前の半導体ウェハの半導体ウェハ表面のナノトポグラフィを評価する半導体ウェハの評価方法であって、
表面形状測定手段を用いて、力を作用させないフリーな状態で、研削工程後の前記半導体ウェハの外周端部から内側の一定寸法の領域の表面形状を測定する手順と、
前記表面形状測定手段による測定結果に基づいて、前記半導体ウェハの端部表面形状を与える曲線を表す近似関数を求める手順と、
求められた近似関数に基づいて、前記半導体ウェハの端部から内側の一定寸法の領域の反り量を算出し、前記半導体ウェハのナノトポグラフィを評価する手順とを実施することを特徴とする。
The method for evaluating a semiconductor wafer according to the present invention includes:
A semiconductor wafer evaluation method for evaluating nanotopography of a semiconductor wafer surface of a semiconductor wafer before a polishing step,
Using a surface shape measuring means, in a free state in which no force is applied, a procedure for measuring the surface shape of a region of a constant dimension inside from the outer peripheral edge of the semiconductor wafer after the grinding step;
A procedure for obtaining an approximate function representing a curve that gives an end surface shape of the semiconductor wafer based on a measurement result by the surface shape measuring means;
Based on the obtained approximate function, a warping amount of a region having a fixed dimension inside from the end of the semiconductor wafer is calculated, and a procedure for evaluating nanotopography of the semiconductor wafer is performed.

ここで、表面形状測定手段としては、レーザ式変位計、触針式形状測定装置、静電容量式形状測定装置等を採用することができる。
半導体ウェハの研削は、ラッピング、両頭研削、平面研削、両面研削等による両面粗研削加工の後、半導体ウェハの片面を真空吸着等でチャッキングし、片面平面研削が行われる。その後、最終的な両面研磨、仕上研磨を行って、鏡面研磨状態に仕上げられる。
この鏡面仕上研磨した半導体ウェハを、前述したナノトポグラフィ測定装置によって測定すると、ナノトポグラフィの良好な半導体ウェハは、図1のマップに示されるように、濃淡の少ない状態が観察される。
一方、ナノトポグラフィの悪い半導体ウェハは、図2のマップに示されるように、リング状の濃淡が現れてしまう。
Here, as the surface shape measurement means, a laser displacement meter, a stylus shape measurement device, a capacitance type shape measurement device, or the like can be employed.
Semiconductor wafers are ground after double-sided rough grinding such as lapping, double-sided grinding, surface grinding, double-sided grinding, etc., and then chucking one surface of the semiconductor wafer by vacuum suction or the like to perform single-sided surface grinding. Then, final double-side polishing and finish polishing are performed to finish the mirror-polished state.
When this mirror-finished semiconductor wafer is measured by the above-described nanotopography measuring apparatus, a semiconductor wafer with good nanotopography is observed in a state with less shading as shown in the map of FIG.
On the other hand, as shown in the map of FIG. 2, a ring-shaped shading appears on a semiconductor wafer with poor nanotopography.

ナノトポグラフィ測定は、本来半導体ウェハ表面の微小な凹凸を評価するものであるが、半導体ウェハの表面の形状変化が大きい場合、これがナノトポグラフィに影響してしまう。
すなわち、このリング状の濃淡は、半導体ウェハの大きな表面形状の変化に起因して生じており、図3に示されるように、研削加工された状態で平坦度の高い半導体ウェハW1は、良好なナノトポグラフィとなり、図4に示されるように、研削加工された状態で平坦度の低い、反りが入ったような表面形状の半導体ウェハW2は、リング状の濃淡が出易い傾向にあるという知見が得られた。
この半導体ウェハの大きな表面形状の変化は、ラッピング等の研削工程により両面研削を行った後、さらに片面研削を行った際に、真空吸着によるチャッキングの基準面の形状が片面研削により研削面側に転写されることにより生じている。
Nanotopography measurement originally evaluates minute irregularities on the surface of a semiconductor wafer, but when the shape change of the surface of the semiconductor wafer is large, this affects the nanotopography.
That is, the ring-shaped shading is caused by a large change in the surface shape of the semiconductor wafer. As shown in FIG. 3, the semiconductor wafer W1 having a high flatness in the ground state is good. As shown in FIG. 4, there is a knowledge that the semiconductor wafer W <b> 2 having a low flatness and a warped surface shape in a ground state tends to generate ring-shaped shading as shown in FIG. 4. Obtained.
This large change in the surface shape of the semiconductor wafer is caused by the fact that the reference surface of chucking due to vacuum suction is grounded by single-side grinding after double-sided grinding by lapping and other grinding processes. It is caused by being transferred to.

この発明によれば、半導体ウェハの研削工程において、ナノトポグラフィを測定できるため、従来のように半導体ウェハの鏡面研磨後、ナノトポグラフィ測定装置で測定しなくとも、半導体ウェハの外周端部の形状変化が小さく、ナノトポグラフィの良好な半導体ウェハのみを選択的に研磨することができ、ナノトポグラフィの良好な半導体ウェハの製造歩留まりが向上する。
また、ラッピング等の両面研削加工後にナノトポグラフィの良否を判断できるので、両面研削加工状態の把握、加工条件へのフィードバックを適時に行うことが可能となり、歩留まり向上と、そのための所要時間を削減することができる。
さらに、半導体ウェハ表面の大きな形状変化を、曲線を表す近似関数として求めることにより、移動平均値法を用いた場合のように、測定データの一部が削除され、データの精度が悪化することを防止できるため、半導体ウェハ外周端部の大きな形状変化をより正確に認識することができる。
According to this invention, since the nanotopography can be measured in the grinding process of the semiconductor wafer, the shape change of the outer peripheral end portion of the semiconductor wafer can be performed after mirror polishing of the semiconductor wafer as in the prior art, without measuring with the nanotopography measuring device. Therefore, it is possible to selectively polish only a semiconductor wafer having a good nanotopography, and the manufacturing yield of a semiconductor wafer having a good nanotopography can be improved.
In addition, since the quality of nanotopography can be judged after double-sided grinding such as lapping, it is possible to grasp the double-sided grinding state and feed back to machining conditions in a timely manner, improving yield and reducing the time required for it. be able to.
Furthermore, by obtaining a large shape change on the surface of the semiconductor wafer as an approximate function representing a curve, a part of the measurement data is deleted and the accuracy of the data is deteriorated as in the case of using the moving average method. Since it can prevent, the big shape change of a semiconductor wafer outer periphery edge part can be recognized more correctly.

以上において、前記近似関数を求める手順は、二次関数を用いるのが好ましい。
この発明によれば、曲線を表す近似関数を単純な二次関数で表現することにより、半導体ウェハの外周端部から内側の一定寸法の領域の表面形状を、単純な式で表現できるため、近似関数を簡単に求めることができる。
In the above, it is preferable to use a quadratic function as the procedure for obtaining the approximate function.
According to the present invention, by expressing the approximate function representing a curve with a simple quadratic function, the surface shape of the region of a constant dimension inside from the outer peripheral edge of the semiconductor wafer can be expressed by a simple formula, The function can be easily obtained.

本発明では、前記反り量は、前記表面形状測定手段による表面形状測定の開始位置における前記半導体ウェハ表面の厚さ方向位置と、終了位置における前記半導体ウェハ表面の厚さ方向位置とを結ぶ直線上の前記半導体ウェハ表面の厚さ方向位置と、前記近似関数から求められる前記半導体ウェハ表面の厚さ方向位置との距離が最も大きくなるピーク高さとして算出されるのが好ましい。
この発明によれば、求められた二次関数のピーク高さにより、半導体ウェハのナノトポグラフィを評価することができるため、極めて簡単に評価することができる。
In the present invention, the warpage amount is a straight line connecting the thickness direction position of the semiconductor wafer surface at the start position of the surface shape measurement by the surface shape measuring means and the thickness direction position of the semiconductor wafer surface at the end position. It is preferable to calculate the peak height at which the distance between the position in the thickness direction of the semiconductor wafer surface and the position in the thickness direction of the semiconductor wafer surface determined from the approximate function is the largest.
According to the present invention, the nanotopography of the semiconductor wafer can be evaluated based on the obtained peak height of the quadratic function. Therefore, the evaluation can be performed very easily.

本発明は、前記半導体ウェハの評価方法を利用した半導体ウェハの研削方法としても成立し、具体的には、
半導体ウェハの研削を行う半導体ウェハの研削方法であって、
前記半導体ウェハの表裏面の研削加工後、前述したいずれかに記載の半導体ウェハの評価方法を用いて、前記半導体ウェハの表裏面の反りを評価した後、
反りの少ない面を基準として前記半導体ウェハをチャッキングし、平面研削工程を実施することを特徴とする。
The present invention is also established as a semiconductor wafer grinding method using the semiconductor wafer evaluation method, specifically,
A semiconductor wafer grinding method for grinding a semiconductor wafer,
After grinding the front and back surfaces of the semiconductor wafer, using the semiconductor wafer evaluation method according to any of the above, after evaluating the warpage of the front and back surfaces of the semiconductor wafer,
The semiconductor wafer is chucked on the basis of a surface with less warpage, and a surface grinding process is performed.

この発明によれば、ラッピング等による両面研削工程の後、前述した評価方法によって半導体ウェハの表裏面の反り量(表面形状)を測定し、反り量の少ない面を基準としてチャッキングして、平面研削工程を実施することにより、反りの少ない、つまり端部における平坦度の高い面を基準として平面研削工程を実施することができるので、チャッキングによる基準面の表面形状が研削面に転写されることを少なくして、より平坦度の高い半導体ウェハを得ることができる。   According to the present invention, after the double-side grinding step such as lapping, the warpage amount (surface shape) of the front and back surfaces of the semiconductor wafer is measured by the above-described evaluation method, and the surface is chucked on the basis of the surface having a small warpage amount. By performing the grinding process, the surface grinding process can be performed on the basis of the surface with less warpage, that is, the flatness at the end, so that the surface shape of the reference surface by chucking is transferred to the grinding surface. By reducing this, a semiconductor wafer with higher flatness can be obtained.

また、本発明は、鏡面研磨された半導体ウェハを加工する半導体ウェハの加工方法としても成立し、前述した半導体ウェハの研削方法を実施した後、仕上研磨を行うことを特徴とする。
この発明によれば、前述した作用によりナノトポグラフィの良好な半導体ウェハを得ることができる。
Further, the present invention is also established as a semiconductor wafer processing method for processing a mirror-polished semiconductor wafer, and is characterized in that after the semiconductor wafer grinding method described above is performed, finish polishing is performed.
According to the present invention, a semiconductor wafer with good nanotopography can be obtained by the above-described action.

以下、本発明の実施形態を図面に基づいて説明する。
図5には、本発明の実施形態に係る半導体ウェハの加工方法を表すフローチャートが示されている。
本実施形態に係る半導体ウェハの加工方法は、まず、チョクラルスキー法等により引き上げられたシリコンインゴットを、ワイヤソー等でスライスして、所定の厚さの円板状の半導体ウェハを作製する(工程S1)。
次に、スライスした半導体ウェハを、外周端部の角隅部の面取りを行って、以下の研削工程において、角隅部の欠け等が発生するのを防止する(工程S2)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 5 is a flowchart showing a semiconductor wafer processing method according to the embodiment of the present invention.
In the semiconductor wafer processing method according to this embodiment, first, a silicon ingot pulled up by the Czochralski method or the like is sliced with a wire saw or the like to produce a disk-shaped semiconductor wafer having a predetermined thickness (step) S1).
Next, the sliced semiconductor wafer is chamfered at the corners of the outer peripheral edge to prevent the corners from being chipped in the following grinding process (step S2).

次に、半導体ウェハの形状を整えるための粗研削としての両面ラッピングを行う(工程S3)。ラッピング装置は、図示を略したが、キャリア内に収納した半導体ウェハを下定盤及び上定盤で挟持し、半導体ウェハ及び下定盤面の間、半導体ウェハ及び上定盤の間に研削用の砥粒を供給しながら、下定盤及び上定盤を相対的に回転させることで、半導体ウェハの研削が行われる。
この際、下定盤の回転中心にはサンギアが設けられ、下定盤の外周にはインターナルギアが設けられ、これらのギアがキャリアの外周に形成されたギアと噛合し、定盤の回転によって、キャリアはサンギア周りに公転しつつ、キャリア自体も自転しながら研削が行われる。
Next, double-sided lapping is performed as rough grinding for adjusting the shape of the semiconductor wafer (step S3). Although the illustration of the wrapping apparatus is omitted, the semiconductor wafer accommodated in the carrier is sandwiched between the lower surface plate and the upper surface plate, and abrasive grains for grinding between the semiconductor wafer and the lower surface plate surface and between the semiconductor wafer and the upper surface plate The semiconductor wafer is ground by relatively rotating the lower surface plate and the upper surface plate while supplying.
At this time, a sun gear is provided at the center of rotation of the lower surface plate, and an internal gear is provided on the outer periphery of the lower surface plate. These gears mesh with gears formed on the outer periphery of the carrier. Is revolving around the sun gear and grinding is performed while the carrier itself rotates.

ラッピングが終了したら、表面測定装置としてのレーザ式変位計により、半導体ウェハの表面形状測定を行う(工程S4)。測定箇所は、半導体ウェハの外周端部から内側の所定寸法、例えば、半導体ウェハの外周端部から内側にL1=30mm〜40mm入った部分の表面形状測定を行う。この際、半導体ウェハには、真空吸着等の外部の力が作用しないフリーな状態で表面形状を測定することが重要である。
表面形状の測定結果としては、例えば、図6に示されるように、粗さ3μm程度ののデータが取得される。尚、図6において、図6(A)は、ラッピングの際、上定盤で研削された面(ウェハ表面)であり、図6(B)は下定盤で研削された面(ウェハ裏面)である。
When lapping is completed, the surface shape of the semiconductor wafer is measured with a laser displacement meter as a surface measuring device (step S4). The measurement location is a predetermined dimension on the inner side from the outer peripheral end of the semiconductor wafer, for example, the surface shape measurement of a portion having L1 = 30 mm to 40 mm inward from the outer peripheral end of the semiconductor wafer. At this time, it is important to measure the surface shape of the semiconductor wafer in a free state where an external force such as vacuum suction does not act.
As the measurement result of the surface shape, for example, data having a roughness of about 3 μm is acquired as shown in FIG. 6A is a surface (wafer surface) ground by the upper surface plate during lapping, and FIG. 6B is a surface ground by the lower surface plate (wafer back surface). is there.

図6で測定された結果に基づいて、求めた近似曲線が図7に示すグラフG1、G2である。
図7に示す表面形状は、測定点10点を単位として表面形状の測定結果の平均値を示したものである。これは、表面形状の凹凸に比較して、曲線が小さいため、便宜上、グラフを見やすくするための処理であって、図6で測定された結果から、直接近似関数を求めることも可能である。
このグラフG1、G2を表す近似関数を求める場合、本実施形態では、二次関数として、
y=ax+b…(1)
を設定し、それぞれのグラフG1、G2の近似関数を求める(工程S5)。尚、yは表面形状の厚さ方向位置、xは、半導体ウェハの外周端部から半導体ウェハ表面に沿って内側に向かう距離である。
Based on the results measured in FIG. 6, the obtained approximate curves are graphs G1 and G2 shown in FIG.
The surface shape shown in FIG. 7 shows an average value of the measurement results of the surface shape in units of 10 measurement points. This is a process for making the graph easier to see for the sake of convenience because the curve is smaller than the unevenness of the surface shape, and it is also possible to obtain an approximate function directly from the results measured in FIG.
In the case of obtaining approximate functions representing the graphs G1 and G2, in the present embodiment, as a quadratic function,
y = ax 2 + b (1)
And an approximate function of each of the graphs G1 and G2 is obtained (step S5). Here, y is the position in the thickness direction of the surface shape, and x is the distance from the outer peripheral edge of the semiconductor wafer toward the inside along the surface of the semiconductor wafer.

得られたグラフG1、G2からナノトポグラフィを評価するに当たっては、まず、図8に示されるように、表面形状測定に際してのフィッティング開始位置(測定開始位置)における半導体ウェハの厚さ方向位置(y0)、フィッティング終了位置(測定終了位置)における半導体ウェハの厚さ方向位置(y1)を求め、これらを結んだ直線G3を与える一次関数を算出する。
次に、直線G3と二次関数として近似されたグラフG1、G2の差分をとり、直線G3とグラフG1、G2の差分が最も大きくなる点をピーク高さとし、これを半導体ウェハの外周端部の反り量として評価する(工程S6)。
図7(A)、(B)を比較すると、グラフG1の方がピーク高さが小さくなっているので、半導体ウェハの表面側の方が反り量が小さいことが判る。
In evaluating nanotopography from the obtained graphs G1 and G2, first, as shown in FIG. 8, the thickness direction position (y0) of the semiconductor wafer at the fitting start position (measurement start position) at the time of surface shape measurement. Then, the thickness direction position (y1) of the semiconductor wafer at the fitting end position (measurement end position) is obtained, and a linear function that gives a straight line G3 connecting these is calculated.
Next, the difference between the straight line G3 and the graphs G1 and G2 approximated as a quadratic function is taken, and the point at which the difference between the straight line G3 and the graphs G1 and G2 is the largest is the peak height. The amount of warpage is evaluated (step S6).
7A and 7B, it can be seen that the peak height is smaller in the graph G1, and the warpage amount is smaller on the surface side of the semiconductor wafer.

前述の工程S4乃至工程S6によりナノトポグラフィの評価が終了したら、半導体ウェハの平面研削(仕上研削)を実施する(工程S7)。
平面研削は、最初に大きな形状変化の少ない面、つまり、ナノトポグラフィの評価における評価の良好なグラフG1の面を基準面とし、チャッキング部材の吸着面とする。
従来の平面研削方法では、下定盤側の研削面を基準面としており、図9(A)のように、半導体ウェハWの形状変化の大きな面(ウェハ裏面)を基準面とすることがあり、ウェハ裏面を吸着面としてチャッキング部材で真空吸着していたが、形状変化の大きな面を基準面とすると、半導体ウェハが平坦な吸着面に倣うように変形し、本来平坦であった加工面が中央部が凸状となるように反った状態でチャッキングされることとなる。
When the nanotopography evaluation is completed through the above-described steps S4 to S6, surface grinding (finish grinding) of the semiconductor wafer is performed (step S7).
In the surface grinding, first, a surface having a large shape change, that is, a surface of the graph G1 that is evaluated well in the nanotopography evaluation is used as a reference surface, and is used as a chucking surface of the chucking member.
In the conventional surface grinding method, the ground surface on the lower surface plate side is used as a reference surface, and as shown in FIG. 9A, a surface (wafer back surface) having a large shape change of the semiconductor wafer W may be used as a reference surface. Although the chucking member was used for vacuum suction with the wafer back surface as the suction surface, if the surface with a large shape change was used as the reference surface, the semiconductor wafer was deformed to follow the flat suction surface, and the originally flat processing surface was It will be chucked in a warped state so that the center part is convex.

この状態で平面研削を行い、チャッキング部材による真空吸着を解除すると、基準面側は元に戻るが、加工面側は、半導体ウェハWの中央部がより多く研削され、外周部は研削されにくくなり、除荷した状態で半導体ウェハの加工面は、図9(B)に示されるように、研削前は平坦度の高い面であったものが基準面の形状変化に応じた凹形状の面となってしまう。つまり、平面研削を行うと、基準面の形状変化が加工面に転写されることとなる。
さらに、半導体ウェハWを反転させて半導体ウェハWの裏面側の平面研削を実施すると、図9(C)に示されるように、今度は研削により凹形状となった面を基準面として真空吸着しているため、吸着状態では半導体ウェハWの中央部が吸着面に密着し、加工面が一見平坦な状態となり、研削による平坦化を行うことができない。
When surface grinding is performed in this state and the vacuum suction by the chucking member is released, the reference surface side returns to the original, but on the processing surface side, the central portion of the semiconductor wafer W is more ground and the outer peripheral portion is hard to be ground. As shown in FIG. 9B, the processed surface of the semiconductor wafer in the unloaded state is a surface having a high flatness before grinding, which is a concave surface corresponding to the shape change of the reference surface. End up. That is, when surface grinding is performed, the shape change of the reference surface is transferred to the processed surface.
Furthermore, when the semiconductor wafer W is inverted and surface grinding on the back surface side of the semiconductor wafer W is performed, as shown in FIG. Therefore, in the suction state, the central portion of the semiconductor wafer W is in close contact with the suction surface, and the processed surface is seemingly flat, and flattening by grinding cannot be performed.

従って、工程S6のナノトポグラフィの評価において、ピーク高さの小さな、つまり表面形状に大きな変化のない方を基準面とすることにより、このような表面形状の大きな面の形状が良好な面に転写することを防止して、平面研削によって、半導体ウェハWの表裏面の形状変化を小さくすることが可能となるのである。
半導体ウェハの平面研削が表面及び裏面両方とも終了したら、仕上研磨を実施して、半導体ウェハの表面を鏡面化する(工程S8)。
Therefore, in the evaluation of the nanotopography in step S6, the surface having such a large surface shape is transferred to a good surface by using the one having a small peak height, that is, a surface having no significant change in the surface shape as a reference surface. Therefore, the surface change of the front and back surfaces of the semiconductor wafer W can be reduced by surface grinding.
When the surface grinding of the semiconductor wafer is completed for both the front surface and the back surface, finish polishing is performed to mirror the surface of the semiconductor wafer (step S8).

研磨工程S8の終了後の半導体ウェハを、ナノトポグラフィ測定装置で測定したところ、工程S4〜工程S6による評価を行って、形状変化が少ない面を基準面として研削を行った実施形態品の場合、外周端部における反り量のピーク高さが−0.05μm〜−0.15μmであった。
これに対して、従来のように下定盤で研削された裏面側を基準面として研削した従来品では、ピーク高さが−0.15μm〜−0.22μmと悪く、本発明の評価方法を用いることにより、鏡面研磨まで行わなくても、ナノトポグラフィの良否を判定することができることが確認された。
When the semiconductor wafer after the completion of the polishing step S8 was measured with a nanotopography measuring device, the evaluation was performed by the steps S4 to S6, and in the case of an embodiment product that was ground using a surface with little shape change as a reference surface, The peak height of the warpage amount at the outer peripheral edge was −0.05 μm to −0.15 μm.
On the other hand, in the conventional product ground using the back side ground by the lower surface plate as a reference surface as in the past, the peak height is as bad as −0.15 μm to −0.22 μm, and the evaluation method of the present invention is used. Thus, it was confirmed that the quality of nanotopography can be determined without performing mirror polishing.

ナノトポグラフィの良好な半導体ウェハの状態を表すマップ。A map showing the state of a semiconductor wafer with good nanotopography. ナノトポグラフィの悪い半導体ウェハの状態を表すマップ。A map showing the state of a semiconductor wafer with poor nanotopography. ラッピング加工後の半導体ウェハ形状を説明するための模式図。The schematic diagram for demonstrating the semiconductor wafer shape after a lapping process. ラッピング加工後の半導体ウェハ形状を説明するための模式図。The schematic diagram for demonstrating the semiconductor wafer shape after a lapping process. 本発明の実施形態に係る半導体ウェハの加工方法を説明するためのフローチャート。The flowchart for demonstrating the processing method of the semiconductor wafer which concerns on embodiment of this invention. 半導体ウェハの外周端部の表面形状測定結果を表すグラフ。The graph showing the surface shape measurement result of the outer periphery edge part of a semiconductor wafer. 半導体ウェハの外周端部の表面形状測定結果から求められる近似関数を表すグラフ。The graph showing the approximate function calculated | required from the surface shape measurement result of the outer peripheral edge part of a semiconductor wafer. 半導体ウェハの外周端部の表面形状測定結果から反り量を算出してナノトポグラフィを評価することを説明するための模式図。The schematic diagram for demonstrating calculating a curvature amount from the surface shape measurement result of the outer peripheral edge part of a semiconductor wafer, and evaluating nanotopography. 従来の研削方法でナノトポグラフィが悪化する原因を説明するための模式図。The schematic diagram for demonstrating the cause which nanotopography deteriorates with the conventional grinding method. 本実施形態の効果を説明するためのグラフ。The graph for demonstrating the effect of this embodiment.

符号の説明Explanation of symbols

S1…インゴットをスライスする工程、S2…面取り工程、S3…ラッピング工程、S4…表面形状測定工程、S5…近似関数を設定する工程、S6…ナノトポグラフィを評価する工程、S7…平面研削工程、S8…仕上研磨工程、W、W1、W2…半導体ウェハ   S1 ... Slicing step of ingot, S2 ... Chamfering step, S3 ... Lapping step, S4 ... Surface shape measuring step, S5 ... Step of setting approximate function, S6 ... Step of evaluating nanotopography, S7 ... Surface grinding step, S8 ... Finish polishing process, W, W1, W2 ... Semiconductor wafer

Claims (5)

研磨工程前の半導体ウェハ表面のナノトポグラフィを評価する半導体ウェハの評価方法であって、
表面形状測定手段を用いて、力を作用させないフリーな状態で、研削工程後の前記半導体ウェハの外周端部から内側の一定寸法の領域の表面形状を測定する手順と、
前記表面形状測定手段による測定結果に基づいて、前記半導体ウェハの端部表面形状を与える曲線を表す近似関数を求める手順と、
求められた近似関数に基づいて、前記半導体ウェハの外周端部から内側の一定寸法の領域の反り量を算出し、前記半導体ウェハのナノトポグラフィを評価する手順とを実施することを特徴とする半導体ウェハの評価方法。
A semiconductor wafer evaluation method for evaluating nanotopography of a semiconductor wafer surface before a polishing process,
Using a surface shape measuring means, in a free state in which no force is applied, a procedure for measuring the surface shape of a region of a constant dimension inside from the outer peripheral edge of the semiconductor wafer after the grinding step;
A procedure for obtaining an approximate function representing a curve that gives an end surface shape of the semiconductor wafer based on a measurement result by the surface shape measuring means;
A step of calculating a warping amount of a region having a constant dimension inside from an outer peripheral end portion of the semiconductor wafer based on the obtained approximate function and evaluating a nanotopography of the semiconductor wafer. Wafer evaluation method.
請求項1に記載の半導体ウェハの評価方法において、
前記近似関数を求める手順は、二次関数を用いることを特徴とする半導体ウェハの評価方法。
The semiconductor wafer evaluation method according to claim 1,
The procedure for obtaining the approximate function uses a quadratic function.
請求項2に記載の半導体ウェハの評価方法において、
前記反り量は、前記表面形状測定手段による表面形状測定の開始位置における前記半導体ウェハ表面の厚さ方向位置と、終了位置における前記半導体ウェハ表面の厚さ方向位置とを結ぶ直線上の前記半導体ウェハ表面の厚さ方向位置と、前記近似関数から求められる前記半導体ウェハ表面の厚さ方向位置との距離が最も大きくなるピーク高さとして算出されることを特徴とする半導体ウェハの評価方法。
In the evaluation method of the semiconductor wafer according to claim 2,
The warpage amount is the semiconductor wafer on a straight line connecting the thickness direction position of the semiconductor wafer surface at the start position of the surface shape measurement by the surface shape measuring means and the thickness direction position of the semiconductor wafer surface at the end position. A semiconductor wafer evaluation method, wherein the distance between the position in the thickness direction of the surface and the position in the thickness direction of the surface of the semiconductor wafer obtained from the approximate function is calculated as a peak height.
半導体ウェハの研削を行う半導体ウェハの研削方法であって、
前記半導体ウェハの表裏面の研削加工後、請求項1乃至請求項3のいずれかに記載の半導体ウェハの評価方法を用いて、前記半導体ウェハの表裏面の反りを評価した後、
反りの少ない面を基準面として前記半導体ウェハをチャッキングし、平面研削工程を実施することを特徴とする半導体ウェハの研削方法。
A semiconductor wafer grinding method for grinding a semiconductor wafer,
After grinding the front and back surfaces of the semiconductor wafer, after evaluating the warpage of the front and back surfaces of the semiconductor wafer using the semiconductor wafer evaluation method according to any one of claims 1 to 3,
A semiconductor wafer grinding method, wherein a surface grinding step is performed by chucking the semiconductor wafer using a surface with less warpage as a reference surface.
鏡面研磨された半導体ウェハを加工する半導体ウェハの加工方法であって、
請求項4に記載の半導体ウェハの研削方法を実施した後、
仕上研磨を行うことを特徴とする半導体ウェハの加工方法。
A semiconductor wafer processing method for processing a mirror-polished semiconductor wafer,
After carrying out the semiconductor wafer grinding method according to claim 4,
A method for processing a semiconductor wafer, comprising performing finish polishing.
JP2007191079A 2007-07-23 2007-07-23 Semiconductor wafer grinding method and semiconductor wafer processing method Active JP5074845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191079A JP5074845B2 (en) 2007-07-23 2007-07-23 Semiconductor wafer grinding method and semiconductor wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191079A JP5074845B2 (en) 2007-07-23 2007-07-23 Semiconductor wafer grinding method and semiconductor wafer processing method

Publications (2)

Publication Number Publication Date
JP2009027095A true JP2009027095A (en) 2009-02-05
JP5074845B2 JP5074845B2 (en) 2012-11-14

Family

ID=40398592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191079A Active JP5074845B2 (en) 2007-07-23 2007-07-23 Semiconductor wafer grinding method and semiconductor wafer processing method

Country Status (1)

Country Link
JP (1) JP5074845B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010166A1 (en) * 2012-07-09 2014-01-16 信越半導体株式会社 Evaluation method and production method for semiconductor wafers
WO2015166623A1 (en) * 2014-05-01 2015-11-05 信越半導体株式会社 Method for evaluating warp in wafer and method for selecting wafer
JP6443520B1 (en) * 2017-10-02 2018-12-26 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method using the method
JP7475414B2 (en) 2018-12-17 2024-04-26 ジルトロニック アクチエンゲゼルシャフト Method for manufacturing a semiconductor wafer by wire saw, wire saw and semiconductor wafer of monocrystalline silicon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296026A (en) * 2001-03-30 2002-10-09 Sumitomo Mitsubishi Silicon Corp Method and instrument for measuring warp in semiconductor wafer
JP2004214505A (en) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd Method and program for measuring surface configuration and recording medium
JP2006294774A (en) * 2005-04-08 2006-10-26 Shin Etsu Handotai Co Ltd Evaluation method of semiconductor wafer, evaluation device, and manufacturing method of semiconductor wafer
JP2007163333A (en) * 2005-12-15 2007-06-28 Hitachi Kenki Fine Tech Co Ltd Scanning probe microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296026A (en) * 2001-03-30 2002-10-09 Sumitomo Mitsubishi Silicon Corp Method and instrument for measuring warp in semiconductor wafer
JP2004214505A (en) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd Method and program for measuring surface configuration and recording medium
JP2006294774A (en) * 2005-04-08 2006-10-26 Shin Etsu Handotai Co Ltd Evaluation method of semiconductor wafer, evaluation device, and manufacturing method of semiconductor wafer
JP2007163333A (en) * 2005-12-15 2007-06-28 Hitachi Kenki Fine Tech Co Ltd Scanning probe microscope

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010166A1 (en) * 2012-07-09 2014-01-16 信越半導体株式会社 Evaluation method and production method for semiconductor wafers
JP2014017381A (en) * 2012-07-09 2014-01-30 Shin Etsu Handotai Co Ltd Evaluation method and manufacturing method of semiconductor wafer
TWI556339B (en) * 2012-07-09 2016-11-01 Shinetsu Handotai Kk Evaluation method and manufacturing method of semiconductor wafers
US10043719B2 (en) 2012-07-09 2018-08-07 Shin-Etsu Handotai Co., Ltd. Semiconductor wafer evaluation method and semiconductor wafer manufacturing method
WO2015166623A1 (en) * 2014-05-01 2015-11-05 信越半導体株式会社 Method for evaluating warp in wafer and method for selecting wafer
JP2015213099A (en) * 2014-05-01 2015-11-26 信越半導体株式会社 Evaluation method of warpage of wafer, and selection method of wafer
CN106255923A (en) * 2014-05-01 2016-12-21 信越半导体株式会社 The dressing method of the wafer of the evaluation methodology of the bending of wafer and this evaluation methodology of use
US10345102B2 (en) 2014-05-01 2019-07-09 Shin-Etsu Handotai Co., Ltd. Method for evaluating warpage of wafer and method for sorting wafer
JP6443520B1 (en) * 2017-10-02 2018-12-26 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method using the method
JP2019067952A (en) * 2017-10-02 2019-04-25 株式会社Sumco Evaluating method of semiconductor wafer and manufacturing method of semiconductor wafer using the method
JP7475414B2 (en) 2018-12-17 2024-04-26 ジルトロニック アクチエンゲゼルシャフト Method for manufacturing a semiconductor wafer by wire saw, wire saw and semiconductor wafer of monocrystalline silicon

Also Published As

Publication number Publication date
JP5074845B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
TWI390616B (en) Semiconductor wafer manufacturing method
JP4192482B2 (en) Silicon wafer manufacturing method
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US9748089B2 (en) Method for producing mirror-polished wafer
JP6045542B2 (en) Semiconductor wafer processing method, bonded wafer manufacturing method, and epitaxial wafer manufacturing method
JP4915146B2 (en) Wafer manufacturing method
US6284658B1 (en) Manufacturing process for semiconductor wafer
KR101645634B1 (en) Bonded wafer production method
JP2009302409A (en) Method of manufacturing semiconductor wafer
US6599760B2 (en) Epitaxial semiconductor wafer manufacturing method
JP2018101698A (en) Method for polishing silicon wafer and method for manufacturing silicon wafer
JP5472073B2 (en) Semiconductor wafer and manufacturing method thereof
JP2010021394A (en) Method of manufacturing semiconductor wafer
JP2009283650A (en) Method for regenerating semiconductor wafer
JP5074845B2 (en) Semiconductor wafer grinding method and semiconductor wafer processing method
JP3943869B2 (en) Semiconductor wafer processing method and semiconductor wafer
JP4103808B2 (en) Wafer grinding method and wafer
JP2004022677A (en) Semiconductor wafer
CN114667594A (en) Method for polishing wafer and silicon wafer
JP4615182B2 (en) Manufacturing method of semiconductor wafer
JP3550644B2 (en) High flatness wafer rework method
JP3916212B2 (en) Manufacturing method of semiconductor wafer
JP6123150B2 (en) Method for evaluating silicon wafer processing amount and method for manufacturing silicon wafer
JP2007035917A (en) Polishing pad, silicon wafer, and polishing machine
JP2009283545A (en) Method of manufacturing semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250