JP4626501B2 - 排水処理装置 - Google Patents

排水処理装置 Download PDF

Info

Publication number
JP4626501B2
JP4626501B2 JP2005343654A JP2005343654A JP4626501B2 JP 4626501 B2 JP4626501 B2 JP 4626501B2 JP 2005343654 A JP2005343654 A JP 2005343654A JP 2005343654 A JP2005343654 A JP 2005343654A JP 4626501 B2 JP4626501 B2 JP 4626501B2
Authority
JP
Japan
Prior art keywords
tank
reaction
monitor
gas
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343654A
Other languages
English (en)
Other versions
JP2007144329A (ja
Inventor
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2005343654A priority Critical patent/JP4626501B2/ja
Publication of JP2007144329A publication Critical patent/JP2007144329A/ja
Application granted granted Critical
Publication of JP4626501B2 publication Critical patent/JP4626501B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排水処理装置、特に下水、屎尿、浄化槽汚泥、家畜排泄物、産業排水、汚泥等の処理返流水、これらを嫌気性処理する工程の流出水などのうち、アンモニアなどの窒素化合物を含有する排水の処理装置に関するものである。
排水中の窒素化合物を除去する技術としては、20世紀後半に各種方式が開発されたが、やがて微生物を用いる技術が主流となってきた。中でも、酸素の存在下でアンモニウムイオンを亜硝酸または硝酸イオンに酸化する微生物反応(硝化)と電子供与体(有機物、メタン、水素、アンモニウムなど)の存在下で亜硝酸または硝酸イオンを一酸化二窒素または分子状窒素に還元する微生物反応(脱窒)を各々個別の槽(硝化槽、脱窒槽)で進行させ、二つの槽内の液を相互に循環させる方式が広く普及してきた(例えば、下水道施設計画・設計指針解説)。
二つの槽を設ける理由は、硝化には酸素が必要とされ、一方脱窒には酸素が不要ないし抑制的に働くため好適条件が異なるからである。しかし、これにより装置が複雑化したり、循環のための動力費がかかるという問題が生じた。一部の技術者は、酸素供給をコントロールすることによって、両方の反応を同一槽で行うことを試みた(特許文献1〜3)。
また、槽内を水路のようにして水流を循環させて、その一部に酸素供給装置を設け、その下流では酸素が供給され、循環して戻るころには酸素が消費され尽くすことによって、前者で硝化、後者で脱窒させようという方法(非特許文献1)、微生物の塊の表面には酸素が存在するが内部では酸素が消費され尽くして酸素が存在しない状態を作り出す方法(非特許文献2)などを含む。
特開2005−193236号公報 特開平10−249386号公報 特開平8−267087号公報 下水道協会誌、Vol.21,No.238(1984/3)、「オキシデーションディッチにおける窒素除去」、福永栄、茂木浩一、p1〜9 日本工業新聞社、PPM、1979年2月号、「特集・産業公害防除技術;曝気式ラグーンの脱窒素」、石橋憲雄ら、p55〜61
この一槽式の装置は、シンプルで循環のための動力もかからないが、適正量の酸素を供給することが難しい問題がある。排水の負荷が安定していたり、負荷変動があっても反応槽が大きく負荷が平準化されてしまう場合にはそう困難でないが、負荷変動が大きい場合、酸素供給が過剰となり、酸素を嫌う脱窒反応が抑えられたり、最悪、脱窒を行う微生物が死滅したりする問題がある。
溶存酸素濃度や酸化還元電位の上昇をモニタして制御することも考えられたが精度が悪い。
そこで、本発明の目的は、上記課題を解決し、同一槽内で硝化と脱窒が行え、しかも酸素などのガスを適正に制御できる排水処理装置を提供することにある。
上記の目的を達成するために請求項1の発明は、反応槽内に導入した排水を、微生物反応にて硝化と脱窒を同時に行う排水処理装置において、反応槽に、その反応槽内の液を導入して脱窒反応を行わせるモニタ槽を接続し、そのモニタ槽での脱窒反応をモニタすべく、脱窒反応で発生する脱窒後のガスの発生量を測定し、そのガス発生量に基づいて、反応槽に酸素を含むガスを吹き込むブロアを制御するようにした排水処理装置である。
請求項2の発明は、ニタ槽で発生する脱窒後のガスの発生量を測定し、ガス発生量が低下したら、ブロアで吹き込む酸素を含むガスの供給を、停止または抑制するようにした請求項1記載の排水処理装置である。
請求項3の発明は、モニタ槽の上部に、脱窒反応で発生したガスを溜める気相部が形成され、その気相部のガス圧が一定値以上に上昇したら、排気を行うと共にその排気回数をカウントし、そのカウント値に基づいて、ブロアで吹き込む酸素を含むガスの供給を、停止または抑制するようにした請求項1記載の排水処理装置である。
請求項4の発明は、反応槽、モニタ槽、又は両者をつなぐ流路に酸化還元電位計を設置し、酸化還元電位値(Eh)が、一定値以下に下がったなら、酸素を含むガスの供給を強制再開する制御を組み込んだ請求項2又は3に記載の排水処理装置である。
請求項5の発明は、反応槽とモニタ槽の上下を循環ラインと液戻しラインで接続し、下部の液戻しラインに循環ポンプを接続した請求項1〜4いずれか記載の排水処理装置である。
請求項6の発明は、反応槽の上部にエアリフト部を形成し、そのエアリフト部内の液をモニタ槽に流す循環管を接続すると共に反応槽とモニタ槽の下部に液戻しラインを接続した請求項1〜4いずれか記載の排水処理装置である。
請求項7の発明は、反応槽とモニタ槽とを仕切板を介して一体に設け、その仕切板に反応槽からの液をモニタ槽に流す循環路を形成し、反応槽とモニタ槽の底部に液戻し路を形成した請求項1〜4いずれか記載の排水処理装置である。
本発明によれば、反応槽に、脱窒反応のみを行うモニタ槽を設けてその脱窒反応をモニタすることで処理槽への酸素供給量を最適に制御できるという優れた効果を発揮するものである。
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。
本発明は、硝化と脱窒とを同時に行う反応槽に、その反応槽内の液を導入して脱窒反応をモニタするモニタ槽を接続し、反応槽での酸素の供給過剰を、モニタ槽での「脱窒反応速度の低下」で、直接検知しようとするものである。
図1は、本発明の原理を示す概略図を示したものである。
先ず、有機物やアンモニウムイオンを含む排水11が反応槽10に供給され、同時にブロワ12により、反応槽10内に酸素を含むガス(空気)が供給される。有機物やアンモニウムイオンは、アンモニアを経て、硝化細菌と酸素によって亜硝酸(NO2 -)、硝酸(NO3 -)に酸化(硝化)され、それにより生成した亜硝酸、硝酸イオンが、脱窒細菌と排水中の電子受容体(有機物、メタン、水素、アンモニウムなど)によって、一酸化二窒素または分子状窒素に還元(脱窒)される。
これらの反応によって窒素化合物を除去された水は、流出水13として、また、発生した一酸化二窒素または分子状窒素は、反応槽10から排出される。
この反応槽10内では、酸素の存在下による硝化と、電子供与体の存在下による脱窒の二つの微生物反応が行われるが、硝化には酸素が必要とされ、脱窒には酸素は不要ないし抑制的に働くため、硝化反応と脱窒反応の双方を適正に制御するには、反応槽10内に供給する酸素を適正に制御する必要がある。
そこで、脱窒反応速度を測定するために、反応槽10の上部から循環ライン16を介して液を導入し、下部より液戻しライン17を介して液を反応槽10に戻して循環させるモニタ槽15を別途設け、そのモニタ槽15内の脱窒細菌による脱窒反応によるガス発生量の測定を行い、これを基にしてブロワ12を制御することで、反応槽10内に供給するガス(空気)を制御するようにする。
ここで、モニタ槽15は密閉にして上部に気相部15gができるようにし、かつ気相部15gのガスは排出できるようにしておいて、気相部15gへのガス発生を、ガス発生量測定装置18などで検知して、ブロア12から反応槽10へ供給する酸素を含むガスの供給を制御するものである。
ここで、反応槽10への酸素の供給が過剰で、脱窒反応が抑制されモニタ槽15でのガス発生が低下したら、反応槽10への酸素を含むガスの供給を抑えることによって、脱窒に不適な環境が強まるのを防止する。
さらに、万一、反応槽10への酸素を含むガスの供給抑制が行き過ぎて、硝化が進まず、亜硝酸、硝酸イオンが生成せず、脱窒が起きず、一方アンモニウムイオンが存在するような状態になった場合は、反応槽10内のEh(酸化還元電位)が下がるので、これをORP計(酸化還元電位計)14で検知してEhが一定値以下になったら、抑制を解除する。
次に、具体的な本発明の一実施の形態を図2に示す。
反応槽10は、微生物が担体などに保持された微生物層20を備え、上部に微生物の流出を抑える分離装置21を備えた上面開放の槽である。
分離装置21は、微生物層20の上方の反応槽10に設けられた絞り部22とその絞り部22の上方に、互いに対向するよう設けられた一対の傾斜板23,23からなり、傾斜板23,23間で、一酸化二窒素または分子状窒素を排気する排気流路24が形成され、その外側と反応槽10の内壁間に、一酸化二窒素または分子状窒素を放出後の液から微生物を分離する静置区画25が形成される。
反応槽10には、処理対象の排水11とブロワ12により空気が供給される。
反応槽10の微生物層20内の微生物は硝化を行う微生物を含むが、排水11中のアンモニウムイオンが、供給される空気中の酸素によって亜硝酸、硝酸に酸化され(硝化)、それにより生成した亜硝酸、硝酸イオンが排水中の電子受容体(有機物、メタン、水素、アンモニウムイオンなど)によって、一酸化二窒素または分子状窒素に還元される(脱窒)。
これらの反応によって窒素化合物を除去された水は静置区画25から流出水13として、また、発生した一酸化二窒素または分子状窒素は排ガスとして傾斜板23,23間の流路24から排出される。
この実施の形態では、分離装置21は、一対の傾斜板23,23であり、空気や分子状窒素の気泡と共に浮上する微生物を気泡から分離し、さらに上昇しようとする微生物を分離装置21の上方の静置区画25で沈殿させて反応槽10の下部に戻そうというものである。
しかし、分離装置21は、沈殿池を反応槽10外に設けて沈殿物を反応槽10に戻す方式でもよいし、反応槽10内の微生物層20に微生物付着担体を設置して、微生物を保持する方式でもよい。
ここまでは、従来の一槽式の生物学的窒素除去設備であるが、本発明では反応槽10内の液を、循環ライン16から上面密閉されて気相部15gが形成できるモニタ槽15に導き、液戻しライン17より再び反応槽10に戻す流れを作る。
この循環は、本実施の形態ではモニタ槽15から反応槽10に戻る液戻しライン17に設けられた循環ポンプ26によっている。
ところで、モニタ槽15は、反応槽10内の液が流入するが、モニタ槽15には酸素が供給されていないので、脱窒の反応が主体に起きる。そして正常な状態なら、液中の脱窒細菌によって、一酸化二窒素または分子状窒素のガスが発生して、モニタ槽15の気相部15gに溜まり、その気相部15gより排ガスライン27より、排ガスとして排出される。
この排ガスライン27には、流量測定装置18aが設けられ、その流量測定装置18aで排ガスの流量が測定され、流量が所定の値より低下すれば、排水負荷低下などによる酸素供給過剰と判断し、反応槽10に空気を送るブロワ12などを停止または抑制する。
その方法はブロワ12の回転数などを制御してその風量を直接制御しても、ブロア12からの空気の一部を電磁弁などで逃がして風量制御するようにしても、或いはブロア12をON・OFF制御するようにしもよい。
これにより脱窒が復活し、モニタ槽15でのガス発生が復活すれば、酸素を含む供給を復活させる。
図3は、本発明の他の実施の形態を示したものである。
図2の形態では、液戻しライン17に循環ポンプ26を接続し、反応槽10内の液をモニタ槽15に循環する例で説明したが、モニタ槽15自体は、導入した液の脱窒反応をモニタできる程度容積があればよく、その循環量は僅かでよい。このため、本実施の形態では、分離装置21の傾斜板23,23間での液位が、回収されたガスを集めて高くなることを利用し、その傾斜板23,23を、例えばロート状に形成して流路を狭くして液位がさらに上がるガスリフト部24aを形成し、そのガスリフト部24aに臨んで、そのガスリフト部24aの液を集めてモニタ槽15に静水圧でモニタ槽15に流す循環管16aを設けたものである。
このガスリフト部24aとモニタ槽15を結んで循環管16aを設けることで、ガスリフト部24a内で、ガスリフト作用で持ち上げられた液が循環管16aに集められ、その液位がモニタ槽15内の液位より高いため、ガスリフトされた反応槽10内の液がモニタ槽15に流れるようになる。
この場合、液戻しライン17には、図1のように循環ポンプ26を接続する必要がなく液を循環できるが、流量測定装置18aで、モニタ槽15でのガス発生量の流量が所定の値より低下したとき、反応槽10に空気を送るブロワ12は、停止せずにガスリフト作用を維持できる程度に吹き込み量を抑制する。
図4は本発明にさらに他の実施の形態を示したものである。
図2の流量測定装置18aの代わりにモニタ槽15の気相部15gの圧力を検知する圧力計30と、圧力計30の圧力上昇によって開放され、所定圧まで下がると閉鎖される電磁弁31を排ガスライン27に接続したものである。
この実施の形態においては、電磁弁31の開放はカウンター32でカウントされ、一定時間以上カウントがない場合には、反応槽10に空気を送るブロア12などを停止または抑制する。
図5は、図3の流量測定装置18aの代わりに、図4で述べたような圧力計30と電磁弁31,カウンター32による圧力検知方式を導入した形態を示したものである。
図6は本発明のさらに他の実施の形態を示したものである。
本実施の形態は、反応槽10とモニタ槽15を仕切板33を使って一体化し、反応槽10内の微生物層20aに微生物付着担体を用いて、分離装置の機能を持たせ、その微生物層20aの下部の反応槽10とモニタ槽15の底部を液戻し路17aを形成し、また仕切板33に開口34を形成すると共にその開口34の下部から反応槽10に上向きに延びる案内板35を形成して液循環路16bを形成し、反応槽10から液循環路16bを介してモニタ槽15に、そのモニタ槽15から液戻し路17aを介して反応槽10に戻す循環機能を持たせたものである。
このモニタ槽10の上部の気相部15gには、排ガスライン27を接続し、その排ガスライン27に流量測定装置18aを接続したものである。
この流量測定装置18aの代わりとして、図4,図5のような圧力制御によりガス発生量を検出するようにしてもよい。
上記図2〜図6のいずれの実施の形態においては、モニタ槽15でのガス発生量を、その流量や、圧力上昇による排気回数で測定し、ガス発生量が低下したら、ブロワ12による酸素供給を停止ないし抑制する制御であり、モニタ槽15でのガス発生量が増加した場合には、ブロワ12による酸素供給を再開するものである。しかし、酸素供給を抑制している間に、必ずしもモニタ槽15内でのガス発生量が増加する保証はない。
そこで、酸素供給の再開を確実にするために、反応槽10、モニタ槽15、または両者をつなぐ配管内に酸素還元電位(OPR)計14を設置し(図1参照)、Ehが一定値(0〜−150mVの範囲で設定)以下になったら、硝酸塩枯渇、すなわち硝化不良(図7)と判断し、酸素を含むガスの供給を再開または強化することもできる。
すなわち、図7は硝酸イオン濃度と酸化還元電位値Ehの関係を示したもので、Ehが0〜−150mVの範囲では、硝酸イオン濃度が10mg/L以下と低く、硝化不良であると共に、脱窒反応も生じにくくなるため、モニタ槽15ではガス発生がさらに少なくなってしまう。そこで、これを防止するために、反応槽10への酸素を含むガスの供給を再開する。
以下この理由を説明する。
従来の一槽式の生物学的窒素除去設備においては、硝化反応を適切に進めるだけの酸素の供給が必要であるが、それ以上の酸素供給は酸化物の蓄積などを招いて脱窒を抑制することが多い。そういう状態なっても溶存酸素濃度(DO)の上昇はさほどでなく、溶存酸素濃度による検知では致命的な事態になる前の制御が難しい。
図8、図9は、一槽式の生物学的窒素除去設備での、脱窒反応が酸素供給の程度(通気量/N負荷量)によって、硝酸イオン、Eh、窒素ガス発生量、DOが如何に変化するかを説明するものである。
酸素供給量がゼロであると、DOはゼロ(図9)で、Ehも低く硝化が起きないので、脱窒反応も起きず、窒素ガス発生も生じなくなる(図7)。
この酸素供給量ゼロから、酸素供給を増やす(0から0.15(通気量/N負荷量))につれて硝化が進み、生成した硝酸イオンは高率で脱窒されて窒素ガスが発生されるようになる。しかしさらに酸素供給量を増やすと(0.15(通気量/N負荷量)以上)、DOやEhが上昇し、脱窒が抑えられ、硝酸イオンが溜まると共に窒素ガス発生が低下する。
しかし、このときの図9に示すように、DOの上昇は僅かであり、検知が難しい。これはDOがほとんど変化しないのに窒素除去率が60〜90%まで変化しているという非特許文献1の表−2からも分かる。
さらに酸素供給を増やすと(0.2(通気量/N負荷量)以上)、窒素ガス発生量は、さらに低下し、今度はDO上昇やEh上昇を伴うようになる。
従って、反応槽10内の酸素供給量は、0.1〜0.15(通気量/N負荷量)の範囲が望ましいが、これを酸化還元電位EhやDOで測定しても、図8に示すように、0.1〜0.15の範囲では、その変化分が殆どないため、制御が難しいことが分かる。
そこで、本発明においては、モニタ槽15を別途設け、そのモニタ槽15での脱窒反応速度を、窒素発生量として直接検知することによって、酸素供給を制御するものであり、一槽式の生物学的窒素除去設備の欠点を克服したものである。
ここで酸素供給(通気量/N負荷量)の制御としては、図8から分かるように窒素ガス発生量が良好な0.1〜0.15の範囲にすることが好ましい。
そこで、本発明では、モニタ槽15の窒素ガス発生量が設定値以下(例えば、10L/L/d以下)となったときに酸素供給量を停止ないし抑制して、硝化反応を抑制して脱窒反応を促進させてガス発生量を増加させるようにする。
この場合、窒素ガス発生量低下原因が通気量/N負荷量が0.15を越えたことによる場合(例えば排水流量低下の場合)は、酸素供給を停止することによって、図8に示すように通気量/N負荷量を0.1〜0.15の範囲内に戻すことができる。しかし、通気量/N負荷量が0.1以下で窒素ガス発生量が低下した場合には、酸素供給を停止すると反応槽10での硝化反応はさらに抑制され、脱窒反応も減少するため、モニタ槽15での脱窒反応が促進されず、ガス発生量がさらに少なくなり、酸素供給が再開されない不具合が生じる。つまり、窒素ガス発生量のみによる制御では、通気量/N負荷量を最適な0.1〜0.15の範囲に維持できない。
通気量/N負荷量を0.1〜0.15の範囲に制御するためには、酸素供給方法に二つの制御がある。いずれも、反応槽10の酸化還元電位(Eh)を測定し、その値も制御に併用する。一つ目は、窒素ガス発生量による酸素供給のON/OFF制御を行いながら実施する方法である。すなわち、窒素ガス発生量が設定値以下でEhが一定値(例えば−50mV)以上の場合は通気量/N負荷量が高すぎることによる窒素ガス発生量低下と判断して酸素供給を停止するが、窒素ガス発生量が設定値以下になったときのEhが一定値(例えば−50mV)以下の場合は通気量/N負荷量が低すぎることによる窒素ガス発生量低下と判断して酸素供給を停止しない。(後者の場合、本来酸素供給を増やすべきであるが、過負荷の可能性が高いためN負荷量の低下を待つ。)なお、窒素ガス発生量低下で酸素供給をOFFとしたがなかなか窒素ガス発生が回復しない場合(排水流入が長期停止した場合などに起こり得る)、もしEhが一定値(例えば−50mV)以下まで低下してくれば酸素不足と判断してEhが一定値(例えば−50mV)に上昇するまで酸素供給を行うという操作も、この制御方法で可能である。
これにより、酸素供給(通気量/N負荷量)が0.1〜0.15の範囲を外れたら範囲内に戻るようなON/OFF制御が働く。
通気量はあらかじめ適正な値にセットしておくので、この制御は、排水11の負荷変動を示すなど、警報的な意味になる。
二つ目の方法は、酸素供給を比例制御などで行おうとする場合である。ただし、Ehによる制御は、ON/OFFとする。
すなわち、モニタ槽15での窒素ガス発生量が10L/L/d以下の場合は、その程度によって酸素供給を比例制御するが、Ehが一定値以下(例えば0mV以下)に低下し場合には、反応槽10は硝化に適さない条件であると判断して、酸素供給は最大となるようにするという制御(ON制御)を優先させ、Ehが一定値以上の時はEhによる制御はOFFとして、モニタ槽15での窒素ガス発生量の程度によって酸素供給を比例制御する。
これにより、酸素供給(通気量/N負荷量)を0.1〜0.15の範囲に維持することができる。
以上、本発明は、従来の一槽式の生物学的窒素除去設備の利点、すなわちシンプル、循環のためのエネルギー不要という利点を生かしつつ硝化と脱窒が適正に行える酸素供給量に維持することが可能となる。
なお、本発明の図2,図4では、循環ポンプ26の動力を必要とするが、モニタ槽15の容量は反応槽10の容積に比べて非常に少ないため、循環エネルギーも少なく全体の動力消費にはほとんど影響しない。
本発明の原理を説明する図である。 本発明の一実施の形態を示す図である。 本発明の他の一実施の形態を示す図である。 本発明の他の一実施の形態を示す図である。 本発明のさらに他の一実施の形態を示す図である。 本発明のさらに他の一実施の形態を示す図である。 本発明において、反応槽内の硝酸塩濃度とEhとの関係を示す図である。 本発明において、通気量/N負荷量と硝酸イオン、Eh、ガス発生との関係を示す図である。 本発明において、通気量/N負荷量とDOとの関係を示す図である。
符号の説明
10 反応槽
11 排水
12 ブロワ
13 流出水
15 モニタ槽
16 循環ライン
17 液戻しライン
18 ガス発生測定装置

Claims (7)

  1. 反応槽内に導入した排水を、微生物反応にて硝化と脱窒を同時に行う排水処理装置において、反応槽に、その反応槽内の液を導入して脱窒反応を行わせるモニタ槽を接続し、そのモニタ槽での脱窒反応をモニタすべく、脱窒反応で発生する脱窒後のガスの発生量を測定し、そのガス発生量に基づいて、反応槽に酸素を含むガスを吹き込むブロアを制御することを特徴とする排水処理装置。
  2. ニタ槽で発生する脱窒後のガスの発生量を測定し、ガス発生量が低下したら、ブロアで吹き込む酸素を含むガスの供給を、停止または抑制するようにした請求項1記載の排水処理装置。
  3. モニタ槽の上部に、脱窒反応で発生したガスを溜める気相部が形成され、その気相部のガス圧が一定値以上に上昇したら排気を行うと共にその排気回数をカウントし、そのカウント値に基づいて、ブロアで吹き込む酸素を含むガスの供給を、停止または抑制するようにした請求項1記載の排水処理装置。
  4. 反応槽、モニタ槽、又は両者をつなぐ流路に酸化還元電位計を設置し、酸化還元電位値(Eh)が、一定値以下に下がったなら、酸素を含むガスの供給を強制再開する制御を組み込んだ請求項2又は3に記載の排水処理装置。
  5. 反応槽とモニタ槽の上下を循環ラインと液戻しラインで接続し、下部の液戻しラインに循環ポンプを接続した請求項1〜4いずれか記載の排水処理装置。
  6. 反応槽の上部にエアリフト部を形成し、そのエアリフト部内の液をモニタ槽に流す循環管を接続すると共に反応槽とモニタ槽の下部に液戻しラインを接続した請求項1〜4いずれか記載の排水処理装置。
  7. 反応槽とモニタ槽とを仕切板を介して一体に設け、その仕切板に反応槽からの液をモニタ槽に流す循環路を形成し、反応槽とモニタ槽の底部に液戻し路を形成した請求項1〜4いずれか記載の排水処理装置。
JP2005343654A 2005-11-29 2005-11-29 排水処理装置 Expired - Fee Related JP4626501B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343654A JP4626501B2 (ja) 2005-11-29 2005-11-29 排水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343654A JP4626501B2 (ja) 2005-11-29 2005-11-29 排水処理装置

Publications (2)

Publication Number Publication Date
JP2007144329A JP2007144329A (ja) 2007-06-14
JP4626501B2 true JP4626501B2 (ja) 2011-02-09

Family

ID=38206370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343654A Expired - Fee Related JP4626501B2 (ja) 2005-11-29 2005-11-29 排水処理装置

Country Status (1)

Country Link
JP (1) JP4626501B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828669B1 (ko) * 2008-03-03 2008-05-09 주식회사 아쿠아테크 동시탈질생물반응조와 막분리 기술을 결합한 고농도오폐수의 처리장치 및 이를 이용한 처리방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192187A (ja) * 1995-01-18 1996-07-30 Kurita Water Ind Ltd 生物濾過装置
JPH0938691A (ja) * 1995-07-28 1997-02-10 Kurita Water Ind Ltd 硝化脱窒装置
JPH0947786A (ja) * 1995-08-09 1997-02-18 Kurita Water Ind Ltd 生物濾過式窒素除去方法
JPH09155380A (ja) * 1995-12-12 1997-06-17 Kurita Water Ind Ltd 硝酸濃度測定装置
JPH09299988A (ja) * 1996-05-17 1997-11-25 Hitachi Plant Eng & Constr Co Ltd 硝化・脱窒方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192187A (ja) * 1995-01-18 1996-07-30 Kurita Water Ind Ltd 生物濾過装置
JPH0938691A (ja) * 1995-07-28 1997-02-10 Kurita Water Ind Ltd 硝化脱窒装置
JPH0947786A (ja) * 1995-08-09 1997-02-18 Kurita Water Ind Ltd 生物濾過式窒素除去方法
JPH09155380A (ja) * 1995-12-12 1997-06-17 Kurita Water Ind Ltd 硝酸濃度測定装置
JPH09299988A (ja) * 1996-05-17 1997-11-25 Hitachi Plant Eng & Constr Co Ltd 硝化・脱窒方法及び装置

Also Published As

Publication number Publication date
JP2007144329A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5140545B2 (ja) 空気供給システム及び空気供給方法
JP5733785B2 (ja) 排水処理方法及び排水処理装置
JP2011092831A (ja) ガス発生量低減システム及びガス発生量低減方法
JP2006204967A (ja) 脱窒処理方法及び脱窒処理装置
JP4626501B2 (ja) 排水処理装置
JP5300898B2 (ja) 有機性排水処理装置
JP6369245B2 (ja) 汚泥濃縮方法
JP4688059B2 (ja) 嫌気性アンモニア酸化装置及びその運転方法
JP5947067B2 (ja) 排水処理システムおよび方法
JP4335392B2 (ja) 窒素含有排水の処理装置
JP5656656B2 (ja) 水処理装置
JP5325124B2 (ja) 窒素含有水の生物処理方法及び窒素含有水の生物処理装置
Aybar et al. The air-based membrane biofilm reactor (MBfR) for energy efficient wastewater treatment
KR20150064574A (ko) 에너지 절감형 하폐수 처리 시스템 및 그 제어방법
JP6384168B2 (ja) 汚泥処理方法
JPH0938682A (ja) 生物学的水処理方法
JP4335970B2 (ja) 窒素含有排水の処理装置
JPH0780494A (ja) 活性汚泥循環変法の運転制御方法
JP6396238B2 (ja) 有機排水処理システム、有機排水の処理方法及び有機排水処理システムの制御プログラム
JP2005193158A (ja) 担体法窒素除去システム
JP7209606B2 (ja) 水処理装置
JP2001029991A (ja) 水処理方法
JP2006142166A (ja) 生物学的廃水処理装置およびその運転制御方法
JP5883697B2 (ja) 排水処理装置及び排水処理方法
WO2023120681A1 (ja) 排水処理システム及び排水処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees