JP4955624B2 - Double-side polishing equipment - Google Patents
Double-side polishing equipment Download PDFInfo
- Publication number
- JP4955624B2 JP4955624B2 JP2008197508A JP2008197508A JP4955624B2 JP 4955624 B2 JP4955624 B2 JP 4955624B2 JP 2008197508 A JP2008197508 A JP 2008197508A JP 2008197508 A JP2008197508 A JP 2008197508A JP 4955624 B2 JP4955624 B2 JP 4955624B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- thickness
- polishing
- double
- surface plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims description 110
- 230000007246 mechanism Effects 0.000 claims description 32
- 238000005259 measurement Methods 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000005305 interferometry Methods 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 138
- 239000002002 slurry Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
Description
本発明は両面研磨装置に関し、詳しくは、高い平坦性を有する半導体用のウェーハを効率よく製造することのできる両面研磨装置に関するものである。 The present invention relates to a double-side polishing apparatus, and more particularly to a double-side polishing apparatus capable of efficiently manufacturing a semiconductor wafer having high flatness.
従来のウェーハの製造方法として、シリコンウェーハの製造方法を例に説明すると、例えば、先ず、チョクラルスキー法(CZ法)等によってシリコン単結晶インゴットを成長し、得られたシリコン単結晶インゴットをスライスしてシリコンウェーハを作製した後、このシリコンウェーハに対して面取り、ラッピング、エッチング等の各工程が順次なされ、次いで少なくともウェーハの一主面を鏡面化する研磨工程が施される。 As an example of a conventional wafer manufacturing method, a silicon wafer manufacturing method will be described. For example, first, a silicon single crystal ingot is grown by the Czochralski method (CZ method) and the obtained silicon single crystal ingot is sliced. Then, after the silicon wafer is manufactured, each process such as chamfering, lapping, etching and the like is sequentially performed on the silicon wafer, and then a polishing process for mirroring at least one main surface of the wafer is performed.
このウェーハの研磨工程において、例えばシリコンウェーハの両面を研磨する場合に、両面研磨装置が用いられることがある。
このような両面研磨装置としては、通常、中心部のサンギヤと外周部のインターナルギヤの間にウェーハを保持するキャリアが配置された遊星歯車構造を有するいわゆる4ウェイ方式の両面研磨装置が用いられている。
In this wafer polishing step, for example, when polishing both sides of a silicon wafer, a double-side polishing apparatus may be used.
As such a double-side polishing apparatus, a so-called 4-way double-side polishing apparatus having a planetary gear structure in which a carrier for holding a wafer is disposed between a sun gear at a central portion and an internal gear at an outer peripheral portion is usually used. ing.
この4ウェイ方式の両面研磨装置は、ウェーハ保持孔が形成された複数のキャリアにシリコンウェーハを挿入・保持し、保持されたシリコンウェーハの上方から研磨スラリーを供給しながら、ウェーハの対向面に研磨布が貼付された上定盤および下定盤を各ウェーハの表裏面に押し付けて相対方向に回転させ、それと同時にキャリアをサンギヤとインターナルギヤとによって自転および公転させることで、シリコンウェーハの両面を同時に研磨することができるものである。 This 4-way double-side polishing machine inserts and holds a silicon wafer into a plurality of carriers in which wafer holding holes are formed, and polishes on the opposite surface of the wafer while supplying polishing slurry from above the held silicon wafer. The upper and lower surface plates with cloth attached are pressed against the front and back surfaces of each wafer and rotated in the relative direction. Simultaneously, the carrier is rotated and revolved by the sun gear and the internal gear, so that both sides of the silicon wafer are simultaneously It can be polished.
しかし、上述のような両面研磨装置を用いて研磨を行っても、ウェーハの研磨速度は、研磨布、キャリア等の加工治具、材料の劣化により、研磨のたびに異なってしまう。このため、研磨時間を固定して研磨を行うと、研磨速度の違いに起因する研磨後のウェーハの厚さが異なってくるという問題があった。
そこで、研磨中のウェーハの厚さを測定しながら研磨を行う両面研磨装置が開示されている。
However, even when polishing is performed using the above-described double-side polishing apparatus, the polishing rate of the wafer varies every time polishing is performed due to deterioration of a processing jig such as a polishing cloth and a carrier and a material. For this reason, when polishing is performed with the polishing time fixed, there is a problem in that the thickness of the wafer after polishing due to the difference in polishing rate differs.
Thus, a double-side polishing apparatus that performs polishing while measuring the thickness of the wafer being polished is disclosed.
例えば、特許文献1、2に記載の発明のように、光反射干渉法を用いて研磨中の半導体ウェーハの厚さを測定しながら研磨を行うものがあり、これによれば、研磨面の平坦性を高いものとすることができる。
また、例えば特許文献1の発明によれば、ウェーハを透過する波長の光を用い、半導体ウェーハの表面から裏面に向かって厚さ方向に沿って測定光束を移動させて焦点を形成しながら厚さを測定することができる。
For example, as in the inventions described in
Further, for example, according to the invention of
しかし、この特許文献1に記載の技術では、焦点を厚さに沿って形成するために、研磨中のウェーハの振動の影響を受け易く、実際のウェーハの厚さと測定値のズレが大きくなる。更に測定物からの距離による光の減衰の効果を受け易く、焦点を形成する点と出入射点迄の距離を近づける必要があった。そのため光路内の研磨スラリーによるミスト等によって汚損されるという問題があった。
また、測定精度を上げるためには、研磨中に測定光が研磨面の指定領域からの測定光を取り込む頻度を増やさなければならなかった。しかし特許文献1のような共焦点方式では、応答性が劣り、取り込み頻度が少ないという欠点があった。
However, in the technique described in
Further, in order to increase the measurement accuracy, it has been necessary to increase the frequency at which the measurement light takes in the measurement light from the specified region of the polishing surface during polishing. However, the confocal system as in
本発明は、上記問題に鑑みなされたものであって、ウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置において、研磨中のウェーハの振動に代表される測定誤差の影響を受けずに、高い精度でウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置を提供することを目的とする。 The present invention has been made in view of the above problems, and in a double-side polishing apparatus capable of performing polishing while measuring the thickness of the wafer, is affected by measurement errors represented by vibration of the wafer being polished. An object of the present invention is to provide a double-side polishing apparatus capable of polishing while measuring the thickness of the wafer with high accuracy.
上記課題を解決するため、本発明では、少なくとも、回転駆動する平坦な研磨上面を有する下定盤と、前記下定盤に対向して配置され回転駆動する平坦な研磨下面を有する上定盤と、ウェーハを保持するウェーハ保持孔を有するキャリアとを備える両面研磨装置において、前記上定盤または前記下定盤の回転中心と周縁との間に設けられた複数の孔と、該複数の孔から前記ウェーハの厚さを研磨中にリアルタイムで測定するウェーハ厚さ測定機構とを具備し、該ウェーハ厚さ測定機構は、該研磨装置の前記上定盤または前記下定盤ではない固定端に固定されたものであることを特徴とする両面研磨装置を提供する。 In order to solve the above-described problems, in the present invention, at least a lower surface plate having a flat polishing upper surface that is rotationally driven, an upper surface plate having a flat polishing lower surface that is disposed opposite to the lower surface plate and is rotationally driven, and a wafer And a carrier having a wafer holding hole for holding a plurality of holes provided between a rotation center and a peripheral edge of the upper surface plate or the lower surface plate, and a plurality of holes formed from the plurality of holes. A wafer thickness measuring mechanism that measures the thickness in real time during polishing, and the wafer thickness measuring mechanism is fixed to a fixed end that is not the upper surface plate or the lower surface plate of the polishing apparatus. There is provided a double-side polishing apparatus characterized by that .
このように、ウェーハの両面を同時に研磨することのできる両面研磨装置において、ウェーハの厚さを測定するための孔を上定盤または下定盤に複数設けることによって、厚さの測定頻度を多くすることができ、測定精度を向上させることができる。特に、複数のウェーハを同時に研磨するバッチ式の研磨機において、複数の孔より同時にウェーハ厚さを測定できるので、測定精度の向上に特に寄与できる。
また、ウェーハ厚さ測定機構を、研磨中の振動の影響を受けやすい上定盤または下定盤以外の箇所に固定することによって、振動等の影響を受けずにウェーハの厚さを測定することができ、厚さの測定精度を向上させることができる。
これらの効果によって、研磨中のウェーハの厚さをリアルタイムで精度よく知ることができるため、研磨後のウェーハの厚さを目標の厚さに容易にすることができる両面研磨装置とすることができる。
As described above, in the double-side polishing apparatus capable of simultaneously polishing both surfaces of the wafer, the thickness measurement frequency is increased by providing a plurality of holes for measuring the thickness of the wafer in the upper surface plate or the lower surface plate. Measurement accuracy can be improved. In particular, in a batch type polishing machine that polishes a plurality of wafers simultaneously, the wafer thickness can be measured simultaneously from the plurality of holes, which can contribute particularly to improvement in measurement accuracy.
In addition, by fixing the wafer thickness measurement mechanism to a location other than the upper or lower surface plate that is susceptible to vibration during polishing, the wafer thickness can be measured without being affected by vibration. And the thickness measurement accuracy can be improved.
Because of these effects, the thickness of the wafer being polished can be accurately known in real time, and thus a double-side polishing apparatus that can easily make the thickness of the polished wafer to a target thickness can be obtained. .
また、前記ウェーハ厚さ測定機構は、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を具備することが好ましい。
このように、ウェーハ厚さ測定機構として、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を用いることによって、ウェーハ表面での反射スペクトル(ウェーハ表面と裏面で反射する光の干渉の様子)を解析することができ、これによって、研磨中のウェーハの厚さを高精度に測定することができる。
The wafer thickness measuring mechanism preferably includes a tunable infrared laser device having a wavelength that is optically transmitted to the wafer .
As described above, by using a wavelength tunable infrared laser device having a wavelength optically transmitted to the wafer as a wafer thickness measuring mechanism, the reflection spectrum on the wafer surface (the interference of light reflected on the wafer front surface and the back surface). The state of the wafer during polishing can be measured with high accuracy.
また、前記レーザー光は、波長が1575〜1775nmとすることが好ましい。
このように、測定のためのレーザー光として、波長が1575〜1775nmの通信用などの高速な赤外線レーザーを用いれば、時間分解能をあげることができ、より研磨中のウェーハの厚さを高精度に評価することができる。
The laser light preferably has a wavelength of 1575 to 1775 nm .
As described above, if a high-speed infrared laser having a wavelength of 1575 to 1775 nm is used as a laser beam for measurement, the time resolution can be increased, and the thickness of the wafer being polished can be increased with high accuracy. Can be evaluated.
また、前記ウェーハ厚さ測定機構は、前記ウェーハのバルク厚さを測定することが好ましい。
このように、ウェーハのバルク厚さを測定することによって、研磨中のウェーハの実際の厚さを判定することができ、これによって研磨後のウェーハの厚さをより目標に近いものとすることができる。
Further, it is preferable that the wafer thickness measuring mechanism measures a bulk thickness of the wafer .
Thus, by measuring the bulk thickness of the wafer, the actual thickness of the wafer being polished can be determined, thereby making the thickness of the polished wafer closer to the target. it can.
また、前記複数の孔は、前記上定盤の周辺に等間隔に設けられたものとすることが好ましい。
このように、等間隔に複数の孔を設けることによって、ウェーハの厚さの測定が容易に行うことができるため、高精度な研磨が可能である。周辺に設けることで、研磨に悪影響を及ぼすことなく、例えば4ウェイ方式の両面研磨装置において、保持された全てのウェーハの厚さを研磨中に測定することができる。また、上定盤に設けることによって、孔からの研磨スラリーの漏れが発生することを抑制することができるため、定盤のメンテナンスを容易なものとすることができる。またウェーハの厚さの測定に支障が生じる可能性を抑制することができる。
The plurality of holes are preferably provided at equal intervals around the upper surface plate .
As described above, by providing a plurality of holes at equal intervals, the thickness of the wafer can be easily measured, so that high-precision polishing is possible. By providing it in the periphery, the thickness of all held wafers can be measured during polishing in a four-way double-side polishing apparatus, for example, without adversely affecting polishing. Moreover, since it can suppress that the grinding | polishing slurry leaks from a hole by providing in an upper surface plate, the maintenance of a surface plate can be made easy. Further, it is possible to suppress the possibility of trouble in measuring the thickness of the wafer.
また、前記ウェーハ厚さ測定機構が固定される固定端は、該両面研磨装置のハウジングとすることが好ましい。
このように、ウェーハ厚さ測定機構を、両面研磨装置のハウジングに固定することによって、ウェーハ厚さ測定機構を振動、汚れから保護するとともに、前記複数の孔からウェーハ厚さを高精度で検出することができる。これによって、ノイズの影響を低減することができるため、研磨中のウェーハの厚さを更に高精度に測定することができる。
The fixed end to which the wafer thickness measuring mechanism is fixed is preferably a housing of the double-side polishing apparatus .
In this way, by fixing the wafer thickness measuring mechanism to the housing of the double-side polishing apparatus, the wafer thickness measuring mechanism is protected from vibration and dirt, and the wafer thickness is detected from the plurality of holes with high accuracy. be able to. Thereby, the influence of noise can be reduced, so that the thickness of the wafer being polished can be measured with higher accuracy.
以上説明したように、本発明によれば、ウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置において、研磨中のウェーハの振動に代表される測定誤差の影響を受けずに、高い精度でウェーハの厚さを測定しながら研磨を行うことのできる両面研磨装置が提供される。 As described above, according to the present invention, in a double-side polishing apparatus that can perform polishing while measuring the thickness of a wafer, without being affected by measurement errors typified by vibration of the wafer being polished, Provided is a double-side polishing apparatus capable of performing polishing while measuring the thickness of a wafer with high accuracy.
以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
図1に示したように、本発明の両面研磨装置10は、ウェーハWを挟持するために、回転駆動する平坦な研磨上面12aを有する下定盤12と、下定盤12に対向して配置され回転駆動する平坦な研磨下面11aを有する上定盤11と、ウェーハWを保持するウェーハ保持孔を有するキャリア13と、研磨中のウェーハWの厚さを測定するためのウェーハ厚さ測定機構16とを備えるものである。
そして、上定盤11側に、研磨中のウェーハ厚さを測定するために複数の孔14と、研磨スラリー供給機構15が設けられている。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
As shown in FIG. 1, the double-
A plurality of
また、ウェーハ厚さ測定機構16は、例えば、少なくともウェーハWにレーザー光を照射する光学ユニット16aと、ウェーハWから反射されたレーザー光を検出するフォトディテクタ16bと、レーザー光源ユニット16cと、検出したレーザー光からウェーハ厚さを計算する演算・制御ユニット16dとが備わっているものとすることができる。
The wafer
このように、ウェーハ厚さ測定機構を、研磨中の振動の影響を受けやすい上定盤または下定盤以外の箇所(固定端)に固定することによって、測定生データにノイズなどの不要なデータが載ることを防止することができる。このため、測定データの精度を従来に比べて格段に向上させることができ、つまりウェーハの正確な厚さを測定することができるようになる。
また、ウェーハの厚さを測定するための孔を上定盤または下定盤に複数設けることによって、厚さの測定の頻度を多くすることができる。特に、バッチ式で複数のウェーハを同時に研磨する時に好適であり、これによって、測定精度を向上させることができる。
これらの効果によって、研磨中のウェーハの厚さを従来に比べて精度よく知ることができるため、研磨後のウェーハの厚さを目標の厚さと近いものに容易にすることができる両面研磨装置とすることができる。
In this way, by fixing the wafer thickness measurement mechanism to a place (fixed end) other than the upper or lower surface plate that is susceptible to vibration during polishing, unnecessary data such as noise is included in the measured raw data. It can be prevented from being placed. For this reason, the accuracy of the measurement data can be greatly improved as compared with the conventional case, that is, the accurate thickness of the wafer can be measured.
Moreover, the frequency of thickness measurement can be increased by providing a plurality of holes for measuring the thickness of the wafer in the upper surface plate or the lower surface plate. In particular, it is suitable for batch polishing of a plurality of wafers at the same time, whereby the measurement accuracy can be improved.
Because of these effects, the thickness of the wafer being polished can be known more accurately than in the past, so the double-side polishing apparatus can easily make the polished wafer thickness close to the target thickness can do.
ここで、ウェーハ厚さ測定機構16が固定される固定端は、両面研磨装置のハウジング18とすることができる。
このように、両面研磨装置のハウジングにウェーハ厚さ測定機構を固定すると、振動、汚れからウェーハ厚さ測定機構を保護することができる。これによれば、研磨中の厚さの測定データにノイズが乗ることやデータが劣化することを抑制することができる。従って、研磨中のウェーハの厚さをより高精度に測定することができる。もちろん、建屋の天井等の固定端に設置しても良いが、メンテナンスや装置の振動等において不利である。
Here, the fixed end to which the wafer
As described above, when the wafer thickness measuring mechanism is fixed to the housing of the double-side polishing apparatus, the wafer thickness measuring mechanism can be protected from vibration and dirt. According to this, it is possible to suppress noise from being added to the thickness measurement data being polished and deterioration of the data. Therefore, the thickness of the wafer being polished can be measured with higher accuracy. Of course, it may be installed at a fixed end such as the ceiling of the building, but it is disadvantageous in terms of maintenance, vibration of the apparatus, and the like.
また、ウェーハ厚さ測定機構16は、ウェーハのバルク厚さを測定することができる。
ウェーハ厚さ測定機構で測定するウェーハの厚さをバルク厚さとすれば、研磨中のウェーハの実際の厚さを測定することになり、従って、研磨後のウェーハの厚さをより目標に近いものとすることができる。もちろん、SOIウェーハのSOI層の厚さなどとすることも可能である。
Further, the wafer
If the wafer thickness measured by the wafer thickness measurement mechanism is the bulk thickness, the actual thickness of the wafer being polished will be measured, and therefore the thickness of the polished wafer will be closer to the target. It can be. Of course, the thickness of the SOI layer of the SOI wafer may be used.
さらに、ウェーハ厚さ測定機構16は、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を具備することができる。
このように、ウェーハ厚さ測定機構として、ウェーハに対して光学的に透過する波長の波長可変赤外線レーザー装置を用いると、ウェーハに入射させたレーザー光の、ウェーハ表面で反射した表面反射光と、ウェーハ裏面で反射した裏面反射光が干渉する様子を解析することができる。これによれば、数nmから数十μmオーダーの精度で研磨中のウェーハの厚さを評価することができる。
また、波長可変型の赤外線レーザー装置とすることによって、研磨するウェーハの厚さが大きく変化したとしても入射させるレーザー光の波長を変更すれば対応することができ、光源自体を変更する必要がない。このため、コストの低減を図ることができる。
Further, the wafer
Thus, as a wafer thickness measurement mechanism, when using a wavelength variable infrared laser device having a wavelength that is optically transmitted to the wafer, the surface reflected light reflected on the wafer surface of the laser light incident on the wafer, It is possible to analyze how the back surface reflected light reflected on the back surface of the wafer interferes. According to this, the thickness of the wafer being polished can be evaluated with an accuracy of the order of several nm to several tens of μm.
Moreover, even if the thickness of the wafer to be polished changes greatly by using a tunable infrared laser device, it can be coped with by changing the wavelength of the incident laser light, and there is no need to change the light source itself. . For this reason, cost can be reduced.
そして、レーザー光の波長を1575〜1775nmとすることができる。
このように、波長が1575〜1775nmのレーザー光であれば、測定レーザー光がウェーハや研磨スラリーに一部吸収されることでの反射レーザー光強度の低下を抑制することができ、高精度にウェーハの厚さを測定することができる。
And the wavelength of a laser beam can be 1575-1775 nm.
As described above, if the laser light has a wavelength of 1575 to 1775 nm, it is possible to suppress a decrease in the intensity of the reflected laser light due to part of the measurement laser light being absorbed by the wafer or the polishing slurry. Can be measured.
そして、複数の孔14は、上定盤11の周辺に等間隔に設けられたものとすることができる。
このように、上定盤に等間隔に複数の孔が設けられたものであれば、測定用の複数の孔の各々からの研磨スラリーの漏れが発生することを抑制することができる。このため、定盤のメンテナンスを容易に行うことができる。またウェーハの厚さの測定に支障が生じる可能性を抑制することができる。また、例えば4ウェイ方式の両面研磨装置において、全てのウェーハの厚さを測定するのに都合がよい。
A plurality of
Thus, if the upper surface plate is provided with a plurality of holes at equal intervals, it is possible to suppress the occurrence of leakage of the polishing slurry from each of the plurality of measurement holes. For this reason, the maintenance of a surface plate can be performed easily. Further, it is possible to suppress the possibility of trouble in measuring the thickness of the wafer. For example, in a 4-way double-side polishing apparatus, it is convenient to measure the thickness of all wafers.
また、研磨中に研磨荷重、上定盤11の回転速度、下定盤12の回転速度のうち少なくとも1つ以上を変更したい場合、図示するような研磨機制御ユニット17を両面研磨装置10に備えつけることによって、上定盤11や下定盤12を制御することができる。これによって、研磨荷重、上定盤11の回転速度、下定盤12の回転速度のうち少なくとも1つ以上を変更することができる。
これによれば、ウェーハの研磨中に、測定されたウェーハ厚さから判明する研磨布、キャリア等の加工治具、材料の劣化などによる研磨条件の変化に適切に対応することができる。よって、研磨終了後の表面の平坦度が非常に高いウェーハを安定して得ることができる。
Further, when it is desired to change at least one of the polishing load, the rotation speed of the upper surface plate 11 and the rotation speed of the
According to this, during polishing of the wafer, it is possible to appropriately cope with a change in polishing conditions due to polishing cloth, a processing jig such as a carrier, which is determined from the measured wafer thickness, and material deterioration. Therefore, it is possible to stably obtain a wafer having a very high flatness of the surface after polishing.
そしてこのような両面研磨装置を用いたウェーハの研磨方法について、以下説明するが、もちろんこれに限定されるものではない。 A method for polishing a wafer using such a double-side polishing apparatus will be described below, but the present invention is not limited to this.
まず、キャリア13のウェーハ保持孔に研磨を行いたいウェーハWをセットする。この時ウェーハWは複数枚セットすることができる。
そして上定盤11の研磨下面11aと、下定盤12の研磨上面12aと、キャリア13によってウェーハWを挟持して、研磨スラリー供給機構15によって研磨スラリーを供給しながら、上定盤11及び下定盤12を水平面内で回転させながら、研磨を開始する。
First, the wafer W to be polished is set in the wafer holding hole of the
The upper surface plate 11 and the lower surface plate 11 are sandwiched between the polishing
この際、上定盤11または下定盤12に設けられた複数の孔14から、ウェーハWの厚さを、上定盤11または下定盤12とは異なった位置にある固定端に固定されたウェーハ厚さ測定機構16によって測定しながら研磨を行う。
At this time, the wafer W is fixed to a fixed end at a position different from the upper surface plate 11 or the
このような両面研磨装置を用いたウェーハの研磨方法によれば、研磨を中断せずにウェーハの研磨面の状態を知ることができ、例えば研磨中のウェーハ厚さを随時知ることができるため、ウェーハの目標厚さに達したかどうかを研磨しながら判断することができる。このため、目標厚さに到達したかどうかを、研磨を中断することなく判定することができ、研磨に掛かる時間を短くすることができる。
また、研磨時間を固定せずとも、ウェーハを目標厚さにすることができるため、研磨の過不足が発生することはなく、平坦度が悪化することを抑制することができる。
According to the method of polishing a wafer using such a double-side polishing apparatus, it is possible to know the state of the polished surface of the wafer without interrupting polishing, for example, it is possible to know the thickness of the wafer being polished at any time, Whether the target thickness of the wafer has been reached can be judged while polishing. Therefore, it is possible to determine whether or not the target thickness has been reached without interrupting the polishing, and the time required for polishing can be shortened.
Further, since the wafer can be set to the target thickness without fixing the polishing time, excessive or insufficient polishing does not occur, and deterioration of flatness can be suppressed.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1のような両面研磨装置を用いて、バッチ式(1バッチ15枚)でウェーハの研磨を行った。この時の研磨後のウェーハの厚さの目標値を777μmとした。
研磨するウェーハとして、CZ法で成長したインゴットよりワイヤソーによりスライスして切り出した後、面取り、ラッピング、エッチングを施した直径300mmのp−型のシリコン単結晶ウェーハを600枚用意した。このp−型とは、p型の高抵抗率のウェーハのことである。
ウェーハ厚さ測定機構として、レーザー光の波長を1575〜1775nmにチューニングできる波長可変赤外線レーザー装置が用いられた光学ユニットを備えたものを準備し、このようなウェーハ厚さ測定機構を用いてウェーハの厚さを測定しながら600枚のうち300枚研磨し、研磨後のウェーハの厚さをAFS(ADE社製静電容量型フラットネス測定装置)にて評価した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
Using a double-side polishing apparatus as shown in FIG. 1, the wafer was polished in a batch system (15 batches). At this time, the target value of the thickness of the polished wafer was set to 777 μm.
As a wafer to be polished, 600 p - type silicon single crystal wafers having a diameter of 300 mm were prepared by slicing and cutting with a wire saw from an ingot grown by the CZ method, and then chamfering, lapping and etching. This p - type is a p-type high resistivity wafer.
As a wafer thickness measurement mechanism, a mechanism equipped with an optical unit using a wavelength tunable infrared laser device that can tune the wavelength of laser light to 1575 to 1775 nm is prepared. Using such a wafer thickness measurement mechanism, the wafer thickness is measured. While measuring the thickness, 300 of 600 wafers were polished, and the thickness of the polished wafer was evaluated by AFS (capacitance flatness measuring device manufactured by ADE).
(比較例)
実施例と同様の両面研磨装置を用いてウェーハの研磨を残りの300枚に行った。しかし比較例においてはウェーハ厚さ測定機構を作動させずに研磨を行った。また、研磨時間を固定とした。
(Comparative example)
Using the same double-side polishing apparatus as in the example, the remaining 300 wafers were polished. However, in the comparative example, polishing was performed without operating the wafer thickness measuring mechanism. The polishing time was fixed.
図2に、実施例と比較例の両面研磨装置で研磨したウェーハ各300枚の研磨後のウェーハ厚さの相対度数と累積相対度数を示す。
実施例の両面研磨装置で研磨したウェーハは、比較例のウェーハに比べ、研磨後の平均仕上がり厚さのバラツキが小さく、約50%減少していたことが判った。
また、実施例の両面研磨装置によれば標準偏差0.1μm以下の精度を達成できたことが判った。
FIG. 2 shows the relative frequency and cumulative relative frequency of the wafer thickness after polishing 300 wafers polished by the double-side polishing apparatus of the example and the comparative example.
It was found that the wafer polished by the double-side polishing apparatus of the example had a smaller variation in average finished thickness after polishing than the wafer of the comparative example, and was reduced by about 50%.
In addition, it was found that the double-side polishing apparatus of the example could achieve an accuracy with a standard deviation of 0.1 μm or less.
また、図3に示すように、実施例の両面研磨装置で研磨されたウェーハは、研磨後のウェーハ厚さが安定していたのに対し、比較例のウェーハはバラツキが大きく、安定しなかった。 Further, as shown in FIG. 3, the wafer polished by the double-side polishing apparatus of the example had a stable wafer thickness after polishing, whereas the wafer of the comparative example had large variations and was not stable. .
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
10…両面研磨装置、
11…上定盤、 11a…研磨下面、 12…下定盤、 12a…研磨上面、 13…キャリア、 14…複数の孔、 15…スラリー供給機構、
16…ウェーハ厚さ測定機構、 16a…光学ユニット、 16b…フォトディテクタ、 16c…レーザー光源ユニット、 16d…演算・制御機構、
17…研磨機制御ユニット、 18…ハウジング、
W…ウェーハ。
10: Double-side polishing device,
DESCRIPTION OF SYMBOLS 11 ... Upper surface plate, 11a ... Polishing lower surface, 12 ... Lower surface plate, 12a ... Polishing upper surface, 13 ... Carrier, 14 ... Multiple holes, 15 ... Slurry supply mechanism,
16 ... Wafer thickness measurement mechanism, 16a ... Optical unit, 16b ... Photo detector, 16c ... Laser light source unit, 16d ... Calculation / control mechanism,
17 ... polishing machine control unit, 18 ... housing,
W: Wafer.
Claims (2)
前記上定盤の回転中心と周縁との間の周辺に等間隔に設けられた複数の孔と、
該複数の孔から前記シリコンウェーハの厚さを研磨中にリアルタイムで測定するウェーハ厚さ測定機構とを具備し、
該ウェーハ厚さ測定機構は、該研磨装置の前記上定盤及び前記下定盤ではない固定端に固定され、光反射干渉法を用いた、前記シリコンウェーハに対して光学的に透過する1575〜1775nmの波長の波長可変赤外線レーザー装置を具備し、前記シリコンウェーハのバルク厚さを測定するものであることを特徴とする両面研磨装置。 At least a lower surface plate having a flat polishing upper surface to be driven to rotate, an upper surface plate having a flat lower surface to be driven to rotate disposed opposite to the lower surface plate, and a carrier having a wafer holding hole for holding a silicon wafer; In a double-side polishing apparatus comprising:
A plurality of holes provided at equal intervals around the rotation center and peripheral edge of the upper surface plate;
A wafer thickness measuring mechanism that measures the thickness of the silicon wafer from the plurality of holes in real time during polishing;
The wafer thickness measurement mechanism is fixed to a fixed end of the polishing apparatus that is not the upper surface plate and the lower surface plate, and optically transmits to the silicon wafer using light reflection interferometry at 1575 to 1775 nm. A double-side polishing apparatus characterized by comprising a tunable infrared laser apparatus having a wavelength of 5 to measure the bulk thickness of the silicon wafer.
The double-side polishing apparatus according to claim 1, wherein the fixed end to which the wafer thickness measuring mechanism is fixed is a housing of the double-side polishing apparatus.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008197508A JP4955624B2 (en) | 2008-07-31 | 2008-07-31 | Double-side polishing equipment |
US13/002,449 US8834230B2 (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method and double-side polishing apparatus |
DE112009001875.0T DE112009001875B4 (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method and double side polishing device |
SG2013053954A SG192518A1 (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method |
PCT/JP2009/003021 WO2010013390A1 (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method and double side polishing apparatus |
CN200980127186.4A CN102089121B (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method and double side polishing apparatus |
KR1020117002430A KR101587226B1 (en) | 2008-07-31 | 2009-06-30 | Wafer polishing method and double side polishing apparatus |
TW098122953A TWI478226B (en) | 2008-07-31 | 2009-07-07 | Grinding method of double - sided grinding device and wafer |
US14/446,847 US9108289B2 (en) | 2008-07-31 | 2014-07-30 | Double-side polishing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008197508A JP4955624B2 (en) | 2008-07-31 | 2008-07-31 | Double-side polishing equipment |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010034462A JP2010034462A (en) | 2010-02-12 |
JP2010034462A5 JP2010034462A5 (en) | 2010-10-21 |
JP4955624B2 true JP4955624B2 (en) | 2012-06-20 |
Family
ID=41738563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008197508A Active JP4955624B2 (en) | 2008-07-31 | 2008-07-31 | Double-side polishing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4955624B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6123150B2 (en) * | 2011-08-30 | 2017-05-10 | 株式会社Sumco | Method for evaluating silicon wafer processing amount and method for manufacturing silicon wafer |
JP6003800B2 (en) * | 2013-05-16 | 2016-10-05 | 信越半導体株式会社 | Wafer double-side polishing method and double-side polishing system |
JP6206388B2 (en) | 2014-12-15 | 2017-10-04 | 信越半導体株式会社 | Polishing method of silicon wafer |
JP6222171B2 (en) * | 2015-06-22 | 2017-11-01 | 信越半導体株式会社 | Sizing device, polishing device, and polishing method |
JP6760638B2 (en) * | 2016-04-14 | 2020-09-23 | スピードファム株式会社 | Flat surface polishing device |
CN110695788B (en) * | 2019-10-16 | 2021-05-28 | 广东博智林机器人有限公司 | Concrete edge and corner leveling device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3491337B2 (en) * | 1994-05-13 | 2004-01-26 | 株式会社デンソー | Semiconductor thickness non-contact measuring device |
US6301009B1 (en) * | 1997-12-01 | 2001-10-09 | Zygo Corporation | In-situ metrology system and method |
JP3367496B2 (en) * | 2000-01-20 | 2003-01-14 | 株式会社ニコン | Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device |
JP2001009699A (en) * | 1999-07-05 | 2001-01-16 | Nichiden Mach Ltd | Plane surface grinding device |
JP2001077068A (en) * | 1999-09-08 | 2001-03-23 | Sumitomo Metal Ind Ltd | Detection of end point of polishing of semiconductor wafer and system therefor |
JP2001105308A (en) * | 1999-10-04 | 2001-04-17 | Asahi Kasei Corp | Polishing device with light transmission path |
JP2002018710A (en) * | 2000-07-07 | 2002-01-22 | Canon Inc | Method and device for polishing substrate, and method and device for measurng film thickness |
JP2002100594A (en) * | 2000-09-22 | 2002-04-05 | Komatsu Electronic Metals Co Ltd | Method and device for grinding plane |
JP4281255B2 (en) * | 2001-01-25 | 2009-06-17 | 株式会社デンソー | Wafer thickness measuring apparatus and wafer polishing method |
JP2003001559A (en) * | 2001-06-21 | 2003-01-08 | Mitsubishi Electric Corp | Chemical mechanical polishing method, chemical mechanical polishing apparatus and slurry supplying apparatus |
JP2003057027A (en) * | 2001-08-10 | 2003-02-26 | Ebara Corp | Measuring instrument |
JP2006095677A (en) * | 2004-08-30 | 2006-04-13 | Showa Denko Kk | Polishing method |
JP4786899B2 (en) * | 2004-12-20 | 2011-10-05 | Hoya株式会社 | Mask blank glass substrate manufacturing method, mask blank manufacturing method, reflective mask blank manufacturing method, exposure mask manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method |
JP2006224233A (en) * | 2005-02-17 | 2006-08-31 | Hoya Corp | Manufacturing method of glass substrate for mask blanks and manufacturing method of mask blanks |
JP2006231471A (en) * | 2005-02-25 | 2006-09-07 | Speedfam Co Ltd | Double-sided polishing machine and its sizing controlling method |
JP4904027B2 (en) * | 2005-08-10 | 2012-03-28 | ニッタ・ハース株式会社 | Polishing pad |
JP2007290050A (en) * | 2006-04-21 | 2007-11-08 | Hamai Co Ltd | Polishing method, and plane polishing device |
-
2008
- 2008-07-31 JP JP2008197508A patent/JP4955624B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010034462A (en) | 2010-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101587226B1 (en) | Wafer polishing method and double side polishing apparatus | |
JP4654275B2 (en) | Double-side polishing equipment | |
KR101669491B1 (en) | Apparatus and method for double-side polishing of work | |
JP4955624B2 (en) | Double-side polishing equipment | |
JP6003800B2 (en) | Wafer double-side polishing method and double-side polishing system | |
US10043719B2 (en) | Semiconductor wafer evaluation method and semiconductor wafer manufacturing method | |
JP4420023B2 (en) | Semiconductor wafer measurement method, manufacturing process management method, and semiconductor wafer manufacturing method | |
TWI752045B (en) | Polishing device | |
JP6222171B2 (en) | Sizing device, polishing device, and polishing method | |
JP4429995B2 (en) | Manufacturing method of semiconductor wafer | |
JP5028354B2 (en) | Wafer polishing method | |
JP6539467B2 (en) | Grinding machine | |
JP2002100594A (en) | Method and device for grinding plane | |
KR20150053049A (en) | Double Side Polishing Method for Wafer | |
JP7466964B1 (en) | Substrate thickness measuring device and substrate thickness measuring method | |
JP2006049740A (en) | Semiconductor wafer manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100906 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110905 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120110 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4955624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150323 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |