JP4644825B2 - 固体撮像装置及びその駆動方法 - Google Patents

固体撮像装置及びその駆動方法 Download PDF

Info

Publication number
JP4644825B2
JP4644825B2 JP2007094878A JP2007094878A JP4644825B2 JP 4644825 B2 JP4644825 B2 JP 4644825B2 JP 2007094878 A JP2007094878 A JP 2007094878A JP 2007094878 A JP2007094878 A JP 2007094878A JP 4644825 B2 JP4644825 B2 JP 4644825B2
Authority
JP
Japan
Prior art keywords
transfer
charge
region
signal
surface buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007094878A
Other languages
English (en)
Other versions
JP2008252814A (ja
Inventor
祥二 川人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2007094878A priority Critical patent/JP4644825B2/ja
Publication of JP2008252814A publication Critical patent/JP2008252814A/ja
Application granted granted Critical
Publication of JP4644825B2 publication Critical patent/JP4644825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times

Description

本発明は、撮像用の画素を複数個配列した固体撮像装置に係り、特にダイナミックレンジを拡大した固体撮像装置及びその駆動方法に関する。
非常に明るい部分と暗い部分が同時に存在している場合でも、良好な撮像を可能とするためには、広いダイナミックレンジを有した固体撮像装置が必要であるが、従来、図23に示すように、1フレーム周期(以下、単に「フレーム」と言う。)中を、長時間露光期間、短時間露光期間、超短時間露光期間に分割して、これらの蓄積時間の異なる信号をそれぞれ読み出して合成することで広ダイナミックレンジ化を図った固体撮像装置が提案されている(特許文献1参照。)
又、信号を多数回読み出して外部で信号の積算を行うことでダイナミックレンジ拡大を行う方法が提案されている(特許文献2参照。)。
特開2004−363666号公報 特開2003−259234号公報
しかしながら、特許文献1に記載された方法では、1フレーム中に複数枚作成される画像は、それぞれ異なる時間帯に属するものであり、撮像対象が高速に変化する動画である場合、像に歪みが発生する問題がある。
又、特許文献2に記載された方法では、複数回信号を読み出して外部で加算することによって、ノイズが加算されることにより、低照度の領域でのノイズが目立つという課題がある。
上記問題を鑑み、本発明は、撮像対象が高速に変化する場合であっても、像に歪みが発生しないようにして、ダイナミックレンジを拡大可能な固体撮像装置及びその駆動方法を提供することを目的とする。
又、信号を繰り返し読み出して外部で信号の積算を行って、信号のダイナミックレンジの拡大を行う際に、微弱光による微小な蓄積電荷に対しては、読み出しノイズを増加させることなく、ダイナミックレンジの拡大が可能な固体撮像装置及びその駆動方法を提供することを目的とする。
上記目的を達成するために、本発明の第1の態様は、(イ)第1導電型の半導体領域と、(ロ)半導体領域の上部の一部に埋め込まれ、半導体領域とフォトダイオードをなす第2導電型表面埋込領域と、(ハ)半導体領域の上部の一部に埋め込まれ、表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域と、(ニ)この転送電荷蓄積領域から信号電荷を読み出す読み出し用バッファアンプとを備える画素を複数配列した固体撮像装置の駆動方法であって、表面埋込領域から転送電荷蓄積領域への電荷の転送が、1フレーム内において繰り返される複数回の部分転送と、複数回の部分転送の後の全転送からなる固体撮像装置の駆動方法であることを要旨とする。ここで、第1導電型と第2導電型とは互いに反対導電型である。即ち、第1導電型がn型であれば、第2導電型はp型であり、第1導電型がp型であれば、第2導電型はn型である。
本発明の第2の態様は、(イ)第1導電型の半導体領域、半導体領域の上部の一部に埋め込まれ、半導体領域とフォトダイオードをなす第2導電型表面埋込領域、半導体領域の上部の一部に埋め込まれ、表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域、この転送電荷蓄積領域から信号電荷を読み出す読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、(ロ)表面埋込領域から転送電荷蓄積領域への電荷の転送が、1フレーム内において繰り返される複数回の部分転送と、複数回の部分転送の後の全転送をなすように画素を駆動する周辺回路部を備える固体撮像装置であることを要旨とする。
本発明の第3の態様は、(イ)第1導電型の半導体領域、半導体領域の上部の一部に埋め込まれ半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、半導体領域の上部の一部に埋め込まれ第1表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第1の転送電荷蓄積領域、半導体領域の上部の一部に埋め込まれ第2表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第2の転送電荷蓄積領域、第1の転送電荷蓄積領域から信号電荷を読み出す第1の読み出し用バッファアンプ、第2の転送電荷蓄積領域から信号電荷を読み出す第2の読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、(ロ)第2表面埋込領域から第2の転送電荷蓄積領域への電荷の転送を、1フレーム内において繰り返される複数回の部分転送でなし、第1表面埋込領域から第1の転送電荷蓄積領域への電荷の転送を、複数回の部分転送の後の全転送としてなすように画素を駆動する周辺回路部とを備え、第1表面埋込領域のなす電荷に対するポテンシャル井戸の深さが、第2表面埋込領域のなすポテンシャル井戸の深さよりも深い固体撮像装置であることを要旨とする。
本発明の第4の態様は、(イ)第1導電型の半導体領域、半導体領域の上部の一部に埋め込まれ半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、半導体領域の上部の一部に埋め込まれ第1及び第2表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域、転送電荷蓄積領域から信号電荷を読み出す読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、(ロ)第2表面埋込領域から転送電荷蓄積領域への電荷の転送を、1フレーム内において繰り返される複数回の部分転送でなし、第1表面埋込領域から転送電荷蓄積領域への電荷の転送を、複数回の部分転送の後の全転送としてなすように画素を駆動する周辺回路部とを備え、第1表面埋込領域のなす電荷に対するポテンシャル井戸の深さが、第2表面埋込領域のなすポテンシャル井戸の深さよりも深い固体撮像装置であることを要旨とする。
本発明の第5の態様は、(イ)第1導電型の半導体領域、半導体領域の上部の一部に埋め込まれ半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、半導体領域の上部の一部に埋め込まれ第1表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第1の転送電荷蓄積領域、半導体領域の上部の一部に埋め込まれ第2表面埋込領域から転送されたフォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第2の転送電荷蓄積領域、第1の転送電荷蓄積領域及び第2の転送電荷蓄積領域間を短絡する接続配線、この接続配線に接続され、第1及び第2の転送電荷蓄積領域から信号電荷を読み出す第1及び第2の転送電荷蓄積領域に共通の読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、(ロ)第2表面埋込領域から第2の転送電荷蓄積領域への電荷の転送を、1フレーム内において繰り返される複数回の部分転送でなし、第1表面埋込領域から第1の転送電荷蓄積領域への電荷の転送を、複数回の部分転送の後の全転送としてなすように画素を駆動する周辺回路部とを備え、第1表面埋込領域のなす電荷に対するポテンシャル井戸の深さが、第2表面埋込領域のなすポテンシャル井戸の深さよりも深い固体撮像装置であることを要旨とする。
本発明によれば、撮像対象が高速に変化する場合であっても、像に歪みが発生しないようにして、ダイナミックレンジを拡大可能な固体撮像装置及びその駆動方法を提供することができる。
更に、本発明によれば、微弱光に対する信号をノイズの増加なく読み出しながら、信号のダイナミックレンジを拡大可能な固体撮像装置及びその駆動方法を提供することができる。
次に、図面を参照して、本発明の第1〜第3の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
又、以下に示す第1〜第3の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
(第1の実施の形態)
本発明の第1の実施の形態に係る固体撮像装置(2次元イメージセンサ)は、図1に示すように、画素アレイ部(X11〜X1m;X21〜X2m;……;Xn1〜Xnm)と周辺回路部(104,105,106,NC1〜NCm)とを同一の半導体チップ上に集積化している。画素アレイ部には、2次元マトリクス状に多数の画素Xij(i=1〜m;j=1〜n:m,nはそれぞれ整数である。)が配列されており、方形状の撮像領域を構成している。そして、この画素アレイ部の下辺部には、画素行X11〜X1m;X21〜X2m;……;Xn1〜Xnm方向に沿って水平シフトレジスタ106が設けられ、画素アレイ部の左辺部には画素列X11〜Xn1;X12〜Xn2;……;X1j〜Xnj;……;X1m〜Xnm方向に沿って垂直シフトレジスタ(垂直ドライバ回路)105が設けられている。垂直シフトレジスタ(垂直ドライバ回路)105及び水平シフトレジスタ106には、タイミング発生回路104が接続されている。
タイミング発生回路104、水平シフトレジスタ106及び垂直シフトレジスタ(垂直ドライバ回路)105によって画素アレイ部内の画素Xijが順次走査され、画素信号の読み出しや電子シャッタ動作が実行される。即ち、本発明の第1の実施の形態に係る固体撮像装置では、画素アレイ部を各画素行X11〜X1m;X21〜X2m;……;Xn1〜Xnm単位で垂直方向に走査することにより、各画素行X11〜X1m;X21〜X2m;……;Xn1〜Xnmの画素信号を各画素列X11〜Xn1;X12〜Xn2;……;X1j〜Xnj;……;X1m〜Xnm毎に設けられた垂直信号線B1,B2,B3,…,Bj,…,Bmによって画素信号を読み出す構成となっている。
各垂直信号線B1,B2,B3,…,Bj,…,Bmには、それぞれノイズキャンセル回路NC1,NC2,NC3,…,NCj,…,NCmが接続されている。即ち、1水平ライン毎に、対応するカラムのノイズキャンセル回路NC1〜NCmに転送電荷蓄積領域の蓄積した信号電荷に依存したレベルを読み出し、それぞれのノイズキャンセル回路NC1〜NCmにおいてノイズキャンセルを行った後、水平走査を行う。先ず、リセット信号R(1)のパルスを与えて、転送電荷蓄積領域をリセットしたときのリセットレベルをφRパルスによってノイズキャンセル回路NC1内のキャパシタC1にサンプルし、記憶する。次いで、制御信号TX(1)を与え、受光カソード領域11aから電荷蓄積領域12aを経て転送電荷蓄積領域に信号電荷の転送を行う。そのときの信号レベルを、φSパルスによってノイズキャンセル回路NC1の別のキャパシタC2にサンプルし、記憶する。この動作は、1行分の画素に対して同時に行われ、ノイズキャンセル回路NC1〜NCmの1行分の信号が記憶される。ノイズキャンセル回路NC1〜NCmに記憶された信号を、水平選択制御信号SH(1)〜SH(M)を与えることで、順次読み出し、差動アンプ107に入力する。差動アンプ107が、ノイズキャンセル回路NC1〜NCmに記憶されたリセットレベルと信号レベルとの差分を求めることにより、増幅トランジスタ等が発生する固定パターンノイズと、浮遊拡散層で発生するリセットノイズをキャンセルする。差動アンプ107からの画像信号を順次水平走査により図10に示す画像合成回路に出力する。このような処理を、1行目から、最終行まで行うことで、すべての画像信号が読み出され、画像合成回路で画像が合成される。水平ラインの選択は、制御信号Siを画素X11〜X1m;X21〜X2m;・・・・・;Xn1〜Xnm内の電圧読み出し用バッファアンプ82(図3参照。)の画素選択用のスイッチングトランジスタMSiに与えることで行い、垂直信号に対応する水平ラインの信号が現れる。
第1の実施の形態に係る固体撮像装置のそれぞれの画素X11〜X1m;X21〜X2m;……;Xn1〜Xnm内の画素回路として機能する画素の平面構造の一例を、図2に、対応する断面図を図3に示すが、図2の左側には、受光カソード領域(電荷生成領域)として機能する表面埋込領域22が矩形の領域として示されている。表面埋込領域22は、第1導電型(p型)の半導体領域25に囲まれた第2導電型(n型)の表面埋込領域22である。この表面埋込領域22の領域内で、一点鎖線で示した遮光膜開口部42(図3には遮光膜41が示されている。)を介して、画素に光が入射する。即ち、画素は、遮光膜41の開口部42を介して入射した光信号を受光し、この光信号を信号電荷に変換する。表面埋込領域22の右側に、画素が生成した信号電荷を右方向に静電誘導で転送する転送ゲート電極16が配置されている。「静電誘導で転送」とは、具体的には、転送ゲート電極16に印加する電圧により転送ゲート電極16の直下の半導体領域25の表面に電荷転送チャネルを誘起して電荷を転送するという意味である。即ち、通常のMOSトランジスタのゲート電圧の制御によるソース・ドレイン間電流の制御等の容量制御型(電圧制御型)の電流制御が「静電誘導による転送」に該当する。更に、図2に示すように、転送ゲート電極16により静電誘導で転送された信号電荷を蓄積する転送電荷蓄積領域23が転送ゲート電極16の右側に配置されている。転送電荷蓄積領域23の更に右側には、転送電荷蓄積領域23に隣接し、リセットゲート電極13と、このリセットゲート電極13を介して、転送電荷蓄積領域23に対向するリセットドレイン領域24が配置されている。転送電荷蓄積領域23、リセットゲート電極13及びリセットドレイン領域24とでリセットトランジスタとなるMOSトランジスタが形成されている。それぞれのリセットゲート電極13に対し、制御信号Rをすべてハイ(H)レベルにして、転送電荷蓄積領域23に蓄積された電荷をリセットドレイン領域24にそれぞれ吐き出し、転送電荷蓄積領域23をリセットする。
図3は図2に示した画素のA−A方向から見た断面構造であるが、第1導電型(p型)の半導体基板19と、半導体基板19の上に配置された第1導電型(p型)の半導体層(エピタキシャル成長層)20と、半導体層(エピタキシャル成長層)20の上に配置された第2導電型(n型)の表面埋込領域22が示されている。上述したように、表面埋込領域22は、第1導電型の半導体領域(pウェル)25に囲まれたn型の表面埋込領域22である。受光カソード領域(電荷生成領域)として機能する表面埋込領域22と、表面埋込領域(受光カソード領域)22の直下の受光アノード領域として機能する半導体層(エピタキシャル成長層)20とでフォトダイオードを構成している。電荷生成領域(受光アノード領域)で生成されたキャリア(電子)は、電荷生成領域の直上の表面埋込領域22の一部に注入される。図3では「第1導電型の半導体領域」としては、第1導電型(p型)の半導体基板19と、半導体基板19の上に配置された第1導電型(p型)の半導体層(エピタキシャル成長層)20を形成したエピタキシャル成長基板を用いる場合を例示しているが、エピタキシャル成長基板を用いる代わりに、「第1導電型の半導体領域」として第1導電型の半導体基板を採用しても良い。
表面埋込領域(受光カソード領域)22の上には、p+型ピニング層21が配置されている。p+型ピニング層21は、ダーク時の表面でのキャリアの生成を抑制する層であり、ダーク電流削減のために好ましい層として用いている。ダーク電流が問題とならない用途(応用)等では、構造上、p+型ピニング層21を省略しても構わない。
そして、図3において右側に示した第1導電型の半導体領域(pウェル)25の表面には、リセットトランジスタを構成する転送電荷蓄積領域23とリセットドレイン領域24が配置されている。p+型ピニング層21及びpウェル25の上にはゲート絶縁膜32が形成されている。ゲート絶縁膜32としては、シリコン酸化膜(SiO2膜)が好適であるが、シリコン酸化膜(SiO2膜)以外の種々の絶縁膜を用いた絶縁ゲート型トランジスタ(MISトランジスタ)の絶縁ゲート構造をなしても良い。例えば、シリコン酸化膜(SiO2膜)/シリコン窒化膜(Si34膜)/シリコン酸化膜(SiO2膜)の3層積層膜からなるONO膜でも良い。更には、ストロンチウム(Sr)、アルミニウム(Al)、マグネシウム(Mg)、イットリウム(Y)、ハフニウム(Hf)、ジルコニウム(Zr)、タンタル(Ta)、ビスマス(Bi)のいずれか一つの元素を少なくとも含む酸化物、又はこれらの元素を含むシリコン窒化物等がゲート絶縁膜32として使用可能である。
ゲート絶縁膜32上には、表面埋込領域(受光カソード領域)22から転送電荷蓄積領域23へ信号電荷を静電誘導で転送する転送ゲート電極16が配置されている。又、pウェル25上のゲート絶縁膜32上にはリセットゲート電極13が配置され、転送電荷蓄積領域23、リセットゲート電極13及びリセットドレイン領域24とでリセットトランジスタを構成している。
転送電荷蓄積領域23には、図3に示すように、電圧読み出し用バッファアンプ82を構成する信号読み出しトランジスタ(増幅トランジスタ)MAiのゲート電極が接続されている。信号読み出しトランジスタ(増幅トランジスタ)MAiのドレイン電極は電源VDDに接続され、ソース電極は画素選択用のスイッチングトランジスタMSiのドレイン電極に接続されている。画素選択用のスイッチングトランジスタMSiのソース電極は、垂直信号線Bjに接続され、ゲート電極には水平ラインの選択用制御信号Sが垂直シフトレジスタ(垂直ドライバ回路)105(図1参照。)から与えられる。選択用制御信号Sをハイ(H)レベルにすることにより、スイッチングトランジスタMSiが導通し、信号読み出しトランジスタ(増幅トランジスタ)MAiで増幅された転送電荷蓄積領域23の電位に対応する電流が垂直信号線Bjに流れる。
図3に示した断面構造において、半導体基板19の不純物密度よりも電荷生成領域となる半導体層20の不純物密度の方が低い。即ち、半導体基板19は、不純物密度4×1017cm-3程度以上、1×1021cm-3程度以下、電荷生成領域となる半導体層(エピタキシャル成長層)20が不純物密度6×1011cm-3程度以上、2×1015cm-3程度以下程度が好ましい。特に、半導体基板19を不純物密度4×1017cm-3程度以上、1×1021cm-3程度以下のシリコン基板、半導体層(エピタキシャル成長層)20を不純物密度6×1011cm-3程度以上、2×1015cm-3程度以下のシリコンエピタキシャル成長層20とすれば、通常のCMOSプロセスが採用できる。工業的な意味からは、不純物密度8×1017cm-3程度以上、1×1020cm-3程度以下のシリコン基板19、不純物密度6×1013cm-3程度以上、1.5×1015cm-3程度以下のシリコンエピタキシャル成長層20とすれば、市場での入手も容易で好ましい。シリコンエピタキシャル成長層20の厚さは4〜20μm程度、好ましくは6〜10μm程度とすれば良い。表面埋込領域22は、不純物密度5×1014cm-3程度以上、5×1016cm-3程度以下、代表的には、例えば1×1015cm-3程度の不純物密度の値が採用可能であり、その厚さは0.1〜3μm程度、好ましくは0.5〜1.5μm程度とすることが可能である。
図4に、本発明の第1の実施の形態に係る固体撮像装置における電荷の部分転送のタイミングチャートを示す。縦軸は、表面埋込領域(受光カソード領域)22に蓄積される蓄積電荷量であり、横軸は1フレーム内における時間を示す。第1の実施の形態では、信号が飽和する前に短い蓄積時間で何度も信号を読むことでダイナミックレンジの拡大を図る。電荷の蓄積を行って読みだされる信号は、容量に転送されて電圧として読み出される。したがって、読み出される電圧は、電荷に比例するので、図4は電圧で考えても良い。そこで、蓄積電荷の最大値QMに対応する電圧をVM,部分転送閾値電荷QTに相当する電圧を部分転送閾値電圧VTとし、それぞれ、縦軸に括弧書きで付記した。
先ず、強い光が照射された場合、表面埋込領域(受光カソード領域)22の電荷は短時間で飽和レベル(Qmax)に至る。飽和すると、光によって発生した電荷に比例した信号を読み出せないので、飽和しない内に短い時間の蓄積を行って、部分転送によって読み出す。図4では、先ず時刻t=t1で蓄積電荷を静電誘導で部分転送し、その信号を外部によみだす。これによって、表面埋込領域(受光カソード領域)22の電位を上げ、電荷の蓄積を行える状態にする。ここから、更に短時間蓄積を行い時刻t=t2で再び静電誘導による電荷の部分転送を行って、これを外部に読み出す。ここから、短時間蓄積を行い時刻t=t3で再び静電誘導による電荷の部分転送を行って、これを外部に読み出す。これによって、表面埋込領域(受光カソード領域)22の電位を上げ、電荷の蓄積を行える状態にする。ここから、短時間蓄積を行い時刻t=t4で再び静電誘導による電荷の部分転送を行って、これを外部に読み出す。この動作を複数回(n回)繰り返すことで、短時間蓄積で読み出された複数の信号を得ることができる。強い光が照射されているが、極めて短い時間だけ蓄積を行うので、飽和レベルに達する前に読み出しが行える。又、フレームの最後(t=tn)においては、完全転送を行い、全電荷の読み出しを行う。
画像の作成は、部分転送時に得られた複数の画像と、フレームの最後での完全転送によって得られた信号の和をとり、1フレームの時間で積分することで作成される。この計算により、もし1フレーム蓄積を続けたとすれば、どれだけの電荷が蓄積されるはずかがわかるため、高照度領域のダイナミックレンジが拡大できる。しかも、短時間蓄積の時間を短くするほど拡大幅が大きくなることが期待される。
弱い光が照射された場合においても、同じ動作を行う。しかし、時刻t=t1、t2などの部分転送時には電荷の転送が行われないため、読み出されるデータは0となる。そのため、tnの完全転送までの長時間蓄積を行うことができ、その電荷を完全転送を行った後、読み出すことで画像を作成する。
ここで考えなければならないことは、部分転送によって読み出された信号とフレームの最後の完全転送によって得られた信号の和によって得られた信号を使用するのか、又は、完全転送によって読み出された信号のみを使用するのかということである。前者の場合、何度も読み出しを行って、その和を求めるので、読み出し時のノイズが加算される。これは信号が十分大きい場合には、読み出しノイズが加算されても問題にならないが、蓄積電荷量が少なく、小さい信号の場合に対しては、ノイズの影響が大きくなり、低照度側のダイナミックレンジが制限される。好都合なことに、蓄積電荷量が少ない場合には、部分電荷転送の繰り返しを行う際に信号が読み出されずゼロとなるので、最後の完全転送によって読み出された信号のみを使っても正しい信号を読み出すことができる。これによって、蓄積電荷量が小さい微弱な光による信号に対しては、一度だけ信号を読むことによってノイズの少ない信号が得られる。そのため低照度側でのダイナミックレンジが確保できる。どちらの信号を用いるかの判断は、例えば、完全転送され、読まれた電荷量が図4の部分転送閾値電荷QTを上回っているか、下回っているかで判断する方法である。これは、完全転送直前の最後の部分転送時にちょうど電荷量が部分転送閾値電荷QTに達する場合である。その場合の、完全転送時に静電誘導で転送される電荷量が「完全転送電荷量QC」である。部分転送が行われるような強さの光が照射されている場合は、光の強さが一定と仮定すると、必ず完全転送時には部分転送閾値電荷QTを上回るため、そこを判断基準にすれば良い。完全転送電荷量Qを求めるためには、部分転送閾値電荷QTの値を正確に知らなければならない。又、この判断に誤差が生じると、部分転送によって読み出された信号がゼロでないにも関わらず、その信号を使わないで完全転送のみによって読み出された信号を使うことになって誤差を生じる可能性がある。そこで、判断の閾値を、完全転送電荷量QCよりも少し小さい値に設定するのが望ましい。
図5は、図1に示した本発明の第1の実施の形態に係る固体撮像装置の垂直シフトレジスタ(垂直ドライバ回路)105のi行目の駆動回路を示す。図5に示すように、垂直クロック配線VCKに接続された第1の遅延フリップフロップ51と第2の遅延フリップフロップ52とを各行に備えてパラレル出力のシフトレジスタのi段目を構成している。このi行目の駆動回路は、更に、NOR回路53,第1のAND回路54,第2のAND回路55,第3のAND回路56,第4のAND回路57,第1のAND回路54の出力側に接続され、i行目の選択用制御信号Siを出力するインバータ(バッファ増幅器)58,第2のAND回路55の出力側に接続され、i行目のリセット信号Riを出力するCMOSインバータ(Q11,Q12),第3のAND回路56及び第4のAND回路57の出力側に接続され、i行目の転送ゲート信号TXiを出力する2入力NOR回路(Q13,Q14,Q15,Q16)を備える。NOR回路53には垂直クロック信号VCKと、i行目の垂直駆動信号Uiが入力される。第1のAND回路54には垂直クロック信号VCKと垂直選択信号Sが入力され、第2のAND回路55には垂直クロック信号VCKとリセット信号Rが入力され、第3のAND回路56には第2転送ゲート信号TX2とNOR回路53の出力が入力され、第4のAND回路57には第1転送ゲート信号TX1と垂直クロック信号VCKが入力される。2入力NOR回路(Q13,Q14,Q15,Q16)を構成するpMOSトランジスタQ13のドレイン電極は、低閾値電圧供給線VTLに接続され、pMOSトランジスタQ13のゲート電極は第3のAND回路56の出力側に接続されている。又、2入力NOR回路(Q13,Q14,Q15,Q16)を構成するpMOSトランジスタQ14のドレイン電極は、高閾値電圧供給線VTHに接続され、pMOSトランジスタQ14のゲート電極は第4のAND回路57の出力側に接続されている。時刻t=t1〜t=ts-1では垂直クロック信号VCKのタイミングで2入力NOR回路(Q13,Q14,Q15,Q16)から低ゲート閾値電圧VTLを転送ゲート電圧VTXとして逐次供給し、時刻t=tsで2入力NOR回路(Q13,Q14,Q15,Q16)から高ゲート閾値電圧VTHを転送ゲート電圧VTXとして供給する。
先ず、図6及び図7は、本発明の第1の実施の形態に係る固体撮像装置の画素構造を用いたときのポテンシャル図である。初期状態から電荷の蓄積を開始すると、表面埋込領域(受光カソード領域)22に電荷が溜まり、ポテンシャルが低くなっていく。従来のイメージセンサでは、この蓄積を1フレームの最後まで行い、1フレームの最後になったら、転送ゲート電極16に転送ゲート電圧VTXをかけ、転送ゲート電極16の直下のポテンシャルを高く(ポテンシャル障壁を低く)することで、表面埋込領域(受光カソード領域)22から転送電荷蓄積領域23へ電荷の転送を行う。このときの転送は完全転送であり、初期状態の表面埋込領域(受光カソード領域)22の電子のエネルギーレベルよりも高くなるように転送ゲート電圧VTXをかけなければならない。その後、転送電荷蓄積領域23に転送された電荷を読み出し、画像を作成する。このような従来のイメージセンサの転送方法では、蓄積時間内で表面埋込領域(受光カソード領域)22が飽和してしまうと、白飛びが発生してしまい、それを防ごうと蓄積時間を短くしてしまうと、低照度領域での信号が小さくなり、ノイズに埋もれてしまうため、黒つぶれが発生してしまう。
本発明の第1の実施の形態に係る固体撮像装置によれば、図4に例示したような部分転送の動作を行うことで、従来のイメージセンサの問題が解決される。
先ず、強い光が照射された場合の転送動作を図6及び図7を用いて説明する。
(イ)図6(a)に示すように、t<t1の最初の部分転送が行われるまでに、表面埋込領域(受光カソード領域)22に多量の電荷が蓄積される。そのため、図6(b)に示すように、時刻t=t1で転送ゲート電極16に転送ゲート電圧VTX=VTLをかけ、静電誘導で電位障壁の高さを少し下げることで、表面埋込領域(受光カソード領域)22に蓄積された電荷の一部が転送電荷蓄積領域23に部分転送される。これにより、表面埋込領域(受光カソード領域)22の電子のエネルギーレベルが高くなり、その分だけ蓄積が可能となる。このとき転送電荷蓄積領域23に転送された電荷はデータとして外部で記憶する。
(ロ)図6(c)に示すように、t1<t<t2においては、最初の部分蓄積が可能となった容量を用いて、時刻t=t2まで短時間蓄積を行う。そして、図6(d)に示すように、時刻t=t2で静電誘導による部分転送を行い、このとき転送電荷蓄積領域23に転送された電荷をデータとして外部で保存する。
(ハ)図7(e)に示すように、t2<t<t3においても部分蓄積が可能となった容量を用いて、時刻t=t3まで短時間蓄積を行う。そして、図7(f)に示すように、時刻t=t3で静電誘導による部分転送を行い、このとき転送電荷蓄積領域23に転送された電荷をデータとして外部で保存する。
(ニ)図7(g)に示すように、t3<t<t4においても部分蓄積が可能となった容量を用いて、時刻t=t4まで短時間蓄積を行う。そして、時刻t=t4で静電誘導による部分転送を行い、このとき転送電荷蓄積領域23に転送された電荷をデータとして外部で保存する。
(ホ)この動作を複数回((s−1)回)行った後、図7(h)に示すように、1フレームの最後、時刻t=ts-1で静電誘導による部分転送により電荷の排除を行った後、時刻t=tsで、転送ゲート電極16に転送ゲート電圧VTX=VTHをかけ、静電誘導で電位障壁の高さを完全に消滅させることで完全転送を行う。この完全転送によって読み出されたデータで短時間蓄積のデータを使用するか、長時間蓄積のデータを使用したかを決定する。
次に、弱い光が照射された場合の転送動作を図8及び図9により説明する。
(イ)図8(a)に示すように、t<t1においては、蓄積される電荷量が少量のため、時刻t=t1になっても、図8(b)に示すように部分転送閾値電荷QTまで電荷が溜まらない。これにより、電荷を排除するための部分転送動作が行われても表面埋込領域(受光カソード領域)22に蓄積されている電荷はまったく転送されず、蓄積を続ける。
(ロ)図8(c)に示すように、t1<t<t2においても、蓄積される電荷量が少量のため、時刻t=t2になっても、図8(d)に示すように部分転送閾値電荷QTまで電荷が溜まらない。これにより、電荷を排除するための部分転送動作が行われても表面埋込領域(受光カソード領域)22に蓄積されている電荷はまったく転送されず、蓄積を続ける。
(ハ)図9(e)に示すように、t2<t<t3においても、蓄積される電荷量が少量のため、時刻t=t3になっても、図9(f)に示すように部分転送閾値電荷QTまで電荷が溜まらない。これにより、電荷を排除するための部分転送動作が行われても表面埋込領域(受光カソード領域)22に蓄積されている電荷はまったく転送されず、蓄積を続ける。
(ニ)図9(g)に示すように、t3<t<t4においても、蓄積される電荷量が少量のため、時刻t=t4になっても、部分転送閾値電荷QTまで電荷が溜まらない。これにより、電荷を排除するための部分転送動作が行われても表面埋込領域(受光カソード領域)22に蓄積されている電荷はまったく転送されず、蓄積を続ける。
(ホ)同様に時刻t=t4以降でも、電荷の転送が行われず、図9(h)に示すように、時刻t=tsの完全転送によって初めて静電誘導による転送が行われる。よって、長時間の蓄積を行えるということになる。
第1の実施の形態に係る固体撮像装置の画像合成回路は、図10にブロック図で示したように、イメージセンサのi回目の読み出しにおける信号V(i)を一方の入力端子に、閾値電圧(VC−ΔVC)を他方の入力端子に入力する比較器65と、比較器65の出力を入力する加算器92と、加算器92の出力側に接続されたメモリ70とを備える。このメモリ70の出力は、スイッチS1を介して加算器92にフィードバックされ、メモリ70と加算器92とで積算器7bを構成している。閾値電圧(VC−ΔVC)は、「完全転送時等価電圧VC」から電圧マージンΔVCを引いた電圧であり、例えば、図示を省略した演算回路(ALU)又は基準電圧発生装置等から比較器65の他方の入力端子に供給される。ここで、「完全転送時等価電圧VC」は、図11に示した完全転送電荷量QCに対応する電圧である。閾値電圧(VC−ΔVC)の代わりに完全転送時等価電圧VCそのものを比較器65の他方の入力端子に入力して、イメージセンサの信号V(i)と完全転送時等価電圧VCとを比較しても良い。
比較器65にはカウンタ67が接続されている。スイッチS1は、比較器65の出力がインバータ95を介して反転された信号により制御されるが、スイッチS2は、比較器65の出力がインバータを介さずそのままの位相で制御される。即ち、スイッチS1とスイッチS2とには、互いに逆相の信号が入力され、"0"を加算器92に入力するか、メモリ70の出力を加算器92にフィードバックするのかが切り換えられる。
第1の実施の形態に係る固体撮像装置の画像合成回路においては、イメージセンサから出力された信号V(i)を、フレームメモリとしてのメモリ70が、基本的に、それぞれの画素が部分転送を行う毎に逐次加算して信号を増やしていく。そして、一番最後(i=N)の完全電荷転送を行って得られた信号V(N)についてのみ、適応的な処理をする。つまり、もし、完全電荷転送を行って得られた画素信号が、部分転送閾値電荷QT(VT)以下であれば、その画素信号は、1フレームを蓄積しても部分転送閾値電荷QTに達していないので、1回読むだけで良く、部分転送による信号を足す必要がない。
したがって、比較器65により、完全電荷転送により得られた信号V(N)と閾値電圧(VC−ΔVC)とを比べて、小さいときには、メモリ70に記憶された部分転送を、完全電荷転送による信号と置き換える。又、もし完全電荷転送の信号が、閾値電圧(VC−ΔVC)よりも大きいときには、完全電荷転送による信号とそれ以前の部分転送による信号を加算して、再度メモリ70に格納する。その制御は、メモリ70の出力を入力信号と加算するための経路を加算器92に与えるか、或いは遮断して、加算器92の入力に0を与えておくかを、スイッチS1とスイッチS2を用いて制御すれば良い。
即ち、第1の実施の形態に係る固体撮像装置においては、信号が飽和しない光電流の最大は、
Iph,max=QM/t1 …(1)
或いは、図4においてt=t−t=ΔT,t−t=ΔT,…とすると、
Iph,max=(QM−Q)/t …(2)
となる。これらが同じになるようにt を定めると、
ΔT=t (1−α) …(3)
ここで、α=Q/QMである。部分転送をしない場合に、1フレームの期間蓄積しても、信号が飽和しない最大の光電流は、Tfをフレーム周期として、
Iph,max=QM/tf …(4)
となる。部分転送をn回行う場合、
f =t +(n−1)ΔT=t{1+(n−1)(1−α)}…(5)
なので、部分転送をn回行うことによるダイナミックレンジの拡大率は、1+(n−1)(1−α)倍となる。例えば、n=8で、α=0.5とすると4.5倍拡大される。
デバイスシミュレータにより、図2及び図3に示した画素構造を用いて、電荷の部分転送が行われるのかを確認した。シミュレーションに際しては、表面埋込領域22から転送電荷蓄積領域23への静電誘導による転送を動作確認対象とし、転送電荷蓄積領域23も3.3[V]で固定した。このため、転送が行われても転送電荷蓄積領域23の電位の変化は現れないという条件でシミュレーションを行った。
電荷の転送時には、図2及び図3に示した転送ゲート電極16に電荷をかけ、ポテンシャル障壁の高さを下げる静電誘導効果によって転送を行うが、ポテンシャル障壁の高さを下げる時間によってどのように静電誘導で転送される電子数が変化するのかを調べた。これは、この後に述べる表面埋込領域22の蓄積電子数と転送電子数の関係を求める際、部分転送が完全に行われた状態でのデータを得るために調べる。その結果が図12である。
転送ゲート電圧VTX=1.4[V]の場合は、大きくポテンシャル障壁の高さを下げるので短い時間で完全転送が行われ、一定値に落ち着いているが、それ以下の転送ゲート電圧VTXをかけたものは、0.5[μs]時間がたった後も転送が行われていることがわかる。しかしそれは0.1[μs]と比べるとかなり少量なので、0.5[μs]では、転送は落ち着いていると考える。
部分転送の動作はシミュレーションによって確認したが、判断基準値QCを決定するためには、部分転送後に表面埋込領域22に残る部分転送閾値電荷QTを求めなければならない。そのため、表面埋込領域22の蓄積電子数と転送電子数の関係を求めた。その結果を図13に示す。図13においては、時間による転送電子数の変化の影響を受けないように転送時間を0.5[μs]とした。先ず、転送ゲート電圧VTX=0.5[V]とし測定を行った。部分転送を行うことを想定したときは、部分転送閾値電荷QT以下の蓄積電子数なら転送がまったく行われず、それ以上なら蓄積電子数と転送電子数の関係が線形的になることが理想である。しかし、結果から、蓄積電子数が部分転送閾値電荷QTを大きく上回る場合は、線形性を持っているが、部分転送閾値電荷QT付近では非線形性を持っていることがわかる。ここで非線形性は、部分転送時に表面埋込領域22の電子のエネルギーレベルがポテンシャル障壁の高さと同等になっても転送が止まらず、表面埋込領域22の電子のエネルギーレベルの方が高くなるまで転送され続けることによると考えられる。完全転送では勿論線形性は得られるので、この非線形部分は画像を合成したときに、高照度側と低照度側とをつなぐ位置であり、このつなぎ目で画像の影響を与える可能性がある。
この非線形性は、拡散電流による電荷転送が原因であると考えられる。
即ち、拡散電流による電流密度の式は、次のようになる:
J=−qADn(dnp/dx) …(6)
このとき、Dnは拡散係数と呼ばれる。又、Aは流路の面積を表していて、
A=Wd …(7)
となる。又、アインシュタインの関係式は次のようになり、この式は、半導体中のキャリアのドリフトと拡散を特徴付ける重要な定数である移動度と拡散係数の関係を示す。
n=(kt/q)μn …(8)
又、式(6)のdnp/dxは、
−dnp/dx=(np(0)−np(L))/L …(9)
と表せ、電荷が転送され始めるときの表面埋込領域22の電子から見たポテンシャル障壁の高さをφBとして
p(0)=np0 exp(φbi−φB)/VT …(10)
p(L)≒0 …(11)
である。式(6)〜(11)を解くと、次の式、
J=μn(W/L)kTdnp0 exp(φbi−φB)/VT …(12)
が導かれる。ここで、簡単のために次のように置き換える。
J=J0 exp(−φB/VT) …(13)
次に、表面埋込領域22から転送電荷蓄積領域23、リセットまでの等価回路より、
J=Cs(dφB/dt) …(14)
となり、式(13)と式(14)を解くと、
J=J0/(1+(J(0)/CST)t)
=J(0)/(1+t/τ) …(15)
となる。(ここで、τ=CST/J0である。)又、読み出し時間tRでの電荷排出量Qtを求めると、
t=∫0 tR Jdt=J(0)τlog(1+tR/τ) …(16)
となる。ここで、1≫tR/τのとき、式(16)は、
Q=J(0)τ(tR/τ)=J(0)tR …(17)
となる。もし、J(0)=J(φbi−φB=0)であるならば、このときのJ(0)をJ(0)0とすると、
J(0)0=μn(W/L)kTdnp0 …(18)
となる。
Figure 0004644825
例えば、表1に示すパラメータの値を用いると、
J(0)0=6.24×10-23[A/cm2] …(19)
となる。ここで、tR=0.5[μs]としたときの電荷の転送数は、
T=(J(0)・tR)/q …(20)
となり、NT=1を満たすJ(0)をJ(0)1とすると、
J(0)1=qNT/tR=1.6×10-19/5×10-7
=3.2×10-13 …(21)
となる。式(19)、(21)より、
J(0)1/J(0)0=exp(φbi−φB)/VT
=6.24×10-23 …(25)
となる。これより、
φbi−φB=VTln6.24×10-23=0.581[V] …(26)
となる。ここで、
φbi=VTln(NDA/ni 2)=0.897[V] …(27)
であるため、転送時間を0.5[μs]としたとき、電荷が転送され始めるときの表面埋込領域22の電子から見たポテンシャル障壁の高さφBは、
φB=0.897−0.581=0.316[V] …(28)
となる。この結果より、理論的にも表面埋込領域22の電子のエネルギーレベルがポテンシャル障壁の高さより0.316[V]高くなるまで電荷が転送され続けることがわかる。又、拡散電流は、ポテンシャル障壁の高さφBを変数とし、底がネイピア数eである指数関数で流れるので、その影響により、非線形性が現れることがわかる。
ポテンシャル障壁の高さより表面埋込領域22の電子のエネルギーレベルが高くなるまで転送が行われることがわかったが、転送時間を短くし、ちょうどポテンシャル障壁の高さと表面埋込領域22の電子のエネルギーレベルが等しくなったときに転送をやめれば、線形性が得られるのではないかと考え、転送時間をパラメータとして表面埋込領域22の蓄積電子数と転送電子数の関係をグラフにした。そのグラフが図14である。転送時間を短くしても、転送電子数が全体的に減るが、非線形領域が無くなる、もしくは、小さくなるということはなかった。転送時間100[ns]未満の測定は行っていないが、図14を見るとわかるように、極端に転送電子数を減少してしまう。これでは高照度側へのダイナミックレンジ拡大が小さくなってしまうため、転送時間100[ns]以上で測定を行った。
理想より余分に静電誘導で転送される電荷を軽減させることを目的として、蓄積電子数をパラメータに、ポテンシャル障壁の高さφBと転送電子数の関係を調べた。その関係は、図15のようになった。同じポテンシャル障壁の高さφBを持っていたとしても、蓄積電子数が多くなるにつれて転送電子数が多いということがわかる。図15では、どの程度のポテンシャル障壁の高さφBがあれば電荷転送が行われなくなるかを詳しく見るため、縦軸を対数としている。例えば、ポテンシャル障壁の高さφB=0のとき、蓄積電子数100個のときはほとんど転送されないが、10000個のときは、1000個以上流れてしまうことがわかる。しかし、同じポテンシャル障壁の高さφBで蓄積電子数が少ないということは、部分転送閾値電荷QTが小さくなってしまい、低照度側のダイナミックレンジが失われてしまう。そのため、低照度側のダイナミックレンジを保ちつつ、余分に静電誘導で転送される電荷を減少させることができる、部分転送時の転送ゲート電圧VTXを検討しなければならない。
<第1の実施の形態の変形例>
本発明の第1の実施の形態の変形例に係る固体撮像装置の画素構造を図14に示す。この画素回路は、表面埋込領域(受光カソード領域)22を構成する表面埋込領域22の転送側(右側)の幅Dが狭くなっていることと、表面埋込領域22が長方形ではなく、その角をとった形になっているという特徴を持つ。
第1の実施の形態の変形例において、表面埋込領域22の転送側の幅Dが狭くなっているのは、暗電流の低減を狙ったものである。埋め込みフォトダイオードは、表面埋込領域22の表面にp+型ピニング層21を形成している。これにより、読み出し電圧がかかっても受光部表面で発生する暗電流を読み出さないため、ノイズを低減できる。しかし、転送ゲート電極16付近において、表面埋込領域22が表面に出てしまう。転送は、表面埋込領域22と転送電荷蓄積領域23との間の転送ゲート電極16に転送ゲート電圧VTXをかけることで反転層にし、電荷の通り道であるチャネルを形成することによって行われる。しかし、表面埋込領域22の表面のすべてをp+型ピニング層21で覆ってしまうと、チャネル形成が困難になってしまうため、転送ゲート電極16付近では表面埋込領域22が表面にこなければならない。そのため、表面にある表面埋込領域22で発生した暗電流を読み出してしまう。
第1の実施の形態の変形例によれば、幅Dを狭くすることによって、表面に出る表面埋込領域22の面積を小さくし、読み出される暗電流の発生を少なくできる。又、表面埋込領域22の右側の角を取った形をなすことにより、転送口を狭くしたことによって、表面埋込領域22の角に溜まった電荷の転送が遅くなるのを防ぐことができる。
(第2の実施の形態)
本発明の第2の実施の形態に係る固体撮像装置は、第1の実施の形態に係る固体撮像装置の場合に比して更に強い光が照射される状況に好適な固体撮像装置の駆動方法を提供する。この第2の実施の形態に係る固体撮像装置(2次元イメージセンサ)の全体構成は、図1にした第1の実施の形態に係る固体撮像装置ブロック図と同一であるため、重複した説明を省略する。又、第2の実施の形態に係る固体撮像装置の画素の構成も図2及び図3に示した第1の実施の形態に係る固体撮像装置の構造と同一であるため、重複した説明を省略する。
しかしながら、図17に示すように、本発明の第2の実施の形態に係る固体撮像装置における電荷の部分転送のタイミングチャートは、図4に示した第1の実施の形態に係る固体撮像装置における電荷の部分転送のタイミングチャートとは異なり、2回連続した部分転送の内の1回目の電荷は捨て、2回目の電荷による信号を読み出すことで、その短い時間差で電荷の蓄積を行うことを利用して、ダイナミックレンジの拡大量を大きくしている。そしてこの1回目の電荷は捨て、2回目の電荷による信号を読み出すことを周期的に繰り返す。
図17の縦軸は、図4と同様に、表面埋込領域22に蓄積される蓄積電荷量であり、横軸は1フレーム内における時間を示す。図4に対する第1の実施の形態に係る固体撮像装置の説明では、t,t,t,…のすべての部分転送の信号を読み出す場合を説明した。この場合、どの蓄積の際にも、QMを超えないことが前提である。したがって、第1の実施の形態に係る固体撮像装置では、あまりダイナミックレンジは拡大されないが、フォトダイオードで蓄積される電荷を残らずすべての読み出すことができるので、線形性が良く、動きのあるものを撮ったとしても、ひずみが少ない画像が得られる。
これに対し、図17に示す第2の実施の形態に係る固体撮像装置の電荷部分転送方法の場合は、ΔTの期間内で、電荷が飽和しなければ良いので、光電流の最大値は、
Iph,max=(QM−Q)/ΔT …(29)
となる。したがって第2の実施の形態に係る固体撮像装置の電荷部分転送方法によるダイナミックレンジの拡大率は、
Iph,max=(tf /ΔT)(1−α) …(30)
となる。この場合には、ΔTを任意に小さく選ぶことができるので、Iph,maxを所望の大きな値に設定できる。したがって、第2の実施の形態に係る固体撮像装置の電荷部分転送によれば、第1の実施の形態に係る固体撮像装置に比し、大幅にダイナミックレンジを拡大することが可能である。
図18は、図17の場合に比して光強度が弱い場合の第2の実施の形態に係る固体撮像装置における電荷の部分転送のタイミングチャートであり、図17と同様に、フォトダイオードにおける蓄積電荷と時間の関係を示している。図18では、4回読み出す例を示しており、1回から3回までは部分転送、最後の読み出しは、完全電荷転送を行って読み出す。部分転送では、読み出しタイミングからΔTだけ前の時点で、電荷を静電誘導で部分転送閾値電荷QTまで排出し、ΔTの短時間蓄積する。図18のように、光量が小さい場合、フルフレーム(4T)蓄積しても、部分転送閾値電荷QTに達しない画素は、フルフレームの期間蓄積され、読み出される。
光量が比較的大きく、図18に示したように、2回目の読み出しのときから、部分転送により信号が読み出される場合であって、それが3回目、4回目よりも小さい場合は、3回目と4回目だけの部分転送による信号を使って短時間蓄積信号を生成する。
光量がもっと大きい場合には、図17に示すように、1回目から、4回目までの毎回部分転送による信号を使って、短時間蓄積信号を生成する。このように、光量によって使用する信号の数が変わる。
電荷の蓄積を行って読みだされる信号は、容量に転送されて電圧として読み出される。したがって、読み出される電圧は、電荷に比例する。そこで、図4と同様に、図17及び図18の縦軸において、蓄積電荷の最大値QMに対応する電圧をVM,部分転送閾値電荷QTに相当する電圧を部分転送閾値電圧VTとして、括弧書きで併記した。
本発明の第2の実施の形態に係る固体撮像装置の画素構造を用いたときのポテンシャル図は、基本的には、図6及び図7に類似している。しかし、第2の実施の形態では、2回連続した部分転送の内の1回目の電荷は、リセットトランジスタのリセットゲート電極13に対し、ハイ(H)レベルの制御信号を与えて、排除しているのでその電荷の排除時のポテンシャル図が異なる。
即ち、図6及び図7に示したポテンシャル図において、2つ並んだ深いポテンシャル井戸の左側が、転送電荷蓄積領域23のポテンシャル井戸に対応し、右側がリセットドレイン領域24のポテンシャル井戸に対応するが、第2の実施の形態に係る固体撮像装置では、リセットゲート電極13にハイ(H)レベルの制御信号を与える毎に、2つの深いポテンシャル井戸の間に形成されたリセットポテンシャル障壁が低くなる点が、図6及び図7に示した第1の実施の形態に係る固体撮像装置の画素のポテンシャル図とは異なる。
第2の実施の形態に係る固体撮像装置の画像合成回路のブロック図を、図19に示す。i回目の読み出しにおける信号V(i)を一方の入力端子に入力する第1の比較器65と、この第1の比較器65の他方の入力端子に出力を接続した第1の演算回路(ALU)66と、第1の比較器65の出力を入力する第1のマルチプレクサ69と、第1のマルチプレクサ69の出力を入力する加算器92と、加算器92の出力側に接続されたメモリ70とを備える。このメモリ70の出力は、加算器92にフィードバックされ、メモリ70と加算器92とで積算器7を構成している。第1の演算回路(ALU)66には第1のカウンタ67が接続されている。更に第1のカウンタ67は、"部分転送閾値電圧VT "と"0"とを選択する第2のマルチプレクサ68に接続されている。第2の実施の形態に係る固体撮像装置の画像合成回路は、更に、i回目の読み出しにおける信号V(i)と第2のマルチプレクサ68の出力を加算する加算器91を備える。第1のマルチプレクサ69には、第1の比較器65の出力の他に、加算器91の出力と"0"が入力される。
図19に示す第2の実施の形態に係る固体撮像装置の画像合成回路では、先ず部分転送で得られた信号を使うかどうかの判断を第1の比較器65先ず行う。これは、図17に示すように、2回目は、中途半端に蓄積されて、その量は、3回目、4回目と異なっている。ΔTの期間フルに蓄積された場合には、合成の際に使用し、そうでない場合は使用しないものとすると、その境界の値は、i回目(i=1,2,…,N)では、
f(i)=(ΔT/(iT0−ΔT))VT …(31)
となる。第1の演算回路(ALU)66で式(31)のf(i)を計算し、第1の演算回路(ALU)66の出力と、i回目の読み出しにおける信号V(i)とを第1の比較器65で比較し、V(i)が大きければ、第1の比較器65の出力Niを1にし、小さければ出力Niを0にする。その結果を用いて、i回目の読み出しにおける信号V(i)を使用するかどうかを第1のマルチプレクサ69でコントロールする。つまり、第1のマルチプレクサ69は、第1の比較器65の出力Niが1ならば、V(i)(或いは、i=Nのときには、V(i)−VT)をメモリ70と加算器92からなる積算器7に加える。
図19に示すように、第2の実施の形態に係る固体撮像装置の画像合成回路は、更に、第1の比較器65の出力Niを入力する第2のカウンタ71と、第2のカウンタ71の出力Bと積算器7の出力Aとを入力する第2の演算回路(ALU)72を備える。積算器7の出力Aは、第2の演算回路(ALU)72で、第2のカウンタ71の出力:
B(N)=ΣNi …(32)
で割って、平均値を求める(出力B(N)はNiのi=1〜Nまでの総和である。)
図19に示すように、第2の実施の形態に係る固体撮像装置の画像合成回路は、更に、N回目の読み出しにおける信号V(N)を一方の入力端子に入力する第2の比較器73と、この第2の比較器73の他方の入力端子に出力を接続した第3の演算回路(ALU)74と、第2の比較器73の出力を入力する第3のマルチプレクサ75とを備える。第2の実施の形態に係る固体撮像装置の画像合成回路においては、全体のまずリニアな信号とするため、短時間蓄積信号に、蓄積時間比である:
ξ=NT0/ΔT …(33)
を掛けて使用する。合成の演算式は、NiV(i)のi=1〜(N−1)までの総和を、
η(N−1)=ΣNiV(i) …(34)
と表し、更に、
g(N)=(NT0/(NT0−ΔT))VT …(35)
とすれば、以下のようにまとめられる:
Ni=1 if V(i) ≧ f(i) …(36a)
Ni=0 if V(i) < f(i) …(36b)
H=((η(N−1)−NNT ))/B(N))ξ …(37)
0=VH if V(N) > g(N) …(38a)
0=V(N) if V(N) ≦ g(N) …(38b)
即ち、第3の演算回路(ALU)74で式(35)のg(N)を計算し、第3の演算回路(ALU)74の出力と、N回目の読み出しにおける信号V(N)とを第2の比較器73で比較し、V(N)が大きければ、第2の比較器73の出力V0をVHにし、小さければ出力V0をV(N)にする。第3のマルチプレクサ75は、第2の比較器73の出力V0がV(N)ならば、V(N)を出力する。
最終出力は、最終回(第4回目)の完全電荷転送を行って得られた信号V(N)が、VTよりも少し大きい値g(N)と比較して、超えていれば、部分転送で得られた短時間蓄積信号VHを用い、そうでなければ、長時間蓄積して得られた信号V(N)を用いる。
なお最終的には、このようにして得られた信号から、例えば、ディスプレイの諧調にあうように諧調圧縮器76を用いて諧調圧縮を行って出力するか、画像認識のように機械がセンサの情報を処理する場合には、広いリニアな信号を直接受け渡しても良い。
このように、第2の実施の形態に係る固体撮像装置によれば、第1の実施の形態に係る固体撮像装置の場合に比して、大幅なダイナミックレンジの拡大が可能である。
(第3の実施の形態)
本発明の第1及び第2の実施の形態に係る固体撮像装置においては、転送ゲート電極16に転送ゲート電圧VTX=VTLをかけ、静電誘導による部分転送を行うことで、表面埋込領域(受光カソード領域)22に蓄積された電荷の一部が転送電荷蓄積領域23に転送される。この際、転送電荷蓄積領域23に静電誘導で転送される電荷量は、転送ゲート電極16のゲート閾値電圧Vthのバラツキに依存するので、それぞれの画素によって、転送される電荷量が異なる可能性があり、固定パターンノイズ等の原因になる。本発明の第3の実施の形態に係る固体撮像装置は、このような転送される電荷量の画素毎のバラツキを抑制する方法を提供する。
本発明の第3の実施の形態に係る固体撮像装置(2次元イメージセンサ)の全体構成は、図1にした第1の実施の形態に係る固体撮像装置のブロック図と同一であるため、重複した説明を省略する。しかしながら、図20に示すように、本発明の第1の実施の形態に係る固体撮像装置は、画素の構造が第1の実施の形態に係る固体撮像装置とは異なり、深いポテンシャル井戸を形成する第1表面埋込領域22bと浅いポテンシャル井戸を形成する第2表面埋込領域22aを備える。
図20は、第1の実施の形態の図3に対応する断面構造であるが、第3の実施の形態に係る固体撮像装置の画素は、第1導電型(p型)の半導体基板18と、この半導体基板18の上に配置された第2導電型(n型)の第1表面埋込領域22b及び第2表面埋込領域22aを備える。第1表面埋込領域22bは、第2表面埋込領域22aよりも不純物密度が高く、拡散深さも第2表面埋込領域22aよりも深いので、第1表面埋込領域22bは、第2表面埋込領域22aよりも深いポテンシャル井戸を形成している。
半導体基板18は、不純物密度5×1012cm-3程度以上、5×1016cm-3程度以下程度が好ましい。特に、半導体基板18を不純物密度4×1014cm-3程度以上、3×1016cm-3程度以下のシリコン基板とすれば、通常のCMOSプロセスが採用できる。この場合、第2表面埋込領域22aの不純物密度は、例えば、1×1017cm-3程度以上、8×1018cm-3程度以下、好ましくは2×1017cm-3程度以上、1×1018cm-3程度以下、代表的には、例えば8×1017cm-3程度の値が採用可能であり、その厚さは0.1〜2.5μm程度、好ましくは0.5〜1.5μm程度とすることが可能である。一方、第1表面埋込領域22bの不純物密度は、1×1019cm-3程度以上、1×1021cm-3程度以下、好ましくは2×1019cm-3程度以上、5×1020cm-3程度以下、代表的には、例えば3×1019cm-3程度の値が採用可能であり、その厚さは0.1〜4μm程度、好ましくは0.5〜2.0μm程度とすることが可能である。具体的には、第1表面埋込領域22bの不純物密度は、第2表面埋込領域22aの不純物密度の5〜1000倍、好ましくは10〜300倍程度に設定しておけば、第1表面埋込領域22bが、第2表面埋込領域22aよりも深いポテンシャル井戸を形成できる。
第1表面埋込領域22b及び第2表面埋込領域22aは、それぞれ、受光カソード領域(電荷生成領域)として機能する。即ち、第1表面埋込領域22bと、第1表面埋込領域(受光カソード領域)22bの直下の第1受光アノード領域として機能する半導体基板18とで第1フォトダイオードを構成し、第2表面埋込領域22aと、第2表面埋込領域(受光カソード領域)22aの直下の第2受光アノード領域として機能する半導体基板18とで第2フォトダイオードを構成している。第1及び第2電荷生成領域(受光アノード領域)で生成されたキャリア(電子)は、先ず、ポテンシャル井戸の深い第1表面埋込領域22bの注入され、最初は第1表面埋込領域22bに電荷が蓄積される。その後、第1及び第2電荷生成領域(受光アノード領域)で生成されたキャリア(電子)が更に増えると、浅いポテンシャル井戸を構成する第2表面埋込領域22a側にキャリア(電子)がオーバーフローする。
なお、図20では「第1導電型の半導体領域」としては、第1導電型の半導体基板を用いる場合を例示しているが、第1の実施の形態と同様に、第1導電型(p型)の半導体基板と、半導体基板の上に配置された第1導電型(p型)のエピタキシャル成長層を形成したエピタキシャル成長基板を採用しても良い。
第1表面埋込領域(受光カソード領域)22b及び第2表面埋込領域(受光カソード領域)22aの上には、p+型ピニング層21が配置されている。p+型ピニング層21は、ダーク時の表面でのキャリアの生成を抑制する層であり、ダーク電流削減のために好ましい層として用いている。ダーク電流が問題とならない用途(応用)等では、構造上、p+型ピニング層21を省略しても構わない。
そして、図20において右側に示した第1導電型の半導体基板18の表面には、第1リセットトランジスタを構成する第1転送電荷蓄積領域23bと第1リセットドレイン領域(図示省略)が配置され、図20において左側に示した半導体基板18の表面には、第2リセットトランジスタを構成する第2転送電荷蓄積領域23aと第2リセットドレイン領域(図示省略)が配置されている。p+型ピニング層21及び半導体基板18の上にはゲート絶縁膜32が形成されている。ゲート絶縁膜32としては、シリコン酸化膜(SiO2膜)が好適であるが、第1の実施の形態で述べたように、シリコン酸化膜(SiO2膜)以外の種々の絶縁膜が採用可能である。
ゲート絶縁膜32上には、第1表面埋込領域(受光カソード領域)22bから第1転送電荷蓄積領域23bへ信号電荷を静電誘導で転送する第1転送ゲート電極16b及び第2表面埋込領域(受光カソード領域)22aから第2転送電荷蓄積領域23aへ信号電荷を静電誘導で転送する第2転送ゲート電極16aが配置されている。又、半導体基板18上のゲート絶縁膜32上には第1リセットゲート電極(図示省略)が配置され、第1転送電荷蓄積領域23b、第1リセットゲート電極(図示省略)及び第1リセットドレイン領域(図示省略)とで第1リセットトランジスタを構成し、同様に、半導体基板18上のゲート絶縁膜32上には第2リセットゲート電極(図示省略)が配置され、第2転送電荷蓄積領域23a、第2リセットゲート電極(図示省略)及び第2リセットドレイン領域(図示省略)とで第2リセットトランジスタを構成している。但し、図20においては、第1リセットトランジスタ及び第2リセットトランジスタは、それぞれシンボルマークを用いて、第1転送電荷蓄積領域23b及び第2転送電荷蓄積領域23aに接続されるMOSトランジスタとして等価回路表示されている。
第1転送電荷蓄積領域23bには、図20に示すように、第1電圧読み出し用バッファアンプを構成する第1信号読み出しトランジスタ(増幅トランジスタ)MAi1のゲート電極が接続されている。第1信号読み出しトランジスタ(増幅トランジスタ)MAi1のドレイン電極は電源VDDに接続され、ソース電極は画素選択用の第1スイッチングトランジスタMSi1のドレイン電極に接続されている。画素選択用の第1スイッチングトランジスタMSi1のソース電極は、第1垂直信号線Bjに接続され、ゲート電極には水平ラインの選択用制御信号Sが垂直シフトレジスタ(垂直ドライバ回路)105(図1参照。)から与えられる。選択用制御信号Sをハイ(H)レベルにすることにより、第1スイッチングトランジスタMSi1が導通し、第1信号読み出しトランジスタ(増幅トランジスタ)MAi1で増幅された第1転送電荷蓄積領域23bの電位に対応する電流が第1垂直信号線Bj1に流れる。
同様に、第2転送電荷蓄積領域23aには、図20に示すように、第2電圧読み出し用バッファアンプを構成する第2信号読み出しトランジスタ(増幅トランジスタ)MAi2のゲート電極が接続されている。第2信号読み出しトランジスタ(増幅トランジスタ)MAi2のドレイン電極は電源VDDに接続され、ソース電極は画素選択用の第2スイッチングトランジスタMSi2のドレイン電極に接続されている。画素選択用の第2スイッチングトランジスタMSi2のソース電極は、第2垂直信号線Bj2に接続され、ゲート電極には水平ラインの選択用制御信号Sが垂直シフトレジスタ(垂直ドライバ回路)105(図1参照。)から与えられる。選択用制御信号Sをハイ(H)レベルにすることにより、第2スイッチングトランジスタMSi2が導通し、第2信号読み出しトランジスタ(増幅トランジスタ)MAi2で増幅された第2転送電荷蓄積領域23aの電位に対応する電流が第2垂直信号線Bj2に流れる。
なお、図20では右側に第1電圧読み出し用バッファアンプを、左側に第2電圧読み出し用バッファアンプを設けているが、第1転送電荷蓄積領域23bと第2転送電荷蓄積領域23aとを共通の拡散領域で構成し、電圧読み出し用バッファアンプを、1つにしても良い。或いは、図20のように、独立した第1転送電荷蓄積領域23bと第2転送電荷蓄積領域23aを画素の左右に設けた場合において、何らかの接続配線で第1転送電荷蓄積領域23bと第2転送電荷蓄積領域23aとの間を短絡し、共通の電圧読み出し用バッファアンプで信号を読み出すようにしても良い。第1転送電荷蓄積領域23bと第2転送電荷蓄積領域23aとを接続する「接続配線」としては金属配線や多結晶シリコン配線等の表面配線層でも、埋込拡散層や埋込高融点金属層等の半導体基板18中に埋め込まれた埋込配線層でも良い。
又、図20では第1表面埋込領域22bが右側、第2表面埋込領域22aが左側に配置された場合を例示しているが、このようなトポロジーに限定される必要はなく、第1表面埋込領域22bが左側、第2表面埋込領域22aが右側に配置されても良く、第1表面埋込領域22bと第2表面埋込領域22aとが互いに直交する方向に配置されていても良い。第1表面埋込領域22bと第2表面埋込領域22aとの配置に伴い、第1電圧読み出し用バッファアンプや第2電圧読み出し用バッファアンプの配置も、設計的事項として、適宜変更すれば良い。
図21は、図20に示した本発明の第3の実施の形態に係る固体撮像装置の垂直シフトレジスタ(垂直ドライバ回路)105のi行目の駆動回路を示す。図21に示すように、垂直クロック配線VCKに接続された第1の遅延フリップフロップ51と第2の遅延フリップフロップ52とを各行に備えてパラレル出力のシフトレジスタのi段目を構成している。このi行目の駆動回路は、更に、NOR回路53,第1のAND回路54,第2のAND回路55,第3のAND回路56,第4のAND回路57,第1のAND回路54の出力側に接続され、i行目の選択用制御信号Siを出力する第1のインバータ(バッファ増幅器)61,第2のAND回路55の出力側に接続され、i行目のリセット信号Riを出力する第2のインバータ(バッファ増幅器)62,第3のAND回路56の出力側に接続され、i行目の第1転送ゲート信号TX1iを出力する第3のインバータ(バッファ増幅器)63、第4のAND回路57の出力側に接続され、i行目の第2転送ゲート信号TX2iを出力する第4のインバータ(バッファ増幅器)64を備える。NOR回路53には垂直クロック信号VCKと、i行目の垂直駆動信号Uiが入力される。第1のAND回路54には垂直クロック信号VCKと垂直選択信号Sが入力され、第2のAND回路55には垂直クロック信号VCKとリセット信号Rが入力され、第3のAND回路56には第1転送ゲート信号TX1とNOR回路53の出力が入力され、第4のAND回路57には第2転送ゲート信号TX2と垂直クロック信号VCKが入力される。時刻t=t1〜t=ts-1では垂直クロック信号VCKのタイミングで第4のインバータ(バッファ増幅器)64から第2転送ゲート信号TX2iを出力を逐次供給し、時刻t=tsで第3のインバータ(バッファ増幅器)63から第2転送ゲート信号TX2iを供給する。
図22は、本発明の第3の実施の形態に係る固体撮像装置の画素構造を用いたときのポテンシャル図である。強い光が照射された場合の転送動作を図22を用いて説明する。
(イ)図22(a)に示すように、先ず、右側の深いポテンシャル井戸PWdを構成する第1表面埋込領域22bに多量の電荷が蓄積される。そして、キャリア(電子)が更に増えると、左側の浅いポテンシャル井戸PWsを構成する第2表面埋込領域22a側にキャリア(電子)がオーバーフローする。
(ロ)第2表面埋込領域22a側にキャリア(電子)がオーバーフローした段階で、図22(b)に示すように、時刻t=t1で第2転送ゲート電極16aに転送ゲート電圧VTXをかけ、静電誘導による部分転送を行う。この部分転送で、浅いポテンシャル井戸PWsをなす第2表面埋込領域22aに蓄積された電荷のすべてが第2転送電荷蓄積領域23aに静電誘導で転送される。この際、浅いポテンシャル井戸PWsをなす第2表面埋込領域22aに蓄積された電荷のみが、第2転送電荷蓄積領域23aに静電誘導で転送されるので、第2転送電荷蓄積領域23aに静電誘導で転送される電荷量が、第2転送ゲート電極16aのゲート閾値電圧Vthのバラツキに依存しない。これにより、第2表面埋込領域22aのポテンシャルが高くなり、その分だけ第2表面埋込領域22aへの蓄積が可能となる。このとき第2転送電荷蓄積領域23aに転送された電荷はデータとして外部で記憶する。
(ハ)その後、t1<t<t2においては、最初の部分蓄積が可能となった容量を用いて、時刻t=t2まで浅いポテンシャル井戸PWsをなす第2表面埋込領域22aに短時間蓄積を行う。そして、時刻t=t2で静電誘導による部分転送を行い、このとき、第2転送電荷蓄積領域23aに転送された電荷をデータとして外部で保存する。更に、t2<t<t3においても部分蓄積が可能となった容量を用いて、時刻t=t3まで浅いポテンシャル井戸PWsをなす第2表面埋込領域22aに短時間蓄積を行う。そして、時刻t=t3で静電誘導による部分転送を行い、このとき第2転送電荷蓄積領域23aに転送された電荷をデータとして外部で保存する。更に、t3<t<t4においても部分蓄積が可能となった容量を用いて、時刻t=t4まで浅いポテンシャル井戸PWsをなす第2表面埋込領域22aに短時間蓄積を行う。そして、時刻t=t4で静電誘導による部分転送を行い、このとき第2転送電荷蓄積領域23aに転送された電荷をデータとして外部で保存する。
(ニ)この動作を複数回((s−1)回)行った後、図22(c)に示すように、1フレームの最後、時刻t=ts-1で静電誘導による部分転送により浅いポテンシャル井戸PWsをなす第2表面埋込領域22aから電荷の排除を行った後、時刻t=tsで、第1転送ゲート電極16bに転送ゲート電圧VTXを印加して、深いポテンシャル井戸PWdを構成する第1表面埋込領域22bに蓄積された電荷の完全転送を行う。この完全転送によって読み出されたデータで短時間蓄積のデータを使用するか、長時間蓄積のデータを使用したかを決定する。
第3の実施の形態に係る固体撮像装置によれば、転送ゲートのゲート閾値電圧Vthのバラツキが部分転送される電荷に影響しなくなるので、固定パターンノイズが改善され、良質な画像が実現できる利点がある。
(その他の実施の形態)
上記のように、本発明は第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、既に述べた第1〜第3の実施の形態の説明では、第1導電型をp型、第2導電型をn型として説明するが、第1導電型がn型、第2導電型をp型としても、電気的な極性を反対にすれば同様な効果が得られることは容易に理解できるであろう。このとき、例えば、図3に示した表面埋込領域22は「受光アノード領域」になるように、対応して適宜極性を反転させれば良い。
第1〜第3の実施の形態の説明においては、2次元固体撮像装置(エリアセンサ)を例示的に説明したが、本発明の画素は2次元固体撮像装置の画素のみに用いられるように限定して解釈するべきではない。例えば、図1に示した2次元マトリクスにおいて、j=m=1とした1次元固体撮像装置(ラインセンサ)の画素として複数の画素を1次元に配列しても良いことは、上記開示の内容から、容易に理解できるはずである。
第3の実施の形態においては、第1表面埋込領域22bの不純物密度を第2表面埋込領域22aよりも不純物密度が高くして第1表面埋込領域22bのポテンシャル井戸の深さを第2表面埋込領域22aよりも深くする場合を例示したが、ポテンシャル井戸の深さはヘテロ接合を用いる等他の手段で調整しても構わない。例えば、第1表面埋込領域22bをシリコン(Si)とし、第2表面埋込領域22aをシリコン・ゲルマニウム(SiGe)で構成する等、第1表面埋込領域22aの禁制帯幅を第2表面埋込領域の禁制帯幅よりも広くするようにしても、第1表面埋込領域22bのポテンシャル井戸の深さを第2表面埋込領域22aよりも深くすることができる。
又、第3の実施の形態に係る固体撮像装置において、非常に強い光が照射された場合であれば、第2の実施の形態に係る固体撮像装置において説明したような、時刻t=t1で静電誘導による部分転送を行った電荷をデータとして外部で記憶せずに排除するような動作モードを採用しても構わない。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施の形態に係る固体撮像装置(2次元イメージセンサ)の半導体チップ上のレイアウトを説明する模式的平面図である。 本発明の第1の実施の形態に係る固体撮像装置の画素の一部の構成を説明する概略的な平面図である。 図3は、図2のA−A面から見た模式的な断面図である。 本発明の第1の実施の形態に係る固体撮像装置における電荷の部分転送を説明するタイミングチャートである。 本発明の第1の実施の形態に係る固体撮像装置の垂直シフトレジスタ(垂直ドライバ回路)のi行目の駆動回路を示すブロック図である。 強い光が照射された場合の、第1の実施の形態に係る固体撮像装置の画素における部分転送をポテンシャル図を用いて説明する図である(その1)。 強い光が照射された場合の、第1の実施の形態に係る固体撮像装置の画素における部分転送をポテンシャル図を用いて説明する図である(その2)。 弱い光が照射された場合の、第1の実施の形態に係る固体撮像装置の画素における部分転送をポテンシャル図を用いて説明する図である(その1)。 弱い光が照射された場合の、第1の実施の形態に係る固体撮像装置の画素における部分転送をポテンシャル図を用いて説明する図である(その2)。 第1の実施の形態に係る固体撮像装置の画像合成回路のブロック図である。 完全転送時に静電誘導で転送される電荷量と、部分転送閾値電荷量(部分転送後に表面埋込領域に残る電荷量)との関係を説明する図である。 ポテンシャル障壁の高さを下げる時間と転送される電子数の関係を説明する図である。 転送ゲート電圧をパラメータとして、表面埋込領域の蓄積電子数と転送電子数の関係を説明する図である。 転送時間をパラメータとして、表面埋込領域の蓄積電子数と転送電子数の関係を説明する図である。 蓄積電子数をパラメータに、電荷が転送され始めるときの表面埋込領域の電子から見たポテンシャル障壁の高さと転送電子数の関係を説明する図である。 本発明の第1の実施の形態の変形例に係る固体撮像装置の画素の一部の構成を説明する概略的な平面図である。 本発明の第2の実施の形態に係る固体撮像装置における電荷の部分転送を説明するタイミングチャートである。 図17の場合に比して光強度が弱い場合の第2の実施の形態に係る固体撮像装置における電荷の部分転送のタイミングチャートであり、蓄積電荷と時間の関係を、4回読み出す場合について例示する図である。 第2の実施の形態に係る固体撮像装置の画像合成回路のブロック図である。 本発明の第3の実施の形態に係る固体撮像装置の画素の一部の構成を説明する概略的な断面図である。 本発明の第3の実施の形態に係る固体撮像装置の垂直シフトレジスタ(垂直ドライバ回路)のi行目の駆動回路を示すブロック図である。 本発明の第3の実施の形態に係る固体撮像装置の画素における電荷の転送をポテンシャル図を用いて説明する図である。 従来技術において、1フレーム中を、長時間露光期間、短時間露光期間、超短時間露光期間に分割して、これらの蓄積時間の異なる信号をそれぞれ読み出して合成する方法を説明する図である。
符号の説明
ij…画素
7…積算器
11a…受光カソード領域(受光用表面埋込領域)
12a…電荷蓄積領域
13…リセットゲート電極
16…転送ゲート電極
16a…第2転送ゲート電極
16b…第1転送ゲート電極
18…半導体基板(シリコン基板)
19…半導体基板(シリコン基板)
20…半導体層(シリコンエピタキシャル成長層)
21…p+型ピニング層
22…表面埋込領域
22a…第2表面埋込領域
22b…第1表面埋込領域
23…転送電荷蓄積領域
23a…第2転送電荷蓄積領域
23b…第1転送電荷蓄積領域
24…リセットドレイン領域
25…半導体領域(pウェル)
32…ゲート絶縁膜
41…遮光膜
42…遮光膜開口部
51…第1の遅延フリップフロップ
52…第2の遅延フリップフロップ
53…NOR回路
54…第1のAND回路
55…第2のAND回路
56…第3のAND回路
57…第4のAND回路
61〜64,95…インバータ
65…第1の比較器
67…第1のカウンタ
68…第2のマルチプレクサ
69…第1のマルチプレクサ
70…メモリ
71…第2のカウンタ
73…第2の比較器
75…第3のマルチプレクサ
76…諧調圧縮器
82…電圧読み出し用バッファアンプ
91…加算器
92…加算器
104…タイミング発生回路
105…垂直シフトレジスタ(垂直ドライバ回路)
106…水平シフトレジスタ
107…差動アンプ

Claims (11)

  1. 第1導電型の半導体領域と、
    前記半導体領域の上部の一部に埋め込まれ、前記半導体領域とフォトダイオードをなす第2導電型表面埋込領域と、
    前記半導体領域の上部の一部に埋め込まれ、前記表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域と、
    該転送電荷蓄積領域から該転送電荷蓄積領域に蓄積された前記信号電荷の電荷量に対応する電圧を、外部に信号として読み出す読み出し用バッファアンプ
    とを備える画素を複数配列した固体撮像装置の駆動方法であって、
    フレーム期間を、初期部分転送期間t 1 と該初期部分転送期間t 1 に続く同一蓄積時間ΔTで複数回繰り返す周期的な部分転送期間とに分割し、前記表面埋込領域から前記転送電荷蓄積領域へ転送され、更に外部に前記信号として読み出された前記信号電荷の電荷量に相当する信号量を、1フレーム内で転送される電荷量に相当する信号量が部分転送閾値電荷に相当する信号量を上回る場合、前記1フレーム内において、前記初期部分転送期間t 1 と前記同一蓄積時間ΔTで繰り返される複数回の周期的な部分転送期間における部分転送による電荷の総和に相当する信号量と、前記複数回の部分転送の最後の部分転送期間で全転送された電荷に相当する信号量の和とし、前記転送される電荷量に相当する信号量が前記部分転送閾値電荷に相当する信号量を上回らない場合、前記全転送のみによる電荷に相当する信号量とすることを特徴とする固体撮像装置の駆動方法。
  2. 前記複数回の部分転送において、前記部分転送を行う毎に蓄積された前記信号電荷に相当する信号量を外部に読み出し、画像合成用のデータとして用いることを特徴とする請求項1に記載の固体撮像装置の駆動方法。
  3. 第1導電型の半導体領域と、
    前記半導体領域の上部の一部に埋め込まれ、前記半導体領域とフォトダイオードをなす第2導電型表面埋込領域と、
    前記半導体領域の上部の一部に埋め込まれ、前記表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域と、
    該転送電荷蓄積領域から前記信号電荷を読み出す読み出し用バッファアンプ
    とを備える画素を複数配列した固体撮像装置の駆動方法であって、
    前記表面埋込領域から前記転送電荷蓄積領域への電荷の転送が、1フレーム内において繰り返される複数回の部分転送と、前記複数回の部分転送の後の全転送からなり、前記複数回の部分転送において、連続する2回の部分転送の内、1回目の電荷は捨て、2回目の電荷による信号を読み出し、画像合成用のデータとして用いることを特徴とする固体撮像装置の駆動方法。
  4. 第1導電型の半導体領域、前記半導体領域の上部の一部に埋め込まれ、前記半導体領域とフォトダイオードをなす第2導電型表面埋込領域、前記半導体領域の上部の一部に埋め込まれ、前記表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域、該転送電荷蓄積領域から該転送電荷蓄積領域に蓄積された前記信号電荷の電荷量に対応する電圧を、外部に信号として読み出す読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、
    フレーム期間を、初期部分転送期間t 1 と該初期部分転送期間t 1 に続く同一蓄積時間ΔTで複数回繰り返す周期的な部分転送期間とに分割し、前記表面埋込領域から前記転送電荷蓄積領域へ転送され、更に外部に前記信号として読み出された前記信号電荷の電荷量に相当する信号量を、1フレーム内で転送される電荷量に相当する信号量が部分転送閾値電荷に相当する信号量を上回る場合、前記1フレーム内において、前記初期部分転送期間t 1 と前記同一蓄積時間ΔTで繰り返される複数回の周期的な部分転送期間における部分転送による電荷の総和に相当する信号量と、前記複数回の部分転送の後の全転送された電荷に相当する信号量の和とし、前記転送される電荷量に相当する信号量が前記部分転送閾値電荷に相当する信号量を上回らない場合、前記全転送のみによる電荷に相当する信号量とするように前記画素を駆動する周辺回路部
    とを備えることを特徴とする固体撮像装置。
  5. 前記表面埋込領域と前記転送電荷蓄積領域との間のポテンシャル障壁の高さを変えて前記部分転送と、前記全転送を制御することを特徴とする請求項4に記載の固体撮像装置。
  6. 前記ポテンシャル障壁の高さを静電誘導で制御することを特徴とする請求項5に記載の固体撮像装置。
  7. 第1導電型の半導体領域、前記半導体領域の上部の一部に埋め込まれ前記半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、前記半導体領域の上部の一部に埋め込まれ前記第1表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第1の転送電荷蓄積領域、前記半導体領域の上部の一部に埋め込まれ前記第2表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第2の転送電荷蓄積領域、前記第1の転送電荷蓄積領域から前記信号電荷を読み出す第1の読み出し用バッファアンプ、前記第2の転送電荷蓄積領域から前記信号電荷を読み出す第2の読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、
    前記第2表面埋込領域から前記第2の転送電荷蓄積領域への電荷の転送を、1フレーム内において繰り返される複数回の部分転送でなし、前記第1表面埋込領域から前記第1の転送電荷蓄積領域への電荷の転送を、前記複数回の部分転送の後の全転送としてなすように前記画素を駆動する周辺回路部
    とを備え、前記第1表面埋込領域のなす前記電荷に対するポテンシャル井戸の深さが、前記第2表面埋込領域のなすポテンシャル井戸の深さよりも深いことを特徴とする固体撮像装置。
  8. 第1導電型の半導体領域、前記半導体領域の上部の一部に埋め込まれ前記半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、前記半導体領域の上部の一部に埋め込まれ前記第1及び第2表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の転送電荷蓄積領域、前記転送電荷蓄積領域から前記転送電荷蓄積領域に蓄積された前記信号電荷の電荷量に対応する電圧を、外部に信号として読み出す読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、
    フレーム期間を、初期部分転送期間t 1 と該初期部分転送期間t 1 に続く同一蓄積時間ΔTで複数回繰り返す周期的な部分転送期間とに分割し、前記第1及び第2表面埋込領域から前記転送電荷蓄積領域へ転送され、更に外部に前記信号として読み出された前記信号電荷の電荷量に相当する信号量を、1フレーム内で転送される電荷量に相当する信号量が部分転送閾値電荷に相当する信号量を上回る場合、前記1フレーム内において、前記初期部分転送期間t 1 と前記同一蓄積時間ΔTで繰り返される複数回の周期的な部分転送期間における部分転送により、前記第2表面埋込領域から転送された電荷の総和に相当する信号量と、前記複数回の部分転送の後に前記第1表面埋込領域から全転送された電荷に相当する信号量の和とし、前記転送される電荷量に相当する信号量が前記部分転送閾値電荷に相当する信号量を上回らない場合、前記全転送のみによる電荷に相当する信号量荷とするように前記画素を駆動する周辺回路部
    とを備え、前記第1表面埋込領域のなす前記電荷に対するポテンシャル井戸の深さが、前記第2表面埋込領域のなすポテンシャル井戸の深さよりも深いことを特徴とする固体撮像装置。
  9. 第1導電型の半導体領域、前記半導体領域の上部の一部に埋め込まれ前記半導体領域とフォトダイオードをなす第2導電型の第1及び第2表面埋込領域、前記半導体領域の上部の一部に埋め込まれ前記第1表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第1の転送電荷蓄積領域、前記半導体領域の上部の一部に埋め込まれ前記第2表面埋込領域から転送された前記フォトダイオードが生成した信号電荷を一時蓄積する第2導電型の第2の転送電荷蓄積領域、前記第1の転送電荷蓄積領域及び前記第2の転送電荷蓄積領域間を短絡する接続配線、該接続配線に接続され、前記第1及び第2の転送電荷蓄積領域から前記信号電荷を読み出す前記第1及び第2の転送電荷蓄積領域に共通の読み出し用バッファアンプとを備える画素を複数配列した画素アレイ部と、
    前記第2表面埋込領域から前記第2の転送電荷蓄積領域への電荷の転送を、1フレーム内において繰り返される複数回の部分転送でなし、前記第1表面埋込領域から前記第1の転送電荷蓄積領域への電荷の転送を、前記複数回の部分転送の後の全転送としてなすように前記画素を駆動する周辺回路部
    とを備え、前記第1表面埋込領域のなす前記電荷に対するポテンシャル井戸の深さが、前記第2表面埋込領域のなすポテンシャル井戸の深さよりも深いことを特徴とする固体撮像装置。
  10. 前記第1表面埋込領域の不純物密度が前記第2表面埋込領域の不純物密度よりも高いことを特徴とする請求項7〜9のいずれか1項に記載の固体撮像装置。
  11. 前記第1表面埋込領域の禁制帯幅が前記第2表面埋込領域の禁制帯幅よりも広いことを特徴とする請求項7〜9のいずれか1項に記載の固体撮像装置。
JP2007094878A 2007-03-30 2007-03-30 固体撮像装置及びその駆動方法 Active JP4644825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094878A JP4644825B2 (ja) 2007-03-30 2007-03-30 固体撮像装置及びその駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094878A JP4644825B2 (ja) 2007-03-30 2007-03-30 固体撮像装置及びその駆動方法

Publications (2)

Publication Number Publication Date
JP2008252814A JP2008252814A (ja) 2008-10-16
JP4644825B2 true JP4644825B2 (ja) 2011-03-09

Family

ID=39977185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094878A Active JP4644825B2 (ja) 2007-03-30 2007-03-30 固体撮像装置及びその駆動方法

Country Status (1)

Country Link
JP (1) JP4644825B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212022B2 (ja) * 2008-10-30 2013-06-19 ソニー株式会社 固体撮像装置、撮像装置、画素駆動電圧適正化装置、画素駆動電圧適正化方法
US8338248B2 (en) * 2008-12-25 2012-12-25 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device
US9231006B2 (en) 2009-10-05 2016-01-05 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device
DE102009053281B4 (de) * 2009-11-13 2022-04-28 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
JP5428792B2 (ja) * 2009-11-17 2014-02-26 ソニー株式会社 固体撮像素子およびその駆動方法、カメラシステム、プログラム
JP5434518B2 (ja) * 2009-11-20 2014-03-05 リコーイメージング株式会社 焦点検出装置
JP5967915B2 (ja) * 2011-12-09 2016-08-10 キヤノン株式会社 固体撮像装置の駆動方法
JP6324372B2 (ja) * 2013-03-25 2018-05-16 国立大学法人静岡大学 撮像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023044A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 撮像装置
JP2000184290A (ja) * 1998-12-11 2000-06-30 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2001177775A (ja) * 1999-10-05 2001-06-29 Canon Inc 固体撮像装置、撮像システム及び固体撮像装置の駆動方法
JP2002152607A (ja) * 2000-11-09 2002-05-24 Sony Corp 固体撮像装置およびその駆動方法
JP2004056048A (ja) * 2002-07-24 2004-02-19 Microsignal Kk 固体撮像素子
JP2005012007A (ja) * 2003-06-19 2005-01-13 Canon Inc 固体撮像素子、固体撮像装置及びカメラ
JP2006217421A (ja) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd 固体撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560622B2 (ja) * 1992-04-30 2004-09-02 オリンパス株式会社 撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023044A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 撮像装置
JP2000184290A (ja) * 1998-12-11 2000-06-30 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2001177775A (ja) * 1999-10-05 2001-06-29 Canon Inc 固体撮像装置、撮像システム及び固体撮像装置の駆動方法
JP2002152607A (ja) * 2000-11-09 2002-05-24 Sony Corp 固体撮像装置およびその駆動方法
JP2004056048A (ja) * 2002-07-24 2004-02-19 Microsignal Kk 固体撮像素子
JP2005012007A (ja) * 2003-06-19 2005-01-13 Canon Inc 固体撮像素子、固体撮像装置及びカメラ
JP2006217421A (ja) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd 固体撮像装置

Also Published As

Publication number Publication date
JP2008252814A (ja) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4644825B2 (ja) 固体撮像装置及びその駆動方法
JP6124217B2 (ja) 固体撮像装置及びそれを用いたカメラシステム
JP4939514B2 (ja) 撮像装置
US8917341B2 (en) Solid-state image pickup apparatus, driving method for solid-state image pickup apparatus and electronic device
RU2479068C2 (ru) Твердотельное устройство формирования изображений и система формирования изображений
US8890982B2 (en) Solid-state imaging device and driving method as well as electronic apparatus
US7238993B2 (en) CMOS pixel with dual gate PMOS
US8106984B2 (en) Image capturing apparatus and electronic information device
JPWO2011058684A1 (ja) 固体撮像装置
US20060081957A1 (en) Solid-state imaging device
EP1713250A2 (en) Amplifying solid-state imaging device
JP2009253818A (ja) 固体撮像装置及び固体撮像装置の駆動方法
CN105047678A (zh) 具有拥有梯度轮廓的存储栅极植入物的图像传感器像素
JP2012114838A (ja) 固体撮像装置およびカメラシステム
JP2010278086A (ja) 固体撮像装置
JP4130307B2 (ja) 固体撮像装置
EP2667591B1 (en) Solid imaging device
US20090073294A1 (en) Solid-state image capturing apparatus and electronic information device
US20050185072A1 (en) Solid-state image pickup device
WO2006090492A1 (ja) 固体撮像装置およびその駆動方法
Iida et al. A 1/4-inch 330 K square pixel progressive scan CMOS active pixel image sensor
JP4672976B2 (ja) 固体撮像装置
JP2006073609A (ja) 固体撮像素子、固体撮像装置及び撮像システム
JP3697164B2 (ja) 走査回路とそれを用いた撮像装置
JP2006261532A (ja) 固体撮像装置及びその駆動方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150