JP4646367B2 - 半導体装置の製造方法および半導体装置 - Google Patents
半導体装置の製造方法および半導体装置 Download PDFInfo
- Publication number
- JP4646367B2 JP4646367B2 JP2000255681A JP2000255681A JP4646367B2 JP 4646367 B2 JP4646367 B2 JP 4646367B2 JP 2000255681 A JP2000255681 A JP 2000255681A JP 2000255681 A JP2000255681 A JP 2000255681A JP 4646367 B2 JP4646367 B2 JP 4646367B2
- Authority
- JP
- Japan
- Prior art keywords
- exposure
- light
- semiconductor device
- photoresist
- illumination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70091—Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
- G03F7/701—Off-axis setting using an aperture
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70125—Use of illumination settings tailored to particular mask patterns
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の属する技術分野】
本発明は、半導体装置の製造方法および半導体装置に関するものであり、特に半導体装置において微細パターンを形成するフォトリソグラフィ技術における半導体装置の製造方法および半導体装置に関するものである。
【0002】
【従来の技術】
近年、半導体集積回路における高集積化および微細化にはめざましいものがある。それに伴い、半導体基板(以下、単にウエハと称する)上に形成される回路パターンの微細化も急速に進んできている。
【0003】
中でも、フォトリソグラフィ技術がパターン形成における基本技術として広く認識されるところである。よって、今日までに種々の開発、改良がなされてきている。しかし、パターンの微細化はとどまるところを知らず、パターンの解像度向上への要求もさらに強いものとなってきている。
【0004】
このフォトリソグラフィ技術とは、ウエハ上に塗布されたフォトレジストにフォトマスク(原画)上のパターンを転写し、その転写されたフォトレジストを用いて下層の被エッチング膜をパターニングする技術である。
【0005】
このフォトレジストの転写時においては、フォトレジストに現像処理が施されるが、この現像処理によって光の当たった部分のフォトレジストが除去されるタイプをポジ型、光の当たらない部分のフォトレジストが除去されるタイプをネガ型のフォトレジストという。
【0006】
一般に、縮小露光方法を用いたフォトリソグラフィ技術における解像限界R(nm)は、
R=k1・λ/(NA)
と表わされる。ここで、λを使用する光の波長(nm)、NAはレンズの投影光学系の開口数、k1はレジストプロセスに依存する定数である。
【0007】
上式からわかるように、解像限界Rの向上を図るためには、すなわち微細パターンを得るためには、k1とλとの値を小さくし、NAの値を大きくする方法が考えられる。つまり、レジストプロセスに依存する定数を小さくするとともに、短波長化や高NA化を進めればよいのである。
【0008】
しかし、光源やレンズの改良は技術的に難しく、また短波長化および高NA化を進めることによって、光の焦点深度δ(δ=k2・λ/(NA)2)が浅くなり、かえって解像度の低下を招くといった問題も出てくる。
【0009】
このような状況下において、半導体集積回路の製造においては、微細パターンを大きなプロセス裕度で形成することが必要である。密集パターンの形成に対しては変形照明法が有効であり、広く実用化されている。一方、孤立線パターンを大きなプロセス裕度で形成する方法としては、レベンソン型位相シフトマスクを用いる方法がある。
【0010】
【発明が解決しようとする課題】
しかしながら、レベンソン型位相シフトマスクの場合、露光光の位相を180°変換するための位相シフタを作製する必要があるため、マスクの作製が困難であるという問題点がある。また、レベンソン型位相シフトマスクは、位相の異なる透過光を積極的に干渉させることにより解像度の向上を図るため、投影露光装置のレンズ収差の影響を受けやすく、無収差では得られるはずの優れた特性が得られないなどの問題もある。このため、レベンソン型位相シフトマスクを用いた方法は実用化が進んでいない状況にある。
【0011】
また、マスク上に解像しない線幅の線を本来の線パターンに沿わせて配置することによるプロセス裕度の改善方法(いわゆる補助パターン法)が考えられている。しかしながら、この方法では、マスクパターン寸法が極めて小さくなるため、マスクの欠陥検査が困難であるなどの問題がある。
【0012】
それゆえ本発明の目的は、補助パターン法や位相シフトマスクなどを用いずとも微細パターンの形成が可能で、かつマスクの欠陥検査が容易な半導体装置の製造方法および半導体装置を提供することである。
【0013】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、実質的に同一の線幅で互いに間隔を持って並走しかつ他の光透過用開口パターンから孤立した2本組の光透過用開口パターンを有する第1のフォトマスクを介して投影露光法によりウエハ表面の第1のフォトレジストを露光する第1の露光工程を備え、2本組の光透過用開口パターンの各々の線幅W1は、露光光の波長をλとし、投影光学系の開口数をNAとしたとき、0.35<W1/(λ/NA)<0.65の関係を満たし、2本組の光透過用開口パターンの間隔W2は、露光光の波長をλとし、投影光学系の開口数をNAとしたとき、0.35<W2/(λ/NA)の関係を満たし、露光された第1のフォトレジストを現像することでパターニングする工程と、パターニングされた第1のフォトレジストをマスクとして第1のフォトレジスト下の第1の被加工膜を加工する工程と、第1のフォトレジストを除去した後、第2のフォトレジストを塗布する工程と、2本組の光透過用開口パターンに挟まれる領域以外のその他の領域に対応する第2のフォトレジストの領域を露光する第2の露光工程と、露光された第2のフォトレジストを現像することでパターニングする工程と、パターニングされた第2のフォトレジストをマスクとして第2のフォトレジスト下の第1の被加工膜を加工する工程と、第1および第2のフォトレジストをフォトマスクとして加工された第1の被加工膜をマスクとして、第1の被加工膜下の第2の被加工膜をパターニングする工程とをさらに備えている。
本発明の半導体装置の製造方法によれば、微細パターンを大きなプロセス裕度で精度良く形成することができる。また複雑な微細パターンを被加工膜に精度良く転写することができる。また被加工膜をハードマスクとして、その下層をパターニングすることができる。
上記の半導体装置の製造方法において好ましくは、第1のフォトレジストを露光する際の、十分大きいマスク開口を持つパターンに与えられるエネルギで定義される露光量は、露光により第1のフォトレジストが現像液に対して溶解性から不溶解性になる露光エネルギ(境界の露光量)または不溶解性から溶解性になる露光エネルギ(境界の露光量)の4倍以上20倍以下である。
【0014】
これにより、2本組の光透過用開口パターンを有する第1のフォトマスクを介して、通常の露光よりも露光量を大きくした、いわゆる過露光により、第1のフォトレジストが露光される。これにより、フォーカスがある程度変化してもパターン寸法の変動の小さい微細なパターンを形成することができる。また、一定の結像性能を維持できる焦点範囲である焦点深度(DOF:depth of focus)を大きくすることができる。よって、補助パターン法や位相シフトマスクを用いずに微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0017】
上記の半導体装置の製造方法において好ましくは、第1の露光は変形照明により行なわれる。
【0018】
これにより、さらに解像度と焦点深度を向上させることができる。
上記の半導体装置の製造方法において好ましくは、変形照明は照明光学系に輪帯照明絞りを用いて行なわれる。
【0019】
これにより、解像度と焦点深度を向上させることができる。
上記の半導体装置の製造方法において好ましくは、変形照明は照明光学系に4重極照明絞りを用いて行なわれる。
【0020】
これにより、解像度と焦点深度を向上させることができる。
上記の半導体装置の製造方法において好ましくは、第1のフォトマスクは、2本組の光透過用開口パターンを有する半透過遮光膜を備えたハーフトーン型の位相シフトマスクである。半透過遮光膜は、半透過遮光膜を透過した後の露光光の位相が2本組の光透過用開口パターンを透過した後の露光光の位相と180度異なった位相となるように、かつ半透過遮光膜を透過した後の露光光の強度が2本組の光透過用開口パターンを透過した後の露光光の強度よりも小さくなるような材質よりなっている。
【0021】
このようにハーフトーン型位相シフトマスクを用いることにより、さらに加工限界を高めることができる。
【0022】
上記の半導体装置の製造方法において好ましくは、半透過遮光膜の露光光の透過率が2%以上10%以下である。
【0023】
これにより、位相シフトマスクの効果を効果的に発揮することができる。
また、半透過遮光膜の露光光の透過光が2%未満では、半透過遮光膜を透過した露光光の強度が小さくなり過ぎて、ハーフトーン型位相シフトマスクの効果を有効に得ることができない。また、半透過遮光膜の露光光の透過率が10%を超えると、半透過遮光膜を透過した露光光により現像後のフォトレジストの膜厚が0になるか、もしくは膜減りしてしまい、フォトレジストをエッチングマスクに用いることができなくなる。
【0024】
上記の半導体装置の製造方法において好ましくは、輪帯照明絞りを用いた露光において、照明光学系により形成される照明光の第1のフォトマスクへの最大入射角の正弦aと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(a/R)に投射光学系の縮小倍率rを掛けたもの(r×a/R)が、0.6以上0.9以下である。
【0025】
これにより、良好な解像性を得ることができる。
上記の半導体装置の製造方法において好ましくは、輪帯照明絞りを用いた露光において、照明光学系により形成される照明光の第1のフォトマスクへの最小入射角の正弦bが最大入射角の正弦aの1/2以上である。
【0026】
これにより、良好な解像性を得ることができる。
上記の半導体装置の製造方法において好ましくは、4重極照明絞りを用いた露光において、照明光学系により形成される照明光の第1のフォトマスクへの最大入射角の正弦aと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(a/R)に投射光学系の縮小倍率rを掛けたもの(r×a/R)が、0.6以上0.9以下である。
【0027】
これにより、良好な解像性を得ることができる。
上記の半導体装置の製造方法において好ましくは、4重極照明絞りを用いた露光において、照明光学系により形成される照明光の第1のフォトマスクへの最小入射角の正弦bと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(b/R)に投射光学系の縮小倍率rを掛けたもの(r×b/R)が、0.3以上である。
【0028】
これにより、良好な解像性を得ることができる。
【0032】
上記の半導体装置の製造方法において好ましくは、2本組の光透過用開口パターンと他の光透過用開口パターンとの間隔W3は、0.70<W3/(λ/NA)の関係を満たす。
【0033】
このように他の光透過用開口パターンとの間隔W3を保つことにより、微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0034】
上記の半導体装置の製造方法において好ましくは、2本組の光透過用開口パターンの各々の長さLは、1.3<L/(λ/NA)の関係を満たす。
【0035】
このような長さLの光透過用開口パターンにおいては、微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0040】
上記の半導体装置の製造方法において好ましくは、第1の被加工膜の材質はシリコン酸化膜を含み、第2の被加工膜の材質は多結晶シリコンを含む。
【0041】
このように第1および第2の被加工膜の材質を選択することができる。
上記の半導体装置の製造方法において好ましくは、第1のフォトレジストを現像する前に第1の露光が複数回行なわれる。
【0042】
これにより、複雑なパターンにも対応することができる。
上記の半導体装置の製造方法において好ましくは、第2のフォトレジストを現像する前に第2の露光が複数回行なわれる。
【0043】
これにより、複雑なパターンにも対応することができる。
【0050】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0051】
(実施の形態1)
図1は本発明の実施の形態1におけるフォトマスクの構成を概略的に示す平面図であり、図2は図1のII−II線に沿う概略断面図である。
【0052】
図1および図2を参照して、本実施の形態のフォトマスク5は、たとえば石英などよりなる透明基板1と、たとえばクロムなどよりなる遮光膜2とを有している。遮光膜2は、図中中央部に実質的に同一の線幅W1で互いに間隔W2を持って並走するよう形成された2本組の光透過用開口パターン2aを有している。
【0053】
また遮光膜2は、このパターンだけでなく、図中左側に示された実質的に同一の線幅W1aで互いに間隔W2aを持って並走するよう形成された2本組の光透過用開口パターン2aや、図中右側に示された実質的に同一の線幅W1bで互いに間隔W2bを持って並走するよう形成された2本組の光透過用開口パターン2aなどを有していてもよい。
【0054】
この各2本組の光透過用開口パターン2aは、他の光透過用開口パターン2aとの間に広い間隔W3を有しており、孤立している。
【0055】
光透過用開口パターン2aの線幅W1(またはW1a、W1b)と、2本組の光透過用開口パターン2aの間隔W2(またはW2a、W2b)と、2本組の光透過用開口パターン2aと他の光透過用開口パターン2aとの間隔W3の各々は、0.54<W2/W1および1.08<W3/W1の関係を満たしている。
【0056】
また2本組の光透過用開口パターン2aの各々の線幅W1(またはW1a、W1b)は、露光時における露光光の波長をλとし、投影光学系の開口数をNAとしたとき、0.35<W1/(λ/NA)<0.65の関係を満たす。また2本組の光透過用開口パターン2aの間隔W2(またはW2a、W2b)は、0.35<W2/(λ/NA)の関係を満たし、2本組の光透過用開口パターン2aと他の光透過用開口パターン2aとの間隔W3は、0.70<W3/(λ/NA)の関係を満たす。
【0057】
また、2本組の光透過用開口パターン2aの各々の長さLは、1.3<L/(λ/NA)の関係を満たす。
【0058】
なお、図中左右の2本組の光透過用開口パターン2aの線幅W1aとW1bとは、中央の2本組の光透過用開口パターン2aの線幅W1と同じ寸法であってもよく、また異なる寸法であってもよい。ただし、これらの線幅W1aとW1bとの双方とも、0.35<W1/(λ/NA)<0.65の関係を満たす必要がある。また、線幅W1aとW1b同士も、上記関係を満たす限り同じ寸法であってもよく、また異なる寸法であってもよい。
【0059】
また、図中左右の2本組の光透過用開口パターン2aの間隔W2aとW2bとは、中央の2本組の光透過用開口パターン2aの間隔W2と同じ寸法であってもよく、また異なる寸法であってもよい。ただし、これらの間隔W2aとW2bとの双方とも、0.35<W2/(λ/NA)の関係を満たす必要がある。また、間隔W1aとW1b同士も、上記関係を満たす限り同じ寸法であってもよく、また異なる寸法であってもよい。
【0060】
また、図中中央および左側の2本組の光透過用開口パターン2aの間隔W3と、図中中央および右側の2本組の光透過用開口パターン2aの間隔W3についても、0.70<W3/(λ/NA)の関係を満たすのであれば、互いに同じ寸法であってもよく、また異なる寸法であってもよい。
【0061】
また、図中中央部、左側部および右側部の各2本組の光透過用開口パターン2aの長さLは、互いに同じ寸法であってもよく、また異なる寸法であってもよい。ただし、これらの長さLはすべて、1.3<L/(λ/NA)の関係を満たす必要がある。
【0062】
次に、図1および図2に示すフォトマスクを用いた半導体装置のパターン形成方法について説明する。
【0063】
図3は、本発明の一実施の形態におけるマスクを用いた投影露光装置の構成を概略的に示す図である。図3を参照して、この投影露光装置は、フォトマスク上のパターンを縮小してウエハ21表面のフォトレジスト21bに投射するものである。また投影露光装置は、光源11からフォトマスク5のパターンまでの照明光学系と、フォトマスク5のパターンからウエハ21までの投影光学系とを有している。
【0064】
照明光学系は、光源である水銀ランプ11と、反射鏡12と、集光レンズ18と、フライアイレンズ13と、絞り14と、集光レンズ16a、16b、16cと、ブラインド絞り15と、反射鏡17とを有している。また投影光学系は望遠レンズ19a、19bと、瞳面絞り25とを有している。
【0065】
その露光動作においては、まず水銀ランプ11から発せられた光11aは、反射鏡12により、たとえばg線(波長:436nm)のみが反射されて、単波長の光となる。次に、光11aは、集光レンズ18を通過して、フライアイレンズ13の各フライアイ構成レンズ13aの各々に入射し、その後に絞り14を通過する。
【0066】
ここで、光11bは、1個のフライアイ構成レンズ13aによって作り出された光路を示し、光11cはフライアイレンズ13によって作り出される光路を示している。
【0067】
絞り14を通過した光11aは、集光レンズ16a、ブラインド絞り15および集光レンズ16bを通過して、反射鏡17により所定角度で反射される。
【0068】
反射鏡17により反射された光11aは、集光レンズ16cを透過した後、所定のパターンが形成されたフォトマスク5の全面を均一に照射する。この後、光11aは投影レンズ19a、19bにより所定の倍率に縮小され、半導体基板21a上のフォトレジスト21bを露光する。
【0069】
本実施の形態においては、上記の露光は、過露光により行なわれる。つまり、フォトレジスト21bを露光する際の露光量は、露光によりフォトレジスト21bが現像液に対して溶解性から不溶解性になる境界の露光量または不溶解性から溶解性になる境界の露光量の4倍以上20倍以下とされる。なお、通常の露光では、露光量は境界の露光量の2.5倍以上3.5倍以下程度である。
【0070】
このようにして露光されたフォトレジスト21bは現像によりパターニングされる。この現像においては、フォトレジスト21bがポジ型の場合には所定の値以上の露光エネルギが入力された部分のフォトレジストのみが除去され、ネガ型の場合には所定の値以下の露光エネルギが入力された部分のみが除去される。このようにしてフォトレジスト21bのパターンが形成される。
【0071】
この後、フォトレジスト21bのパターンをマスクとしてその下層の被加工膜をエッチングなどの加工をすることにより被加工膜がパターニングされる。
【0072】
次に、上記で規定した露光光の強度について詳細に説明する。
たとえば図4(a)に示すフォトマスク5を透過した露光光の相対光強度分布は図4(b)に示すようになる。つまり、十分に大きい開口パターン2bを透過した露光光の光強度が最も高くなり、2本組の開口部2aを透過した露光光の光強度はそれよりも小さくなる。
【0073】
ここで、図5(a)に示すように、十分に大きい開口パターン2bに対してフォトレジストに入力される露光エネルギが上記の境界の露光エネルギ(ここでは1.0とした)になる場合、図5(b)に示すように開口パターン2bに対応する部分のフォトレジスト21bのみが除去され、2本組の開口パターン2aに対応するパターンは得られない。
【0074】
そこで、図6(a)に示すように、十分に大きい開口パターンについてフォトレジストに入力される露光エネルギを、図5における十分に大きい開口パターンについてフォトレジストに入力される露光エネルギのたとえば5倍とすることにより、2本組の開口パターン2aの透過光によりフォトレジストに入力される露光エネルギを境界の露光エネルギ(ここでは1.0)よりも大きくすることができる。これにより、図6(b)に示すように2本組の開口パターン2aに対応したパターンをフォトレジスト21bに形成することができる。
【0075】
つまり、上記の露光エネルギとは、フォトマスク5の十分大きい開口部2bを透過した露光光によりウエハ上の対応するパターンに与えられる露光エネルギが、フォトレジスト21bが現像液に対して溶解性から不溶解性になる境界あるいは不溶解性から溶解性になる境界の露光エネルギの4倍以上20倍以下になることを意味している。
【0076】
このパターン形成方法において、露光は通常照明により行なわれてもよいが、変形照明により行なわれることが好ましい。通常照明の場合、図7に示すようにフォトマスク5に対して露光光が垂直に照射され、0次光および±1次光の3光束によりウエハ21が露光される。しかし、フォトマスク5のパターンが微細になると、回折角度が大きくなるため、垂直照明では±1次光がレンズの中に入らなくなり、解像しなくなるおそれがある。
【0077】
そこで、図8に示すように変形照明により照明光束がフォトマスク5に対して斜めに入射される。これにより、フォトマスク5により回折した0次光と+1次あるいは−1次光の2光束のみで露光することができ、解像性を得ることができる。
【0078】
この変形照明に用いられる絞り14として、図9に示すように輪状の透過部14aを有する輪帯照明絞りや、図10に示すように4つの透過部14aを有する4重極照明絞りが用いられてもよい。また図11に示すように2本の透過部14aを有する2重極照明絞りが用いられてもよい。
【0079】
また図1および図2に示すフォトマスク5は、図12(a)に示すようにハーフトーン型の位相シフトマスクであってもよい。この場合、遮光膜2の代わりに、ある程度露光光を透過する半透過遮光膜2が用いられる。この半透過遮光膜2は、半透過遮光膜2を透過した後の露光光の位相が光透過用開口パターン2aを透過した後の露光光の位相と実質180°異なった位相となるように位相シフタの機能を有し、かつ半透過遮光膜2を透過した後の露光光の強度が光透過用開口パターン2aを透過した後の露光光の強度よりも小さくなるように露光光を減衰させる機能を有する。この半透過遮光膜2の露光光の透過率は2%以上10%以下であることが好ましい。
【0080】
これにより、図12(b)に示すように光透過用開口パターン2aと遮光部の境界において逆位相の光が重なり合うことで光が互いに打ち消し合って露光パターンのエッジでの光強度を小さくすることができ、パターン像の解像度を上げることが可能となる。
【0081】
また図13に示すように瞳面絞りの半径Rは結像での光線の最大入射角の正弦(=NA)に比例する。またフォトマスク5への最大入射角照明光線の瞳での位置aは照明最大入射角の正弦に比例し、フォトマスク5への最小入射角照明光線の瞳での位置bは照明最小入射角の正弦に比例する。照明の干渉性指標のσ(coherency)は従来照明のとき、σ=a/Rで与えられる。また変形照明の形状も、最大/最小入射角の正弦とNAの比であり、σout=a/R、σin=b/Rで表現される。なお、この説明では等倍投影であり、投影光学系での縮小倍率rは1である。
【0082】
輪帯照明絞りを用いた露光においては、最大入射角の正弦aと投影光学系の最大入射光線角度の正弦Rとの比(a/R)が、0.6以上0.9以下であることが好ましい。また輪帯照明絞りを用いた露光においては、最小入射角の正弦bが最大入射角の正弦aの1/2以上であることが好ましい。
【0083】
また4重極照明絞りを用いた露光においては、最大入射角の正弦aと投影光学系の最大入射光線角度の正弦Rとの比(a/R)が、0.6以上0.9以下であることが好ましい。また4重極照明絞りを用いた露光においては、最小入射角の正弦bと投影光学系の最大入射光線角度の正弦Rとの比(b/R)が、0.3以上であることが好ましい。
【0084】
本実施の形態では、2本組の光透過用開口パターン2aを有するフォトマスク5を介して過露光によりフォトレジスト21bを露光するため、フォーカスが変化してもレジスト寸法が変化し難く、微細パターンを大きなプロセス裕度で精度良く形成することが可能となる。本願発明者は、以下の実験などを行なうことにより上記効果の得られることを確認した。
【0085】
図1および図2に示すフォトマスク5を遮光膜2にクロム(Cr)を用いた2値マスクとし、線幅W1を170nm、間隔W2を170nm、間隔W3を360nm(つまりピッチで870nm)とした。このフォトマスク5をKrFエキシマレーザ光(波長:248nm)を用い、NAを0.65とし、2/3輪帯照明(σout/σin=0.80/0.53)で露光すると、図14に示すような相対光学像強度分布(relative image intensity)を持つ光学像が得られた。
【0086】
図14において光学像強度分布の左右両側の光強度の高い部分は2本組の光透過用開口パターン2aに対応し、その間の光強度の低い部分は2本組の光透過用開口パターン2aに挟まれる遮光部に対応する。この光学像強度分布はフォーカス位置を0〜0.5μmの範囲で変えて示している。図中太線四角で囲んだ部分の拡大図を図15に示す。
【0087】
図15を参照して、フォーカスが変化してもフォトレジストのパターン寸法が変化しない光強度(Iso-Focal Slice Level)が露光量の調整により得られることがわかる。また、この寸法変動のない光強度で像(パターン)の寸法を90nm程度と微細にできることがわかる。つまり、図1および図2に示すフォトマスク5を用いて過露光をすることによりデフォーカスによる寸法変動の少ない微細なパターンを形成することができる。
【0088】
また、ポジ型のフォトレジストにパターンを形成するためには、2本組の光透過用開口パターンにはさまれる遮光パターン部における光強度は、パターンエッジに比べて、あるレベル(Resolution Criteria)よりも小さいことが必要である。この結像の場合、0.5μmのデフォーカスでそのレベルより光強度が大きくなることから、〜1.0μmの焦点深度が得られることがわかる。
【0089】
つまり、図1および図2に示すフォトマスク5を用いて過露光をすることにより、寸法変動が少なく微細なパターンの形成において、大きな焦点深度を確保できることがわかる。
【0090】
図16は、図14および図15の場合のCD(critical dimension)値とフォーカスオフセットとの関係(CD−Focus特性)を示す図である。図16からも明らかなように、CD値が80〜90nmの範囲では、フォーカスが変化してもCD値がほとんど変化せず、CD−Focus特性が良好であることがわかる。
【0091】
図17は、図1および図2に示すフォトマスクのパターンを上記の露光条件においてフォーカスオフセットと露光量(exposure dose)を変えてフォトレジストに転写したときのフォトレジストのパターンの上面を示すSEM写真である。図17を参照して、写真中に付された数値はCD値の測定値である。この結果からも、フォーカスが変化してもフォトレジストに実際に転写されたパターン寸法がほとんど変化しないことがわかる。
【0092】
また図18は、図1および図2に示すCrの遮光膜2を有するフォトマスク(2値マスク)5を用いて変形照明で露光を行なった場合のフォトレジストのパターンの線幅(resist line width)とフォーカスオフセットとの関係を示す図である。図18を参照して、本実施の形態のパターン形成方法によれば線幅〜100nmのフォトレジストのパターンを、焦点深度〜1.0μmの範囲で形成できることがわかる。
【0093】
次に、フォトマスクに形成されたパターンがライン・アンド・スペース(L/S)パターン、孤立暗線パターンまたは孤立明線パターンの場合には、露光量を変えて線を細くしても本実施の形態のような良好な特性が得られないことについて説明する。
【0094】
図19、図20および図21は、0.18μmL/S(ライン幅とスペース幅の双方が0.18μm)、0.18μm幅の孤立暗線、および0.18μm幅の孤立明線の各々においてフォーカスをパラメータにした相対光学像強度分布を示す図である。
【0095】
これらの図19〜図21中の破線は、ベストフォーカスでマスク通り(0.18μm)の寸法にするときの露光量に対応する光強度(Exp. level to Mask Width)と、0.10μmの寸法にするときの露光量に対応する光強度(Exp. level to 0.10μm Width)とを示している。これらの図19〜図21より、3つのパターンのどの場合においても、パターンの幅を細くしようとすると、フォーカスの変化に対して寸法の変動が大きくなることが予想される。
【0096】
図22、図23および図24は、0.18μmL/S、0.18μm幅の孤立暗線および0.18幅の孤立明線の各々において露光レベルを細かく変えたときのCD−Focus特性を示す図である。図22〜図24に示すCD値とフォーカスオフセットとの関係は、図19〜図21に示された像強度から予想される振る舞いとなる。つまり、寸法(CD値)を小さくすればするほど、フォーカスオフセットの変動に対するCD値の変動が大きくなり、CD−Focus特性が良好でないことがわかる。また、0.18μmL/Sは、0.18μm幅の孤立暗線および0.18幅の孤立明線に比べると、フォーカスオフセットの変動に対するCD値の変動が少ないが、それでも0.3μmのデフォーカスに対して〜0.02μmの寸法変化が生じているため、本実施の形態に比較して悪いCD−Focus特性となっている。
【0097】
以上より、本実施の形態では、孤立した2本組の光透過用開口パターン2aを有するパターンとしたことにより、他のパターンでは得られない良好なCD−Focus特性の得られることがわかる。
【0098】
次に、図1および図2に示す光透過用開口パターン2aの各部の寸法について考察する。
【0099】
図25、図26および図27は、図1および図2に示すフォトマスクの各部の寸法W1、W2、W3の各々を変化させたときのCD−Focus特性を示す図である。
【0100】
図25〜図27の測定において、各マスクパターンに対して、フォーカスが0〜0.5μmの範囲でパターンが解像できる像コントラストとなるように露光レベルを調整した。また最も小さい寸法においてW2/W1が一定になるように調整した。またマスクパターンを変えたときに、露光量を変えてもよいとして、そこでデフォーカス0.5μmまで解像できる最小寸法(レジスト)パターンのCD−Focus特性を求めた。
【0101】
まず図25を参照して、寸法W2が0.16〜0.20μmでは、CD値も小さく、フォーカスオフセットの変動によるCD値の変動も少ない(つまりフォーカス特性がよい)。一方、寸法W2が、0.14〜0.12μmでは、CD値が小さくなるが、フォーカスオフセットの変動に対してCD値の変動が大きくなり、フォーカス特性が悪くなる。一方、寸法W2を0.22〜0.24μmとすると、フォーカスオフセットの変動に対してCD値の変動の少ない優れたフォーカス特性をもってCD値を大きくできることがわかる。このような結果を鑑みて、露光時の露光光の波長λと投影光学系の開口数NAとを考慮に入れると、寸法W2の好ましい範囲は、
0.35<W2/(λ/NA)
となる。
【0102】
次に図26を参照して、寸法W3が0.32μmより大きい場合には、2本組の光透過用開口パターン2aに挟まれる暗線の寸法(CD値)は小さくなり、かつフォーカスオフセットの変動に対するCD値の変動も少なくフォーカス特性もよくなる。一方、寸法W3が0.28および0.24のときには、フォーカス特性は良好であるが、CD値が大きくなってしまう。この結果を鑑みて、露光時の露光光の波長λと投影光学系の開口数NAを考慮に入れると寸法W3の好ましい範囲は、
W3>0.70×(λ/NA)
となる。
【0103】
次に図27を参照して、寸法W1が0.24以上ではCD値が大きくなりすぎ、0.10以下ではCD値が大きくなるとともにフォーカスオフセットの変動に対するCD値の変動が大きくなりフォーカス特性が悪くなる。この結果を鑑みて、露光時の露光光の波長λと投影光学系の開口数NAを考慮に入れると寸法W1の好ましい範囲は、
0.35<W1/(λ/NA)<0.65
となる。
【0104】
上記関係式より、
W2/W1>0.35/0.65≒0.54
W3/W1>0.70/0.65≒1.08
となる。
【0105】
図1および図2に示す2本組の光透過用開口パターン2aのパターン長Lについては、パターンの長手方向の両端部から0.3μm以下の領域では、寸法が変化してしまうため、近接効果補正(OPC:マスクの寸法を端部で変えること)をしないとすると、少なくともパターン長Lは0.6μm以上必要になる。このことを考慮してパターン長Lの好ましい範囲を求めると、
1.3<d/(λ/NA)
となる。
【0106】
(実施の形態2)
実施の形態1と同様のフォトマスク5(図1および図2)を用いてKrFエキシマレーザ光によりNAを0.60として通常照明(σ=0.85)で露光をしたときの、計算による相対光学像強度分布を図28に、CD−Focus特性を図29に示す。
【0107】
図28および図29より、図1および図2のフォトマスク5を用いて過露光をすることにより、全く超解像法を用いなくとも、140nmの線幅の線が、フォーカスに対してCD値がほぼ変化しない特性で形成できることがわかる。
【0108】
(実施の形態3)
実施の形態1および2と同じ寸法ではあるが、図12に示すように半透過遮光膜2が露光光の3%を透過するハーフトーン型位相シフトマスク(attenuating phase shift mask:Atten-PSM)を用いて、投影光学系の開口数NAを0.65とし、2/3輪帯照明(σout/σin=0.80/0.53)により露光したときの、計算による光学像強度分布を図30に示す。図30の結果より、フォーカスの変動に対してフォトレジストのパターン寸法が変動しない寸法は80μmと、実施の形態1よりも小さくなっていることがわかる。また0.5μmのデフォーカスでも、解像できる像質を保っていることがわかる。
【0109】
また実施の形態1で用いた2値マスク5と本実施の形態のハーフトーン型位相シフトマスクとに対して露光量のマージンを調べた結果を図31に示す。図31の横軸は相対露光量(relative exposure level)であり、縦軸は像のCD値(image width)である。図31中に示した式(ΔCD(%)/ΔExp.(%))で定義される露光裕度は2値マスクでは1.5、ハーフトーン型位相シフトマスクでは1.2である。どちらの露光裕度も実用に耐え得るものであるが、ハーフトーン型位相シフトマスクの方が露光裕度が改善されていることは明らかである。
【0110】
なお、上記式におけるΔCD(%)はCD値の変動分を示し、ΔExp.(%)は露光量の変動分を示している。
【0111】
また実施の形態1で用いた2値マスクと本実施の形態のハーフトーン型位相シフトマスクとにおけるマスク寸法(mask line width)の変化によるCD値の変化の様子を図32に示す。図32を参照して、微細フォトリソグラフィでは、MEF(mask error enchancement factor)が大きくなり、大きな技術障壁(マスクの寸法均一性が厳しくなる)となっている。しかし、本願の技術によれば、2値マスクの場合で〜1.5、ハーフトーン型位相シフトマスクで〜1.3とMEFは他の技術に比べて小さい。なお、通常のMEFは10もしくはそれ以上である。
【0112】
図33は、図1および図2に示す2本組の光透過用開口パターン2aの間隔W2のみを変え、他の寸法を一定にしたときの2本組の光透過用開口パターン2a間のマスク寸法の変化によるそれに対応した暗線像の線幅の変化を示す図である。図33を参照して、本実施の形態の技術によれば、暗線像の線幅は、80nmまではマスクの線幅に比例している。従来法では、像の線幅が200nmでマスクの線幅に比例しなくなるため、本実施の形態の技術は従来法よりも格段に微細化に適していることがわかる。
【0113】
またレンズ収差によるCD−Focus特性の劣化について本実施の形態の技術とレベンソン型位相シフトマスク(alternating phase shift mask:Alt-PSM)を用いた場合とで比較を行なった。
【0114】
図34と図35とは、レンズ収差がない場合の本実施の形態の技術とレベンソン型位相シフトマスクを用いた場合との各CD−Focus特性を示す図である。また図36および図37は、レンズ収差がある場合の本実施の形態の技術とレベンソン型位相シフトマスクを用いた場合とのCD−Focus特性を示す図である。なお、収差は低次球面収差で0.05λの大きさを仮定している。
【0115】
図35および図37から、レベンソン型位相シフトマスクを用いた場合には、収差によって像の線幅がフォーカスの変動とともに著しく変動する特性となっており、CD−Focus特性が大きく劣化することがわかる。これに対して、図34および図36から、本実施の形態の技術によれば、レンズ収差がある場合でも像の線幅はフォーカスの変動による変化量は少なく、CD−Focus特性の劣化はほとんどないことがわかる。
【0116】
(実施の形態4)
本実施の形態においては、図1および図2のフォトマスク5を過露光することにより実際のパターンを形成する方法について説明する。
【0117】
図38(a)は、SRAM(static random access memory)のメモリセルを構成する各トランジスタのゲートパターンを示す平面図である。また図38(b)および(c)は、図38(a)のパターンを形成するために用いる第1および第2のフォトマスクのパターンを示す概略平面図である。
【0118】
また図39は図38(a)のXXXIX−XXXIX線に沿う概略断面図であり、図40は図38(b)のXL−XL線に沿う概略断面図であり、図41は図38(c)のXLI−XLI線に沿う概略断面図である。
【0119】
まず図38(b)、(c)に示す第1および第2のフォトマスク5、55のパターンの設計方法について説明する。
【0120】
図38(a)に示す設計パターンから微細線部分のみが抽出される。この抽出された微細線部分の線幅が拡大される。このとき、微細線部分の両側に、0.35<W1/(λ/NA)<0.65の寸法を付加して拡大させる。この拡大された線幅を有するパターンの中央部から0.35<W2/(λ/NA)の関係を満たす寸法W2を減ずることにより、図38(b)に示す2本組の光透過用開口パターン2aが設計される。
【0121】
このため、第1のフォトマスク5は、図40に示すように2本組の光透過用開口パターン2aを複数個有する遮光膜(もしくは半透過遮光膜)2が透明基板1上に形成された構成を有する。
【0122】
さらに図38(a)に示す設計パターンに、上述した0.35<W1/(λ/NA)<0.65の関係を満たす線幅W1の2本組のパターンを付すことによって図38(c)に示す遮光パターン52が設計される。
【0123】
このため、第2のフォトマスク55は、図41に示すように上述した遮光パターンを構成する遮光膜52が透明基板51上に形成された構成を有している。
【0124】
次にこれら第1および第2のフォトマスク5、55を用いたゲートパターンの形成方法について説明する。
【0125】
図42〜図46はゲートパターンの製造方法を工程順に示す図39の断面に対応した概略断面図である。図42を参照して、シリコンなどよりなる半導体基板101上に、ゲート絶縁膜となる絶縁層102が形成される。この絶縁層102上にゲート電極となる導電層103が形成される。この導電層103上にたとえばポジ型のフォトレジスト111が塗布される。なお、絶縁層102はたとえばシリコン酸化膜よりなり、導電層103はたとえば不純物がドープされた多結晶シリコン膜よりなっている。
【0126】
このフォトレジスト111が、図38(b)に示す第1のフォトマスク5を用いて第1の露光を施された後に現像される。この第1の露光の際には、通常の露光よりも露光量を大きくした過露光により露光が行なわれる。この過露光とは、実施の形態1で説明したようにフォトレジスト111を露光する際の露光量、すなわち十分大きい透過開口を有するパターンへの露光エネルギが、露光によりフォトレジスト111が現像液に対して不溶解性から溶解性になる境界の露光エネルギの4倍以上20倍以下である。
【0127】
これにより、フォトレジスト111に、2本組の光透過用開口パターンに対応した微細開口パターン111aが形成される。
【0128】
図43を参照して、パターニングされたフォトレジスト111をマスクとしてその下層の導電層103および絶縁層102が順にエッチングされて、開口パターン103aが形成される。この後、フォトレジスト111はたとえばアッシングなどにより除去される。
【0129】
図44を参照して、このアッシングなどにより、導電層103の上面が露出する。
【0130】
図45を参照して、表面全面にたとえばポジ型のフォトレジスト112が塗布された後、図38(c)に示す第2のフォトマスク55を用いてフォトレジスト112が第2の露光を施された後に現像される。これにより、フォトレジスト112は、2本組の開口パターン103aおよびその間に挟まれる部分上を覆うように残存される。このフォトレジスト112のパターンをマスクとして導電層103および絶縁層102が除去される。
【0131】
図46を参照して、これにより、フォトレジスト112のパターンが形成されていない領域では半導体基板101の表面が露出する。この後、フォトレジスト112のパターンがたとえばアッシングなどにより除去されることで、図38(a)および図39に示す導電層103よりなるゲートパターンが形成される。
【0132】
なお、上記の第1の露光は、フォトレジスト111が現像されるまでに複数回行われても良い。また上記の第2の露光は、フォトレジスト112が現像されるまでに複数回行われても良い。
【0133】
また上記においては、フォトレジストのパターンを用いて直接ゲートパターンとなる導電層をパターニングにする場合について説明したが、ハードマスクを用いてゲートパターンとなる導電層をパターニングしてもよい。以下、そのことを説明する。
【0134】
図47および図48は、ハードマスクを用いてゲートパターンを形成する方法を工程順に示す概略断面図である。まず、上述した図42〜図46の方法により、ゲートパターンの代わりに、図47に示すようにハードマスクパターン121が形成される。このハードマスクパターン121をマスクとしてその下層にあるゲート電極となる導電層122がエッチングされる。
【0135】
図48を参照して、このエッチングにより、導電層122がパターニングされてゲートパターンが形成される。
【0136】
なお、ゲートパターンとなる導電層122の下のゲート絶縁層となる絶縁層は、説明の便宜上省略している。
【0137】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0138】
【発明の効果】
本発明の半導体装置の製造方法によれば、微細パターンを大きなプロセス裕度で精度良く形成することができる。また複雑な微細パターンを被加工膜に精度良く転写することができる。また被加工膜をハードマスクとして、その下層をパターニングすることができる。
上記の半導体装置の製造方法において好ましくは、第1のフォトレジストを露光する際の、十分大きいマスク開口を持つパターンに与えられるエネルギで定義される露光量は、露光により第1のフォトレジストが現像液に対して溶解性から不溶解性になる露光エネルギ(境界の露光量)または不溶解性から溶解性になる露光エネルギ(境界の露光量)の4倍以上20倍以下である。これにより、2本組の光透過用開口パターンを有する第1のフォトマスクを介して、通常の露光よりも露光量を大きくした、いわゆる過露光により、第1のフォトレジストが露光される。これにより、フォーカスがある程度変化してもパターン寸法の変動の小さい微細なパターンを形成することができる。また、一定の結像性能を維持できる焦点範囲である焦点深度を大きくすることができる。よって、補助パターン法や位相シフトマスクを用いずに微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0140】
上記の半導体装置の製造方法において好ましくは、第1の露光は変形照明により行なわれる。これにより、さらに解像度と焦点深度を向上させることができる。
【0141】
上記の半導体装置の製造方法において好ましくは、変形照明は照明光学系に輪帯照明絞りを用いて行なわれる。これにより、解像度と焦点深度を向上させることができる。
【0142】
上記の半導体装置の製造方法において好ましくは、変形照明は照明光学系に4重極照明絞りを用いて行なわれる。これにより、解像度と焦点深度を向上させることができる。
【0143】
上記の半導体装置の製造方法において好ましくは、第1のフォトマスクは、2本組の光透過用開口パターンを有する半透過遮光膜を備えたハーフトーン型の位相シフトマスクである。半透過遮光膜は、半透過遮光膜を透過した後の露光光の位相が2本組の光透過用開口パターンを透過した後の露光光の位相と180度異なった位相となるように、かつ半透過遮光膜を透過した後の露光光の強度が2本組の光透過用開口パターンを透過した後の露光光の強度よりも小さくなるような材質よりなっている。このようにハーフトーン型位相シフトマスクを用いることにより、さらに加工限界を高めることができる。
【0144】
上記の半導体装置の製造方法において好ましくは、半透過遮光膜の露光光の透過率が2%以上10%以下である。これにより、位相シフトマスクの効果を効果的に発揮することができる。
【0145】
上記の半導体装置の製造方法において好ましくは、輪帯照明絞りを用いた露光において、非回折照明光のウエハへの最大入射角の正弦aと投影光学系の最大入射光線角度の正弦Rとの比(a/R)が、0.6以上0.9以下である。これにより、良好な解像性を得ることができる。
【0146】
上記の半導体装置の製造方法において好ましくは、輪帯照明絞りを用いた露光において、照明光の最小入射角の正弦bが照明光の最大入射角の正弦aの1/2以上である。これにより、良好な解像性を得ることができる。
【0147】
上記の半導体装置の製造方法において好ましくは、4重極照明絞りを用いた露光において、非回折照明光のウエハへの最大入射角の正弦aと投影光学系の最大入射光線角度の正弦Rとの比(a/R)が、0.6以上0.9以下である。これにより、良好な解像性を得ることができる。
【0148】
上記の半導体装置の製造方法において好ましくは、4重極照明絞りを用いた露光において、非回折照明光のウエハへの最小入射角の正弦bと投影光学系の最大入射光線角度の正弦Rとの比(b/R)が、0.3以上である。これにより、良好な解像性を得ることができる。
【0151】
上記の半導体装置の製造方法において好ましくは、2本組の光透過用開口パターンと他の光透過用開口パターンとの間隔W3は、0.70<W3/(λ/NA)の関係を満たす。このように他の光透過用開口パターンとの間隔W3を保つことにより、微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0152】
上記の半導体装置の製造方法において好ましくは、2本組の光透過用開口パターンの各々の長さLは、1.3<L/(λ/NA)の関係を満たす。このような長さLの光透過用開口パターンにおいては、微細パターンを大きなプロセス裕度で精度良く形成することができる。
【0155】
上記の半導体装置の製造方法において好ましくは、第1の被加工膜の材質はシリコン酸化膜を含み、第2の被加工膜の材質は多結晶シリコンを含む。このように第1および第2の被加工膜の材質を選択することができる。
【0156】
上記の半導体装置の製造方法において好ましくは、第1のフォトレジストを現像する前に第1の露光が複数回行なわれる。これにより、複雑なパターンにも対応することができる。
【0157】
上記の半導体装置の製造方法において好ましくは、第2のフォトレジストを現像する前に第2の露光が複数回行なわれる。これにより、複雑なパターンにも対応することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1におけるフォトマスクの構成を概略的に示す平面図である。
【図2】 図1のII−II線に沿う概略断面図である。
【図3】 本発明の実施の形態1におけるフォトマスクを用いた半導体装置のパターンの形成方法を説明するための図である。
【図4】 フォトマスクのパターン(a)と相対光学像強度分布(b)との関係を示す図である。
【図5】 露光エネルギが小さい場合の露光エネルギ分布(a)とレジストパターン(b)との関係を示す図である。
【図6】 露光エネルギが大きい場合の露光エネルギ分布(a)とレジストパターン(b)との関係を示す図である。
【図7】 通常照明を説明するための図である。
【図8】 変形照明を説明するための図である。
【図9】 輪帯照明絞りの構成を示す平面図である。
【図10】 4重極照明絞りの構成を示す平面図である。
【図11】 2重極照明絞りの構成を示す平面図である。
【図12】 本発明の実施の形態1におけるフォトマスクをハーフトーン型位相シフトマスクとした場合の構成(a)および透過光の強度分布(b)を示す図である。
【図13】 変形照明における各部の定義を説明するための図である。
【図14】 本発明の実施の形態1におけるフォトマスクを過露光した場合の相対光学像強度分布を示す図である。
【図15】 図14の太線四角で囲んだ部分の拡大図である。
【図16】 本発明の実施の形態1におけるフォトマスクを過露光した場合のCD値とフォーカスオフセットとの関係を示す図である。
【図17】 本発明の実施の形態1におけるフォトマスクを過露光した場合にフォーカスオフセットと露光量とを変えたときのレジストパターンの上面を撮影したSEM写真である。
【図18】 レジストの線幅とフォーカスオフセットとの関係を示す図である。
【図19】 0.18μmL/Sにおける相対光学像強度分布を示す図である。
【図20】 0.18μm幅の孤立暗線における相対光学像強度分布を示す図である。
【図21】 0.18μm幅の孤立明線における相対光学像強度分布を示す図である。
【図22】 0.18μmL/SにおけるCD値とフォーカスオフセットとの関係を示す図である。
【図23】 0.18μm幅の孤立暗線におけるCD値とフォーカスオフセットとの関係を示す図である。
【図24】 0.18μm幅の孤立明線におけるCD値とフォーカスオフセットとの関係を示す図である。
【図25】 本発明の実施の形態1におけるフォトマスクの寸法W2を変えたときのCD値とフォーカスオフセットとの関係を示す図である。
【図26】 本発明の実施の形態1におけるフォトマスクの寸法W3を変えたときのCD値とフォーカスオフセットとの関係を示す図である。
【図27】 本発明の実施の形態1におけるフォトマスクの寸法W1を変えたときのCD値とフォーカスオフセットとの関係を示す図である。
【図28】 本発明の実施の形態2におけるフォトマスクを通常照明を用いて露光した場合の相対光学像強度分布を示す図である。
【図29】 本発明の実施の形態2におけるフォトマスクを通常照明を用いて露光したときのCD値とフォーカスオフセットとの関係を示す図である。
【図30】 本発明の実施の形態3におけるハーフトーン型位相シフトマスクを用いて露光を行なったときの相対光学像強度分布を示す図である。
【図31】 2値マスクとハーフトーン型位相シフトマスクとにおいて、像幅と相対的露光量との関係を示す図である。
【図32】 2値マスクとハーフトーン型位相シフトマスクとにおいて、像幅とマスクの線幅との関係を示す図である。
【図33】 本発明の実施の形態3におけるフォトマスクを用いて露光したときの暗線像の線幅とマスクの線幅との関係を示す図である。
【図34】 レンズ収差がない場合の本発明の実施の形態3におけるフォトマスクを用いて露光したときの像の線幅とフォーカスオフセットとの関係を示す図である。
【図35】 レンズ収差がない場合のレベンソン型位相シフトマスクを用いて露光したときの像の線幅とフォーカスオフセットとの関係を示す図である。
【図36】 レンズ収差がある場合の本発明の実施の形態3におけるフォトマスクを用いて露光したときの像の線幅とフォーカスオフセットとの関係を示す図である。
【図37】 レンズ収差がある場合のレベンソン型位相シフトマスクを用いて露光したときの像の線幅とフォーカスオフセットとの関係を示す図である。
【図38】 SRAMのゲートパターンを示す平面図(a)、第1のフォトマスクの平面図(b)、および第2のフォトマスクの平面図(c)である。
【図39】 図38(a)のXXXIX−XXXIX線に沿う概略断面図である。
【図40】 図38(b)のXL−XL線に沿う概略断面図である。
【図41】 図38(c)のXLI−XLI線に沿う概略断面図である。
【図42】 本発明の実施の形態4におけるフォトマスクを用いたパターンの形成方法の第1工程を示す概略断面図である。
【図43】 本発明の実施の形態4におけるフォトマスクを用いたパターンの形成方法の第2工程を示す概略断面図である。
【図44】 本発明の実施の形態4におけるフォトマスクを用いたパターンの形成方法の第3工程を示す概略断面図である。
【図45】 本発明の実施の形態4におけるフォトマスクを用いたパターンの形成方法の第4工程を示す概略断面図である。
【図46】 本発明の実施の形態4におけるフォトマスクを用いたパターンの形成方法の第5工程を示す概略断面図である。
【図47】 ハードマスクを用いたパターンの形成方法の第1工程を示す概略断面図である。
【図48】 ハードマスクを用いたパターンの形成方法の第2工程を示す概略断面図である。
【符号の説明】
1 基板、2 遮光膜、2a 光透過用開口部、2b 十分大きい開口パターン、5,55 フォトマスク、14 絞り、14a 透過部、21 ウエハ、21a,101 半導体基板、21b,111,112 フォトレジスト、51 透明基板、52 遮光膜、102 絶縁層、103,122 導電層、103a開口パターン、111a微細開口パターン、121 ハードマスクパターン。
Claims (17)
- 実質的に同一の線幅で互いに間隔を持って並走しかつ他の光透過用開口パターンから孤立した2本組の光透過用開口パターンを有する第1のフォトマスクを介して投影露光法によりウエハ表面の第1のフォトレジストを露光する第1の露光工程を備え、
前記2本組の光透過用開口パターンの各々の線幅W1は、露光光の波長をλとし、投影光学系の開口数をNAとしたとき、0.35<W1/(λ/NA)<0.65の関係を満たし、
前記2本組の光透過用開口パターンの間隔W2は、露光光の波長をλとし、投影光学系の開口数をNAとしたとき、0.35<W2/(λ/NA)の関係を満たし、
露光された前記第1のフォトレジストを現像することでパターニングする工程と、
パターニングされた前記第1のフォトレジストをマスクとして前記第1のフォトレジスト下の第1の被加工膜を加工する工程と、
前記第1のフォトレジストを除去した後、第2のフォトレジストを塗布する工程と、
前記2本組の光透過用開口パターンに挟まれる領域以外のその他の領域に対応する前記第2のフォトレジストの領域を露光する第2の露光工程と、
露光された前記第2のフォトレジストを現像することでパターニングする工程と、
パターニングされた前記第2のフォトレジストをマスクとして前記第2のフォトレジスト下の前記第1の被加工膜を加工する工程と、
前記第1および第2のフォトレジストをフォトマスクとして加工された前記第1の被加工膜をマスクとして、前記第1の被加工膜下の第2の被加工膜をパターニングする工程とをさらに備えた、半導体装置の製造方法。 - 前記第1のフォトレジストを露光する際の、十分大きいマスク開口を持つパターンに与えられるエネルギで定義される露光量は、露光により前記第1のフォトレジストが現像液に対して溶解性から不溶解性になる露光エネルギまたは不溶解性から溶
解性になる露光エネルギの4倍以上20倍以下である、請求項1に記載の半導体装置の製造方法。 - 前記第1の露光を変形照明により行なう、請求項1に記載の半導体装置の製造方法。
- 前記変形照明は照明光学系に輪帯照明絞りを用いて行なわれる、請求項3に記載の半導体装置の製造方法。
- 前記変形照明は照明光学系に4重極照明絞りを用いて行なわれる、請求項3に記載の半導体装置の製造方法。
- 前記第1のフォトマスクは、前記2本組の光透過用開口パターンを有する半透過遮光膜を備えたハーフトーン型の位相シフトマスクであり、
前記半透過遮光膜は、前記半透過遮光膜を透過した後の露光光の位相が前記2本組の光透過用開口パターンを透過した後の露光光の位相と180度異なった位相となるように、かつ前記半透過遮光膜を透過した後の露光光の強度が前記2本組の光透過用開口パターンを透過した後の露光光の強度よりも小さくなるような材質よりなる、請求項1に記載の半導体装置の製造方法。 - 前記半透過遮光膜の露光光の透過率が2%以上10%以下である、請求項6に記載の半導体装置の製造方法。
- 輪帯照明絞りを用いた露光において、照明光学系により形成される照明光の前記第1のフォトマスクへの最大入射角の正弦aと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(a/R)に投射光学系の縮小倍率rを掛けたもの(r×a/R)が、0.6以上0.9以下である、請求項4に記載の半導体装置の製造方法。
- 輪帯照明絞りを用いた露光において、照明光学系により形成される照明光の前記第1のフォトマスクへの最小入射角の正弦bが最大入射角の正弦aの1/2以上である、請求項4に記載の半導体装置の製造方法。
- 4重極照明絞りを用いた露光において、照明光学系により形成される照明光の前記第1のフォトマスクへの最大入射角の正弦aと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(a/R)に投射光学系の縮小倍率rを掛けたもの(r×a/R)が、0.6以上0.9以下である、請求項5に記載の半導体装置の製造方法。
- 4重極照明絞りを用いた露光において、照明光学系により形成される照明光の前記第1のフォトマスクへの最小入射角の正弦bと投影光学系によるウエハ上への結像での最大入射光線角度の正弦Rとの比(b/R)に投射光学系の縮小倍率rを掛けたもの(r×b/R)が、0.3以上である、請求項5に記載の半導体装置の製造方法。
- 前記2本組の光透過用開口パターンと前記他の光透過用開口パターンとの間隔W3は、0.70<W3/(λ/NA)の関係を満たす、請求項1に記載の半導体装置の製造方法。
- 前記2本組の光透過用開口パターンの各々の長さLは、1.3<L/(λ/NA)の関係を満たす、請求項1に記載の半導体装置の製造方法。
- 前記第1の被加工膜の材質はシリコン酸化膜を含み、前記第2の被加工膜の材質は多結晶シリコンを含む、請求項1に記載の半導体装置の製造方法。
- 前記第1のフォトレジストを現像する前に前記第1の露光を複数回行なう、請求項1に記載の半導体装置の製造方法。
- 前記第2のフォトレジストを現像する前に前記第2の露光を複数回行なう、請求項1に記載の半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法により製造される半導体装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000255681A JP4646367B2 (ja) | 2000-08-25 | 2000-08-25 | 半導体装置の製造方法および半導体装置 |
DE10106430A DE10106430A1 (de) | 2000-08-25 | 2001-02-12 | Verfahren zum Ausbilden eines Halbleitervorrichtungsmusters, Verfahren zur Konstruktion eines Photomaskenmusters, Photomaske und Prozeß für eine Photomaske |
US09/782,283 US6605411B2 (en) | 2000-08-25 | 2001-02-14 | Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask |
KR10-2001-0022692A KR100386231B1 (ko) | 2000-08-25 | 2001-04-26 | 반도체 장치의 패턴 형성 방법, 포토마스크의 패턴 설계방법, 포토마스크의 제조 방법 및 포토마스크 |
US10/163,554 US6709792B2 (en) | 2000-08-25 | 2002-06-07 | Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask |
US10/163,458 US6706453B2 (en) | 2000-08-25 | 2002-06-07 | Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000255681A JP4646367B2 (ja) | 2000-08-25 | 2000-08-25 | 半導体装置の製造方法および半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010211112A Division JP5068357B2 (ja) | 2010-09-21 | 2010-09-21 | 半導体装置の製造方法、フォトマスクのパターン設計方法およびフォトマスクの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002075823A JP2002075823A (ja) | 2002-03-15 |
JP4646367B2 true JP4646367B2 (ja) | 2011-03-09 |
Family
ID=18744417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000255681A Expired - Fee Related JP4646367B2 (ja) | 2000-08-25 | 2000-08-25 | 半導体装置の製造方法および半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (3) | US6605411B2 (ja) |
JP (1) | JP4646367B2 (ja) |
KR (1) | KR100386231B1 (ja) |
DE (1) | DE10106430A1 (ja) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3257593B2 (ja) * | 1999-02-05 | 2002-02-18 | 日本電気株式会社 | 半導体装置の製造方法 |
JP2003151875A (ja) * | 2001-11-09 | 2003-05-23 | Mitsubishi Electric Corp | パターンの形成方法および装置の製造方法 |
US6888615B2 (en) * | 2002-04-23 | 2005-05-03 | Asml Holding N.V. | System and method for improving linewidth control in a lithography device by varying the angular distribution of light in an illuminator as a function of field position |
JP4202708B2 (ja) * | 2002-10-01 | 2008-12-24 | 株式会社東芝 | プロセスマージンの評価方法、測定条件の設定方法、プロセスマージンの評価プログラム、及び、測定条件の設定プログラム |
KR100574966B1 (ko) * | 2004-01-20 | 2006-05-02 | 삼성전자주식회사 | 포토마스크 및 이를 이용한 투과율 및 위상 조절 방법 |
JP4229857B2 (ja) * | 2004-02-26 | 2009-02-25 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
KR100670396B1 (ko) * | 2004-12-30 | 2007-01-16 | 동부일렉트로닉스 주식회사 | 사이드 로브 현상을 이용한 실린더형 커패시터 형성 방법 |
KR100642478B1 (ko) | 2004-12-31 | 2006-11-02 | 동부일렉트로닉스 주식회사 | 이중 노광을 이용한 광 근접효과 제거 방법 |
JP2006221078A (ja) * | 2005-02-14 | 2006-08-24 | Renesas Technology Corp | フォトマスク、マスクパターンの生成方法、および、半導体装置のパターンの形成方法 |
US7524593B2 (en) * | 2005-08-12 | 2009-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Exposure mask |
TWI265564B (en) * | 2005-09-16 | 2006-11-01 | Univ Nat Chiao Tung | Method for forming gate pattern for electronic device |
KR100763227B1 (ko) | 2006-04-04 | 2007-10-04 | 삼성전자주식회사 | 분리 노광 방법을 이용한 포토마스크와 그 제조 방법 및 제조 장치 |
US7742632B2 (en) * | 2006-10-13 | 2010-06-22 | International Business Machines Corporation | Alternating phase shift mask inspection using biased inspection data |
US7859883B2 (en) * | 2007-05-14 | 2010-12-28 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Recordable electrical memory |
KR200458072Y1 (ko) * | 2008-07-22 | 2012-01-18 | (주)애니텍 | 자동문 가이드레일의 레일판 |
US8683396B2 (en) * | 2009-07-22 | 2014-03-25 | Synopsys, Inc. | Determining source patterns for use in photolithography |
US8463016B2 (en) * | 2010-02-05 | 2013-06-11 | Luminescent Technologies, Inc. | Extending the field of view of a mask-inspection image |
US8498469B2 (en) * | 2010-03-01 | 2013-07-30 | Synopsys, Inc. | Full-field mask error enhancement function |
US8555214B2 (en) | 2010-09-14 | 2013-10-08 | Luminescent Technologies, Inc. | Technique for analyzing a reflective photo-mask |
US8612903B2 (en) | 2010-09-14 | 2013-12-17 | Luminescent Technologies, Inc. | Technique for repairing a reflective photo-mask |
US8458622B2 (en) | 2010-11-29 | 2013-06-04 | Luminescent Technologies, Inc. | Photo-mask acceptance technique |
US9005852B2 (en) | 2012-09-10 | 2015-04-14 | Dino Technology Acquisition Llc | Technique for repairing a reflective photo-mask |
US8653454B2 (en) | 2011-07-13 | 2014-02-18 | Luminescent Technologies, Inc. | Electron-beam image reconstruction |
US9091935B2 (en) | 2013-03-11 | 2015-07-28 | Kla-Tencor Corporation | Multistage extreme ultra-violet mask qualification |
US9494854B2 (en) | 2013-03-14 | 2016-11-15 | Kla-Tencor Corporation | Technique for repairing an EUV photo-mask |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217842A (ja) * | 1992-02-07 | 1993-08-27 | Sony Corp | 孔パターンの形成方法 |
JPH06151269A (ja) * | 1992-11-05 | 1994-05-31 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH1115133A (ja) * | 1997-06-26 | 1999-01-22 | Hitachi Ltd | パタン形成方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5465220A (en) * | 1992-06-02 | 1995-11-07 | Fujitsu Limited | Optical exposure method |
JP2848425B2 (ja) | 1992-06-02 | 1999-01-20 | 富士通株式会社 | 光露光方法 |
US4456371A (en) * | 1982-06-30 | 1984-06-26 | International Business Machines Corporation | Optical projection printing threshold leveling arrangement |
US5242770A (en) * | 1992-01-16 | 1993-09-07 | Microunity Systems Engineering, Inc. | Mask for photolithography |
US5538833A (en) * | 1994-08-03 | 1996-07-23 | International Business Machines Corporation | High resolution phase edge lithography without the need for a trim mask |
JPH118179A (ja) | 1997-06-17 | 1999-01-12 | Hitachi Ltd | パタン形成方法 |
US6316163B1 (en) * | 1997-10-01 | 2001-11-13 | Kabushiki Kaisha Toshiba | Pattern forming method |
JPH11109603A (ja) * | 1997-10-06 | 1999-04-23 | Mitsubishi Electric Corp | フォトマスクおよび半導体装置の製造方法 |
US6114071A (en) * | 1997-11-24 | 2000-09-05 | Asml Masktools Netherlands B.V. | Method of fine feature edge tuning with optically-halftoned mask |
JP3307313B2 (ja) * | 1998-01-23 | 2002-07-24 | ソニー株式会社 | パターン生成方法及びその装置 |
JP3978852B2 (ja) * | 1998-02-27 | 2007-09-19 | ソニー株式会社 | 半導体装置の製造方法 |
JP3385325B2 (ja) * | 1998-11-09 | 2003-03-10 | 日本電気株式会社 | 格子パターンの露光方法および露光装置 |
US6287732B1 (en) * | 1999-07-19 | 2001-09-11 | Marc David Levenson | Generic phase shift masks |
US6251546B1 (en) * | 1999-09-16 | 2001-06-26 | Agere Systems Guardian Corp. | Method of fabricating devices using an attenuated phase-shifting mask and an attenuated phase-shifting mask |
US6222241B1 (en) * | 1999-10-29 | 2001-04-24 | Advanced Micro Devices, Inc. | Method and system for reducing ARC layer removal by providing a capping layer for the ARC layer |
US6335130B1 (en) * | 2000-05-01 | 2002-01-01 | Asml Masktools Netherlands B.V. | System and method of providing optical proximity correction for features using phase-shifted halftone transparent/semi-transparent features |
-
2000
- 2000-08-25 JP JP2000255681A patent/JP4646367B2/ja not_active Expired - Fee Related
-
2001
- 2001-02-12 DE DE10106430A patent/DE10106430A1/de not_active Ceased
- 2001-02-14 US US09/782,283 patent/US6605411B2/en not_active Expired - Fee Related
- 2001-04-26 KR KR10-2001-0022692A patent/KR100386231B1/ko not_active IP Right Cessation
-
2002
- 2002-06-07 US US10/163,554 patent/US6709792B2/en not_active Expired - Lifetime
- 2002-06-07 US US10/163,458 patent/US6706453B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217842A (ja) * | 1992-02-07 | 1993-08-27 | Sony Corp | 孔パターンの形成方法 |
JPH06151269A (ja) * | 1992-11-05 | 1994-05-31 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH1115133A (ja) * | 1997-06-26 | 1999-01-22 | Hitachi Ltd | パタン形成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2002075823A (ja) | 2002-03-15 |
US20020150844A1 (en) | 2002-10-17 |
US6709792B2 (en) | 2004-03-23 |
DE10106430A1 (de) | 2002-03-14 |
KR100386231B1 (ko) | 2003-06-09 |
KR20020016496A (ko) | 2002-03-04 |
US20020028391A1 (en) | 2002-03-07 |
US6706453B2 (en) | 2004-03-16 |
US20020155395A1 (en) | 2002-10-24 |
US6605411B2 (en) | 2003-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4646367B2 (ja) | 半導体装置の製造方法および半導体装置 | |
JP2988417B2 (ja) | フォトマスク | |
EP1241523B1 (en) | Photomask, method of producing photomask | |
JPH10133356A (ja) | フォトマスクおよびパターン形成方法 | |
US6828080B2 (en) | Pattern forming method and method of fabricating device | |
JPH08222513A (ja) | パターン形成方法 | |
JP3164039B2 (ja) | フォトマスク及びその製造方法 | |
US5888677A (en) | Exposure mask, method of fabricating same, and method of manufacturing semiconductor device | |
JP2002075857A (ja) | レジストパタン形成方法 | |
JP2004251969A (ja) | 位相シフトマスク、位相シフトマスクを用いたパターンの形成方法および電子デバイスの製造方法 | |
JP4963830B2 (ja) | パターン形成方法 | |
KR20030036124A (ko) | 위상 변이 마스크 제작에서 위상변이 영역 형성시얼라인먼트를 결정하는 방법 | |
US8007959B2 (en) | Photomask and pattern formation method using the same | |
JP5068357B2 (ja) | 半導体装置の製造方法、フォトマスクのパターン設計方法およびフォトマスクの製造方法 | |
JPH06289590A (ja) | フォトマスク及び露光方法 | |
JPH10115932A (ja) | 位相シフトマスクを用いた露光方法 | |
JPH0511433A (ja) | フオトマスクの製造方法及びフオトマスク | |
JP2919023B2 (ja) | レジストパターン形成方法 | |
US6617081B2 (en) | Method for improving process window in semi-dense area by using phase shifter | |
KR20020002015A (ko) | 콘택홀용 위상반전마스크 | |
JPH1048807A (ja) | 斜入射照明用レチクル及び半導体装置 | |
JPH07159970A (ja) | 位相シフトマスクおよび露光方法 | |
JPH06338441A (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070815 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100513 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100513 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100921 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |