JP4642945B2 - 積層基板内にブラインドヴァイアを形成する方法および積層基板 - Google Patents

積層基板内にブラインドヴァイアを形成する方法および積層基板 Download PDF

Info

Publication number
JP4642945B2
JP4642945B2 JP52140498A JP52140498A JP4642945B2 JP 4642945 B2 JP4642945 B2 JP 4642945B2 JP 52140498 A JP52140498 A JP 52140498A JP 52140498 A JP52140498 A JP 52140498A JP 4642945 B2 JP4642945 B2 JP 4642945B2
Authority
JP
Japan
Prior art keywords
pulse
laser
energy density
conductive layer
density per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52140498A
Other languages
English (en)
Other versions
JP2000505244A (ja
Inventor
ビー. ノディン,デビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of JP2000505244A publication Critical patent/JP2000505244A/ja
Application granted granted Critical
Publication of JP4642945B2 publication Critical patent/JP4642945B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0554Metal used as mask for etching vias, e.g. by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/128Molten metals, e.g. casting thereof, or melting by heating and excluding molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Description

発明の分野
本発明は、集積回路実装(packaging)の分野つまり、集積回路実装用相互接続体の製造方法、そしてより特定的に言うと、交互の誘電体層及び伝導(conductive)層をもつ多層基板内にヴァイア(via)を形成するための方法及び装置に関する。本発明はさらにヴァイア相互接続を作る方法にも関する。
発明の背景
相互接続及び実装に関する問題は、1つのチップ上に集積させることのできる回路数を決定することのみならずチップの性能をも決定する主要な要因をなしている。チップの設計における進歩が、トランジスタの特長サイズの減少及びチップ寸法の拡大をもたらすにつれて、これらの問題が重要味を帯びてきた。業界は、高速チップを得ただけでは高速システムが結果としてもたらさることはなく、これは同等に高速でかつ信頼性の高い実装によっても支持されなくてはならない、ということを認識するに至った。
基本的に、実装はチップに信号及び電力を供給し、また熱除去、物理的支持そして環境からの保護といったその他の機能を果たす。もう1つの重要な機能は、単純にプリント配線板のI/Oに対し、チップから離れた密に実装されたI/Oを再分配することである。
パッケージ−チップシステムの一例は、エリアアレイ有機パッケージ上に取付けられた「フリップチップ(flip-chip)」集積回路である。フリップチップ取付けは、ダイ又はチップ上でのはんだバンプの設置、チップの反転、基板上でのコンタクトパッドとチップの整合及びチップと基板の間のボンディングを樹立するための炉内へのはんだボールの再流入を必要とする。この方法は、ワイヤボンディングや殆どのテープ自動化ボンディング(TAB)技術の場合のようにコンパクトパッドが周辺に封じ込められるのではなく、チップ表面全体にわたり分配させられていることから、或る種の利用分野においては有利である。その結果、利用可能なI/O及び電源/接地端子の最大数を増大させることができ、信号及び電源/接地相互接続をチップ上でより効率良く配線することができる。
フリップチップ実装の場合、半導体チップと基板の間の不整合に起因する熱膨張が、バンプ上にひずみを生じさせ、かくして故障の原因となる可能性がある。どんな実装技術が利用されているかに関わらず、上述のような熱により誘発されたひずみといったような材料上の問題は、チップパッケージの設計者をして細心の注意を払って材料を選び整合させることになる。
集積回路実装の製造においては、チップパッケージ設計者は、できるかぎり小さなインダクタンス及び抵抗値で信頼性の高い回路を提供する隣接する層間の相互接続を形成しながら同時により一層大きい配線密度を得ようと試行錯誤している。かくして、相互接続に用いられる高品質のヴァイアホール又はヴァイアの形成は、高品質の相互接続の形成の1つの重要な面である。
多層セラミックパッケージ又は基板の中にヴァイアを形成するためにレーザを使用することは、既知のことである。例えばPaceに与えられた米国特許第5,378,313号は、無機絶縁層上に形成された金属製伝導パターン層を使用するセラミック製マルチチップモジュール(MCM−C)デバイスのための多層ハイブリッドの製造工程を開示している。伝導パターン層の間の電気的接続を行なうため無機絶縁層を通るレーザ穿孔により25〜125μmの直径をもつヴァイアが形成される。Paceによると、無機絶縁層の全体的厚みは50μm未満、好ましくは40μm未満そしてより好ましくは30μm未満でなくてはならない。
193ナノメートル(nm)、248nm及び308nmの範囲内でエキシマガスレーザを用いる走査モードで優勢に作動するレーザを用いてブラインドヴァイアを形成することが知られてきた。ビームは金属マスク全体にわたって走査され、次にマスク内に形成されたアパーチャを通る1点に集束される。しかしながら、マスクはレーザエネルギーを吸収する傾向をもち、かくして加熱ひずみを生成し、酸化物を形成しかつ/又は削摩を受けた材料をマスクの表面上に再度デポジットさせる。
集積回路実装技術における現在の潮流は、有機基板ベースのデバイスの加工、製造費が比較的低いことを理由とした、シングルチップモジュール(SCMs)及びマルチチップモジュール(MCMs)についての、セラミック基板ベースの相互接続回路デバイスから有機基板ベースの相互接続回路デバイスへの移行である。ただし、過去においてヴァイア形成用として知られてきたレーザは、一般に有機ベースの多層パッケージに使用するのに適していない。
MCM−Cデバイスは、標準的には、共焼成(co-fired)されたモノリシック構造の形に組合わされた多層伝導パターンによって形成されている。MCM−Cデバイスの各々の層は、緑色テープ上に伝導パターンが印刷されている緑色セラミックテープで形成されている。異なる層を相互接続するためのヴァイアが、緑色テープ層を通してパンチング又はレーザ穿孔されている。個々の緑色テープ層は次に合わせて積層化され共焼成されてモノリシック構造を形成する。MCM−Cデバイスは、焼成時点での収縮によってひき起こされる積層サイズの変動に悩まされている。
集積回路ダイに比較的薄い従来の有機基板ベースの相互接続回路デバイスが取付けられる場合、デバイスの比較的薄い構造は、有機基板デバイス内で使用された材料と集積回路ダイ又はチップとの間の熱膨張係数(CTE)の差、及び相互接続デバイス及びチップが取付けられたときに発生する機械的応力を理由として、より厚いセラミック基板デバイスよりも容易にたわみ湾曲する。比較的厚い従来の有機基板ベースの相互接続デバイスは、主として相対剛性(relative stiffness)の差異に起因した比較的薄い従来のデバイスと同程度のたわみを生じない。すなわち相互接続デバイスのたわみ又は曲げ係数は、デバイス厚みの三乗に比例して増大する。従って、同じ基板から作られた他の相互接続デバイスの2倍の厚みをもつ相互接続デバイスは、8倍大きなたわみ係数をもつ。
従って小さなヴァイア直径及び高いヴァイア縦横比(aspect ratio)をもち、かつ高い導体配線密度を提供する有機ベースの基板材料で作られた集積回路パッケージ及びかかるパッケージを製造する方法に対するニーズが存在する。さらに、熱膨張係数(CTE)の不整合によりひき起こされる曲げ効果が最小限におさえられるように、相互接続デバイスがボンディングされる集積回路チップのCTE及びプリント回路板のCTEと整合するCTEをもつ有機誘電体基板材料から形成された相互接続デバイスに対するニーズも存在する。
発明の概要
本発明は、ヴァイアをもつ相互接続回路デバイス及び相互接続回路デバイス内にヴァイアを作る方法を提供する。本発明によって形成されるヴァイアは、従来の技術によって形成されたヴァイアに比べ小さな入口直径、出口直径、大きい縦横比及び低い平均ヴァイア抵抗値を有する。さらに、本発明は、高度の製造繰返し性を保証することから、従来のアプローチに比べ改善された大量製造歩どまりを提供する。例えば、本発明に従って生成されたヴァイアは、少ない入口及び出口直径のばらつき、低い平均ヴァイア抵抗値及びこれに対応して少ないヴァイア抵抗値のばらつきを有する。
本発明は、75μm以下のヴァイア入口及び1:1以上の縦横比をもつブラインドヴァイアを積層基板内でレーザ穿孔するための方法を提供する。本発明に従うと、積層基板は、第1の伝導層、この第1の伝導層上に形成された誘電体層及び該誘電体層上に形成された外側の第2の伝導層を有する。第2の伝導層は、ブラインドヴァイアを形成すべき各々の場所に、予め形成されたアパーチャを内含している。誘電体層は、外側の第2の伝導層内の予め形成されたアパーチャを通して印加される複数のレーザパルスを用いて第1の伝導層までレーザ穿孔される。誘電体層に加えられる各々のレーザパルスは、誘電体層のアブレーションしきい値(ablation threshold)より大きいものの第1の伝導層のアブレーションしきい値よりは小さいパルスあたりエネルギー密度を有する。
レーザが355nmの波長で発光する場合、誘電体材料に加えられるパルスあたりエネルギーは、100ナノセカンド(ns)以下のパルス幅について0.5J/cm2〜11J/cm2である。誘電体層が、混合型シアン酸エステル−エポキシ接着剤を含有するePTFEマトリクスで作られている場合、誘電体層に印加されるパルスあたりエネルギー密度は好ましくは0.5J/cm2〜11J/cm2である。ePTFEベースの誘電体層が、充填材−接着剤混合物を内含する場合、誘電体層に印加されるパルスあたりエネルギー密度は、好ましくは公称7J/cm2である。レーザが266nmの波長で発光する場合、誘電体材料に印加されるパルスあたりエネルギー密度は0.2J/cm2〜3J/cm2であり、好ましくは、100ns以下のパルス幅について公称2J/cm2である。
誘電体層を通って第1の伝導層までブラインドヴァイアがひとたび穿孔されたならば、ヴァイアの特性を向上させるため、ブラインドヴァイア後−パルス(post-pulse)処理技術が用いられる。レーザの出力条件は、好ましくはその場にて、穿孔されたブラインドヴァイア全体にわたり変更され、その後第1の伝導層は、好ましくは1〜10の予め定められたパルス数についてその変更された出力条件でレーザ穿孔される。第1の伝導層に印加された各々のパルスは、第1の伝導層のアブレーションしきい値よりも大きいパルスあたりエネルギー密度を有する。第2のパルスあたりエネルギー密度レベルでの予め定められたパルス数は、第1の伝導層の表面上に残るあらゆる誘電体材料がアブレーションされ、第1の伝導層の表面が溶融状態となるように選ばれる。
レーザが355nmの波長で発光する場合、第1の伝導層に印加されるパルスあたりエネルギー密度は、5J/cm2より大きく、好ましくは、100ns以下のパルス幅について公称11J/cm2である。レーザが266nmの波長で発光する場合、伝導層に印加されるパルスあたりエネルギー密度は、1.5J/cm2より大きく、好ましくは、100ns以下のパルス幅について公称5J/cm2である。
ブラインドヴァイアが伝導材料で充填された後、第1の伝導層へのブラインドヴァイアを通しての電気接続部の平均抵抗値は約2mΩである。ブラインドヴァイアを通しての第1の伝導層への電気接続部の抵抗値のばらつきは約0.25mΩ2である。
本発明はまた、スルーヴァイアが75μm以下のヴァイア入口及び3:1〜25:1の縦横比を有する、積層基板内にスルーヴァイアをレーザ穿孔するための方法も提供している。積層基板は、好ましくは円の形にトレパニング(trepan:たて穴くりぬき)された複数のレーザパルスを用いて基板の露出した底部表面まで基板の上部表面からレーザ穿孔される。ただし、ここで、楕円形及び正方形といったような他のトレパニングパターン(trepanning(たて穴くりぬき)pattern)を使用することも可能である。各々のパルスは、積層基板を形成する誘電体層と伝導層の両方をアブレーション(ablation)するのに充分なパルスあたりエネルギー密度を有する。
レーザが355nmの波長で発光する場合、スルーヴァイアを穿孔するために基板に印加されるパルスあたりエネルギー密度は2J/cm2より大きく、好ましくは100ns以下のパルス幅について公称10J/cm2である。レーザが266nmの波長で発光する場合、スルーヴァイアを穿孔するために基板に印加されるパルスあたりエネルギー密度は、2J/cm2より大きく、好ましくは100ns以下のパルス幅について公称10J/cm2である。
本発明はまた、ヴァイアがブラインドヴァイアであるかスルーヴァイアであるかとは無関係に、積層基板の露出された上部表面上に重合体吸光層を加えることによって、ヴァイア入口の品質を向上させるための方法をも提供する。吸光層(photo-absorptive layer)は、5μm〜50μmの厚みとなるように形成され、好ましくは約25μmの厚みである。基板をレーザ穿孔することによって形成されたアブレーション済みの材料は、ヴァイアをとり囲む吸光層の上に再度デポジットさせられる。吸光層及びその上に再度デポジットされたアブレーション済み材料は、その後に除去される。
スルーヴァイアの出口のばらつきは、厚みが5μm〜50μm、好ましくは25μmの厚みである重合体吸光層を、積層基板の露出した底部表面上に適用することによっても向上され得る。このとき伝導材料の1層が、基板の底部上に形成された吸光層と密に接した状態で配置される。スルーヴァイアは穿孔され、基板の底部表面上に形成された吸光層及び銅層は除去される。積層基板の底部表面上に吸光層及び銅層を設けることによって、スルーヴァイアの縦横比が約10:1であるとき、約20μm2のスルーヴァイアの出口幅のばらつきが達成される。
スルーヴァイアが基板を通してひとたび穿孔されたならば、出口幅のばらつきは、本発明のいくつかのスルーヴァイア後−パルス処理技術のうちの1つを実施することによってさらに向上され得る。スルーヴァイアの後−パルス処理技術の一例においては、レーザの出力条件は、好ましくはその場で、穿孔されたスルーヴァイア全体にわたり変更され、ヴァイアは、それを穿孔するために最初に用いられたパルスあたりエネルギー密度を有する複数のレーザパルスを用いた2度目の穿孔を受ける。次に、レーザパルスは、第2の予め定められたパターンでトレパニングされる。好ましくは、第2の予め定められたトレパニングパターンは、第1の円形トレパニングパターンの直径よりも小さい直径をもつ円である。
スルーヴァイアの後−パルス処理技術の第2の例においては、レーザの出力条件は、好ましくはその場で、穿孔されたスルーヴァイア全体にわたり変更され、ヴァイアは、初期穿孔のために用いられたものよりも大きいパルスあたりエネルギー密度をもちしかも初期穿孔に用いられたものよりも小さいトレパニング速度で第2の予め定められたパターンでトレパニングされた複数のレーザパルスを用いて、2度目の穿孔を受ける。好ましくは、初期穿孔のためのトレパニング速度又はパルス間の間隔どりは0.5μm〜6μmであり、第2のトレパニング速度はパルス間で3μm以下である。
本発明のいずれかのスルーヴァイア後−パルス処理を行なうことにより、75μm以下の出口幅を有する高縦横比のヴァイアがくり返し生成される。例えば、両方のスルーヴァイア後−パルス処理技術共、スルーヴァイアの縦横比が10:1であるとき、約10μm2のスルーヴァイアの出口幅のばらつきを提供する。スルーヴァイアの縦横比が20:1である場合、約15μm2のスルーヴァイアの出口幅のばらつきが達成される。
本発明を用いて生成されるヴァイアの入口幅は75μm以下であり高い縦横比を有し得ることから、本発明は、脱イオン水中での超音波処理が、5分〜20分の間、穿孔された基板に対して適用され、かくしてヴァイアの側壁上に再度デポジットした材料を除去する。
本発明によって生成されたヴァイアの品質は、さらに、誘電体層が銅層により良く付着するように、伝導性銅層上に酸化銅層を制御された厚みで形成させることによって、確保される。伝導層は、予め形成された酸化物層を伴って市販されているか、又は、酸化銅層を形成するべく30秒〜5分の間120°F〜150°Fの温度で、McGean Rohcoから市販されている褐色酸化物浴溶液又は赤色酸化物浴溶液中に伝導層を浸漬させることによって酸化物層を形成することもできる。ヴァイアが穿孔されるとき、使用されるエネルギーの量は、酸化銅層及び誘電体インタフェースに対する熱損傷が最小限になるような形で制御される。穿孔の後、アブレーションを受けた基板材料は、酸化銅層及び付随する誘電体層の付着が危うくされないように、酸性クリーニング剤に最小限さらして基板をクリーニングすることによって除去される。
本発明に従ったブラインドヴァイア及びスルーヴァイアの穿孔及び後−パルス処理を複数回行なって、積層基板内に多数のヴァイアを穿孔することができる。
本発明はまた、好ましくはTEA CO2レーザを用いかつ最初にブラインドヴァイアを穿孔するためにTEAレーザのレーザ集束スポットを走査し積層基板内にブラインドヴァイアをレーザ穿孔する方法を提供することにより、積層基板内に複数のブラインドヴァイアを効率的に形成する。その後、各々のブラインドヴァイアは、好ましくはYAGレーザ、及びブラインドヴァイアの入口幅以内のYAGレーザのレーザ集束スポットのトレパニング動作又は穿孔パルスのいずれかを用いて、レーザ穿孔される。本発明に従うと、YAGレーザは、周波数3倍(frequency-tripled)ネオジウムYAG(Nd:YAG)レーザ及び周波数4倍(frequency-quadrupled)Nd:YAGレーザから成るグループの中から選択される。
ヴァイアが266nmの波長をもつレーザで穿孔され、ヴァイアが25μmの入口幅を有し、10μm未満の厚みをもつマスキング銅層が利用される場合、本発明はアパーチャ(aperture)を有するマスクが、レーザの出力ビーム内でかつレーザビームのレイリー範囲(Rayleigh range)以下であるレーザの出力からの距離のところに置かれるように規定している。アパーチャのサイズは、レーザビームのサイドローブ(side lobe)が基板の露出表面に到達しないよう阻止されるように選択される。
許容誤差の増大の問題なく積層基板の個々の伝導層が形成されるように本発明によって基準位置合せ手法が提供されている。基板のコア層上には位置合せマークが形成される。この位置合せマークはこのとき、コア層上に第1の層を形成するための基準位置合せ点として使用される。次に、第1の層は、コア層上の位置合せマークを露出させるためレーザ穿孔される。その後位置合せマークを基準点として用いて、第1の層の上に第2の層が形成される。これらのプロセスを繰返すことによって、積層基板の付加的な層が形成される。
本発明はまた、好ましくはケルビン抵抗器(Kelvin resistor)を用いて、積層基板の伝導層の基準位置合せの確認をも提供している。抵抗材料の予め定められた領域が、伝導層の一部としてかつそれぞれの伝導層中における同じ対応する場所において、形成される。各々の予め定められた領域の第1及び第2の端部において、それぞれ、第1及び第2の電圧タップが形成される。第1及び第2の電圧タップは、好ましくは抵抗材料内に注入された予め定められた電流が第1及び第2の電圧タップにおいて抵抗材料内で均等な電流密度を有するような形で選択される第1の予め定められた設計距離だけ分離されている。抵抗材料のそれぞれの予め定められた領域を通って積層基板内にスルーヴァイアが形成され、それぞれの予め定められた領域の第1及び第2の端部の間の予め定められた各抵抗材料領域に連結される。抵抗材料の予め定められた各領域の第1の端部と第2の端部の間で合計抵抗値が決定される。予め定められた各抵抗材料領域の第1の端部とスルーヴァイアの間で部分抵抗値が決定される。それぞれの予め定められた抵抗材料領域についてのそれぞれの部分抵抗値及び合計抵抗値に基づいてスルーヴァイアの場所との関係における各伝導層の基準位置ずれが決定される。すなわち、各伝導層の位置ずれは、伝導層の合計抵抗値に対する伝導層の部分抵抗値の比率に基づいている。
予め定められた電流は、予め定められた各抵抗材料領域の第1の端部から第2の端部へと通電され、それぞれの第1及び第2の電圧タップの間で電圧が測定される。それぞれの合計抵抗値は、予め定められた電流及びそれぞれの第1及び第2の電圧タップの間で測定された電圧に基づいて決定される。それぞれの第1の電圧タップとスルーヴァイアの間で電圧が測定され、部分抵抗値は、それぞれの第1の電圧タップとスルーヴァイアの間で測定された電圧と予め定められた電流に基づいて決定される。
各々の伝導層についての位置ずれδは、スルーヴァイアの場所との関係において、次の式により決定される。
Figure 0004642945
なおここでR1は、1つの伝導層についてのスルーヴァイアと第1の電圧タップの間の予め定められた抵抗材料領域の部分抵抗値であり、R2は、スルーヴァイアと第2の電圧タップの間の予め定められた抵抗材料領域の部分抵抗値であり、RTは、第1及び第2の電圧タップの間の伝導層の予め定められた抵抗材料領域の合計抵抗値すなわちR1+R2であり、1Tは伝導層の第1及び第2の電圧タップを分離する第1の予め定められた設計距離である。
本発明は、積層基板内に低インダクタンスのヴァイアを生成するための方法を提供する。第1の伝導層の上に第1の誘電体層が形成され、第1の誘電体層上に第2の伝導層が形成される。第1のノードと第2のノードの間で第1の経路に沿って延びる第1の伝導通路が第1の伝導層の中に形成される。第1のブラインドヴァイアが第1の誘電体層内で第2のノードにおいて形成され、第1の伝導通路に接続される。第1のブラインドヴァイアに接続された第2の伝導層の中に第2の伝導通路が形成される。第2の伝導通路は、少なくとも第1の経路の一部分に全く一致する第2の経路に沿って、第3のノードと第1のブラインドヴァイアの間に延びている。第1の伝導通路が第2の伝導通路と共に形成する相互インダクタンスが、第2の伝導通路と第1の伝導通路により形成される相互インダクタンスを打ち消す。
低インダクタンスのヴァイアは、第2の伝導層上に第2の誘電体層を、第2の誘電体層上に第3の伝導層を、第3の伝導層上に第3の誘電体層を、そして第3の誘電体層上に第4の伝導層を形成することによって拡張され得る。第2の誘電体層内で第3のノードにおいて第1の埋込みヴァイアが形成され、第2の伝導通路に接続される。第1の埋込みヴァイアに接続されている第3の伝導層の中に第3の伝導通路が形成される。第3の伝導通路は、第2の経路の少なくとも一部分に完全に一致する第3の経路に沿って、第4のノードと第1の埋込みヴァイアの間に延びている。第2のブラインドヴァイアは第4のノードにおいて第3の誘電体層の中に形成され、第3の伝導通路に接続されている。第4の伝導通路が第4の伝導層の中に形成され、第2のブラインドヴァイアに接続されている。第4の伝導パスは、第3の経路の少なくとも一部分に全く一致する第4の経路に沿って第5のノードと第2のブラインドヴァイアの間に延びる。第2の伝導通路が第3の伝導通路と共に形成する相互インダクタンスが、第3の伝導通路と第2の伝導通路により形成される相互インダクタンスを打ち消す。同様にして、第3の伝導通路が第4の伝導通路と共に形成する相互インダクタンスが、第4の伝導通路と第3の伝導通路により形成される相互インダクタンスを打ち消す。
低インダクタンスの伝導性ヴァイアの埋込みヴァイア及びブラインドヴァイアを、デカルト座標系の軸に対し平行である行及び列の形に配置することによって、複数の低インダクタンスヴァイアを形成することが可能である。伝導通路のそれぞれの経路は互いに平行であり、デカルト座標系の軸と或る角度を成す。好ましくは、それぞれの経路は、デカルト座標系の軸と45度の角度を成している。
【図面の簡単な説明】
本発明は、制限的ではない例として、添付図面に例示されており、これらの図面中、同じ参照番号は類似の要素を表わしている。
図1は、本発明の方法によって形成されたブラインドヴァイア及びスルーヴァイアをもつ積層基板の横断面図である。
図2は、本発明の方法及び装置により形成されたブラインドヴァイア及びスルーヴァイアを示す顕微鏡写真である。
図3は、本発明によってヴァイアを形成するためのレーザシステムの概略図である。
図4は、パルス繰返し率の関数としてのレーザ出力パワーを示すグラフである。
図5A及び5Bは、それぞれがブラインドヴァイアの異なる発達段階を示す、中にブラインドヴァイアが形成された多層基板を示す断面図である。
図6A及び6Bは、それぞれ後−パルス処理を伴わない、及びこの処理を伴うブラインドヴァイアの平均抵抗値を示すグラフである。
図7A及び7Bは、異なる発達段階におけるスルーヴァイアを示す断面図である。
図8Aは、低インピーダンスのヴァイアパターンをもつ多層基板の断面図である。
図8Bは、ヴァイアパターンの結果として得られる相互インピーダンスの相殺を例示する電流パスの概略図である。
図8Cは、密度を最適化するヴァイアパターンを示す多層基板の部分的な上面平面図である。
図9は、本発明による基準検査として用いられるケルビン抵抗器の上面図である。
図10は、相互接続回路デバイスとして本発明による積層基板を用いたフリップチップMCMパッケージの横断面図を示す。
図11は、本発明による誘電体を含有する充填材のために用いられる多孔質重合体の走査電子顕微鏡写真である。
図12は、本発明による接着性充填材を含有する多孔質重合体の概略図である。
発明の詳細な説明
図1を参照すると、伝導層と誘電体層の交互の層を積層化することによって、積層基板1が連続的に又は逐次的に構成される。さまざまな層は、積み重ねの形で位置づけされ次に、通常はプレス後まで各層が完全に硬化しないように誘電体材料が硬化のb段階にある状態で、合わせてプレスされる。
積層基板1は、任意の数の層を内含することができるが、図1では7層構造が示されている。誘電体層3及び4がコア層2の相対する側に配置され、伝導層5及び6がそれぞれ誘電体層3及び4上に配置されている。伝導層5上には誘電体層7が備えられ、誘電体層8が伝導層6上に設けられている。誘電体層7上に伝導層9が設けられ、誘電体層8の上に伝導層10が設けられている。
各層は、まずコア層2、誘電体層3及び4、及び伝導層5及び6がプレスされ合わせてボンディングされるように、連続的に適用される。伝導層はパターン化され、残りの層がその構造にボンディングされる前に、伝導層3及び4を接続するために必要なブラインドヴァイアが全て形成されている。その後、図1に示されているように、付加的な誘電体層7及び8、及び伝導層9及び10がその他の層にボンディングされる。
代替的には、複数の金属/誘電体/金属層を、連続してプレスするのではなく一緒に同時にプレスすることも可能である。このタイプの組立ては、図1のコア層2のようなコア層の必要性を低減する。連続的に行なわれるか同時に行なわれるかとは無関係に、より多い数又は少ない数の層を利用することが可能である。例示されている5つの伝導層の基板と同様、7層及び9層の基板は、数多くの実用的利用分野を有する。
ブラインドヴァイア11は誘電体層7を通って延び、スルーヴァイア12は、積層基板1全体を通って延びている。ヴァイア11及び12を形成するのに用いられるレーザ穿孔技術については、以下でより詳細に記述されることになる。ヴァイア11及び12は、10μm〜75μmの入口直径を有する。さらに、本発明の方法を用いて形成されたスルーヴァイアは、3:1〜25:1の縦横比、すなわちヴァイアの深さ対ヴァイアの直径D1の比をもつように高い信頼性で繰返し可能な形で形成される。
図2は、本発明の方法によって形成されたブラインドヴァイア及びスルーヴァイアの顕微鏡写真である。ブラインドヴァイアは50μmの入口直径と1:1の縦横比をもち、スルーヴァイアは、50μmの入口直径と6:1の縦横比をもつ。これらは、本書に記述されている方法及び装置を用いて達成できるヴァイアサイズ及び縦横比を表わすものである。
コア層2は、38μmという公称厚みをもつ1オンスの銅層といったような伝導材料で作られている。その他の周知の伝導性コア材料、例えばアルミニウムなども利用可能である。コア層2は、交互に配置された誘電体層及び伝導層のための構造的支持を提供している。標準的には、コア層2は、集積回路パッケージの中に相互接続回路デバイスとして積層基板が組立てられる場合、電気的に接地される。
図1に示されている伝導層及び誘電体層は、コア層2のまわりに対称的に配置されている。すなわち、コア層2の片側に形成された各々の誘電体層又は伝導層は、コア層2の反対の側に形成された同じ材料の対応する層を有している。従って、以下の記述ではコア層2の片側のみに関するヴァイアの形成方法について記すが、コア層2のもう1方の側でヴァイアを形成するためには類似のアプローチが用いられる。さらに、図1に示されている積層基板は、コア層2の各々の側に対称的に形成された2つの誘電体層と2つの伝導層のみを有するものの、本発明の積層基板は、コア層の相対する側に対称的に形成された任意の数の交互に配置された誘電体層及び伝導層を有することができる。
誘電体層3,4,7及び8は、好ましくは、充填材を伴う又は伴わないポリテトラフルオロエチレンで少なくとも一部分が構成されている誘電体材料又はポリイミド及びポリイミド積層板、エポキシ樹脂、有機材料などの高温有機誘電体基板材料の積層板で作られているが、これらに限られるわけではない。これらの材料についてのより詳しい記述が以下に提供されている。伝導層5,6,9及び10は好ましくは銅といったような伝導材料で形成されている。
誘電体層3及び4は、2枚の誘電体材料のシートの間にコアを配置しこれらを合わせてプレスすることによって、コア層2上に積層される。コア層2が銅で作られている場合、好ましくは、コア層2に対する誘電体層3及び4の接着を促進するためコア層2の相対する表面上に、褐色、黒色又は赤色酸化物として一般に知られている酸化銅層2a及び2bが設けられる。酸化銅層2a及び2bは、例えば30秒〜5分間120°F〜150°Fの温度でMcGean Rohcoから市販されている褐色酸化物浴又は赤色酸化物浴溶液の中にコア層を浸漬させることといった標準的な表面処理技術を用いることによって、コア層2の上に形成される。
誘電体層3及び4は、約12μm〜100μmの厚みを有するように、高温有機誘電体基板材料といったような有機基板材料から形成される。代表的例としては、誘電体層3及び4は約50μmの公称厚みを有することができる。
伝導層5及び6は、誘電体層3及び4の上面上に積重ねられ、コア2、誘電体層3及び4、そして伝導層5及び6がプレスされて積層されたサブアセンブリを形成する第1のプレス作業の中で共に積層される。第2のプレス作業では、誘電体層7及び8、及び伝導層9及び10が積重ねられ、プレスされて、図1に示されている積層基板1を形成する。
伝導層は、好ましくは19μmの公称厚みをもつ1/2オンスの銅層といった伝導材料で作られている。最終的相互接続回路デバイスにおいては、伝導層5及び6は標準的には電源層であるが、信号層であってもよい。設計及び利用分野を考慮に入れて、パッケージ構成が決定される。
伝導層5及び6が銅でできている場合、酸化銅層5a及び6aが、伝導層5及び6に対する伝導体層7及び8の付着を促進する目的で、それぞれ伝導層5及び6上に形成される。酸化銅層5a及び6aは、例えば30秒〜5分間120°F〜150°Fの温度でMcGean Rohcoから市販されている褐色酸化物浴又は赤色酸化物浴溶液の中に基板を浸漬させることといった既知の技術を用いることによって、それぞれ伝導層5及び6上に形成される。
誘電体層7及び8は、好ましくは約12μm〜100μmの厚みを有するように、高温有機誘電体基板材料といったような有機基板材料から形成される。代表的例としては、誘電体層7及び8は約50μmの公称厚みを有することができる。
伝導層9及び10は、誘電体材料で作られ、好ましくは、公称厚み5μmの1/8オンスの銅層である。標準的には、伝導層9及び10は、最終相互接続回路デバイスでは、従来の信号/パッド層であるが、電源/パッド層であってもよい。
ヴァイア形成用レーザシステム
図1に示されているヴァイアは、図3に示されているレーザシステム20を用いて形成される。レーザシステム20は、レーザ光学系を通して導かれるパルスレーザビーム22aを出力するレーザ源22を内含する。光学系には、鏡24及び26、及びブラインドヴァイアが形成された時点で用いられるパターン化マスク30を通して集束ビームを、X−Y位置づけテーブル34上で位置づけされた加工部材32上へと導く集束レンズ28、が含まれている。集束ビームは、マスク30の下にある基板上に集束スポットを形成する。集束スポットは、円形又は楕円形のものであり得る。
図3の加工部材32は、図1に示されている積層基板1といったような複数の交互に配置された誘電体層及び伝導層を含む積層基板である。付加的な積層が適用された後、1つの段階で形成されたブラインドヴァイア又はスルーヴァイアは埋込みヴァイアとなる。ブラインドヴァイアはまた、図1のブラインドヴァイアにより例示されるように、最も下又は最も上の誘電体層上に形成することもできる。
レーザシステム20は、加工部材32との関係におけるレーザビームの焦点スポットの位置を制御するコンピュータ36といったような制御デバイスをも内含している。コンピュータ36は、レンズ28をX方向に移動させるアクチュエータ38に対し制御信号S1を発出することによって集束スポットの位置づけを制御する。コンピュータ36はさらに、位置づけ用テーブル34をY方向に移動させるアクチュエータ40に対して制御信号S2を発出する。組合されたX及びY方向の運動によって、システム20は、望まれるタイプのヴァイアを形成するべくコンピュータ36によりプログラミングされた要領でレーザビームを移動させることができる。
鏡24及び26の位置を制御するための検流計を含め、その他のX−Y位置づけも利用可能である。このタイプの検流計は、市販されており、市販のレーザ機器の中に設置することができる。いずれの場合であれ、望ましいヴァイアを形成するべくビームスポットの移動パターンを設定するよう、コンピュータ36を予めプログラミングすることが可能である。その上、コンピュータ36は、方向、ビームパスの速度(秒あたりミリメートル単位)、パルス繰返し率及びパワーといったようなレーザ光発出パラメータを設定するためレーザ源22に作動的に結合される。
ピークパルスパワーを調整するため、コンピュータ36は、秒あたりの平均パワー及びパルスの変化ならびにns単位でのパルス持続時間の両方によってピークパワーに影響を及ぼす、パルス繰返し周波数の変更を実現することができる。これは、電子又は音響−光学式Qスイッチングでパルス間隔を変更することにより最もうまく行なわれる。パルスあたりパワーはまた、アーク灯といったようなレーザ励起源に対する電流を調整することによっても変更できる。
レーザ集束スポットの動きの好ましいパターンは、スポットを「トレパニング(trepanning)」することであり、ここでビームスポットは望ましいヴァイアの中心で出発し、徐々にヴァイアの外径まで外向きに渦巻き形に進んでいく。この時点でビームは、特定のヴァイアについて必要であると決定された回転数だけ、ヴァイアの中心のまわりを旋回させられる。完了時点で、集束スポットは中心まで渦巻き形に戻され、その後、次の指令を待つ。トレパニング速度の例としては、秒あたり3ミリメートルが挙げられる。
レーザの選択は本発明にとって重要である。好ましいレーザは355nmの波長で発光する周波数3倍Nd:YAG(ネオジウム、イットリウム、アルミニウム、ガーネット)レーザ又は266nmの波長で発光する周波数4倍Nd:YAGレーザといった、パルス化固体レーザである。このようなレーザは、Electro Scientific Industries of Portland(オレゴン、USA)によって製造されている5000型レーザ処理システムとして市販されている。
図4は、レーザ源22のためのパルス繰返し周波数の1関数としてのレーザ出力パワーの一例を示すグラフである。ここから明白であるように、平均パワーと周波数の間には非線形関係が存在するが、平均パワーの最大値に至るまでは、平均パワーの増大を提供するべくパルス周波数を増大させることができる。
レーザエネルギー密度をその場で変更するにあたり、コンピュータは、パルス繰返し率を変動させるべくQスイッチを制御することができる。表1は、355nmのNd:YAGレーザについて繰返し率と共にレーザエネルギー及びパワーがいかに変化するかを立証している。
Figure 0004642945
同様にして、表2は、266nm Nd:YAGレーザについて、繰返し率に伴ってレーザエネルギー及びパワーがいかに変化するかを立証している。
Figure 0004642945
レーザ集束スポットの幾何形状が、上述のものに付加されると、エネルギー密度を計算することが可能となる。エネルギー密度は、本書に記述されている有機基板内にヴァイアを形成するため基板のレーザアブレーションをセットするための一次パラメータの1つである。
ブラインドヴァイアのレーザ穿孔方法
図5Aを参照すると、多層積層基板42には、本発明の方法及びレーザ穿孔装置に従ってそこに形成されたブラインドヴァイア44が内含されている。標準的には、ブラインドヴァイアは1つの誘電体層のみを通して形成されかつ2つの隣接する伝導層の間で接続の経路を設定するために用いられる。しかしながら、多層の伝導層を接続するため複数の積層基板層を通って進むブラインドヴァイアを、本発明を用いて形成することもできる。
本発明によって達成できるブラインドヴァイアについての縦横比の範囲は、1:1〜5:1である。例えば、50μmのヴァイア入口幅を有し50μmの厚みをもつ誘導体層を通して延びる(1:1)ブラインドヴァイアを形成することができる。
図5Aを見ればわかるように、積層基板42は、ブラインドヴァイア44を形成すべき場所に形成された、予め形成されたアパーチャ46aを有する外部伝導層46を内含している。基板42はさらに、誘電体層48、伝導層50、誘電体層52及び伝導層54を内含する。誘電体層48がアパーチャ46aを通して露呈されるように、例えば化学エッチングプロセスなどによって従来の手段によりアパーチャ46aが形成される。
特に、伝導層46は吸光材料でコーティングされ、次に吸光材料は、アパーチャ46aについてのパターンで撮像される。撮像された吸光層は現像され、伝導層46の露呈した部分は、アパーチャ46aを形成するべく化学的にエッチングされる。
アパーチャ46aが形成された後、伝導層46を撮像して開口部46aを形成するのに用いられた吸光材料は、伝導層46上に重合体(polymeric)吸光層56を残すべく、エッチングで除去するよりはむしろその上に残すようにすることができる。吸光層56は、5μm〜50μm好ましくは公称25μmの厚みをもつ。適切な吸光材料は、市販のさまざまなフォトレジストのうちのいずれかである。
吸光層56が所定の場所にある状態で、基板42はこのとき図3の位置づけ用テーブル34の上に配置される。レーザビームは、ブラインドヴァイア44を穿孔すべきであるアパーチャ46aの内側の予め定められたスポットサイズまでレーザ集束スポットが集束されるように位置づけされる。出力パワーレベル、パルス繰返し周波数、パルス長又は持続時間及びレーザ集束スポットサイズは、誘電体層48のアブレーションエネルギー密度しきい値よりも大きいものの伝導層50(誘電体層48よりも下にある)のアブレーションエネルギー密度しきい値よりも小さい、パルスあたりエネルギー密度が、基板42、より特定的には誘電体層48に適用されるように調整される。
355nmのレーザ源を使用する場合には、ビームは、下にある伝導層50によってビームが部分的に反射され始める点までブラインドヴァイア内の材料をアブレーションし、ビームに対するさらなる露呈により、局所的加熱に起因する望ましくない酸化銅が形成される。この時点で、残りの誘電体材料48aを全て完全に除去するべく、さらにブラインドヴァイア44を処理するために後−パルス処理技術が使用される。完全な除去は、ヴァイア44の抵抗値及び抵抗値ばらつきの減少を提供する。
後−パルス処理のためには、レーザ22の出力パワーレベルは、レーザビームのエネルギー密度を調整することにより、伝導層50のアブレーションしきい値を上回るパルスあたりエネルギー密度レベルまで、穿孔されたヴァイア全体にわたりその場にて増大させられる。増大したエネルギー密度で伝導層50に対して印加される各パルスのピークパワー及びパルス数は、ブラインドヴァイア44の底面における伝導層50の表面が溶融状態になるものの急速にアブレーションされ穿孔されることがないような形で、選択される。パルスあたりのエネルギー密度は既に増大させられていることから、残りの誘電体層48aは完全にアブレーションされる。
レーザ穿孔中にアブレーションされる誘電体層48からの材料は、蒸発され局所的排出源を通して引き出されるか又はアパーチャ46aをとり囲む重合体吸光層56上に再度デポジットさせられる。ヴァイア44が図5aに示されている深さを達成した後、吸光層56及びその上に再デポジットされたアブレーション材料は、化学的はがし(stripping)といったような既知の技術を用いて除去される。図2aに示されたブラインドヴァイアは、レーザ穿孔の前に積層基板の表面上で吸光層を用いて形成されたものである。基板に適用されるパルスあたりエネルギー密度が1つのヴァイアを穿孔するのに必要とされるものよりも大きい場合、相互接続回路デバイスの全体的歩どまり及び信頼性に不利な影響を及ぼす小塊又はビードがヴァイア入口のまわりで伝導層48上に形成される。
ブラインドヴァイアの初期穿孔のためには、レーザ源22(図3)を、1KHz〜15KHzといったように望ましいパワー出力及びパルス繰返し周波数を有するべく調整することができる。
レーザが、355nmの波長で発光する3倍のNd:YAGレーザであるとき、誘電体層48(図5a)に適用されるパルスあたりエネルギー密度は、0.5J/cm2〜11J/cm2、好ましくは公称5J/cm2である。誘電体層48がePTFEマトリクス材料で作られている場合、パルスあたりエネルギー密度は、好ましくは3J/cm2と4J/cm2の間である。誘電体層48が充填材を含む場合、パルスあたりエネルギー密度は好ましくは約7J/cm2である。レーザが355nmの波長で発光する場合、レーザは好ましくは、50μmの直径のヴァイア入口について、6000Hzのパルス繰返し周波数、70nsのパルス幅及び35μmのスポットサイズを有するように調整される。ここで使用するパルス幅は、パルスの立上り及び立下り時間を無視している。ここで使用されるスポットサイズは、約1/e2のサイズである。誘電体層48をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100ns未満のパルス幅でその他のパルス繰返し周波数を使用することもできる。
レーザが、266nmの波長で発光する4倍のNd:YAGレーザである場合、誘電体層48に適用されるパルスあたりエネルギー密度は0.2J/cm2〜3J/cm2の間、好ましくは公称2J/cm2である。レーザが266nmの波長で発光する場合、好ましくはこのレーザは、50μmの直径のヴァイアマスク入口について7000Hzのパルス繰返し周波数、78nsのパルス幅そして30μmのスポットサイズを有するように調整される。誘電体層48をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100ns未満であるパルス幅でその他のパルス繰返し周波数を使用することも可能である。
好ましくは、トレパニング無くすなわちブラインドヴァイアが穿孔されるにつれてレーザ集束スポットを移動させること無く、レーザビームをアパーチャ46a内で誘電体層48に印加する。代替的には、レーザ集束スポットをアパーチャ46a内で円形運動でトレパニングして円形断面をもつヴァイアを形成することが可能である。特定的には、集束スポットは、当初ヴァイアが穿孔されるべき場所の中心点に集束される。レーザがパルス送りされるにつれてレンズ28及びテーブル34は、集束スポットが予め定められた直径をもつ円まで外向きに渦巻形にトレパニングされ、次にヴァイアを穿孔するのに必要な回数だけ円のまわりでトレパニングされ、その後レーザの作動条件が変更されるか又は集束スポットがもう1つのヴァイアへ移動される前に中心点まで渦巻形にトレパニングされて戻るように、調整された形で移動する。トレパニング速度及び各パルス間の対応する間隔どりは、パルス繰返し周波数及びレーザから出力されるパルスあたりのパワーレベルに関係づけられる。
後−パルス処理については、レーザパワー密度、繰返し率及びパルス長は、特定のニーズ及び穿孔作業に応じて変動させられる。ブラインドヴァイアの後−パルス処理のための異なるレーザについてのいくつかの代表的値が、以下で詳細に提供されている。
レーザ22が、355nmの波長で発光する3倍のNd:YAGレーザである場合、後−パルス処理のための伝導層50に適用されるパルスあたりエネルギー密度は5.5J/cm2より大きく、好ましくは公称11J/cm2である。この波長では、レーザは、4000Hzのパルス繰返し周波数及び55nsのパルス長を有するように調整される。35μmの集束スポットサイズが用いられる。標準的には、1〜10のパルスが355nmの後−パルス処理のために用いられる。伝導層50をアブレーションするのに充分なパルスあたりエネルギー密度が伝導層に適用されるかぎり、標準的に100ns未満であるパルス幅でその他のパルス繰返し周波数も使用可能である。
レーザ22が266nmの波長で発光する4倍のNd:YAGレーザである場合、伝導層50に適用されるパルスあたりエネルギー密度は、1.5J/cm2より大きく、好ましくは公称5J/cm2である。レーザ22が266nmの波長で発光する場合、レーザビームは好ましくは5000Hzのパルス繰返し周波数、63nsのパルス長そして30μmのスポットサイズを有するように調整される。同様に、1〜10のパルスが266nmの後−パルス処理のために使用される。誘電体層50をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100nsより小さいパルス長で、その他のパルス繰返し周波数も使用可能である。
後−パルス処理の後、図5Bに示されているように、無電解メッキ法といったような既知の技術を用いて、伝導層58を形成する伝導材料でブラインドヴァイア44がメッキされる。このメッキは、2つの隣接する伝導層46及び50の間に電気的相互接続を提供する。
本発明の方法に従って後−パルス処理されたブラインドヴァイアは、後−パルス処理されなかったブラインドヴァイアに比べて、伝導材料がブラインドヴァイア内にメッキされた後、低減された平均抵抗値を有する。本発明に従った後−パルス処理を受けていないヴァイアがテストされた時、ブラインドヴァイアの平均抵抗値が約3mΩと測定された。後−パルス処理を伴う場合、匹敵する形で製造されたブラインドヴァイアは約2mΩの平均抵抗値を有していた。テストから取ったデータは、後−パルス処理を伴う(図6B)及び伴わない(図6A)ブラインドヴァイアについての異なるパルスあたりパワーレベルについての平均抵抗値を示す図6A及び図6Bの中でグラフの形で大ざっぱに再現されている。図6Aでは、後−パルス処理無しで製造されたブラインドヴァイアの平均抵抗値は7.7mΩの3σ点で3.2mΩである。さらに、このデータは、本発明に従った後−パルス処理を用いた重要なプロセス要因であるブラインドヴァイア抵抗値のばらつきが、2.4mΩ2から0.3mΩ2まで減少することを示していた。
図6Bは、後−パルス処理を伴う場合、平均抵抗値が3.9mΩの3σ点で2.4mΩであることをグラフで示している。かくして、本発明の後−パルス処理は、ブラインドヴァイアの平均抵抗値を低減させ、得られた抵抗値の分布を著しく低減させて、相互接続回路デバイスにおけるブラインドヴァイアの極めて高い部品歩どまり(part yield)及びより良く制御された抵抗品質を提供する。
表3〜12は、積層基板の多重パネルが、25μmのスポットサイズで266nmの波長で発光する4倍Nd:YAGレーザを用いてSpeedboard▲R▼C誘電体材料内で1.1の縦横比及び50μmのヴァイア入口直径をもつブラインドヴァイアを製造するためにレーザ穿孔されたテストの結果を記している。実験マトリクスは、108のブラインドヴァイアレーザ条件を含む全階乗設計であった。レーザ穿孔済み条件あたりのヴァイアグループの各々は、175mW,200mW及び225mWの3つの出力エネルギーレベルのうちの1つを使用した。レーザレールについてパワーは3000Hzでセットされた。各々のブラインドヴァイアグループは、3つのサブグループに細分割され、これらのサブグループは6000Hz,7000Hz及び8000Hzの3つのパルス繰返し周波数のうちの1つで穿孔された。パルス幅は、6000Hzについての70nsから8000Hzについての85nsまで変動し、パルスあたり5μJから15μJが誘電体に適用されるようになっていた。ヴァイアの各々のサブグループはさらに、75,150及び225といった3つの予め定められたパルス数のうちの1つを用いて穿孔される3つのサブ−サブグループに細分割された。各サブ−サブグループの一方の半分は後−パルス処理され、一方他方の半分は後−パルス処理されなかった。後−パルス処理は、基板に対しパルスあたり約25μJが適用されるように、ブラインドヴァイア全体にわたりその場にてレーザ条件を変更した。
全条件についての両方のパネルの平均抵抗値は、2.83mΩと測定された。後−パルス処理を受けていないブラインドヴァイアについての両方のパネルの平均抵抗値は3.22mΩと測定された。後−パルス処理を受けたブラインドヴァイアについての両方のパネルの平均抵抗値は2.43mΩと測定された。表3は、3つの異なるエネルギーレベルの各々について測定された平均抵抗値を記している。表3は概して、175mWという出力エネルギーレベルではブラインドヴァイアから全ての誘電体材料を充分にアブレーションしておらずその結果、測定された抵抗値がより高いものとなったということを示している。
Figure 0004642945
表4は、3つの異なるパルス繰返し周波数の各々について測定された平均抵抗値を記している。表4は、高いパルス繰返し周波数に対応したより長いパルス幅及びより低いパワーレベルを伴うより高いパルス繰返し周波数では、ブラインドヴァイアから誘電体材料を充分にアブレーションせずその結果、測定された抵抗値がより高いものとなっていることを示している。
Figure 0004642945
表5は、ヴァイアを穿孔するために用いられる3つの異なる予め定められたパルス数の各々について測定された平均抵抗値を記している。表5は、全ての出力エネルギーレベルについて1つのヴァイアを穿孔するために75のパルスが使用された場合、誘電体材料がブラインドヴァイアから充分にアブレーションされずその結果、測定された抵抗値がより高いものとなったことを示している。
Figure 0004642945
表6は、後−パルス処理無し及び後−パルス処理有りについて測定された平均抵抗値を記している。表6は、後−パルス処理が、使用された全てのパルス繰返し周波数及び全ての出力エネルギーレベルについての平均抵抗値を減少させたことを示している。
Figure 0004642945
表7は、出力エネルギーレベル及びパルス繰返し周波数の一関数として測定された平均抵抗値を記している。表7は、低いパルス繰返し周波数に対応したより短いパルス幅及びより高いパワーレベルを伴う、より低いパルス繰返し周波数が、より低い平均抵抗値を提供したことを示している。
Figure 0004642945
表8は、使用されたパルス数及び出力エネルギーレベルの一関数として測定された平均抵抗値を記している。表8は、穿孔のために用いられたより低いパルス数及びより低い出力エネルギーレベルが、より高い平均抵抗値を提供したことを示している。
Figure 0004642945
表9は、後−パルス処理が使用されたか否かの関数として測定された平均抵抗値を記している。表9は、後−パルス処理の使用が、使用された全ての出力エネルギーレベルについて平均抵抗値を減少させたことを示している。前述した通り、図6A及び6Bは、表9のデータについて後−パルス処理を伴う及び伴なわないブラインドヴァイアに関する異なるパルスあたりパワーレベルについての平均抵抗値のグラフを示している。
Figure 0004642945
表10は、パルス繰返し周波数及び後−パルス処理が使用されたか否かの関数として測定された平均抵抗値を記している。表10は、後−パルス処理が、使用されたすべてのパルス繰返し周波数について平均抵抗値を減少させたことを示している。
Figure 0004642945
表11は、使用されたパルス数及び後−パルス処理が使用されたか否かの関数として測定された平均抵抗値を記している。表11は、後−パルス処理が、使用されたパルスの異なる合計数について平均抵抗値を減少させたことを示している。
Figure 0004642945
表12は、後−パルス処理が使用されたか否かに関する測定された平均抵抗値の標準偏差を記している。表12は、後−パルス処理が、測定された抵抗値の標準偏差を3分の1に減少させたことを示している。図6Aは、後−パルス処理無しで製造されたブラインドヴァイアの平均抵抗値が7.7mΩの3σ点で3.5mΩであることをグラフで示している。図6Bは、後−パルス処理を伴う場合、平均抵抗値は、3.9mΩの3σ点で2.4mΩであることをグラフで示している。
Figure 0004642945
レーザパワー密度、繰返し率及びパルス幅は、特定のニーズ及び穿孔作業に応じて変動させることができるものの、表13には、35μmのスポットサイズを伴う355nmのNd:YAGレーザについてのいくつかの代表的値が提供されている。
Figure 0004642945
同様にして、266nmの波長のNd:YAGレーザについて、30μmの集束スポットを伴うブラインドヴァイアを形成するための代表的値は表14にある通りである。
Figure 0004642945
セラミック充填材を有する誘電体材料については、より高い値が必要とされる。例えば、伝導層50に適用されるエネルギー密度は4J/cm2よりも大きく、好ましくは公称9J/cm2である。これらの値は、5000Hzのパルス繰返し周波数、55nsのパルス長及び30μmのスポットサイズに対応する。後−パルス段階のためには、1〜10のパルスが用いられる。誘電体層50をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100ns未満であるパルス長でその他のパルス繰返し周波数を使用することも可能である。
上述の方法に従って、ブラインドヴァイアを形成することにより、マスク(図3中の層30)、ならびに図1の伝導層2a,2b,5a及び6aと結びつけられた酸化銅層及び図5A及び5Bの伝導層50及び54と結びつけられることになる酸化銅層(なおこれは明確さを期して図から除外されている)に対する損傷は最小限になる。損傷は、1つのヴァイアを穿孔するのに用いられるピークパワー量を最小限にした結果として、最小限におさえられる。酸化銅層は、酸性クリーニング剤の中でレーザ穿孔後に積層基板をクリーニングした時に、部分的にエッチバックされず、かくして、基板中の銅及び誘電体層がヴァイアの近辺で互いに付着された状態にとどまることから、より信頼性の高いヴァイアという結果がもたらされることになる。
スルーヴァイアを形成するための方法
本発明はさらに、図3に示されているレーザ穿孔装置を用いたスルーヴァイアの形成を内含する。本技術を用いると、入口直径が75μm以下で3:1〜25:1の縦横比をもつスルーヴァイアを穿孔することが可能である。
図7Aを参照すると、誘電体層と伝導層の交互の層を通過するスルーヴァイア62を伴う積層基板60が示されている。スルーヴァイア62が穿孔される場合は、以下に記述する通り伝導層と誘電体層が同時に穿孔される。
図7A内の積層基板60は、最も上の伝導層66上に重合体吸光性コーティング64を伴って形成されている。この吸光性コーティングは、図5Aに関して記述されたものと同じタイプであり、例えばロール積層、スプレーコーティング又はスピンコーティング技術などを用いて被覆することができる。コーティング64は、厚みが5μm〜50μm、好ましくは公称25μmの厚みである。コーティングに適した吸光性材料は市販されている。吸光層がレーザ穿孔後に除去された時点で、アブレーションされた材料が層64上にデポジットし除去されることから、ヴァイアの入口は高品質のものとなる。
高品質のヴァイア出口すなわち低い出口幅のばらつきを得るためには、重合体吸光層68が、ロール積層、スプレーコーティング又はスピンコーティングプロセスといった既知の技術を用いて、底面の最も露出された伝導層70上に形成される。吸光層68の厚みは5μm〜50μmであり、好ましくは公称25μmの厚みである。最も上及び最も下の伝導層66及び70の間には、伝導層72,74及び76と誘電体層78,80,82及び84の一連の中間交互層が具備されている。
スルーヴァイア62を形成するべくレーザ穿孔プロセス中に積層基板60の底部側面の平面性を維持することが重要である。真空を用いてスクリーン又はハニカム形グリッドに対し積層基板を保持する従来のアプローチでは、充分な底部側面の平面性と、基板の底部側面に適合する材料の最小限の再デポジットとの、必要とされている組合せを提供してくれない。大部分の真空板はアルミニウム又は鋼で製造されており、かくして、除去がむずかしい金属の再デポジットのための電位を提供する。いくつかの例では、高品質のヴァイア出口を提供するのに吸光層68単独で充分である。ヴァイアの側壁についての除去の容易な再デポジット材料ならびに必要とされる底部側面の平面性の両方を確保するためには、銅といったような伝導材料で作られた層86が、吸光層68でコーティングされた基板60を銅といったような平担な伝導板に対しテープでとめることによって、吸光層68と密に接触した状態に置かれる。
図7Aに示されているスルーヴァイア62をレーザ穿孔するためには、基板60は、スルーヴァイア62が穿孔されるべき予め定められたX及びY座標にレーザ集束スポットが集束されるような形で位置づけされる。50μmの直径を有するスルーヴァイアについては、出力パワーレベル、パルス繰返し周波数、パルス幅及びレーザのレーザ集束スポットサイズは、伝導層66,72,76及び70のアブレーションエネルギー密度しきい値よりも大きいパルスあたりエネルギー密度が基板60に適用されるように、調整される。例えば、図3に示されているレーザシステムのコンピュータは、例えば基板60の層をアブレーションするため、直径25μm〜35μmのレーザスポットサイズを利用して、パワー出力及び1KHz〜15KHzのパルス繰返し周波数及び40ns〜100nsのパルス長をセットする。
レーザが355nmの波長で発光する3倍のNd:YAGレーザである場合、基板60に適用されるパルスあたりエネルギー密度は、2J/cm2より大きく、好ましくは公称10J/cm2である。355nmの波長の出力については、レーザは好ましくは、8000Hzのパルス繰返し周波数、85nsのパルス幅そして35μmのスポットサイズをもつように調整される。基板60の層をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100ns未満のパルス幅でその他のパルス繰返し周波数を使用することも可能である。
355nmの波長のレーザのためのいくつかのその他の代表的なスルーヴァイア形成パラメータは、表15に示されている通りである。
Figure 0004642945
レーザが、266nmの波長で発光する4倍のNd:YAGレーザである場合、基板に適用されるパルスあたりエネルギー密度は2J/cm2より大きく、好ましくは公称10J/cm2である。266nmの波長の出力については、レーザは好ましくは、5000Hzのパルス繰返し周波数、55nsのパルス幅及び25μmのスポットサイズをもつように調整される。基板60の層をアブレーションするのに充分なパルスあたりエネルギー密度が適用されるかぎり、標準的に100ns未満であるパルス幅でその他のパルス繰返し周波数を使用することも可能である。25mmの集束スポットを伴う266nmの波長のNd:YAGレーザを用いたスルーヴァイア形成のためのその他の代表的値は、表16に示されている通りである。
Figure 0004642945
図7Aのスルーヴァイアを形成するためには、レーザビームは好ましくは、ブラインドヴァイアの形成に関して記述したようなトレパニング動作で基板60に適用される。この結果、円形横断面をもつスルーヴァイアが形成されることになる。このトレパニング動作は、スルーヴァイアを穿孔するのに必要な長さだけ続行し、その後、集束スポットは、レーザの作動条件が変更されるか又は集束スポットがもう1つのヴァイアへと移動させられる前に、中心点まで渦巻形にトレパニングして戻される。直径50μmのヴァイアを形成するためには、直径25μmの集束スポットの中心は、パルス間のトレパニング距離0.8〜6μmにて、直径40μmの円形パターンでトレパニングされる。
スルーヴァイア62が基板60の底面側面まで貫通穿孔された時点で、アブレーション−再デポジット後の伝導層86及びヴァイア出口上の重合体コーティングの高いUV−VIS(紫外線−可視光線)吸収率に起因して、側壁上に最小限の再デポジットが発生する。ひとたび穿孔が完了すると、既知の技術を用いて伝導層86は基板60から分離され、吸光層68は剥ぎ取られる。同様に、吸光性コーティング66も剥ぎ取られ、その結果、図7Bに示された基板60が得られる。
基板60の底面表面上に形成された吸光層68及び基板と密な接触状態に保持された伝導層86を使用することにより、低い出口幅のばらつきをもつスルーヴァイアの形成が確保される。例えば、約10:1の縦横比をもつスルーヴァイアについては、約20μm2の出口幅のばらつきが測定された。もう1つの例として、約20:1の縦横比をもつスルーヴァイアについては、約30μm2の出口幅のばらつきが測定された。
多周波数処理及び多重パルス間隔
スルーヴァイアが最初に穿孔されるとき頻繁に、底面伝導層70にあるヴァイア出口開口部(図7A及び7B)は、上部伝導層66におけるヴァイア入口開口部よりも小さい。後−パルス処理を行なうことによって、公称出口直径及びスルーヴァイア出口幅のばらつきの両方をさらに改善することができる。すなわち、レーザシステムの出口条件は、4つの方法のうちの1つでヴァイアが穿孔された後スルーヴァイア62全体にわたりその場で変更され、その後レーザビームは、標準的により小さなトレパニング用円形パターンを用いて、付加的にさらに一回トレパニングされる。
4つの異なるスルーヴァイア後−処理技術を例示するため、直径50μmのスルーヴァイアが穿孔される状況を考慮する。スルーヴァイアは最初、パルスあたり0.8〜6μmのパルス間トレパニング距離で40μm直径の円形トレパニングパターン及び25μmのスポットサイズを用いて、5000Hzのパルス繰返し率で基板に適用された50μJ/パルスのパルスあたりエネルギー密度を用いて穿孔される。両方のスルーヴァイア後−処理技術において、レーザ出力条件は、穿孔されたスルーヴァイアの入口の中で基板を横断してレーザビームスポットを再配置することに付随する許容誤差蓄積問題を避けるため、スルーヴァイア全体にわたりその場で変更される。多数の位置合せ作業を伴う再レーザ処理は、結果として厳しい入口ノジュール(nodule)と全体的に貧弱なヴァイア品質をもたらし得る。
第1のスルーヴァイア後−パルス処理技術については、パルスあたりエネルギー密度を50μJ/パルスで一定に保ち、パルス繰返し率を5000Hzで一定に保ち、スポットサイズを直径25μmで一定に保ち、トレパニング速度をパルスあたり0.8〜6μmの間隔で一定に保つことにより、レーザ出口条件は、完成したばかりのスルーヴァイア全体にわたりその場にて調整されるが、ここでトレパニングパターンは、直径30μmの円となるよう縮小される。
第2のスルーヴァイア後−パルス処理技術については、レーザ出力条件は、パルスあたりエネルギー密度を50μJ/パルスで一定に保ち、パルス繰返し率を5000Hzで一定に保ち、スポットサイズを直径25μmで一定に保ち、かつトレパニング速度を2.0以上の約数でパルスあたり0.4〜3μmの間隔まで一定に低減させ、トレパニングパターンを直径30μmの円となるよう低減することによって、完成されたばかりのスルーヴァイア全体にわたりその場にて調整される。
第3のスルーヴァイア後−パルス処理技術については、レーザ出力条件は、パルスあたりエネルギー密度を60〜75μJ/パルスまで増大させ、トレパニング速度をパルスあたり0.8μm〜6μmに保ち、トレパニングパターンを直径30μmの円となるように低減することによって、完成されたばかりのスルーヴァイア全体にわたりその場にて調整される。これは、パルス繰返し率を約4500Hzに変えることによって達成できる。
第4のスルーヴァイア後−パルス処理技術については、レーザ出力条件は、パルスあたりエネルギー密度を60〜75μJ/パルスまで増大させ、トレパニング速度を2以上の約数でパルスあたり0.4μm及び3μmまで減少させ、トレパニングパターンを直径30μmの円まで低減させることによって、完成されたばかりのスルーヴァイア全体にわたりその場にて調整される。
スルーヴァイア後−パルス処理は、この処理を受けていないスルーヴァイアと比べた場合より一層改善されたスルーヴァイア出口幅のばらつきをも提供しながら、開放スルーヴァイアの歩どまりの著しい改善を提供する。例えば、スルーヴァイアの縦横比が5:1である場合、約5μm2のばらつきが達成される。同様に、スルーヴァイアの縦横比が10:1である場合、スルーヴァイア後−パルス処理を用いて約10μm2のスルーヴァイアの出口幅のばらつきが達成される。同様にして、スルーヴァイアの縦横比が20:1である場合、約15μm2のスルーヴァイアの出口幅のばらつきが達成される。
ヴァイアの側壁のテーパを変動させることができ、これは、ヴァイアを穿孔するのに用いられるパワーレベル及び基板の中で用いられる材料、パルスステップ距離及びヴァイアあたりの合計エネルギーの関数である。この開示において、テーパは以下のように定義づけされる。
Figure 0004642945
なおここで、D1はヴァイアの入口直径であり、D2はヴァイアの出口直径である。これらの直径は図1に示されている。この要領で定義づけされたテーパは、0〜1の間で変動する。0というテーパは、出口直径が入口直径に等しいことを表わしている。1というテーパは、ヴァイアがその目的地に到達しなかったことを表わす。ペースト状複合誘電体材料から形成された誘電体層を有する基板内で穿孔される10:1の縦横比をもつスルーヴァイアについてのテーパは、0.0〜0.4のテーパをもつものとして形成され得る。
このテーパを達成するために用いられるレーザ条件は、波長355nmでの初期穿孔、パルスあたりエネルギー密度75μJ/パルス、パルス繰返し率8000Hz、スポットサイズ35μm、及びパルス間が2μm〜3μmのトレパニング速度で直径40μmの円形トレパニングパターン、である。結果として得られるテーパは約0.3である。上述のいずれかの代替案によるスルーヴァイア後−パルス処理は、初期穿孔の後で使用することができる。
織りガラス誘電体材料から形成された誘電体層をもつ基板内に穿孔された10:1の縦横比をもつスルーヴァイアは、0.2〜0.5のテーパを有するように形成され得る。このテーパを達成するために使用されるレーザ条件は、355nmの波長での初期穿孔、パルスあたりエネルギー密度200μJ/パルス、パルス繰返し率3500Hz、スポットサイズ35μm、及びパルスあたり4μm〜6μmのトレパニング速度で直径40μmの円形トレパニングパターンである。いずれかの代替案によるスルーヴァイア後−パルス処理が初期穿孔の後に使用される。
266nmの波長で発光するレーザが用いられる場合、セラミック/CE−エポキシPTFE誘電体材料を有する基板用の10:1の比のヴァイアについて達成されるテーパは、0.0〜0.2である。このテーパを達成するために用いられるレーザ条件は、波長266nmでの初期穿孔パルスあたりエネルギー密度50μJ/パルス、パルス繰返し率5000Hz、スポットサイズ25μm、及びパルス間が2μm〜3μmのトレパニング速度で直径40μmの円形トレパニングパターン、である。結果として得られるテーパは約0.1である。上述したいずれかの代替案によるスルーヴァイア後−パルス処理は、初期穿孔の後で使用することができる。
織りガラス誘電体材料から形成された誘電体層をもつ基板内に穿孔された10:1の縦横比をもつスルーヴァイアは、0.1〜0.3のテーパを有するように形成され得る。このテーパを達成するために使用されるレーザ条件は、波長266nmでの初期穿孔、パルスあたりエネルギー密度50〜75μJ/パルス、パルス繰返し率4000〜6000Hz、スポットサイズ35μm、及びパルスあたり1μm〜6μmのトレパニング速度で直径40μmの円形トレパニングパターン、である。いずれかの代替案によるスルーヴァイア後−パルス処理は、初期穿孔の後に使用される。
ブラインドヴァイア及びスルーヴァイアのクリーニング
ブラインドヴァイアとスルーヴァイアの両方が上述の方法によりレーザ穿孔され、吸光層が除去された後、クリーニング段階が開始される。
本発明によって形成されるヴァイア入口は75μm以下であることから、従来のヴァイアクリーニングでは、ヴァイアの中に高い信頼性で伝導材料をメッキするのに必要な程度までには、ヴァイアの側壁上に再デポジットされたアブレーション材料が除去されない。
本発明に従うと、ヴァイアをクリーニングするために、脱イオン水中の攻撃性(aggressive)超音波処理が使用される。超音波処理は標準的に5分〜20分間実施され、ヴァイアの側壁上に再デポジットされたアブレーション材料を除去するために基板に適用される。
TEA & YAGレーザ処理
約45mm2の面積内の1500以上のブラインドヴァイア又は0.75ヴァイア/mm2以上のヴァイア密度といったように、積層基板の特定層の中に多数のブラインドヴァイアが穿孔される必要がある場合、上述のブラインドヴァイアレーザ処理は、各ブラインドヴァイアを初期穿孔するため走査モード動作で横方向に励起された大気(圧)(TEA)CO2レーザを用い、次に、各ブラインドヴァイアの品質を高め各ブラインドヴァイアの平均抵抗値及び抵抗値のばらつきを減少させるべく後−パルス処理を行なうため穿孔モード動作で固体第3又は第4YAGレーザを用いて、実現することができる。例えば、図3のレーザ22は、約9μm〜11μmの波長、約150Hzのパルス繰返し周波数及び約100nsのパルス幅をもつ60WのTEA CO2レーザであってよく、これは厚み50μmの誘電体層内に直径50μmのブラインドヴァイアを初期穿孔するため走査モード動作で使用できる。この例では、TEA CO2レーザは、初期穿孔がブラインドヴァイアあたり2又は3パルスの動作となるように、パルスあたり26J/cm2を適用するように調整される。全てのブラインドヴァイアがTEAレーザにより穿孔された後、基板は、上述の通り、ヴァイアの平均抵抗値及び抵抗値のばらつきを低減させるべくブラインドヴァイア後−パルス処理のため適当なパルス化YAGレーザへと切換えられる。
非点収差の補正
上述のように、レーザ穿孔のために4倍のNd−YAGレーザ(波長266nm)が使用される場合、ヴァイアの入口品質を、レーザビーム内の非点収差について補正することにより、確保することができる。ここで再び図3を参照すると、レーザ源22と基板又は加工部材32の間のビームパス内にプレート41が介在させられる。特に、ビーム22aはプレート41内に形成されたアパーチャの中を通過する。プレート41は、ビームのレイリー範囲(Rayleigh range)以下の点においてビームパス内に位置づけされる。アパーチャ41のサイズはビーム22aのサイドローブ(side lobe)を阻止するように選択される。
基準レーザ穿孔
積層基板を製造する場合、各伝導層の基準位置合せ(fiducial registration)を決定するために、本発明のレーザ穿孔技術を使用することができる。円形状といったような少なくとも2つの位置合せマークが、図1内に示されたコア層2の上に形成されている。各々の層が形成されるにつれて、コア2上に形成された位置合せマークを次の層の心合せのための基準位置合せ点として使用できるように、位置合せマークを露呈するためコア層2まで下へ穿孔するために、レーザ穿孔及び後−パルス処理が使用される。基準位置合せマークを露呈するべく各層を穿孔するプロセスは、既知の自動調心技術を用いて形成される最終外側導体層を除いて、全ての層について行なわれる。
低インダクタンスヴァイアの形成
本発明は、低インダクタンスの伝導性ヴァイアを作る方法を内含している。図8Aは、ブラインド−埋込み−ブラインドヴァイアパターンに基づく、低インダクタンスのヴァイアをもつ多層基板88の横断面図を示す。基板は、誘電体層90,92及び94と伝導層96,98,100及び102を層状化することによって形成される。これらの層は、上述の材料及びプロセスを用いて作られる。埋込みヴァイア104は、隣接する伝導層98及び100の間の電気的相互接続を提供し、その後の層状化により封じ込められる前に、ブラインドヴァイアの形成に関し上述した方法によって形成された。
ブラインドヴァイア106及び108は、基板88の相対する側面から、互いに相対して形成される。これらは、上述の方法に従って形成され、図1のブラインドヴァイア11及び図5A及び5Bのブラインドヴァイア44に対応する。
信号通路が図8Bに概略的に例示されており、ここには、伝導層96、スルーヴァイア106から層98へ、層98を通り、埋込みヴァイア104を通って層100まで、層100、ブラインドヴァイア108を通って層102へそして層102を通る流れが示されている。
この信号通路は、電流又は信号が反対方向に流れている状態で、伝導層の部分が、平行ではあるものの垂直に間隔どりされた通路に沿って配線されるように配置されている。この要領で信号を配置することにより、第2の隣接する信号通路セグメントと共に第1の信号通路セグメントによって形成される相互インダクタンスが、第1の伝導通路セグメントと共に第2の伝導通路セグメントによって形成される相互インダクタンスを相殺する。これは、ヴァイアを通って流れる電流が第1の信号通路セグメント内で一方の方向に流れ、隣接する信号通路セグメント内で反対の方向に流れるという事実に起因する。例えば、信号通路102と共に信号通路100により形成された相互インダクタンスは、信号通路100と共に信号通路102が形成した相互インダクタンスを相殺する。同様にして、信号通路98と共に信号通路100により形成された相互インダクタンスは、信号通路100と共に信号通路98によって形成された相互インダクタンスを相殺する。
ブラインドヴァイアと埋込みヴァイアの物理的配置は、相互接続回路のヴァイア106の密度を最大限にするため、図8Cに示されているように構成することができる。図8Bは、デカルト座標系110の軸に平行である行列の形に配置されたブラインドヴァイア106を示し、一方埋込みヴァイア100は、デカルト座標系110の軸と一定の角度を成して、すなわちブラインドヴァイアと埋込みヴァイアの間で斜め方向に各信号通路が走行するように行と列の間に配置されている。好ましくは、各信号通路は、デカルト座標系110の軸から45°の角度で走行する。
基準検査
本発明は、積層構造において各伝導層の基準位置合せを検査する方法を提供している。図9を参照すると、例えば抵抗性材料として銅又はニッケルメッキの金を用いて既知の要領で多層基板の各伝導層上の同じ場所で抵抗性領域112を形成することによって、ケルビン抵抗器110が生成される。リード線114及び116が、抵抗性領域112の相対向する各端部に接続されている。
リード線118及び120は、予め定められた離隔距離1Tを伴って、抵抗性領域112に接続される。多層構造の各伝導層上の同じ物理的場所で、抵抗性領域112が形成される。全ての層がひとたび形成された時点で、本発明のレーザ穿孔技術を用いて、スルーヴァイア122が穿孔される。スルーヴァイア122は、リード線114から予め定められた距離11のところに位置せしめられる。スルーヴァイア122は、全ての抵抗性領域112が電気的に相互接続されるようにメッキされる。
リード線114を通して抵抗性領域112の中に既知の電流が注入され、リード線116から抽出される。リード線118及び120は各々、抵抗性領域112を横断しての電流密度が均一でかつ等しい点において、リード線114及び116から位置づけされる。リード線114及び116の間の電圧が測定され、リード線114とスルーヴァイア122の間の電圧が測定される。リード線114と116の間及びリード線114とスルーヴァイア122の間の抵抗値は、リード線114内に注入される既知の電流及び抵抗性領域の寸法に基づいて決定される。伝導層の位置合せ変動δは次の式により決定される。
Figure 0004642945
なお式中、R1は、リード線118とスルーヴァイア122の間の抵抗性領域112の部分抵抗値である。
2は、スルーヴァイア122とリード線120の間の抵抗性領域112の部分抵抗値である。そして、
Tは、リード118と120を離隔する予め定められた設計上の距離である。
部分抵抗値R1は、次の式により決定される。
Figure 0004642945
なお式中、Rsは、抵抗性領域112のために使用される材料の抵抗率である。
1は、リード線118とスルーヴァイア122の間の距離である。そして、
Wは、抵抗性領域112の幅である。
抵抗性領域112の部分抵抗値R2は、次の式により決定される。
Figure 0004642945
なお式中、12は、スルーヴァイア112とリード線120の間の距離である。
フリップチップパッケージ
本発明に従った積層基板の一実施形態は、フリップチップ単一チップモジュール(SCM)パッケージを製造する上で使用される。図10は、本発明に従って作られたフリップチップタイプのチップ/パッケージシステム124を例示する。システム124は、はんだボール接続130のアレイを通してプリント配線板(PWB)128に機械的及び電気的に取付けられている相互接続デバイス126として積層基板を内含している。はんだボール接続130のアレイは、完全なアレイであってもよいし、或いは、半導体デバイス132の下の領域内で減っていて(depopulated)もよい。
半導体デバイス132は、はんだボール接続134の完全な又は減少したアレイを通して、相互接続デバイス126に対し機械的及び電気的に取付けられている。さらに、チップ132と相互接続デバイス126の間に配置されたアンダフィル(underfill)接着剤136が、チップ/相互接続デバイスの接続を補強する。接着剤は、標準的に、周知の要領で調剤され熱により硬化させられる充填エポキシである。
相互接続デバイス126は、上述の伝導層及び誘電体層の交互の積層板により構成され、PWB128のCTEとほぼ一致する熱膨張係数(CTE)を有する。付加的には、相互接続デバイス126は平坦でかつ容易に組立てられるほど充分な機械的頑丈さをもつことが必要とされる。これを達成するため、相互接続デバイス126に対し、補剛材リング138が付着させられる。補剛材リング138は、半導体デバイス及び、相互接続デバイス126に対し同一表面上で取付けられるコンデンサといったようなその他のあらゆるデバイスのための単数又は複数のキャビティ140を有する。
従来において、相互接続デバイスは、セラミック材料で作られていた。半導体デバイス上の相互接続の密度が増大するにつれて、相互接続デバイスとPWBの間のはんだボール接続は、CTEの不整合に起因して故障する傾向をもつ。本発明の相互接続デバイスは、相互接続デバイスのCTEをPWBに密に整合させることによって、この故障モードを無くする。
5ミル〜20ミルの相互接続回路デバイス126の相対的厚みにより、デバイスは、チップ132のCTEとPWB128のCTEの間の差による不利な影響を受けることになる。標準的には、フリップチップPWBのCTEは、17〜25ppmの間で変動し、一方集積回路チップのCTEは3ppmである。相互接続回路デバイス126のCTEは、チップ132のCTEα1と相互接続回路デバイス126のCTE α2の間の差が20ppm以下となるように選択される。好ましくは、相互接続回路デバイス126のCTEは、PWB128とチップ132のそれぞれのCTEの間の差によってひき起こされる不利な影響を最小限におさえるため、公称18ppmとなるように選択される。相互接続回路デバイス126がチップ132に結合される領域内では、チップ132の物理的特性が優越し、相互接続回路デバイス126の有効なCTEは約12である。相互接続回路デバイス126がサポートリング138に結合される領域では、サポートリング138の特性が優越し、相互接続回路デバイス126の有効なCTEは、PWB128のCTEと一致する。
相互接続回路デバイス126のCTEは、デバイスを形成する誘電体基板材料によって支配される。相互接続回路デバイス126がチップ132に取付けられた時点で、デバイス126及びチップ132は両方共、はんだのリフロー中に、標準的に180℃より高い温度まで加熱される。相互接続回路デバイス126のために用いられる誘電体材料に応じて、誘電体材料を、その誘電体材料のガラス転移温度Tgより上まで加熱して、誘電体材料のCTEを誘電体材料の初期CTEの3倍分までも変化させることが可能である。その結果、相互接続回路デバイス126のCTEがはんだリフローの温度範囲中公称20ppm/℃にとどまるように、好ましくはTgを200℃以上とさせるべく誘電体材料が選択される。
上述のとおり、相互接続回路デバイス126及びチップ132は付加的に、既知の要領で、アンダフィル、標準的には充填されたエポキシを用いて合わせ接着により結合される。エポキシアンダフィルは、硬化するにつれて収縮し、かくして相互接続回路デバイス126との関係におけるチップの動きを低減させ、はんだボール134により形成された電気的接続の故障の可能性は低くなる。しかしながら、エポキシアンダフィルの150〜175℃という高温での硬化収縮及びボンディングはまた、相互接続回路デバイス126及びチップ132を湾曲させ、かくして部品間の結合の中心近くでチップ132から相互接続回路デバイス126を分離させ、はんだボール134により形成された電気的接続に対し応力を加える。
この条件を回避するため、集積回路チップ132は厚みが25ミル以上となるように選択される。デバイスのたわみ又は曲げ係数は、デバイスの厚みの3乗に正比例して増大する。かくして、厚みが25ミル以上である集積回路チップを用いることにより、チップ132は、硬化収縮力に応答して曲がる傾向が低くなる。その結果、実装された半導体の信頼性は高められる。
誘電体
本発明では、単独又は充填材と組合わされた形でのポリイミド及びポリイミド積層材、エポキシ樹脂、その他の樹脂材料と組合わせたエポキシ樹脂、有機材料といったような(ただしこれらに制限されるわけではない)適当なあらゆる誘電体材料を使用することができる。好ましい誘電体材料としては、フッ素重合体がPTFE,ePTFE又は共重合体又はブレンドであり得る、フッ素重合体マトリクスが含まれる。適当なフッ素重合体としては、接着性充填材混合物を伴う又は伴わないポリテトラフルオロエチレン又は延伸膨張ポリテトラフルオロエチレンがあるが、これらに制限されるわけではない。
好ましい材料としては、ポリテトラフルオロエチレンマトリクス内にシアン酸エステル樹脂を含有する不織材料のプリプレグ(prepyeg)であるSpeedboard▲R▼CといったようなW.L.Gore and Associates,Inc.から入手可能なSpeedboard▲R▼ボンドプライがある。Speedboard▲R▼Cは、1MHz〜10GHzで2.6〜2.7の誘電率(DK)、1MHz〜10GHzで0.004の損失正接(loss tangent),1000V/ミルより大きい絶縁耐力、220℃のガラス転移温度(Tg)、66〜68重量%の樹脂含有率を有し、さまざまな厚みで入手可能である。同様に、延伸膨張PTFEマトリクス内で多機能エポキシ接着剤を含有する不織材料のプリプレグであるSpeedboard▲R▼Nプリプレグも同様に使用可能である。Speedboard▲R▼Nは、1MHzで3.0という誘電率(DK),1MHzで0.02の損失正接、900V/ミルより大きい絶縁耐力、140℃のガラス転移温度(Tg)、66〜68重量%の樹脂含有率を有し、さまざまな厚みで入手可能である。
もう1つの適切な誘電体は、シアン酸エステル化合物、エポキシ化合物、ビス−トリアジン化合物及びポリ(ビス−マレイミド)樹脂のうちの少なくとも2つの混合物を含む、図11に示された延伸膨張PTFEマトリクスである。例えば、5.95ポンドのM−30(Ciba Geigy)、4.07ポンドのRSL1462(Shell Resins,Inc.)、4.57ポンドの2,4,6−トリブロモフェニル−末端テトラブロモビスフェノールAカーボネートオリゴマ(BC−58)(Great Lakes Inc.)、136gのビスフェノールA(Aldrich Company)、23.4gのIrganox 1010、18.1gのミネラルスピリット中のMn HEX−CEMの10%溶液、そして8.40kgのMEKを混合することによって、ワニス溶液が作られる。このワニス溶液はさらに2つの別々の浴(20%(w/w)及び53.8%(w/w))へと希釈された。2つのワニス溶液は、別々の含浸浴の中に注ぎ込まれ、e−PTFEウェブが各々の含浸浴の中に連続的に次々と通された。ワニスは、均等性を確保するべくつねに撹拌された。その後、含浸されたウェブは直ちに加熱したオーブンの中に通され、溶剤の全て又はほぼ全てを除去し接着剤を部分的に硬化し、ロール上に収集された。ePTFEウェブは、例えば25μm,40μmといったように任意の望ましい厚みであってよい。厚み25μmの材料は、約0.9gの質量と約11.2〜13.8g/m2の面積あたり重量をもつ。
その他のクラスの誘電体材料には、多孔質マトリクスシステムが吸収又は含浸された接着剤−充填材混合物を含有する材料が含まれる。多孔質マトリクスは、部分的に接着剤を硬化しB段階の複合材を形成するように加熱された、基板の初期空隙率の結果として熱可塑性又は熱硬化性接着剤及び大量の充填材を吸収した不織基板である。基板は、本書に各々参考として内含されている、Goreに対する米国特許第3,953,566号及びBowman et al.に対する第4,482,516号の多孔質延伸膨張ポリテトラフルオロエチレン材料といったようなフッ素重合体を含む。望ましくは、平均フロー細孔径(mean flow pore size)(MFPS)は、最大微粒子のものの約2〜5倍又はそれ以上でなくてはならず、充填材の約2.4倍より大きいMFPSが特に好まれる。ただし、平均フロー粒径MFPS対平均粒径の比を1.4より大きくなるように選択することにより、適当な複合材を調製することができるということも、本発明の範囲内に入っている。受容可能な複合材はまた、最小細孔径対平均粒径が少なくとも0.8より大きいか又は最小細孔径対最大粒径が少なくとも0.4より大きい場合にも調製可能である。MFPS対粒径の比は、microtrak FRA分析装置を用いて決められる。
代替的には、相対的な細孔径及び粒径を測定するためのもう1つのメカニズムは、最小細孔径が最大粒径の約1.4倍を上回るものとして計算することができる。
延伸膨張フッ素重合体基板に加えて、多孔質延伸膨張ポリオレフィン例えば超高分子量(UHMW)ポリエチレン、延伸膨張ポリプロピレン、ペースト押出し成形により調製され犠牲充填材を取込んだポリテトラフルオロエチレン、多孔質無機又は有機フォーム(foam)、微孔性酢酸セルロースを使用することもできる。
多孔質基板は、少なくとも30%、好ましくは少なくとも50%、最も好ましくは少なくとも70%の初期空隙率をもち、複合材全体の脆性及び粒子の沈降を防ぐべく可とう性ある補強を提供しながら空隙内への微粒子充填材ペースト及び熱硬化性又は熱可塑性接着剤樹脂の含浸を容易にする。
充填材は、最大粒径、最小粒径及び平均粒径をヒストグラムの形で表示するMicrotrak▲R▼FRA型粒子分析装置によって分析した場合、1つの粒子集合体を内含している。
接着剤の中に取込まれるべき適切な充填材としては、BaTiO3,SiO2,Al2O3,ZnO,ZrO2,TiO2、沈降及びゾル−ゲルセラミック例えばシリカ、チタニア及びアルミナ、非伝導性炭素(カーボンブラック)及びそれらの混合物があるが、これらに制限されるわけではない。特に好ましい充填材は、単独又は非伝導性炭素と組合せた形でのSiO2,ZrO2,TiO2である。最も好ましい充填材としては、均等な表面曲率及び高度の球形度をもつ、本来中実のすなわち中空球形ではないシリカ、チタニア及びアルミナ粒子を生成するためのケイ素、チタン及びアルミニウムといった(ただしこれらに限られるわけではない)、米国特許第4,705,762号の中で教示されている蒸気金属燃焼プロセスにより作られた充填材が含まれる。
充填材は、カップリング剤を用いるなどして、接着剤マトリクスに対し反応性ある作用物質及び/又はシリル化剤により充填材を疎水性にする周知の技術により処理することができる。適切なカップリング剤としては、シラン、チタン酸塩、ジルコン酸塩及びアルミン酸塩がある。適切なシリル化剤としては機能的シリル化剤、シラザン、シラノール、シロキサンが含まれ得るが、これらに限られるわけではない。適切なシラザンには、ヘキサメチルジシラザン(Huls H730)及びヘキサメチルシクロトリシラザン、シリルアミド例えばビス(トリメチルシリル)アセタミド(Huls B2500)、シリル尿素例えばトリメチルシリル尿素及びシリルイミダゾール例えばトリメチルシリルイミダゾールなどが含まれるが、これらに限られるわけではない。
チタン酸塩カップリング剤の例としては、テトラアルキルタイプ、モノアルコキシタイプ、配位タイプ、キレートタイプ、四元塩タイプ、ネオアルコキシタイプ、シクロヘテロ原子タイプがある。好ましいチタン酸塩には、チタン酸テトラアルキル、Tyzor▲R▼TOT{テトラキス(2−エチル−ヘキシル)チタネート、Tyzor▲R▼TPT{テトライソプロピルチタネート}、キレート化チタネート、Tyzor▲R▼GBA{アセチルアセチルアセトン酸チタン}、Tyzor▲R▼DC{エチルアセトアセトン酸チタン}、Tyzor▲R▼CLA{DuPont社の所有商品}、モノアルコキシ(Ken−React▲R▼KR TTS)、Ken−React▲R▼、KR−55テトラ(2,2ジアリルオキシメチル)ブチル、ジ(ジトリデシル)ホスフィトチタネート、LICA▲R▼38ネオペンチル(ジアリル)オキシ、トリ(ジオクチル)ピロ−ホスファトチタネートが含まれる。
適当なジルコン酸塩には、Kenrichカタログの22頁目に詳述されているジルコン酸塩のいずれか、特にKZ55−テトラ(2,2ジアリルオキシメチル)ブチル、ジ(ジトリデシル)ホスフィトジルコネート、NZ−01−ネオペンチル(ジアリル)オキシ、トリネオデカノイルジルコネート、NZ−09−ネオペンチル(ジアリル)オキシ、トリ(ドデシル)ベンゼン−スルフォニルジルコネートが含まれる。
本発明において使用できるアルミン酸塩には、Kenrich▲R▼、ジイソブチル(オレイル)アセトアセチルアルミネート(KA301)、ジイソプロピル(オレイル)アセトアセチルアルミネート(KA322)及びKA489が含まれるがこれらに限られるわけではない。
上述のものに加えて、最初非常に高い希釈度(MEK中0.1%から最高1.0%の溶液)で塗布される、開示されている熱硬化性マトリクス接着剤のいずれかのサイジング又は例えばジビニルベンゼン、ジビニルピリジンなどの架橋ビニル系重合体といったような或る種の重合体を使用することができる。また、ジクミルペルオキシドといったような或る種の有機過酸化物を充填材と反応させることもできる。
接着剤自体は、熱硬化性でも熱可塑性でもよく、ポリグリシジルエーテル、ポリシアヌレート、ポリイソシアネート、ビス−トリアジン樹脂、ポリ(ビス−マレイミド)、ノルボルネン−末端ポリイミド、ポリノルボルネン、アセチレン−末端ポリイミド、ポリブタジエン及びその機能化された共重合体、環式オレフィン系ポリシクロブテン、ポリシロキサン、ポリシスカロキサン、機能化ポリフェニレンエーテル、ポリアクリレート、ノヴォラック重合体及び共重合体、フッ素重合体及び共重合体、メラミン重合体及び共重合体、ポリ(ビスフェニルシクロブタン)及びそのブレンド又はプリポリマーを含み得る。上述の接着剤がそれ自体合わせて配合されてもよいし、或いは又その他の重合体又は添加剤と配合させて難燃性又は強化された靱性に影響を及ぼすこともできる。
ここで使用されている、平均フロー細孔径及び最小細孔径は、直接値を報告するCoulter▲R▼Porometer II(Coulter Electronics Ltd.,Luton UK)を用いて決定されたものである。平均粒径及び最大粒径は、Microtrac光散乱粒径分析器No.FRA型(Microtrac Division of Leeds & Northup,North Wales,PA,USA)を用いて決定された。平均粒径(average particle size)(APS)は、粒子の50%がそれより大きいものであるような値、として定義づけされる。最大粒径(LPS)は、Microtracヒストグラム上で検出可能な最大粒子として定義づけされる。代替的には、最大粒径は、100%の微粒子が通過したとMicrotrak FRAが決定した時の最小点で規定される。
一般に、接着剤−充填材誘電体を調製するための方法には、(a)小さな粒子及び接着剤が空隙又は細孔容積内に流れ込むことができるようにするのに充分なミクロ構造まで、潤滑済みの押出された予備成形品を延伸させることによりポリテトラフルオロエチレンシートを膨張させる段階;(b)重合体例えば熱硬化性又は熱可塑性材料及び充填材からペーストを成形する段階;及び(c)浸漬、コーティング、圧力供給により、接着剤−充填材のペーストを延伸膨張ポリテトラフルオロエチレンといったような多孔率の高い足場の中に吸収させる段階が関与している。
本発明の充填された接着剤フィルムを調製するため、微粒子充填材を溶剤又は水溶液又は溶融接着剤の中に混合させ、細かく分散した混合物を得る。小さな粒子の形をした充填材は、通常40ミクロン未満のサイズをもち、好ましくは1〜10ミクロンの間の平均微粒子サイズをもつ。ポリテトラフルオロエチレンのノードとフィブリル構造の平均細孔径は、微粒子の適当な進入を可能にするのに充分なほど大きくなくてはならない。基板が延伸膨張ポリテトラフルオロエチレンとなるべきである場合、このとき、Bowman et al.に与えられた米国特許第4,482,516号の中で教示されたものに似た構造が望まれる。望ましくは、平均フロー細孔径(MFPS)は最大微粒子のものの約2〜5倍またはそれ以上でなくてはならず、充填材の約2.4倍より大きいMFPSが特に好ましい。ただし、平均フロー粒径MFPS対平均粒径の比を1.4より大きくなるように選択することによって適切な複合材を調製することができる、ということも本発明の範囲内に入る。最小細孔径対平均粒径が少なくとも0.8より大きいか又は最小細孔径対最大粒径が少なくとも0.4より大きいときにも、受容できる複合材を調製することができる。MFPS対粒径の比は、microtrak FRA分析装置を用いて決められる。
代替的には、相対的な細孔径及び粒径を測定するためのもう1つのメカニズムは、最小細孔径が最大粒径の約1.4倍を上回るものとして計算することができる。
表17は、基板平均フロー細孔径(MFPS)と粒径の関係の効果を示す。平均フロー細孔径(MFPS)対最大微粒子の比が1.4以下である場合、貧弱な結果が見られる。この場合、均質な複合材は見られず、微粒子充填材の大部分が微孔性基板の中に均等に進入しない。MFPS対最大微粒子の比が約2.0より大きい場合、均等な複合材が得られる。又、MFPS対最大微粒子の比が大きくなればなるほど、微孔性基板の中に均質な分散を吸収する相対的ケースが増えるということも観察される。
Figure 0004642945
例 1
MEK中の難燃化されたジシアナミド/2−メチルイミダゾールを触媒とするビスフェノール−Aベースのポリグリシジルエーテル(Nelco N-4002-5,Nelco Corp.)の20%(w/w)溶液の中に281.6gのTiO2(TI Pure R-900,DuPont Company)を混合することによって、細かい分散を調製した。この分散を常時撹拌して均質性を確保した。その後、延伸膨張PTFEの布切れを樹脂混合物の中に浸漬させた。1分間165℃で、テンションを加えながらウェブを乾燥させて、可とう性複合材を得た。このように製造した部分的に硬化された接着剤複合材は、57重量パーセントのTiO2,13重量パーセントのPTFEそして30重量パーセントのエポキシ接着剤で構成されていた。銅箔の間に複数の接着剤シートプライを積上げ、90分間225℃の温度で真空式油圧プレス内で600psiにて圧縮し、圧力下で冷却した。こうして19.0の誘電率をもつ銅の積層板が結果として得られ、これは、100mm(0.0039″(3.9ミル))の誘電体積層板厚みの平均プライ厚で、280℃で30秒のはんだ衝撃に耐えた。
例 2
フェニルトリメトキシシラン(04330,Hulo/Petrarch)で前処理された386gのSiO2(HW−11−89,Harbison Walker Corp.)を、200gのビスマレイミドトリアジン樹脂(BT2060BJ,三菱ガス化学)及び388gのMEKのマンガンを触媒とした溶液の中に混合することによって細かい分散を調製した。分散を常時撹拌して均質性を確保した。その後厚み0.0002″の延伸膨張PTFEの布きれを樹脂混合物の中に浸漬し、とり出しその後テンション下で1分間165℃で乾燥させて可とう性複合材を得た。このプリプレグを数プライ、銅箔の間に積み上げ、90分間225℃の温度で真空式油圧プレス内で250psiで加圧し、次に圧力下で冷却した。このように製造され、その結果として得られた誘電体は、53重量パーセントのSiO2,5重量パーセントのPTFE及び42重量パーセントの接着剤で構成され、銅に対する優れた付着力、3.3の誘電率(10GHzで)そして0.005の散逸係数(10GHzで)を示した。
例 3
274.7gのビスマレイミドトリアジン樹脂(BT2060BJ,三菱ガス化学)と485gのMEKのマンガンを触媒とした溶液の中に483gのSiO2(HW-11-89)を混合することによって細かい分散を調製した。分散を常時撹拌して均質性を確保した。その後厚み0.0002″の延伸膨張PTFEの布きれを樹脂混合物の中に浸漬し、とり出しその後テンション下で1分間165℃で乾燥させて可とう性複合材を得た。このプリプレグを数プライ、銅箔の間に積上げ、90分間225℃の温度で真空式油圧プレス内で250psiで加圧し、次に圧力下で冷却した。このように製造された結果として得られた誘電体は、57重量パーセントのSiO2,4重量パーセントのPTFE及び39重量パーセントの接着剤で構成され、銅に対する優れた付着力、3.2の誘電率(10GHzで)そして0.005の散逸係数(10GHzで)を示した。
例 4
3.30kgのビスマレイミドトリアジン樹脂(BT206OBH,三菱ガス化学)及び15.38kgのMEKのマンガンを触媒とした溶液の中に15.44kgのTiO2粉末(TI Pure R-900,DuPont Company)を混合することによって、細かい分散を調製した。分散を常時撹拌して均質性を確保した。その後0.0004″のTiO2充填延伸膨張PTFEの布きれ(40%のTiO2装填及び最後に膜を圧縮しなかったという点を除いて、Mortimerの米国特許第4,985,296号の教示に従って充填されたもの)を樹脂混合物内に浸漬し、取り出し、次に165℃で1分間テンション下で乾燥させて可とう性複合材を得た。このように生成された部分的に硬化された接着性複合剤は、70重量パーセントのTiO2,9重量パーセントのPTFE及び21重量パーセントの接着剤で構成されていた。このプリプレグの複数のプライを銅箔の間に積上げ、90分間220℃の温度で真空式油圧プレス内で500psiで加圧し、その後圧力下で冷却した。結果として得られたこの誘電体は、銅に対する優れた付着力、10.0という誘電率そして0.008という散逸係数を示した。
例 5
7.35kgのMEK及び73.5gのカップリング剤すなわち3−グリシジルオキシプロピルトリメトキシシラン(Dynasylan GLYMO(Petrach Systems)と7.35kgのSiO2(ADMATECHS SO−E2,Tatsumori LTD)を混合することによって細かい分散を調製した。SO−E2は、製造業者により、0.4〜0.6μmの粒径、4〜8m2/gの比表面積、0.2〜0.4g/ccの(緩んだ)バルク密度をもつ球状度の高いシリカを有するものとして記述されている。
この分散に対し、シアン酸フェノール系樹脂,Primaset PT-30(Lonza Corp.)の50%(w/w)溶液932gを添加した。(MEK)メチルエチルケトン内に、896gのMEK中RSL 1462(Shell Resins,Inc.(CAS# 25068−38−6))の50%(w/w)溶液、380gのMEK中BC-58(Great Lakes,Inc.)の50%(w/w)溶液、54gのMEK中ビスフェノールA(Aldrich Company)の50%溶液、12.6gのIrganox 1010(Ciba Geigy)、3.1gのマンガン2−エチルヘキサノエート(Mn HEX-CEM(OMG Ltd.)の0.6%溶液及び2.40kgのMEKがある。この分散を、約1−3gal./分の速度で約20分間Misonicsの連続フローセルを通して超音波撹拌に付した。かくして得られた細かい分散を、11.9%固体(w/w)という全体的浴濃度までさらに希釈した。
細かい分散を含浸浴の中に注ぎ込んだ。延伸膨張ポリテトラフルオロエチレンウェブは、図12のノード−フィブリル構造と、以下の特性をもつ。
Figure 0004642945
Frazier数は、検定対象の材料の通気率(air permeability)に関連するものである。通気率は、空気流測定のため約6平方インチの円形領域内に具備されたガスケット付き取付け具の中にウェブをクランプすることによって測定される。上流側は、乾燥圧縮空気の供給源と同一線上にある流量計に接続した。試料取付け具の下流側は大気に対して開放した。テストは、試料の上流側に0.5インチの水圧を加えインライン流量計(流量計に連結されたボール浮動式ロータメータ)を通る空気の流速を記録することによって達成される。
ボールバースト強度は、破断時の最大値を決定することにより試料の相対的強度を測定するテストである。ウェブは、2枚のプレート間にクランプされている間、直径1インチのボールでの攻撃を受ける。Chatillon,Force Gauge Ball/Burstテストを使用した。測定装置内でピンと張った状態で媒体を入れ、ウェブをバーストプローブのボールと接触するように持ち上げることによって圧力を加えた。破断時の圧力を記録する。
上述のウェブを、3ft./分又はそれに近い速度で、常時撹拌されている含浸浴の中に通し、均質性を確保する。含浸させたウェブを直ちに加熱したオーブン内に通して、全て又はほぼ全ての溶剤を除去し、ロール上に収集する。
このプリプレグを数プライ、銅箔の間に積上げ、90分間220℃の温度で真空式油圧プレス内で200psiで加圧し、次に圧力下で冷却した。結果として得られたこの誘電体は、銅に対する優れた付着力、3.0という誘電率(10GHzで)、そして0.0085という散逸係数(10GHzで)を示した。
例4及び例7で用いた微粒子充填材の物理的特性を以下で比較する。
Figure 0004642945
例 6
溶融シリコンの蒸気燃焼から調製されたSiO2に基づく含浸された接着剤−充填剤混合物を含むePTFEマトリクスを、次のように調製する。まず最初に2つの前駆体混合物を調製した。1つの前駆体混合物は、例5のものに類似したシラン処理したシリカを含有するスラリーの形をしており、もう1つの混合物は、樹脂及びその他の成分の触媒無しのブレンドである。
混合物I
シリカスラリーは、シリカがその重量の1%に等しいシランコーティングされたものを含有している、MEK中の例5のSO−E2シリカの50/50のブレンドである。5ガロン入り容器に、17.5ポンドのMEK及び79グラムのシランを添加し、MEK中のシランの均等な分散を確保するため2つの成分を混合した。その後、例5のシリカを17.5ポンド添加した。MEK−シリカ−シラン混合物の2つの5ガロン入り容器を反応容器に添加し、中味すなわちスラリーを、存在し得るあらゆるシリカ集塊を粉砕するべく約1時間、超音波分散装置を通して再循環させた。音波処理を完了し、反応容器の中味を、連続的に混合しながら、約1時間約80℃まで加熱した。その後、反応済み混合物を10ガロン入り容器内に移した。
混合物II
望ましい樹脂ブレンド製品は、固体部分が正確に41.2%のPT−30シアン酸化フェノール樹脂、39.5%のRSL1462エポキシ樹脂、16.7%のBC58難燃剤、1.5%のIrganox 1010安定剤及び1%のビスフェノールA共触媒(百分率は全て重量百分率である)の混合物である、約60%の固体を含有する触媒なしの樹脂ブレンド(接着剤)を含むMEKベースの混合物である。
10ガロン入り容器の中に、14.8ポンドのPT−30と15−20ポンドのMEKを添加し、勢いよくかきまぜてPT−30を完全に溶媒和させた。その後、6ポンドのBC58を測定し、MEK/PT−30溶液に添加し、勢いよく撹拌してBC58を溶媒和させた。安定剤である244.5グラムのIrganox 1010及びビスフェノールA,163グラムを添加した。10ガロン入り容器を再度検量し14.22ポンドのRSL1462を添加した。付加的なMEKを添加して混合物の重量を60ポンドにした。その後、約1〜2時間、又は固体成分を完全に溶解するのに必要な長さだけ、中味を勢いよく撹拌した。
望ましい製品は、固体の68重量%がシリカであり、合計固体がその混合物の5重量%〜50重量%の間である、シランで処理されたシリカ、触媒無しの樹脂ブレンド及びMEKの混合物である。正確な固体濃度は、回毎に変動し、一部には、含浸されるべき膜により左右される。触媒レベルは、PT−30及びRSL1462の合計に対して10ppmである。
前駆体の精度を確認し、発生したあらゆる溶剤フラッシュを補償するべく、混合物I及びIIの固体含有率を決定した。その後、混合物Iを10ガロン入り容器に添加し、12ポンドの固体、例えば515の固体含有率、23.48ポンドの混合物Iを得た。その後、容器に混合物IIを添加して、5.64ポンドの固体、例えば59.6%の固体、9.46ポンドの混合物IIを得た。混合物Iと混合物IIの混合物に対して、マンガン触媒溶液(ミネラルスピリット中0.6%)3.45グラムを添加し、徹底的に配合して高い固体含有率の混合物を形成した。
固体28%の混合物である、ePTFEマトリクスを含浸させるための浴混合物は、合計重量63ポンドとなるように充分なMEKを固体含有率の高い混合物に添加することによって調製された。
その後、ePTFEのマトリクスにこの浴混合物を含浸させて誘電体材料を形成させた。
例 7
26.8グラムのFurnace Black(Special Schwarz 100,Degussa Corp.,Ridgefield Park,New Jersey)及び79グラムのカップリング剤(Dynaslan GLYMO CAS #2530−83−8;3−グシリジルオキシプロピル−トリメトキシシラン(Petrach Systems))を混合することにより、細かい分散を調製した。分散を1分間超音波撹拌に付し、次に、予め超音波撹拌した17.5ポンドのMEK中の17.5ポンドのSiO2(SO−E2)の撹拌分散に対しこれを添加した。還流下で1時間、恒常にオーバヘッド混合しながら最終的分散を加熱し、次に室温まで冷却させた。
別途、MEK中のPrimaset PT−30の57.5%(w/w)混合物3413グラム、MEK中のRSL1462の76.8%(w/w/)混合物2456グラム、MEK中のBC58(Great Lakes,Inc)の53.2%(w/w)溶液1495グラム、MEK中のビスフェノールA(Aldrich Company)の23.9%(w/w)溶液200グラム、71.5グラムのIrganox 1010、ミネラルスピリット中のMu HEX-CEM(OMG Ltd.)の0.6%(w/w)溶液3.21グラム及び2.40kgのMEKを添加することにより、接着性ワニスを調製した。
別の容器中に0.0233グラムのFurnace Black(Special Schwarz 100,Degussa Corp.,Ridgefield Park,New Jersey),1328の上述の接着性ワニス及び38.3ポンドのMEKと共に、上述の分散3739グラムを加えた。この混合物を含浸浴中に注ぎ込み、ePTFEウェブを、3ft/分又はその前後の速度で含浸浴内に通した。均等性を確保するべく、この分散を常時撹拌した。含浸させたウェブを、加熱したオーブン内に直ちに通して全て又はほぼ全ての溶剤を除去し、ロール上に収集する。
このプリプレグのいくつかのプライを銅箔の間に積上げ、90分間200℃の温度で真空式油圧プレス内で200psiで圧縮し、次に圧力下で冷却した。結果として得られたこの誘電体は、銅に対する優れた付着力を示した。
例 8
MEK中のPrimaset PT−30(PMN P−88−1591)の57.5%(w/w)溶液3413グラム、MEK中のRSL1462の76.8%(w/w)溶液2456グラム、MEK中のBC58(Great Lakes,Inc.)の53.2%(w/w)溶液1495グラム、MEK中のビスフェノールA(Aldrich Company)の23.9%(w/w)溶液200グラム、71.5グラムのIrganox 1010、ミネラルスピリット中のMn HEX-CEMの0.6%(w/w)溶液3.21グラム及び2.40kgのMEKを添加することにより、接着性ワニスを調製した。
別の容器中に、上述の接着性ワニス1328グラム、42.3ポンドのMEK、6.40グラムのFurnace Black(Special Schwarz 100,Degussa Corp.,Ridgefield,New Jersey)及び1860.9グラムのSiO2(SO−E2)を加えた。この混合物を含浸浴中に注ぎ込み、ePTFEウェブを、3ft/分又はその前後の速度で含浸浴内に通した。均等性を確保するべく、この分散を常時撹拌した。含浸させたウェブを、加熱したオーブン内に直ちに通して全て又はほぼ全ての溶剤を除去し、ロール上に収集する。
このプリプレグのいくつかのプライを銅箔の間に積上げ、90分間220℃の温度で真空式油圧プレス内で200psiで圧縮し、次に圧力下で冷却した。結果として得られたこの誘電体は、銅に対する優れた付着力を示した。
本発明を、例示した実施形態に関連して記述してきたが、本発明の真の精神及び範囲から逸脱することなく修正を加えることが可能であるということも認識し理解するべきである。

Claims (60)

  1. 第1の伝導層を形成する段階、
    該第1の伝導層上に誘電体層を形成する段階、
    該誘電体層上に、予め形成されたアパーチャをもつ露出した第2の伝導層を形成する段階、
    該誘電体層のアブレーション(ablation)しきい値よりも大きく該第1の伝導層のアブレーションしきい値よりも小さい第1のパルスあたりエネルギー密度を各々有する複数のレーザパルスを用いて該第2の伝導層の予め形成されたアパーチャ内の1つの場所でブラインドヴァイアを形成するため、該誘電体層を通して該第1の伝導層までレーザ穿孔を行なう段階、及び、
    その後、該ブラインドヴァイアの抵抗値を低下させるために、該誘電体層中に形成された該ブラインドヴァイアを介して該第1の伝導層に、それぞれが第2のパルスあたりエネルギー密度を有するあらかじめ定められた数のレーザーパルスを照射する段階であって、該第2のパルスあたりエネルギー密度は、該第1の伝導層のアブレーションしきい値よりも大きく、該あらかじめ定められた数は、レーザーパルスによって暴露された該第1の伝導層の表面を溶融状態にするがしかしアブレーションし穿孔することがない数である、レーザーパルスを照射する段階、
    をそなえて成る、積層基板内にブラインドヴァイアを形成する方法。
  2. 該ブラインドヴァイアの入口幅が75μm以下である請求項1に記載の方法。
  3. 該ブラインドヴァイアの縦横比がX:1(Xは1以上の整数)である請求項2に記載の方法。
  4. 伝導材料で該ブラインドヴァイアを充填する段階をさらに含んで成り、該ブラインドヴァイアを通した該第1の伝導層への接続部の平均抵抗値が2mΩである請求項3に記載の方法。
  5. 該ブラインドヴァイアを通した該第1の伝導層への接続部の抵抗値のばらつきが0.25mΩ2である請求項4に記載の方法。
  6. レーザが355nmの波長で発光し、該第1のパルスあたりエネルギー密度が0.5J/cm2〜11J/cm2である請求項5に記載の方法。
  7. 該第1のパルスあたりエネルギー密度が公称で5J/cm2である請求項6に記載の方法。
  8. 各パルスが100ns以下のパルス幅を有する請求項7に記載の方法。
  9. レーザが266nmの波長で発光し、該第1のパルスあたりエネルギー密度が0.5J/cm2〜3J/cm2である請求項5に記載の方法。
  10. 該第1のパルスあたりエネルギー密度が公称で2J/cm2である請求項9に記載の方法。
  11. 各パルスが100ns以下のパルス幅を有する請求項10に記載の方法。
  12. 該予め定められたパルスの数が1〜10である請求項5に記載の方法。
  13. レーザが355nmの波長で発光し、該第2のパルスあたりエネルギー密度が5J/cm2より大きい請求項12に記載の方法。
  14. 該第2のパルスあたりエネルギー密度が公称で11J/cm2である請求項13に記載の方法。
  15. 各パルスが100ns以下のパルス幅を有する請求項14に記載の方法。
  16. レーザが266nmの波長で発光し、該第2のパルスあたりエネルギー密度が1.5J/cm2より大きい請求項12に記載の方法。
  17. 該第2のパルスあたりエネルギー密度が公称で5J/cm2である請求項16に記載の方法。
  18. 各パルスが100ns以下のパルス幅を有する請求項17に記載の方法。
  19. 該誘電体層を通してのレーザ穿孔段階及び該第1の伝導層のレーザ穿孔段階がその場で行なわれる請求項5に記載の方法。
  20. 該第2の伝導層が複数の予め形成されたアパーチャを有し、
    該第2の伝導層の少なくとも2つの予め形成されたアパーチャ内の1つの場所にブラインドヴァイアを形成するため該第1の伝導層まで該誘電体層を通してレーザ穿孔する段階を行なうことによって複数のブラインドヴァイアを形成する段階、及び各々のブラインドヴァイアで該第1の伝導層をその場でレーザ穿孔する段階をさらにそなえて成る請求項19に記載の方法。
  21. 各々のスルーヴァイアについて複数のレーザパルスを用いて基板内に少なくとも1つのスルーヴァイアをレーザ穿孔する段階をさらにそなえて成る請求項20に記載の方法。
  22. 該基板内に少なくとも1つのスルーヴァイアをレーザ穿孔する段階には、各々の伝導層のアブレーションエネルギー密度しきい値よりも大きいパルスあたりエネルギー密度を各スルーヴァイアについて該基板に適用する段階が含まれている請求項21に記載の方法。
  23. 各スルーヴァイアの入口幅が75μm以下である請求項22に記載の方法。
  24. 該基板内に複数のスルーヴァイアをレーザ穿孔する段階には、各々の伝導層のアブレーションエネルギー密度しきい値よりも大きいパルスあたりエネルギー密度を各スルーヴァイアについて該基板に適用する段階が含まれている請求項23に記載の方法。
  25. レーザが355nmという波長で発光し、各スルーヴァイアをレーザ穿孔するために該基板に適用されるパルスあたりエネルギー密度が5J/cm2より大きい請求項24に記載の方法。
  26. 各スルーヴァイアをレーザ穿孔するために該基板に適用されるパルスあたりエネルギー密度が公称で11J/cm2である請求項25に記載の方法。
  27. 各パルスが100ns以下のパルス幅を有する請求項26に記載の方法。
  28. レーザが266nmの波長で発光し、各スルーヴァイアを穿孔するために該基板に適用されるパルスあたりエネルギー密度が1.5J/cm2よりも大きい請求項24に記載の方法。
  29. 各スルーヴァイアを穿孔するために該基板に適用されるパルスあたりエネルギー密度が公称で5J/cm2である請求項28に記載の方法。
  30. 各パルスが100ns以下のパルス幅を有する請求項29に記載の方法。
  31. 第1の伝導層を形成する段階、
    該第1の伝導層上に誘電体層を形成する段階、
    該誘電体層上に、予め形成されたアパーチャをもつ露出した第2の伝導層を形成する段階、
    該誘電体層のアブレーションしきい値よりも大きく該第1の伝導層のアブレーションしきい値よりも小さい第1のパルスあたりエネルギー密度を各々有する複数のレーザパルスを用いて第2の伝導層の予め形成されたアパーチャ内の1つの場所でブラインドヴァイアを形成するため、該誘電体層を通して該第1の伝導層までレーザ穿孔を行なう段階、及び、
    その後、該ブラインドヴァイアの抵抗値を低下させるために、該誘電体層中に形成された該ブラインドヴァイアを介して該第1の伝導層に、それぞれが第2のパルスあたりエネルギー密度を有するあらかじめ定められた数のレーザーパルスを照射する段階であって、該第2のパルスあたりエネルギー密度は、該第1の伝導層のアブレーションしきい値よりも大きく、該あらかじめ定められた数は、レーザーパルスによって暴露された該第1の伝導層の表面を溶融状態にするがしかしアブレーションし穿孔することがない数である、レーザーパルスを照射する段階、
    をそなえて成る方法によって形成される、ブラインドヴァイアを有する積層基板。
  32. 該ブラインドヴァイアの入口幅が75μm以下である請求項31に記載の積層基板。
  33. 該ブラインドヴァイアの縦横比がX:1(Xは1以上の整数)である請求項32に記載の積層基板。
  34. 伝導材料で該ブラインドヴァイアを充填する段階をさらにそなえて成り、該ブラインドヴァイアを通した該第1の伝導層への接続部の平均抵抗値が2mΩである請求項33に記載の積層基板。
  35. 該ブラインドヴァイアを通した該第1の伝導層への接続部の抵抗値のばらつきが0.25mΩ2である請求項34に記載の積層基板。
  36. レーザが355nmの波長で発光し、該第1のパルスあたりエネルギー密度が0.5J/cm2〜11J/cm2である請求項35に記載の積層基板。
  37. 該第1のパルスあたりエネルギー密度が公称で5J/cm2である請求項36に記載の積層基板。
  38. 各パルスが100ns以下のパルス幅を有する請求項37に記載の積層基板。
  39. レーザが266nmの波長で発光し、該第1のパルスあたりエネルギー密度が0.5J/cm2〜3J/cm2である請求項35に記載の積層基板。
  40. 該第1のパルスあたりエネルギー密度が公称で2J/cm2である請求項39に記載の積層基板。
  41. 各パルスが100ns以下のパルス幅を有する請求項40に記載の積層基板。
  42. 該予め定められたパルスの数が1〜10である請求項35に記載の積層基板。
  43. レーザが355nmの波長で発光し、該第2のパルスあたりエネルギー密度が5J/cm2より大きい請求項42に記載の積層基板。
  44. 該第2のパルスあたりエネルギー密度が公称で11J/cm2である請求項43に記載の積層基板。
  45. 各パルスが100ns以下のパルス幅を有する請求項44に記載の積層基板。
  46. レーザが266nmの波長で発光し、該第2のパルスあたりエネルギー密度が1.5J/cm2より大きい請求項42に記載の積層基板。
  47. 該第2のパルスあたりエネルギー密度が公称で5J/cm2である請求項46に記載の積層基板。
  48. 各パルスが100ns以下のパルス幅を有する請求項47に記載の積層基板。
  49. 該誘電体層を通してのレーザ穿孔段階及び該第1の伝導層のレーザ穿孔段階がその場で行なわれる請求項35に記載の積層基板。
  50. 該第2の伝導層が複数の予め形成されたアパーチャを有し、
    その方法にはさらに該第2の伝導層の少なくとも2つの予め形成されたアパーチャ内の1つの場所にブラインドヴァイアを形成するため該第1の伝導層まで該誘電体層を通してレーザ穿孔する段階を行なうことによって複数のブラインドヴァイアを形成する段階、及び各々のブラインドヴァイアで該第1の伝導層をその場でレーザ穿孔する段階が含まれている請求項49に記載の積層基板。
  51. 各々のスルーヴァイアについて複数のレーザパルスを用いて該基板内に少なくとも1つのスルーヴァイアをレーザ穿孔する段階をさらにそなえて成る請求項50に記載の積層基板。
  52. 該基板内に少なくとも1つのスルーヴァイアをレーザ穿孔する段階には、各々の伝導層のアブレーションエネルギー密度しきい値よりも大きいパルスあたりエネルギー密度を各スルーヴァイアについて該基板に適用する段階が含まれている請求項51に記載の積層基板。
  53. 各スルーヴァイアの入口幅が75μm以下である請求項52に記載の積層基板。
  54. 該基板内に複数のスルーヴァイアをレーザ穿孔する段階には、各々の伝導層のアブレーションエネルギー密度しきい値よりも大きいパルスあたりエネルギー密度を各スルーヴァイアについて該基板に適用する段階が含まれている請求項53に記載の積層基板。
  55. レーザが355nmという波長で発光し、各スルーヴァイアをレーザ穿孔するために該基板に適用されるパルスあたりエネルギー密度が5J/cm2より大きい請求項54に記載の積層基板。
  56. 各スルーヴァイアをレーザ穿孔するために該基板に適用されるパルスあたりエネルギー密度が公称で11J/cm2である請求項55に記載の積層基板。
  57. 各パルスが100ns以下のパルス幅を有する請求項56に記載の積層基板。
  58. レーザが266nmの波長で発光し、各スルーヴァイアを穿孔するために該基板に適用されるパルスあたりエネルギー密度が1.5J/cm2より大きい請求項54に記載の積層基板。
  59. 各スルーヴァイアを穿孔するために該基板に適用されるパルスあたりエネルギー密度が公称で5J/cm2である請求項58に記載の積層基板。
  60. 各パルスが100ns以下のパルス幅を有する請求項59に記載の積層基板。
JP52140498A 1996-11-08 1997-10-15 積層基板内にブラインドヴァイアを形成する方法および積層基板 Expired - Lifetime JP4642945B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/746,425 1996-11-08
US08/746,425 US5731047A (en) 1996-11-08 1996-11-08 Multiple frequency processing to improve electrical resistivity of blind micro-vias
PCT/US1997/018422 WO1998020527A1 (en) 1996-11-08 1997-10-15 Multiple frequency processing to improve electrical resistivity of blind micro-vias

Publications (2)

Publication Number Publication Date
JP2000505244A JP2000505244A (ja) 2000-04-25
JP4642945B2 true JP4642945B2 (ja) 2011-03-02

Family

ID=25000790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52140498A Expired - Lifetime JP4642945B2 (ja) 1996-11-08 1997-10-15 積層基板内にブラインドヴァイアを形成する方法および積層基板

Country Status (4)

Country Link
US (1) US5731047A (ja)
JP (1) JP4642945B2 (ja)
AU (1) AU4674497A (ja)
WO (1) WO1998020527A1 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841099A (en) * 1994-07-18 1998-11-24 Electro Scientific Industries, Inc. Method employing UV laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets
DE19707834A1 (de) * 1996-04-09 1997-10-16 Zeiss Carl Fa Materialbestrahlungsgerät und Verfahren zum Betrieb von Materialbestrahlungsgeräten
US5847327A (en) * 1996-11-08 1998-12-08 W.L. Gore & Associates, Inc. Dimensionally stable core for use in high density chip packages
JP2000505948A (ja) * 1996-11-08 2000-05-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 公称位置合せを向上させるための基準手法を用いる方法
US6025256A (en) * 1997-01-06 2000-02-15 Electro Scientific Industries, Inc. Laser based method and system for integrated circuit repair or reconfiguration
US5855995A (en) * 1997-02-21 1999-01-05 Medtronic, Inc. Ceramic substrate for implantable medical devices
IL120514A (en) * 1997-03-25 2000-08-31 P C B Ltd Electronic interconnect structure and method for manufacturing it
US6172331B1 (en) * 1997-09-17 2001-01-09 General Electric Company Method and apparatus for laser drilling
US6057180A (en) * 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP3303787B2 (ja) * 1998-08-24 2002-07-22 株式会社村田製作所 電極の切除方法
US6361923B1 (en) 1999-08-17 2002-03-26 International Business Machines Corporation Laser ablatable material and its use
US7365019B2 (en) * 1999-11-01 2008-04-29 Jetek, Llc Atmospheric process and system for controlled and rapid removal of polymers from high aspect ratio holes
WO2001045212A1 (en) * 1999-12-14 2001-06-21 High Connection Density, Inc. High density, high frequency linear and area array electrical connectors
WO2001074529A2 (en) 2000-03-30 2001-10-11 Electro Scientific Industries, Inc. Laser system and method for single pass micromachining of multilayer workpieces
US6627998B1 (en) * 2000-07-27 2003-09-30 International Business Machines Corporation Wafer scale thin film package
US6931723B1 (en) 2000-09-19 2005-08-23 International Business Machines Corporation Organic dielectric electronic interconnect structures and method for making
TW503143B (en) * 2000-10-06 2002-09-21 Hitachi Via Mechanics Ltd Method and apparatus for drilling printed wiring boards
US6699395B1 (en) * 2000-10-18 2004-03-02 Storage Technology Corporation Method of forming alignment features for conductive devices
US6555016B2 (en) 2000-12-28 2003-04-29 Advanced Semiconductor Engineering, Inc. Method of making multilayer substrate
WO2002054420A1 (fr) * 2000-12-28 2002-07-11 Tdk Corporation Carte de circuit imprime laminee, procede de production d'une piece electronique et piece electronique laminee
US6689985B2 (en) * 2001-01-17 2004-02-10 Orbotech, Ltd. Laser drill for use in electrical circuit fabrication
US6773962B2 (en) * 2001-03-15 2004-08-10 General Electric Company Microelectromechanical system device packaging method
US6784399B2 (en) * 2001-05-09 2004-08-31 Electro Scientific Industries, Inc. Micromachining with high-energy, intra-cavity Q-switched CO2 laser pulses
US6847527B2 (en) * 2001-08-24 2005-01-25 3M Innovative Properties Company Interconnect module with reduced power distribution impedance
TWI286826B (en) * 2001-12-28 2007-09-11 Via Tech Inc Semiconductor package substrate and process thereof
US7548430B1 (en) 2002-05-01 2009-06-16 Amkor Technology, Inc. Buildup dielectric and metallization process and semiconductor package
US9691635B1 (en) 2002-05-01 2017-06-27 Amkor Technology, Inc. Buildup dielectric layer having metallization pattern semiconductor package fabrication method
US20040104463A1 (en) * 2002-09-27 2004-06-03 Gorrell Robin E. Crack resistant interconnect module
US11081370B2 (en) 2004-03-23 2021-08-03 Amkor Technology Singapore Holding Pte. Ltd. Methods of manufacturing an encapsulated semiconductor device
US10811277B2 (en) 2004-03-23 2020-10-20 Amkor Technology, Inc. Encapsulated semiconductor package
TWI301656B (en) * 2004-11-26 2008-10-01 Via Tech Inc Circuit board and process thereof
US8624157B2 (en) 2006-05-25 2014-01-07 Electro Scientific Industries, Inc. Ultrashort laser pulse wafer scribing
US7674997B2 (en) * 2006-10-17 2010-03-09 Johns Manville Spinner for fiberizing glass and method
US8481887B2 (en) * 2007-05-03 2013-07-09 Electro Scientific Industries, Inc. Method for machining tapered micro holes
KR100861619B1 (ko) * 2007-05-07 2008-10-07 삼성전기주식회사 방열 인쇄회로기판 및 그 제조방법
US8440916B2 (en) * 2007-06-28 2013-05-14 Intel Corporation Method of forming a substrate core structure using microvia laser drilling and conductive layer pre-patterning and substrate core structure formed according to the method
US7982160B2 (en) * 2008-03-31 2011-07-19 Electro Scientific Industries, Inc. Photonic clock stabilized laser comb processing
US8178818B2 (en) * 2008-03-31 2012-05-15 Electro Scientific Industries, Inc. Photonic milling using dynamic beam arrays
US8173038B2 (en) * 2008-04-18 2012-05-08 Corning Incorporated Methods and systems for forming microstructures in glass substrates
US9299643B2 (en) * 2008-09-29 2016-03-29 Cypress Semiconductor Corporation Ruthenium interconnect with high aspect ratio and method of fabrication thereof
TWI417017B (zh) * 2009-07-30 2013-11-21 Unimicron Technology Corp 線路板的基材及其鑽孔方法
US8697574B2 (en) * 2009-09-25 2014-04-15 Infineon Technologies Ag Through substrate features in semiconductor substrates
TWI436699B (zh) * 2010-07-12 2014-05-01 Princo Corp 多層導通孔疊構
US20140227457A2 (en) * 2011-12-16 2014-08-14 Centro De Investigacion Cientifica Y De Educacion Superior De Ensenada, Baja California Process for obtaining metaloxides by low energy laser pulses irradiation of metal films
US9289858B2 (en) 2011-12-20 2016-03-22 Electro Scientific Industries, Inc. Drilling holes with minimal taper in cured silicone
US8716625B2 (en) * 2012-02-03 2014-05-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Workpiece cutting
JP5910533B2 (ja) * 2012-05-08 2016-04-27 株式会社村田製作所 電子部品、電子部品内蔵基板及び電子部品の製造方法
TWI594671B (zh) * 2014-12-17 2017-08-01 Flexible circuit board micro-aperture conductive through-hole structure and manufacturing method
US10892213B2 (en) * 2018-12-28 2021-01-12 Advanced Semiconductor Engineering, Inc. Wiring structure and method for manufacturing the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319317A (en) * 1963-12-23 1967-05-16 Ibm Method of making a multilayered laminated circuit board
SE392582B (sv) * 1970-05-21 1977-04-04 Gore & Ass Forfarande vid framstellning av ett porost material, genom expandering och streckning av en tetrafluoretenpolymer framstelld i ett pastabildande strengsprutningsforfarande
US3999004A (en) * 1974-09-27 1976-12-21 International Business Machines Corporation Multilayer ceramic substrate structure
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
DE3581293D1 (de) * 1984-02-09 1991-02-21 Toyota Motor Co Ltd Verfahren zur herstellung von ultrafeinen keramikpartikeln.
JPS62268131A (ja) * 1986-05-16 1987-11-20 Nec Corp 集積回路装置の微細加工方法
JPS6344739A (ja) * 1986-08-12 1988-02-25 Fujitsu Ltd 半導体装置の製造方法
US4789770A (en) * 1987-07-15 1988-12-06 Westinghouse Electric Corp. Controlled depth laser drilling system
US4985296A (en) * 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film
JPH0734508B2 (ja) * 1989-04-10 1995-04-12 三菱電機株式会社 多層配線板
JPH03232232A (ja) * 1990-02-08 1991-10-16 Fujitsu Ltd 半導体装置の製造方法
US5293025A (en) * 1991-08-01 1994-03-08 E. I. Du Pont De Nemours And Company Method for forming vias in multilayer circuits
JP3114756B2 (ja) * 1992-01-20 2000-12-04 富士通株式会社 配線基板のビアホール形成方法
JP3212405B2 (ja) * 1992-07-20 2001-09-25 富士通株式会社 エキシマレーザ加工方法及び装置
US5316803A (en) * 1992-12-10 1994-05-31 International Business Machines Corporation Method for forming electrical interconnections in laminated vias
JPH07221095A (ja) * 1994-02-02 1995-08-18 Rohm Co Ltd 配線構造,半導体装置及び配線方法
JPH07336017A (ja) * 1994-06-08 1995-12-22 Hitachi Ltd 電流反転電解法による薄膜回路製造方法ならびにそれを用いた薄膜回路基板、薄膜多層回路基板および電子回路装置
US5593606A (en) * 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
US5614114A (en) * 1994-07-18 1997-03-25 Electro Scientific Industries, Inc. Laser system and method for plating vias
JP3715337B2 (ja) * 1994-11-17 2005-11-09 シャープ株式会社 電気回路の作成方法
JPH08148828A (ja) * 1994-11-18 1996-06-07 Hitachi Ltd 薄膜多層回路基板およびその製造方法

Also Published As

Publication number Publication date
JP2000505244A (ja) 2000-04-25
US5731047A (en) 1998-03-24
AU4674497A (en) 1998-05-29
WO1998020527A1 (en) 1998-05-14

Similar Documents

Publication Publication Date Title
JP4642945B2 (ja) 積層基板内にブラインドヴァイアを形成する方法および積層基板
JP4234205B2 (ja) 電子アセンブリおよび電子物品内でのヴァイアのインダクタンスを低減する方法
JP5281047B2 (ja) 355nmでのヴァイア入口の形成を向上させるための多パルスによる間隔どりの処理
JP5603095B2 (ja) 高縦横比を有するマイクロスルーヴァイアの製造ばらつきを最小にする多周波数処理
US6018196A (en) Semiconductor flip chip package
US5910255A (en) Method of sequential laser processing to efficiently manufacture modules requiring large volumetric density material removal for micro-via formation
US5965043A (en) Method for using ultrasonic treatment in combination with UV-lasers to enable plating of high aspect ratio micro-vias
US5868950A (en) Method to correct astigmatism of fourth yag to enable formation of sub 25 micron micro-vias using masking techniques
US6143401A (en) Electronic chip package
US6023041A (en) Method for using photoabsorptive coatings and consumable copper to control exit via redeposit as well as diameter variance
US5863446A (en) Electrical means for extracting layer to layer registration
US6130015A (en) Method for using fiducial schemes to increase nominal registration during manufacture of laminated circuit
WO1998020529A1 (en) Method for minimizing pink ring in blind laser vias
WO1998020558A1 (en) Electronic package having reduced radius of curvature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term