JP4624976B2 - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
JP4624976B2
JP4624976B2 JP2006344047A JP2006344047A JP4624976B2 JP 4624976 B2 JP4624976 B2 JP 4624976B2 JP 2006344047 A JP2006344047 A JP 2006344047A JP 2006344047 A JP2006344047 A JP 2006344047A JP 4624976 B2 JP4624976 B2 JP 4624976B2
Authority
JP
Japan
Prior art keywords
advance
retard
valve
passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006344047A
Other languages
English (en)
Other versions
JP2007315373A (ja
Inventor
正泰 牛田
欽弥 高橋
孝男 野尻
誠二 八百幸
潤 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2006344047A priority Critical patent/JP4624976B2/ja
Priority to US11/783,002 priority patent/US7931000B2/en
Priority to DE102007000249A priority patent/DE102007000249A1/de
Publication of JP2007315373A publication Critical patent/JP2007315373A/ja
Application granted granted Critical
Publication of JP4624976B2 publication Critical patent/JP4624976B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis

Description

本発明は、内燃機関(以下、「内燃機関」をエンジンという)の吸気弁および排気弁の少なくともいずれか一方の開閉タイミング(以下、「開閉タイミング」をバルブタイミングという)を変更するバルブタイミング調整装置に関する。
従来、エンジンのクランクシャフトの駆動力を受けるハウジングと、ハウジング内に収容され、カムシャフトにクランクシャフトの駆動力を伝達するベーンロータとを備え、遅角室および進角室の作動流体圧力によりハウジングに対し遅角側および進角側にベーンロータを相対回動駆動することにより、クランクシャフトに対するカムシャフトの位相、つまりバルブタイミングを調整するバルブタイミング調整装置が知られている(例えば、特許文献1参照)。
このようなバルブタイミング調整装置では、吸気弁または排気弁を開閉駆動するときに吸気弁または排気弁からカムシャフトが受けるトルク変動がベーンロータに伝わり、ハウジングに対しベーンロータが遅角側および進角側にトルク変動を受ける。
そして、進角室に作動流体を供給しクランクシャフトに対してカムシャフトの位相を遅角側から進角側の目標位相に変更する場合、ベーンロータが遅角側にトルク変動を受けることに起因して、進角室の作動流体は進角室から流出する力を受ける。すると、図20の点線に示すようにベーンロータがトルク変動により遅角側に戻され、目標の位相に達するまでの応答時間が長くなるという問題がある。この問題は、特に、流体供給源から供給される作動流体の圧力が低いときに顕著となる。
そこで特許文献1のように、作動流体を進角室に供給する供給通路に逆止弁を設け、ベーンロータがトルク変動を受けても進角室から作動流体が流出することを防止することが考えられる。これにより、図20の実線に示すように、位相制御中にベーンロータがハウジングに対し目標位相と反対側に戻ることを防止し、位相制御の応答性を高めることが知られている。
特開2006−46315号公報
しかしながら、特許文献1では、ベーンロータを目標位相に保持している際に、ベーンロータが進角側にトルク変動を受けることに起因して、遅角室の作動流体は遅角室から流出してベーンロータがハウジングに対して進角側に相対回転しやすくなり、その結果、特に供給油圧が低い時にバルブタイミングが進角側にずれやすいと言う問題がある。
そこで、本発明の目的は、位相制御の応答性を高めるとともに、目標位相保持時のバルブタイミングのずれ抑制を図るバルブタイミング調整装置を提供することにある。
請求項1から10のいずれか一項記載の発明では、流体供給源と進角室とを接続する第一進角通路に設置され、流体供給源から進角室への作動流体の流れを許容し、進角室から流体供給源側への作動流体の流れを規制する第一逆止弁を備える。そのため、位相制御としての進角制御中において、ベーンロータが遅角側にトルク変動を受けても、進角室から作動流体が流出することを防止することができるので、進角制御中にベーンロータがハウジングに対し目標位相と反対側に戻ることを防止し、位相制御の応答性を高めることができる。
同様にして、位相制御としての遅角制御中にベーンロータが進角側にトルク変動を受けても、第一遅角通路に第二逆止弁を備えるので、遅角室から作動流体が流出することを防止することができる。よって、遅角制御中にベーンロータがハウジングに対し目標位相と反対側に戻ることを防止し、位相制御の応答性を高めることができる。
また、請求項1から10のいずれか一項記載の発明では、流体供給源と遅角室とを接続する第一遅角通路に設置され、流体供給源から遅角室への作動流体の流れを許容し、遅角室から流体供給源側への作動流体の流れを規制する第二逆止弁を備える。そのため、ベーンロータを目標位相に保持している際にベーンロータが進角側にトルク変動を受けても、遅角室から作動流体が流出することを防止することができる。よって、ベーンロータが進角側に相対回転してしまうことを防止でき、バルブタイミングのずれを抑制できる。
同様にして、ベーンロータを目標位相に保持している際にベーンロータが遅角側にトルク変動を受けた場合においても、第一進角通路に第一逆止弁を備えるので、進角室から作動流体が流出することを防止することができる。よって、ベーンロータが遅角側に相対回転してしまうことを防止でき、バルブタイミングのずれを抑制できる。
また、請求項1から10のいずれか一項記載の発明では、遅角室および進角室への作動流体の供給と排出とを切り替える進遅角切替弁を備えている。
請求項2記載の発明では、進角室および遅角室を各々複数設けるので、ハウジングおよびベーンロータのうち従動軸とともに回転する側の回転体(以下、従動側回転体と呼ぶ)が進角室または遅角室から作動流体圧力を受ける受圧面積が増加する。更に、例えば第一逆止弁を複数の第一進角通路の一箇所に設置し、第二逆止弁を複数の第一遅角通路の一箇所に設置することで、各逆止弁を通る油量を少なくして圧損を低減させることができる。従って、エンジンの回転数が低く作動流体圧力が低圧であっても、従動側回転体を進角側に駆動し目標位相に速やかに到達できる。
請求項3記載の発明では、遅角室および進角室への作動流体の供給と排出とを切り替える進遅角切替弁を、軸受よりも流体供給源側に配置している。そのため、軸受よりも遅角室および進角室側に進遅角切替弁を配置する場合に比べて、進遅角切替弁のエンジンへの搭載構造を簡素にできる。
なお、このように進遅角切替弁を流体供給源側に配置した場合において、第一逆止弁および第二逆止弁ならびに第一制御弁および第二制御弁を、軸受よりも流体供給源側に配置してしまうと、以下の問題が生じる。すなわち、ベーンロータが例えば遅角側にトルク変動を受けると、進角室の作動流体はベーンロータから圧力を受けて軸受部から漏れ出るとともに、遅角室の作動流体には負圧が発生し、軸受部の摺動クリアランスからエアーが吸い込まれてしまう恐れが生じる。ベーンロータが進角側にトルク変動を受けた場合も同様にして、遅角室の作動流体が軸受部から漏れ出るとともに、進角室の作動流体に発生する負圧によりエアー吸い込みの恐れが生じる。
これに対し、請求項3記載の発明では、両逆止弁ならびに両制御弁を、軸受よりも遅角室および進角室側に配置しているので、上述の作動流体の漏出およびエアー吸い込みの恐れを抑制できる。
請求項4記載の発明では、進遅角切替弁が進角室および遅角室への油圧供給を規制して目標位相に保持する時に、第一制御弁は第二進角通路を遮断し、第二制御弁は第二遅角通路を遮断するよう作動する。両制御弁は軸受部よりも進角室および遅角室側にあるので、両制御弁を介して上述の軸受部からの作動流体の漏出およびエアー吸い込みの恐れを抑制でき、目標位相の保持を安定させることができる。
請求項5記載の発明では、進遅角切替弁とドレン切替弁とは連動して作動するので、各々作動させる場合に比べてその作動の制御を簡素化できる。
ここで、進角室または遅角室に作動流体を供給し従動側回転体を進角側または遅角側に制御するバルブタイミングの制御時に、従動側回転体が従動軸からトルク変動を受けると、進遅角切替弁よりも進角室側または遅角室側の作動流体圧力は上昇する。その結果、従動側回転体が従動軸から受けるトルク変動により進遅角切替弁よりも進角室側または遅角室側の作動流体圧力は大きく変動する。従って、進遅角切替弁よりも進角室側または遅角室側の作動流体圧力をパイロット圧力として第一制御弁および第二制御弁を駆動すると、第一制御弁および第二制御弁の動きが不安定になる。
これに対し、進遅角切替弁よりも流体供給源側の作動流体圧力については、バルブタイミングの制御時に従動側回転体が従動軸からトルク変動を受けたときの圧力変動は小さい。
そこで請求項6記載の発明によると、パイロット圧力は、進遅角切替弁よりも流体供給源側から第一制御弁および第二制御弁へ導かれる。従って、従動側回転体が従動軸からトルク変動を受けたときに、第一制御弁および第二制御弁を作動させるパイロット圧力の変動を低減でき、第一制御弁および第二制御弁を確実に作動させることができる。
請求項7記載の発明では、パイロット圧力の供給と非供給とを切り替えるドレン切替弁を、進遅角切替弁とは別に備えるので、パイロット圧力を圧力変動が小さい任意の部位から導くことができる。
請求項8記載の発明では、第一逆止弁および第二逆止弁、ならびに第一制御弁および第二制御弁はベーンロータに内蔵されているので、ハウジングに形成された収容室をベーンロータのベーンが仕切って形成した進角室と第一逆止弁との通路長、および遅角室と第二逆止弁との通路長が短くなる。その結果、進角室と第一逆止弁との間の第一進角通路、および遅角室と第二逆止弁との第一遅角通路が形成するデッドボリュームが小さくなるので、位相制御時に従動側回転体がトルク変動を受けても作動流体が供給されている進角室および遅角室の圧力低下を防止できる。したがって、位相制御の応答性が向上する。
請求項9または10記載の発明では、第一弾性部材および第二弾性部材により、第一制御弁および第二制御弁を一方向に付勢するので、第二進角通路および第二遅角通路を開放および遮断の両方向に駆動させることを作動流体圧力のみで行う場合に比べて、油圧回路の構成を簡素にできる。
なお、請求項9記載の発明では、第一弾性部材および第二弾性部材は、第二進角通路および第二遅角通路を開放する位置へ向けて第一制御弁および第二制御弁を付勢するので、パイロット圧力により両制御弁が作動していない状態では、第二進角通路および第二遅角通路は常時開放される、所謂ノーマリオープン方式である。
一方、請求項10記載の発明では、両弾性部材は両通路を遮断する位置へ向けて両制御弁を付勢するので、パイロット圧力により両制御弁が作動していない状態では、両通路は常時遮断される、所謂ノーマリクローズ方式である。
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第1実施形態)
本発明の第1実施形態によるバルブタイミング調整装置を図1〜図7に示す。本実施形態のバルブタイミング調整装置1は作動流体として作動油を用いる油圧制御式であり、吸気弁のバルブタイミングを調整するものである。
図2に示すように、駆動側回転体であるハウジング10は、チェーンスプロケット11、シューハウジング12およびフロントプレート14から構成されている。シューハウジング12は、仕切部材としてのシュー121、122、123(図3参照)と、環状の周壁13とを有している。フロントプレート14は、周壁13を挟んでチェーンスプロケット11と反対側に位置しており、ボルト16によってチェーンスプロケット11およびシューハウジング12と同軸上に固定されている。チェーンスプロケット11は、図示しないチェーンにより図示しないエンジンの駆動軸としてのクランクシャフトと結合して駆動力を伝達され、クランクシャフトと同期して回転する。
従動軸としてのカムシャフト3は、バルブタイミング調整装置1を介しクランクシャフトの駆動力を伝達され、図示しない吸気弁を開閉駆動する。カムシャフト3は、チェーンスプロケット11に対し所定の位相差をおいて回動可能にチェーンスプロケット11に挿入されている。
従動側回転体としてのベーンロータ15はカムシャフトの回転軸方向端面と当接しており、カムシャフト3およびベーンロータ15はボルト23により同軸上に固定されている。ベーンロータ15とカムシャフト3との回転方向の位置決めは、ベーンロータ15およびカムシャフト3に位置決めピン24を嵌合することにより成される。カムシャフト3、ハウジング10およびベーンロータ15は、図2に示す矢印III方向からみて時計方向に回転する。以下この回転方向をクランクシャフトに対するカムシャフト3の進角方向とする。
図3に示すように、台形状に形成されたシュー121、122、123は周壁13から径方向内側に延びており、周壁13の回転方向にほぼ等間隔に配置されている。シュー121、122、123により回転方向に所定角度範囲で三箇所形成された間隙にはそれぞれベーン151、152、153を収容する扇状の収容室50が3室形成されている。
ベーンロータ15は、カムシャフト3と軸方向端面で結合するボス部154と、ボス部154の外周側に回転方向にほぼ等間隔に配置されたベーン151、152、153とを有している。ベーンロータ15は、ハウジング10に対し相対回動可能にハウジング10内に収容されている。ベーン151、152、153は各収容室50内に回動可能に収容されている。各ベーンは、各収容室50を仕切り、各収容室50を遅角室と進角室とに二分している。図1に示す遅角方向、進角方向を表す矢印は、ハウジング10に対するベーンロータ15の遅角方向、進角方向を表している。
シール部材25は半径方向に向き合う各シューとボス部154との間、ならびに各ベーンと周壁13の内周壁との間に形成されている摺動隙間に配設されている。シール部材25は、各シューの内周壁および各ベーンの外周壁に設けた溝に嵌合しており、ばね等によりボス部154の外周壁および周壁13の内周壁に向けて付勢されている。この構成により、シール部材25は各遅角室と各進角室との間に作動油が漏れることを防止している。
図2に示すように、円筒状に形成されたストッパピストン32は、ベーン153に形成された貫通孔に、回転軸方向に摺動可能に収容されている。嵌合リング34はチェーンスプロケット11に形成された凹部に圧入保持されている。ストッパピストン32は嵌合リング34に嵌合可能である。ストッパピストン32および嵌合リング34の嵌合側はテーパ状に形成されているので、ストッパピストン32は嵌合リング34に滑らかに嵌合する。付勢手段としてのスプリング36は嵌合リング34側にストッパピストン32を付勢している。ストッパピストン32、嵌合リング34およびスプリング36はハウジング10に対するベーンロータ15の相対回動を拘束する拘束手段を構成している。
ストッパピストン32のチェーンスプロケット11側に形成された油圧室40、ならびにストッパピストン32の外周に形成された油圧室42に供給される作動油の圧力は、嵌合リング34からストッパピストン32が抜け出す方向に働く。油圧室40は後述する進角室のいずれかと連通し、油圧室42は遅角室のいずれかと連通している。ストッパピストン32の先端部は、ハウジング10に対し最遅角位置にベーンロータ15が位置するとき嵌合リング34に嵌合可能である。ストッパピストン32が嵌合リング34に嵌合した状態においてハウジング10に対するベーンロータ15の相対回動は拘束されている。なお、ベーンロータ15のうちストッパピストン32に対して嵌合リング34と反対側の部分には、ストッパピストン32の摺動にともない変動する背圧を逃がす背圧抜き溝43が形成されている。
ハウジング10に対しベーンロータ15が最遅角位置から進角側に回転するとストッパピストン32と嵌合リング34との回転方向位置がずれることにより、ストッパピストン32は嵌合リング34に嵌合不能になる。
図3に示すように、シュー121とベーン151との間に遅角室52が形成され、シュー122とベーン152との間に遅角室51が形成され、シュー123とベーン153との間に遅角室53が形成されている。また、シュー123とベーン152との間に進角室57が形成され、シュー122とベーン151との間に進角室55が形成され、シュー121とベーン153との間に進角室56が形成されている。
流体供給源としての油圧ポンプ202はオイルパン200から汲み上げた作動油を供給通路204に供給する。進遅角切替弁60は、公知の電磁スプール弁であり、軸受2の油圧ポンプ202側に設置されている。進遅角切替弁60は、電子制御装置(ECU)70から電磁駆動部62に供給されるデューティ比制御された駆動電流により切換制御される。進遅角切替弁60のスプール63は、駆動電流のデューティ比に基づいて変位する。このスプール63の位置により、進遅角切替弁60は、各遅角室および各進角室への作動油の供給、ならびに各遅角室および各進角室からの作動油の排出を切り換える。進遅角切替弁60への通電をオフした状態では、スプリング64の付勢力によりスプール63は図1に示す位置にある。
図2に示すように、軸受2により回転を支持されているカムシャフト3の外周壁には、環状通路240、242、244、245が形成されている。遅角通路210は進遅角切替弁60から環状通路240を通り、進角通路220は進遅角切替弁60から環状通路242を通り、カムシャフト3内およびベーンロータ15のボス部154内に形成されている。
図1に示すように、遅角通路210は、遅角室51、52、53と接続する第一遅角通路としての遅角通路212、213、214に分岐している。遅角通路210、212、213、214は、供給通路204および進遅角切替弁60から各遅角室に作動油を供給するとともに、各遅角室から流体排出側であるオイルパン200側に、進遅角切替弁60および排出通路206を介して作動油を排出する。したがって、遅角通路210、212、213、214は、遅角供給通路と遅角排出通路とを兼ねている。
進角通路220は、進角室55、56、57と接続する第一進角通路としての進角通路222、223、224に分岐している。進角通路220、222、223、224は、供給通路204および進遅角切替弁60から各進角室に作動油を供給するとともに、各進角室から流体排出側であるオイルパン200側に、進遅角切替弁60および排出通路206を介して作動油を排出する。したがって、進角通路220、222、223、224は、進角供給通路と進角排出通路とを兼ねている。
以上の通路構成により、油圧ポンプ202から遅角室51、52、53、進角室55、56、57ならびに油圧室40、42に作動油を供給可能になるとともに、各油圧室からオイルパン200へ作動油を排出可能になる。
進角室55、56、57と接続する進角通路222、223、224のうち進角通路222には、第一逆止弁90が備えられている。第一逆止弁90は、軸受2よりも進角通路222の進角室55側に設置されている。第一逆止弁90は、油圧ポンプ202から進角通路222を通って進角室55に作動油が流入することを許可し、進角室55から進角通路222を通って油圧ポンプ202側に作動油が逆流することを禁止する。なお、第一逆止弁90が備えられた進角通路222と接続される進角室55を、以下、制御進角室55と呼ぶ場合もある。
遅角室51、52、53と接続する遅角通路212、213、214のうち遅角通路212には、第二逆止弁80が備えられている。第二逆止弁80は、軸受2よりも遅角通路212の遅角室51側に設置されている。第二逆止弁80は、油圧ポンプ202から遅角通路212を通って遅角室51に作動油が流入することを許可し、遅角室51から遅角通路212を通って油圧ポンプ202側に作動油が逆流することを禁止する。なお、第二逆止弁80が備えられた遅角通路212と接続される遅角室51を、以下、制御遅角室51と呼ぶ場合もある。
図6(a)および図7(a)に示す如く、第二逆止弁80および第一逆止弁90は、弁体81、91、弁座シート82、92、スプリング83、93およびストッパ84、94等を各々有している。スプリング83、93は、ストッパ84、94と弁体81、91との間に配置され、弁体81、91を弁座シート82、92に押し付ける向きに付勢する。
この構成により、油圧ポンプ202から制御進角室55および制御遅角室51に向けて作動油が供給されると、弁体81、91はスプリング83、93の付勢力に抗してストッパ84、94に向けて移動し、弁座シート82、92から離れて進角通路222および遅角通路212を開放する。すると、進角通路222内の作動油は、進角通路222のうち第一逆止弁90と制御進角室55とを接続する供給専用油路222a(図3、図6および図7参照)を介して制御進角室55に流入する。また、遅角通路212内の作動油は、遅角通路212のうち第二逆止弁80と制御遅角室51とを接続する供給専用油路212a(図3、図6および図7参照)を介して制御遅角室51に流入する。
一方、制御進角室55および制御遅角室51から油圧ポンプ202に向けて作動油が流れようとしても、スプリング83、93により弁体81、91が弁座シート82、92に押し付けられることで、進角通路222および遅角通路212は遮断される。
進角通路222には、第一逆止弁90をバイパスして連通させる第二進角通路226が接続されている。第二進角通路226には、ベーンロータ15を進角側へ相対回転させる進角制御を行うとき第二進角通路226を遮断し、ベーンロータ15を遅角側へ相対回転させる遅角制御を行うとき第二進角通路226を開放する第一制御弁602が設置されている。第二進角通路226が開放されると、制御進角室55内の作動油は第二進角通路226から進角通路222を通じて排出される(図3および図6参照)。従って、第二進角通路226は排出専用の油路として機能している。
第一制御弁602はパイロット圧力により作動する切替弁であり、パイロット圧力は油圧ポンプ202から進角パイロット通路231を通じて供給される。第一制御弁602へパイロット圧力の供給した状態では、第一弾性部材としてのスプリング642の付勢力に抗してスプール632は図1に示す位置にある。進角パイロット通路231は、進遅角切替弁60よりも油圧ポンプ202側に接続されている。
遅角通路212には、第二逆止弁80をバイパスして連通させる第二遅角通路225が接続されている。第二遅角通路225には、ベーンロータ15を遅角側へ相対回転させる遅角制御を行うとき第二遅角通路225を遮断し、ベーンロータ15を進角側へ相対回転させる進角制御を行うとき第二遅角通路225を開放する第二制御弁601が設置されている。第二遅角通路225が開放されると、制御遅角室51内の作動油は第二遅角通路225から遅角通路212を通じて排出される(図3および図7参照)。従って、第二遅角通路225は排出専用の油路として機能している。
第二制御弁601はパイロット圧力により作動する切替弁であり、パイロット圧力は油圧ポンプ202から遅角パイロット通路230を通じて供給される。第二制御弁601へのパイロット圧力の供給を停止した状態では、第二弾性部材としてのスプリング641の付勢力によりスプール631は図1に示す位置にある。遅角パイロット通路230は、進遅角切替弁60よりも油圧ポンプ202側に接続されている。
両スプリング641、642は、第二遅角通路225および第二進角通路226を遮断する位置へ向けて両スプール631、632を付勢するので、パイロット圧力により両制御弁601、602が作動していない状態では、第二遅角通路225および第二進角通路226は常時遮断される。すなわち、本第1実施形態による第一制御弁602および第二制御弁601は、所謂ノーマリクローズ方式の制御弁である。なお、ベーンロータ15のうち制御弁601、602のスプール631、632を付勢するスプリング641、642側の部分には、スプール631、632の摺動にともない変動する背圧を逃がす背圧抜き通路217、227が形成されている。
進角パイロット通路231および遅角パイロット通路230には、パイロット圧力の供給と非供給とを切り替えるドレン切替弁600が設置されている。ドレン切替弁600は、電子制御装置(ECU)700から電磁駆動部620に供給されるデューティ比制御された駆動電流により切換制御される。ドレン切替弁600のスプール630は、駆動電流のデューティ比に基づいて変位する。このスプール630の位置により、ドレン切替弁600は、第一制御弁602および第二制御弁601へのパイロット油の供給、ならびに第一制御弁602および第二制御弁601からのパイロット油の排出を切り換える。ドレン切替弁600への通電をオフした状態では、スプリング640の付勢力によりスプール630は図1に示す位置にある。
図2に示す如く、第一逆止弁90および第一制御弁602はベーンロータ15に内蔵されている。また、図2では図示を省略しているが、第二逆止弁80および第二制御弁601も、第一逆止弁90および第一制御弁602と同様の搭載構造にてベーンロータ15に内蔵されている。進角パイロット通路231および遅角パイロット通路230はドレン切替弁600から環状通路245、244を各々通ってカムシャフト3内およびベーンロータ15のボス部154内に形成されている。
次に、バルブタイミング調整装置1のベーンロータ15および進遅角切替弁60の作動を、図1、図4および図5を用いて説明する。なお、図1は、ハウジング10に対しベーンロータ15を遅角方向に作動させている状態を示し、図4は、ハウジング10に対しベーンロータ15を進角方向に作動させている状態を示し、図5は、ハウジング10に対しベーンロータ15が相対回転しないように保持させている状態を示す。
<エンジン停止時>
エンジン停止状態ではストッパピストン32は嵌合リング34に嵌合している。エンジンを始動直後の状態では、遅角室51、52、53、進角室55、56、57、油圧室40および油圧室42に油圧ポンプ202から作動油が十分に供給されないので、ストッパピストン32は嵌合リング34に嵌合したままであり、クランクシャフトに対しカムシャフトは最遅角位置に保持されている。これにより、作動油が各油圧室に供給されるまでの間、カムシャフトが受けるトルク変動によりハウジング10とベーンロータ15とが揺動振動して衝突し、打音が発生することを防止する。
<エンジン始動後>
エンジン始動後、油圧ポンプ202から作動油が十分に供給されると、油圧室40または油圧室42に供給される作動油の油圧によりストッパピストン32は嵌合リング34から抜け出すので、ハウジング10に対しベーンロータ15は相対回動自在である。そして、各遅角室および各進角室に加わる油圧を制御することにより、クランクシャフトに対するカムシャフトの位相差を調整する。
<遅角作動時>
進遅角切替弁60への通電をオフした図1に示す状態では、スプール63はスプリング64の付勢力により図1に示す位置にある。この状態において、供給通路204から遅角通路210に作動油が供給され、遅角通路213、214を通り遅角室52、53に作動油が供給されるとともに、遅角通路212を通り遅角室51に第二逆止弁80を通じて作動油が供給される。
この状態において、進角室56、57の作動油は、進角通路223、224から進角通路220、進遅角切替弁60、排出通路206を通りオイルパン200に排出される。制御進角室55の作動油は、進角通路222に第一逆止弁90が設置されているので、第二進角通路226、第一制御弁602、進角通路220、進遅角切替弁60を通りオイルパン200に排出される。
このように各遅角室に作動油が供給され、各進角室から作動油が排出されることにより、ベーンロータ15は3室ある遅角室51、52、53から作動油圧を受け、ベーンロータ15はハウジング10に対し遅角側に回転する。
図1に示すように各遅角室に作動油を供給し、各進角室から作動油を排出することにより遅角側の目標位相に位相制御(遅角制御)するとき、カムシャフトが受けるトルク変動により、ベーンロータ15はハウジング10に対し遅角側および進角側にトルク変動を受ける。ベーンロータ15が進角側にトルク変動を受けると、各遅角室の作動油は遅角通路212、213、214に流出する力を受ける。
しかし、本第1実施形態では、遅角通路212に第二逆止弁80が設置されているので、制御遅角室51から遅角通路212側に作動油は流出しない。したがって、油圧ポンプ202の油圧が低いときにベーンロータ15が進角側にトルク変動を受けても、ベーンロータ15はハウジング10に対して進角側に戻されない。その結果、遅角室52、53からも作動油は流出しない。したがって、ベーンロータ15がカムシャフトから進角側にトルク変動を受けても、ハウジング10に対してベーンロータ15が目標位相と反対の進角側に戻ることを防止できるので、ベーンロータ15は遅角側の目標位相に速やかに到達する。
<進角作動時>
次に、進遅角切替弁60への通電をオンすると、図4に示すように、スプリング64の付勢力に抗して加わる電磁駆動部62の電磁力により、スプール63は図4に示す位置にある。この状態において、供給通路204から進角通路220に作動油が供給され、進角通路223、224を通り進角室56、57に作動油が供給されるとともに、進角通路222を通り進角室55に第一逆止弁90を通じて作動油が供給される。
この状態において、遅角室52、53の作動油は、遅角通路213、214から遅角通路210、進遅角切替弁60、排出通路206を通りオイルパン200に排出される。制御遅角室51の作動油は、遅角通路212に第二逆止弁80が設置されているので、第二遅角通路225、第二制御弁601、遅角通路210、進遅角切替弁60を通りオイルパン200に排出される。
このように各進角室に作動油が供給され、各遅角室から作動油が排出されることにより、ベーンロータ15は、3室ある進角室55、56、57から作動油圧を受け、ハウジング10に対し進角側に回転する。
図4に示すように各進角室に作動油を供給し、各遅角室から作動油を排出することにより進角側の目標位相に位相制御(進角制御)するとき、カムシャフトが受けるトルク変動により、ベーンロータ15はハウジング10に対し遅角側および進角側にトルク変動を受ける。ベーンロータ15が遅角側にトルク変動を受けると、各進角室の作動油は進角通路222、223、224に流出する力を受ける。
しかし、本第1実施形態では、進角通路222に第一逆止弁90が設置されているので、制御進角室55から進角通路222側に作動油は流出しない。したがって、油圧ポンプ202の油圧が低いときにベーンロータ15が遅角側にトルク変動を受けても、ベーンロータ15はハウジング10に対して遅角側に戻されない。その結果、進角室56、57からも作動油は流出しない。したがって、ベーンロータ15がカムシャフトから遅角側にトルク変動を受けても、図20に示すようにハウジング10に対してベーンロータ15が目標位相と反対の遅角側に戻ることを防止できるので、ベーンロータ15は進角側の目標位相に速やかに到達する。
<中間保持作動時>
ベーンロータ15が目標位相に到達すると、ECU70は進遅角切替弁60に供給する駆動電流のデューティ比を制御し、スプール63を図5の中間位置に保持する。その結果、進遅角切替弁60は、遅角通路210および進角通路220と、供給通路204および排出通路206との接続を遮断し、各遅角室および各進角室からオイルパン200に作動油が排出されることを防止するので、ベーンロータ15は目標位相に保持される。
なお、図5では、供給通路204から遅角通路210および進角通路220への作動油の供給は、完全に遮断されるように模式的に図示しているが、実際には、進遅角切替弁60のスプール63の位置の調整によって作動油の遮断量が規制されており、図5に示す状態においては、供給通路204からの作動油は遅角通路210および進角通路220に僅かに供給されている。従って、遅角通路210の油圧と進角通路220の油圧との差圧とカムシャフト3の平均負荷トルクとのバランスによって、ベーンロータ15は目標位相に保持されている。因みに、図5に示す中間保持時の進遅角切替弁60は特許請求の範囲に記載の「中間保持手段」に相当する。
次に、上述の遅角作動時、進角作動時、中間保持作動時における、第一逆止弁90および第二逆止弁80、ならびに第一制御弁602および第二制御弁601の作動を、図6および図7を用いて説明する。なお、図6は制御進角室55に接続される第一逆止弁90および第一制御弁602の作動を、図7は制御遅角室51に接続される第二逆止弁80および第二制御弁601の作動を示す断面図である。
<遅角作動時>
図6(a)に示すように、遅角作動時にベーンロータ15が進角側にトルク(負トルク)を受けた場合または遅角側にトルク(正トルク)を受けた場合には、第一逆止弁90は、進角通路222を閉塞して、供給専用油路222aから進角通路222への逆流を防止する。そして、第一制御弁602は、パイロット圧力により第二進角通路226を開放して、制御進角室55内の作動油を第二進角通路226を通じて流出可能とする。
一方、図7(a)に示すように、遅角作動時にベーンロータ15が正トルクを受けた場合には、第二逆止弁80は、遅角通路212を開放して、遅角通路212から供給専用油路212aを通じて制御遅角室51へ作動油が供給される。そして、第二制御弁601は、スプリング641により第二遅角通路225を閉塞して、制御遅角室51内の作動油が第二遅角通路225を通じて流出することを禁止する。
また、図7(b)に示すように、遅角作動時にベーンロータ15が負トルクを受けた場合には、第二逆止弁80は、遅角通路212を閉塞して、供給専用油路212aから遅角通路212への逆流を防止する。そして、第二制御弁601は、スプリング641により第二遅角通路225を閉塞して、制御遅角室51内の作動油が第二遅角通路225を通じて流出することを禁止する。
<進角作動時>
図6(b)に示すように、進角作動時にベーンロータ15が正トルクを受けた場合には、第一逆止弁90は、進角通路222を閉塞して、供給専用油路222aから進角通路222への逆流を防止する。そして、第一制御弁602は、スプリング642により第二進角通路226を閉塞して、制御進角室55内の作動油が第二進角通路226を通じて流出することを禁止する。
また、図6(c)に示すように、進角作動時にベーンロータ15が負トルクを受けた場合には、第一逆止弁90は、進角通路222を開放して、進角通路222から供給専用油路222aを通じて制御進角室55へ作動油が供給される。そして、第一制御弁602は、スプリング642により第二進角通路226を閉塞して、制御進角室55内の作動油が第二進角通路226を通じて流出することを禁止する。
一方、図7(c)に示すように、進角作動時にベーンロータ15が正トルクまたは負トルクを受けた場合には、第二逆止弁80は、遅角通路212を閉塞して、供給専用油路212aから遅角通路212への逆流を防止する。そして、第二制御弁601は、パイロット圧力により第二遅角通路225を開放して、制御遅角室51内の作動油を第二遅角通路225を通じて流出可能とする。
<中間保持作動時>
図6(d)に示すように、中間保持作動時にベーンロータ15が正トルクまたは負トルクを受けた場合には、第一逆止弁90は、進角通路222を閉塞して、供給専用油路222aから進角通路222への逆流を防止する。そして、第一制御弁602は、スプリング642により第二進角通路226を閉塞して、制御進角室55内の作動油が第二進角通路226を通じて流出することを禁止する。
一方、図7(d)に示すように、中間保持作動時にベーンロータ15が正トルクまたは負トルクを受けた場合には、第二逆止弁80は、遅角通路212を閉塞して、供給専用油路212aから遅角通路212への逆流を防止する。そして、第二制御弁601は、スプリング641により第二遅角通路225を閉塞して、制御遅角室51内の作動油が第二遅角通路225を通じて流出することを禁止する。
以上により、本第1実施形態によれば、遅角通路212に第二逆止弁80が設置されており、第二遅角通路225の第二制御弁601が閉塞しているので、制御遅角室51から遅角通路212側に作動油は流出しない。したがって、ベーンロータ15を目標位相に保持している中間保持作動時にベーンロータ15が進角側にトルク変動を受けても、制御遅角室51から作動流体が流出することを防止することができる。したがって、中間保持作動時にベーンロータ15が進角側にトルク変動を受けても、ベーンロータ15はハウジング10に対して進角側に戻されない。その結果、遅角室52、53からも作動油は流出しない。よって、ベーンロータ15が進角側に相対回転してしまうことを防止でき、吸気弁のバルブタイミングのずれを抑制できる。
同様にして、進角通路222に第一逆止弁90が設置されており、第二進角通路の第一制御弁602が閉塞しているので、中間保持作動時において、制御進角室55から進角通路222側に作動油は流出しない。よって、中間保持作動時にベーンロータ15が遅角側にトルク変動を受けても、ベーンロータ15が遅角側に相対回転してしまうことを防止でき、吸気弁のバルブタイミングのずれを抑制できる。
また、本第1実施形態によれば、パイロット圧力は、進遅角切替弁60よりも油圧ポンプ202側から第一制御弁602および第二制御弁601に供給される。従って、進遅角作動中にベーンロータ15がトルク変動を受けて各進角室および各遅角室の内部油圧が変動しても、十分な油路距離によって油圧の変動が減衰しパイロット圧力の変動を低減できる。よって、第一制御弁602および第二制御弁601を安定して確実に作動させることができる。
(第2実施形態)
本発明の第2実施形態を図8〜図10に示す。尚、第1実施形態と実質的に同一構成部分には同一符号を付す。
第一制御弁602および第二制御弁601に関し、上述の第1実施形態ではノーマリクローズ方式の制御弁を採用しているのに対し、本第2実施形態では図8〜図10に示すノーマリオープン方式の制御弁を採用している。
具体的には、両スプリング642、641は、第二進角通路226および第二遅角通路225を開放する位置へ向けて第一制御弁602および第二制御弁601を付勢するので、パイロット圧力により両制御弁602、601が作動していない状態では、第二進角通路226および第二遅角通路225は常時開放される。
従って、ベーンロータ15、進遅角切替弁60、第一逆止弁90および第二逆止弁80、ならびに第一制御弁602および第二制御弁601の作動は、図1、図4および図5に示す第1実施形態と同様の作動であり、遅角作動時には図8に示す如く作動し、進角作動時には図9に示す如く作動し、中間保持作動時には図10に示す如く作動する。
ただし、パイロット圧力を供給する作動に関しては、本第2実施形態では以下の点が異なる。
すなわち、図8に示す遅角作動時には、第一制御弁602にはパイロット油は供給されず、第二制御弁601には遅角パイロット通路230を通じてパイロット油が供給される。図9に示す進角作動時には、第一制御弁602には進角パイロット通路231を通じてパイロット油が供給され、第二制御弁601にはパイロット油は供給されない。図10に示す中間保持作動時には、第一制御弁602および第二制御弁601には、進角パイロット通路231および遅角パイロット通路230を通じてパイロット油が供給される。
(第3実施形態)
本発明の第3実施形態を図11〜図13に示す。尚、第1実施形態と実質的に同一構成部分には同一符号を付す。
上述の第1実施形態では、進遅角切替弁60の作動はECU70により制御され、ドレン切替弁600はECU700により制御されるので、両切替弁60、600の作動は、各々独立して制御される。これに対し、本第3実施形態では図11〜図13に示すように、進遅角切替弁60とドレン切替弁600とを連動させ、一つのECU70により両切替弁60、600の作動を制御する。
具体的には、第1実施形態における進遅角切替弁60のスプリング64、ドレン切替弁600の電磁駆動部620およびECU700を廃止して、進遅角切替弁60のスプール63とドレン切替弁600のスプール630とを連結部材65により連結している。従って、両切替弁60、600を各々作動制御する場合に比べてその作動の制御を簡素化できる。
なお、ベーンロータ15、進遅角切替弁60、第一逆止弁90および第二逆止弁80、ならびに第一制御弁602および第二制御弁601の作動は、図1、図4および図5に示す第1実施形態と同様の作動であり、遅角作動時には図11に示す如く作動し、進角作動時には図12に示す如く作動し、中間保持作動時には図13に示す如く作動する。
また、パイロット圧力を供給する作動に関し、本第3実施形態の第一制御弁602および第二制御弁601には、上述の第2実施形態と同様のノーマリオープン方式の制御弁が採用されている。従って、パイロット圧力を供給する作動については第2実施形態と同様と同様である。
(第4実施形態)
本発明の第4実施形態を図14〜図16に示す。尚、第1実施形態と実質的に同一構成部分には同一符号を付す。
本第4実施形態では、上述の第3実施形態と同様にして、進遅角切替弁60とドレン切替弁600とを連動させ、一つのECU70により両切替弁60、600の作動を制御する。また、上述の第1実施形態と同様にして、第一制御弁602および第二制御弁601には、ノーマリクローズ方式の制御弁が採用されている。
従って、ベーンロータ15、進遅角切替弁60、第一逆止弁90および第二逆止弁80、ならびに第一制御弁602および第二制御弁601の作動、ならびにパイロット圧力を供給する作動は、図1、図4および図5に示す第1実施形態と同様の作動であり、遅角作動時には図14に示す如く作動し、進角作動時には図15に示す如く作動し、中間保持作動時には図16に示す如く作動する。
(第5実施形態)
本発明の第5実施形態を図17に示す。尚、第1実施形態と実質的に同一構成部分には同一符号を付す。 本第5実施形態では、第1〜4実施形態に対してドレン切替弁600を廃止している。第一制御弁602および第二制御弁601には、上述の第2実施形態と同様のノーマリオープン方式の制御弁が採用されており、第一制御弁602を作動させる第一パイロット油路231を進角通路220から分岐し、第二制御弁601を作動させる第二パイロット油路230を遅角通路210から分岐している。これにより、第一制御弁602および第二制御弁601は進遅角切替弁60の制御油圧によって作動させられる。
なお、ベーンロータ15、進遅角切替弁60、第一逆止弁90および第二逆止弁80、ならびに第一制御弁602および第二制御弁601の作動は、図11、図12および図13に示す第3実施形態と同様の作動であり、遅角作動時には図17に示す如く作動し、進角作動時には図18に示す如く作動し、中間保持作動時には図19に示す如く作動する。
中間保持する時は第一制御弁602および第二制御弁601にパイロット油圧を供給して共に閉じる必要があるため、進遅角切替弁60のスプール63の中間保持の位置は両圧が僅かに供給できる様な規制構造になっている。具体的には、図17中の符号66に示すように作動油の流量を規制する絞り手段が進遅角切替弁60に備えられており、この絞り手段66により、中間保持において僅かな流量の作動油が供給されることとなる。つまり、上記各実施形態では、中間保持手段としての進遅角切替弁60は、実際にはリークにより完全に作動油の供給を遮断するものではないものの、積極的に供給する構造にはなっていない。これに対し、本第5実施形態によれば、中間保持手段としての進遅角切替弁60は絞り手段66を有するので、僅かな量の供給が確実になされる。
従って中間保持する時は、遅角通路210の油圧と進角通路220の油圧との差圧とカムシャフト3の平均負荷トルクとのバランスによってベーンロータ15は目標位相に保持されており、第一制御弁602および第二制御弁601は共に閉じているために保持安定性が良い。
(他の実施形態)
上記各実施形態では、複数の第一進角通路222、223、224のうち進角通路222にのみ第一逆止弁90を備えているが、複数の第一進角通路222、223、224のうち少なくとも1つの進角通路に第一逆止弁90を備えていればよく、例えば、全ての進角通路222、223、224の各々に第一逆止弁90を備えていてもよい。
また、上記各実施形態では、複数の第一遅角通路212、213、214のうち遅角通路212にのみ第二逆止弁80を備えているが、複数の第一遅角通路212、213、214のうち少なくとも1つの遅角通路に第二逆止弁80を備えていればよく、例えば、全ての遅角通路212、213、214の各々に第二逆止弁80を備えていてもよい。
このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能であり、例えば、上記各実施形態の特徴的構造をそれぞれ任意に組み合わせるようにしてもよい。
本発明の第1実施形態によるバルブタイミング調整装置の遅角作動時の状態を示す模式図。 第1実施形態によるバルブタイミング調整装置を示す縦断面図。 フロントプレートを取り除いた状態における、図2のIII矢視図。 第1実施形態によるバルブタイミング調整装置の進角作動時の状態を示す模式図。 第1実施形態によるバルブタイミング調整装置の中間保持作動時の状態を示す模式図。 第1実施形態による第一逆止弁および第一制御弁の作動を示す断面図。 第1実施形態による第二逆止弁および第二制御弁の作動を示す断面図。 本発明の第2実施形態によるバルブタイミング調整装置の遅角作動時の状態を示す模式図。 第2実施形態によるバルブタイミング調整装置の進角作動時の状態を示す模式図。 第2実施形態によるバルブタイミング調整装置の中間保持作動時の状態を示す模式図。 本発明の第3実施形態によるバルブタイミング調整装置の遅角作動時の状態を示す模式図。 第3実施形態によるバルブタイミング調整装置の進角作動時の状態を示す模式図。 第3実施形態によるバルブタイミング調整装置の中間保持作動時の状態を示す模式図。 本発明の第4実施形態によるバルブタイミング調整装置の遅角作動時の状態を示す模式図。 第4実施形態によるバルブタイミング調整装置の進角作動時の状態を示す模式図。 第4実施形態によるバルブタイミング調整装置の中間保持作動時の状態を示す模式図。 第5実施形態によるバルブタイミング調整装置の遅角作動時の状態を示す模式図。 第5実施形態によるバルブタイミング調整装置の進角作動時の状態を示す模式図。 第5実施形態によるバルブタイミング調整装置の中間保持作動時の状態を示す模式図。 第一逆止弁の有無による目標位相到達時間の違いを示す特性図。
符号の説明
1:バルブタイミング調整装置、3:カムシャフト(従動軸)、10:ハウジング、15:ベーンロータ、50:収容室、51、52、53:遅角室(51:制御遅角室)、55、56、57:進角室(55:制御進角室)、60:進遅角切替弁、90:第一逆止弁、80:第二逆止弁、151、152、153:ベーン、202:油圧ポンプ(流体供給源)、212、213、214:第一遅角通路、222、223、224:第一進角通路、225:第二遅角通路、226:第二進角通路、600:ドレン切替弁、601:第二制御弁、602:第一制御弁、641:スプリング(第二弾性部材)、642: スプリング(第一弾性部材)。

Claims (10)

  1. 内燃機関の駆動軸から吸気弁および排気弁の少なくともいずれか一方を開閉駆動する従動軸に駆動力を伝達する駆動力伝達系に設けられ、前記吸気弁及び排気弁の少なくともいずれか一方の開閉タイミングを調整するバルブタイミング調整装置において、
    前記駆動軸および前記従動軸の一方とともに回転し、所定角度範囲で回転方向に形成された収容室を回転方向に複数有するハウジングと、
    前記駆動軸および前記従動軸の他方とともに回転して前記収容室に収容されるベーンを有し、前記ベーンにより前記収容室を仕切って形成された遅角室および進角室の作動流体圧力により前記ハウジングに対し遅角側または進角側に相対回転駆動されるベーンロータと、
    流体供給源と前記進角室とを接続する第一進角通路に設置され、前記流体供給源から前記進角室への作動流体の流れを許容し、前記進角室から前記流体供給源側への作動流体の流れを規制する第一逆止弁と、
    前記流体供給源と前記遅角室とを接続する第一遅角通路に設置され、前記流体供給源から前記遅角室への作動流体の流れを許容し、前記遅角室から前記流体供給源側への作動流体の流れを規制する第二逆止弁と、
    前記流体供給源と前記進角室とを前記第一逆止弁をバイパスして連通させる第二進角通路に設置され、前記流体供給源からの流体圧であるパイロット圧力により作動して、前記ベーンロータを進角側へ相対回転させる進角制御を行うとき前記第二進角通路を遮断し、前記ベーンロータを遅角側へ相対回転させる遅角制御を行うとき前記第二進角通路を開放する第一制御弁と、
    前記流体供給源と前記遅角室とを前記第二逆止弁をバイパスして連通させる第二遅角通路に設置され、前記流体供給源からの流体圧であるパイロット圧力により作動して、前記ベーンロータを遅角側へ相対回転させる遅角制御を行うとき前記第二遅角通路を遮断し、前記ベーンロータを進角側へ相対回転させる進角制御を行うとき前記第二遅角通路を開放する第二制御弁と、
    前記流体供給源から前記遅角室および前記進角室への作動流体の供給と、前記遅角室および前記進角室からの作動流体の排出とを切り替える進遅角切替弁と、
    を備えるバルブタイミング調整装置。
  2. 前記第一進角通路および前記第一遅角通路は、複数の前記進角室および前記遅角室の各々に設けられ、
    前記第一逆止弁は、複数の前記第一進角通路のうち少なくとも1つに設置され、
    前記第二逆止弁は、複数の前記第一遅角通路のうち少なくとも1つに設置される請求項1記載のバルブタイミング調整装置。
  3. 前記進遅角切替弁は、前記従動軸を回転可能に支持する軸受よりも前記流体供給源側に配置され、
    前記第一逆止弁および前記第二逆止弁、ならびに前記第一制御弁および前記第二制御弁は、前記軸受よりも前記遅角室および前記進角室側に配置されている請求項1または2記載のバルブタイミング調整装置。
  4. 前記進遅角切替弁は、前記遅角室および前記進角室への作動流体の供給を規制することにより、前記ベーンロータの前記ハウジングに対する相対位相角度を任意の目標角度に中間保持する中間保持手段を更に備え、
    前記中間保持手段により中間保持に制御しているときには、前記第一制御弁は前記第二進角通路を遮断し、前記第二制御弁は前記第二遅角通路を遮断するよう作動する請求項1から3のいずれか一項記載のバルブタイミング調整装置。
  5. 前記第一制御弁および前記第二制御弁への前記パイロット圧力の供給と非供給とを切り替えるドレン切替弁をさらに備え、
    前記進遅角切替弁と前記ドレン切替弁とは連動して作動する請求項1から4のいずれか一項記載のバルブタイミング調整装置。
  6. 前記パイロット圧力は、前記進遅角切替弁よりも前記流体供給源側から前記第一制御弁および前記第二制御弁へ導かれる請求項から5のいずれか一項記載のバルブタイミング調整装置。
  7. 前記第一制御弁および前記第二制御弁への前記パイロット圧力の供給と非供給とを切り替えるドレン切替弁をさらに備える請求項1から4のいずれか一項記載のバルブタイミング調整装置。
  8. 前記第一逆止弁および第二逆止弁、ならびに前記第一制御弁および第二制御弁は、前記ベーンロータに内蔵されている請求項1から7のいずれか一項記載のバルブタイミング調整装置。
  9. 前記第一制御弁は、前記パイロット圧力により前記第二進角通路を遮断する位置へ移動するよう構成され、
    前記第二制御弁は、前記パイロット圧力により前記第二遅角通路を遮断する位置へ移動するよう構成され、
    前記第二進角通路を開放する位置へ向けて前記第一制御弁を付勢する第一弾性部材と、
    前記第二遅角通路を開放する位置へ向けて前記第二制御弁を付勢する第二弾性部材と、を備える請求項1から8のいずれか一項記載のバルブタイミング調整装置。
  10. 前記第一制御弁は、前記パイロット圧力により前記第二進角通路を開放する位置へ移動するよう構成され、
    前記第二制御弁は、前記パイロット圧力により前記第二遅角通路を開放する位置へ移動するよう構成され、
    前記第二進角通路を遮断する位置へ向けて前記第一制御弁を付勢する第一弾性部材と、
    前記第二遅角通路を遮断する位置へ向けて前記第二制御弁を付勢する第二弾性部材と、を備える請求項1から8のいずれか一項記載のバルブタイミング調整装置。
JP2006344047A 2006-04-28 2006-12-21 バルブタイミング調整装置 Expired - Fee Related JP4624976B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006344047A JP4624976B2 (ja) 2006-04-28 2006-12-21 バルブタイミング調整装置
US11/783,002 US7931000B2 (en) 2006-04-28 2007-04-05 Valve timing controller
DE102007000249A DE102007000249A1 (de) 2006-04-28 2007-04-27 Ventilzeitsteuerung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006125048 2006-04-28
JP2006344047A JP4624976B2 (ja) 2006-04-28 2006-12-21 バルブタイミング調整装置

Publications (2)

Publication Number Publication Date
JP2007315373A JP2007315373A (ja) 2007-12-06
JP4624976B2 true JP4624976B2 (ja) 2011-02-02

Family

ID=38542498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344047A Expired - Fee Related JP4624976B2 (ja) 2006-04-28 2006-12-21 バルブタイミング調整装置

Country Status (3)

Country Link
US (1) US7931000B2 (ja)
JP (1) JP4624976B2 (ja)
DE (1) DE102007000249A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093587B2 (ja) * 2007-12-07 2012-12-12 アイシン精機株式会社 弁開閉時期制御装置
DE102008032949B4 (de) * 2008-07-12 2021-06-17 Schaeffler Technologies AG & Co. KG Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
JP5382428B2 (ja) * 2008-07-28 2014-01-08 アイシン精機株式会社 弁開閉時期制御装置
JP5029671B2 (ja) * 2009-10-15 2012-09-19 株式会社デンソー バルブタイミング調整装置
GB201002503D0 (en) * 2010-02-15 2010-03-31 Nat Oilwell Varco Uk Ltd Actuator valve and method
WO2012094324A1 (en) 2011-01-04 2012-07-12 Hilite Germany Gmbh Valve timing control apparatus and method
US8973542B2 (en) 2012-09-21 2015-03-10 Hilite Germany Gmbh Centering slot for internal combustion engine
US9366161B2 (en) 2013-02-14 2016-06-14 Hilite Germany Gmbh Hydraulic valve for an internal combustion engine
US9115610B2 (en) * 2013-03-11 2015-08-25 Husco Automotive Holdings Llc System for varying cylinder valve timing in an internal combustion engine
US9797276B2 (en) 2013-03-11 2017-10-24 Husco Automotive Holdings Llc System for varying cylinder valve timing in an internal combustion engine
DE102013207615B4 (de) * 2013-04-26 2021-05-12 Schaeffler Technologies AG & Co. KG Nockenwellenverstelleinrichtung mit einer Mittenverriegelung
US9784143B2 (en) 2014-07-10 2017-10-10 Hilite Germany Gmbh Mid lock directional supply and cam torsional recirculation
DE102014215419A1 (de) * 2014-08-05 2016-02-11 Schaeffler Technologies AG & Co. KG Nockenwellenversteller mit kammernkurzschließender druckgesteuerter Stelleinheit
KR101620273B1 (ko) 2015-07-24 2016-05-13 현대자동차주식회사 Cvvt의 중간위상 조정장치
SE541810C2 (en) * 2016-05-24 2019-12-17 Scania Cv Ab Variable cam timing phaser having two central control valves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213310A (ja) * 1999-01-27 2000-08-02 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
JP2001227310A (ja) * 1994-08-29 2001-08-24 Denso Corp 内燃機関用バルブタイミング調整装置
JP2005105936A (ja) * 2003-09-30 2005-04-21 Nippon Soken Inc バルブタイミング調整装置
JP2006046315A (ja) * 2004-06-28 2006-02-16 Denso Corp バルブタイミング調整装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6763791B2 (en) 2001-08-14 2004-07-20 Borgwarner Inc. Cam phaser for engines having two check valves in rotor between chambers and spool valve
JP4459892B2 (ja) 2005-11-15 2010-04-28 株式会社デンソー バルブタイミング調整装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227310A (ja) * 1994-08-29 2001-08-24 Denso Corp 内燃機関用バルブタイミング調整装置
JP2000213310A (ja) * 1999-01-27 2000-08-02 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
JP2005105936A (ja) * 2003-09-30 2005-04-21 Nippon Soken Inc バルブタイミング調整装置
JP2006046315A (ja) * 2004-06-28 2006-02-16 Denso Corp バルブタイミング調整装置

Also Published As

Publication number Publication date
US20100251980A1 (en) 2010-10-07
US7931000B2 (en) 2011-04-26
JP2007315373A (ja) 2007-12-06
DE102007000249A1 (de) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4624976B2 (ja) バルブタイミング調整装置
JP4160545B2 (ja) バルブタイミング調整装置
JP5270525B2 (ja) 制御弁装置
JP4459892B2 (ja) バルブタイミング調整装置
JP4544294B2 (ja) バルブタイミング調整装置
JP4518149B2 (ja) バルブタイミング調整装置
JP2008175128A (ja) バルブタイミング調整装置
JP4985822B2 (ja) バルブタイミング調整装置
JP5403341B2 (ja) 弁開閉時期制御装置
JP2010285918A (ja) バルブタイミング調整装置
JP2009138611A (ja) バルブタイミング調整装置
JP2011169215A (ja) 制御弁装置
JP2008069649A (ja) バルブタイミング調整装置
JP2009103107A (ja) バルブタイミング調整装置
JP2009074424A (ja) バルブタイミング調整装置
JP4175987B2 (ja) バルブタイミング調整装置
JP2008069651A (ja) バルブタイミング調整装置
JP2009185719A (ja) バルブタイミング調整装置
JP5304920B2 (ja) バルブタイミング調整装置
JP2015045242A (ja) 制御弁及び制御弁の取付構造
JP2006063835A (ja) バルブタイミング調整装置
JP2007138725A (ja) バルブタイミング調整装置
JP4463186B2 (ja) バルブタイミング調整装置
JP5333183B2 (ja) バルブタイミング調整システム
JP2007138722A (ja) バルブタイミング調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees