JP4593688B1 - Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator - Google Patents

Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator Download PDF

Info

Publication number
JP4593688B1
JP4593688B1 JP2010062538A JP2010062538A JP4593688B1 JP 4593688 B1 JP4593688 B1 JP 4593688B1 JP 2010062538 A JP2010062538 A JP 2010062538A JP 2010062538 A JP2010062538 A JP 2010062538A JP 4593688 B1 JP4593688 B1 JP 4593688B1
Authority
JP
Japan
Prior art keywords
layer
combustion air
waste
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010062538A
Other languages
Japanese (ja)
Other versions
JP2011196598A (en
Inventor
征三 勝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plantec Inc
Original Assignee
Plantec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plantec Inc filed Critical Plantec Inc
Priority to JP2010062538A priority Critical patent/JP4593688B1/en
Application granted granted Critical
Publication of JP4593688B1 publication Critical patent/JP4593688B1/en
Priority to EA201290922A priority patent/EA026470B1/en
Priority to SI201130690T priority patent/SI2549184T1/en
Priority to ES11755984.9T priority patent/ES2549436T3/en
Priority to PL11755984T priority patent/PL2549184T3/en
Priority to EP11755984.9A priority patent/EP2549184B1/en
Priority to US13/635,014 priority patent/US20130000531A1/en
Priority to PCT/JP2011/052375 priority patent/WO2011114794A1/en
Priority to HUE11755984A priority patent/HUE026063T2/en
Priority to DK11755984.9T priority patent/DK2549184T3/en
Priority to KR1020127027103A priority patent/KR101233919B1/en
Priority to CN2011800144214A priority patent/CN102803852A/en
Priority to TW100105407A priority patent/TWI468626B/en
Publication of JP2011196598A publication Critical patent/JP2011196598A/en
Priority to HRP20151175TT priority patent/HRP20151175T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/245Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber with perforated bottom or grate

Abstract

【課題】本発明は、竪型ごみ焼却炉の安定した燃焼状態を維持し、熱しゃく減量の低減も期待できる新規な竪型ごみ焼却炉における燃焼用空気の供給方法及び竪型ごみ焼却炉を提供することを目的とする
【解決手段】竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉において、焼却処理中、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御し、前記堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給する。
【選択図】図4
The present invention provides a novel vertical waste incinerator for supplying combustion air and a vertical waste incinerator capable of maintaining a stable combustion state of a vertical waste incinerator and expecting a reduction in heat loss. [Solution] The waste is sequentially put into a vertical furnace, and the waste is burned while supplying combustion air to the sedimentary layer formed by the waste thrown into the furnace. In a vertical waste incinerator that incinerates waste by sequentially discharging incinerated ash from the bottom of the furnace to the outside of the furnace, the amount of combustion air supplied during the incineration process is Is controlled to be 0.2 to 0.8 times the theoretical air amount required for complete combustion, and the oxygen in the combustion air decreases from the bottom to the top of the deposited layer. Supply air.
[Selection] Figure 4

Description

本発明は、竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉における燃焼用空気の供給方法及び竪型ごみ焼却炉に関する。   The present invention is directed to sequentially injecting waste into a vertical furnace, burning the waste while supplying combustion air to the deposition layer formed by the waste thrown into the furnace, and the incineration ash having completed combustion. TECHNICAL FIELD The present invention relates to a method for supplying combustion air in a vertical waste incinerator and a vertical waste incinerator in which waste is incinerated by sequentially discharging waste from the bottom of the furnace.

産業廃棄物や一般廃棄物等の廃棄物は、固体、液体或いは粘性体と、その性状が多種多様であり、易燃物、難燃物及び不燃物が混在していることからごみ質の変動が非常に大きい。特に、医療系の産業廃棄物には溶融しやすいガラス類や高発熱量のプラスチック性の使い捨て容器に加えて紙おむつ等の高含水性ごみが多量に含まれている。更に、注射針等の鋭利物や感染性廃棄物は所定の梱包状態のままで処理することが義務付けられていることから、攪拌等によってごみ質を均質化する前処理を行うことも困難となっている。   Waste, such as industrial waste and general waste, has a variety of solids, liquids, or viscous materials and their properties. Is very big. In particular, medical industrial waste contains a large amount of highly water-containing waste such as disposable diapers in addition to glass that is easily melted and plastic disposable containers with high heat generation. Furthermore, since sharps such as injection needles and infectious wastes are required to be treated in the specified packing state, it is difficult to perform pretreatment to homogenize the waste quality by stirring or the like. ing.

ごみ質の変動が大きい廃棄物を焼却処理すると、安定した燃焼状態を維持することが困難となる。又、高発熱量の易燃物の燃焼による局所的な温度上昇が発生し易いため、溶融した不燃物が炉壁に溶着してクリンカを形成する。成長して肥大化したクリンカは、焼却や焼却灰排出時の障害になるといった問題を生じる。   When waste with a large change in waste quality is incinerated, it becomes difficult to maintain a stable combustion state. In addition, since a local temperature rise is likely to occur due to the combustion of the high calorific value of the combustible material, the molten incombustible material is welded to the furnace wall to form a clinker. Grown and enlarged clinker causes problems such as incineration and incineration ash discharge.

これらごみ質の変動の大きい廃棄物の焼却処理には、ロータリーキルン式、傾斜回転炉床式、或いは攪拌手段付水平回転炉床式等のごみを転回あるいは攪拌しながら燃焼させる方式の炉が一般に多く使用されている。しかしながら、これらの方式においては、炉内における廃棄物の堆積厚が薄くなるため、紙やプラスチック等の易燃物だけ先燃えして難燃物が残るといったいわゆる燃えむらが生じ易い。そのため吹抜けによる耐火物の寿命低下防止と難燃物の燃焼時間確保のために炉床面積を拡張する必要があり、設置面積が増大するといった問題がある。   For incineration of wastes with large variations in waste quality, there are generally many furnaces that burn while rotating or stirring waste such as rotary kiln type, inclined rotary hearth type, or horizontal rotary hearth type with stirring means. in use. However, in these systems, since the accumulation thickness of the waste in the furnace becomes thin, so-called non-uniformity in which only a flammable material such as paper or plastic is preheated and a flame retardant remains is likely to occur. Therefore, it is necessary to expand the hearth area in order to prevent the life of the refractory from being lowered due to the blow-through and to ensure the combustion time of the flame retardant, and there is a problem that the installation area increases.

ところで、最近、竪型の炉内下部に廃棄物を厚く堆積し、堆積した廃棄物を燃焼し、燃焼によって発生したガスを炉内上部で燃焼することにより焼却処理する竪型ごみ焼却炉が開発されている(例えば、下記特許文献1及び2参照)。   Recently, a vertical waste incinerator has been developed that deposits thick waste in the lower part of a vertical furnace, burns the accumulated waste, and burns the gas generated by the combustion in the upper part of the furnace. (For example, see Patent Documents 1 and 2 below).

即ち、前記特許文献1及び2に示す従来の竪型ごみ焼却炉は、炉本体を竪型にすることにより設置面積を小さくし、竪型の炉内下部に廃棄物を厚く堆積することにより廃棄物の堆積厚を確保し、焼却処理中、堆積した廃棄物を上から「調質層」、「燃焼層」及び「灰層」となるように燃焼状態を制御しながら燃焼させ、燃焼によって発生したガス状の可燃性物質を炉内上部で再燃焼させる焼却方式を採用したものである。   That is, the conventional vertical waste incinerators shown in Patent Documents 1 and 2 reduce the installation area by making the furnace main body into a vertical shape, and discard the waste by depositing thick waste in the lower portion of the vertical furnace. The deposit thickness is secured, and during incineration, the accumulated waste is burned while controlling the combustion state so that it becomes a tempered layer, a combustion layer, and an ash layer from the top, and is generated by combustion This is an incineration method in which the burned gaseous combustible material is reburned in the upper part of the furnace.

ここで、前記「調質層」は、主として投入された廃棄物を乾燥してごみ質を均一化する層であり、前記「燃焼層」は、十分な燃焼時間を確保して廃棄物を燃焼する層であり、前記「灰層」は、残留する未燃物を燃焼すると共に燃焼が完結した焼却灰が堆積する層である。   Here, the “tempered layer” is a layer that mainly dries the input waste to make the waste quality uniform, and the “combustion layer” ensures sufficient combustion time to burn the waste. The “ash layer” is a layer that burns the remaining unburned material and deposits incinerated ash that has been completely combusted.

特開平4‐158110号公報Japanese Patent Laid-Open No. 4-158110 実公平5‐31383号公報Japanese Utility Model Publication No. 5-31383

しかしながら、特許文献1及び2に示す従来の竪型ごみ焼却炉においては、廃棄物の投入時、投入された廃棄物中に含まれる易燃物の多くが調質層において一気に燃焼して、炉内温度が瞬間的に上昇し、燃焼状態が不安定となる場合があった。   However, in the conventional vertical waste incinerators shown in Patent Documents 1 and 2, when the waste is charged, most of the combustibles contained in the charged waste are burned at once in the tempered layer, In some cases, the internal temperature rose instantaneously and the combustion state became unstable.

又、調質層において多くの易燃物が燃焼すると、燃焼層に移行する廃棄物中における高発熱量の易燃物の含有量が少なくなると共に、難燃物の割合が相対的に増えることになる。このことは、燃焼層における燃焼カロリーを低下させ、焼却灰の熱しゃく減量増加の原因となる。   In addition, when many flammables burn in the tempered layer, the content of high-calorific flammables in the waste transferred to the combustion layer decreases and the proportion of flame retardants increases relatively. become. This reduces the calorie burn in the combustion layer and causes an increase in the heat loss of the incinerated ash.

本発明は前記技術的課題を解決するために開発されたものであり、竪型ごみ焼却炉の安定した燃焼状態を維持し、熱しゃく減量の低減も期待できる新規な竪型ごみ焼却炉における燃焼用空気の供給方法及び竪型ごみ焼却炉を提供することを目的とする。   The present invention has been developed to solve the above technical problem, and maintains a stable combustion state in a vertical waste incinerator and can be expected to reduce heat loss. The purpose is to provide a method for supplying industrial air and a vertical waste incinerator.

本発明の竪型ごみ焼却炉における燃焼用空気の供給方法(以下、「本発明方法」と称する。)は、竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉における燃焼用空気の供給方法である。   The method for supplying combustion air in the vertical waste incinerator of the present invention (hereinafter referred to as “method of the present invention”) is a method of sequentially putting waste into a vertical furnace and putting the waste into the furnace. Combustion in a vertical waste incinerator that incinerates waste by burning the waste while supplying combustion air to the sedimentary layer formed and sequentially discharging incinerated ash from the bottom of the furnace to the outside of the furnace This is a method for supplying working air.

即ち、本発明方法は、炉内下部に廃棄物を堆積し、堆積された廃棄物が形成する堆積層に対して燃焼用空気を供給しながら焼却処理するといった技術的思想に基づく焼却炉を対象とするものであり、この技術的思想に基づく焼却炉であればその他の付加的構造について特に限定されるものではない。   That is, the method of the present invention is intended for an incinerator based on the technical idea of depositing waste in the lower part of the furnace and incinerating while supplying combustion air to the deposited layer formed by the accumulated waste. The additional structure is not particularly limited as long as it is an incinerator based on this technical idea.

そして、本発明方法においては、焼却処理中、前記堆積層の堆積厚が厚くなった場合に燃焼用空気の供給量を多くし、一方、前記堆積層の堆積厚が薄くなった場合に燃焼用空気の供給量を少なくして、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御しながら、前記堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給することによって、焼却処理中の堆積層において有酸素燃焼する燃焼層の上に、酸素が殆ど供給されない実質的に無酸素状態の高温下で廃棄物の乾燥及び熱分解が促進される炭化層を形成する点に最も大きな特徴を有する。 In the method of the present invention, during the incineration process, when the deposition thickness of the deposition layer becomes thicker, the supply amount of combustion air is increased, while when the deposition thickness of the deposition layer becomes thinner, by reducing the amount of air supply, the supply amount of combustion air, while controlling so that 0.2 to 0.8 times the theoretical amount of air required to complete combustion of waste deposited layer by supplying combustion air so that the oxygen of the combustion air from the lower portion of the deposition layer towards the top is reduced, over the combustion layer of aerobic combustion in the deposition layer during incineration, oxygen It has the greatest feature in that it forms a carbonized layer that promotes the drying and pyrolysis of waste at a substantially oxygen-free high temperature that is hardly supplied .

ここで、「理論空気量」とは、燃焼対象物を完全に燃焼させるために必要な空気量を意味する。   Here, the “theoretical air amount” means an air amount necessary for completely burning the combustion object.

通常の焼却炉においては、単位時間当たりに炉内に投入される廃棄物の量や発熱量等に応じて燃焼用空気の供給量が決定されるが、投入された廃棄物を完全燃焼させるために、理論空気量に対して幾分の余裕を見て空気を供給する。但し、必要以上に過剰な空気を供給すると炉内温度を低下させる場合があることから、通常の焼却炉においては、理論空気量の1.1〜1.4倍程度とすることが一般的である。   In a normal incinerator, the supply amount of combustion air is determined according to the amount of waste input into the furnace per unit time, the calorific value, etc., but in order to completely burn the input waste In addition, air is supplied with some allowance for the theoretical air volume. However, if excessive air is supplied more than necessary, the in-furnace temperature may be lowered. Therefore, in a normal incinerator, the amount of air is generally about 1.1 to 1.4 times the theoretical air amount. is there.

又、従来の竪型ごみ焼却炉においては、炉内下部に堆積された廃棄物を燃焼させ、燃焼によって発生したガス状の可燃性物質を炉内上部で再燃焼する構成のものが多く、堆積された廃棄物が形成する堆積層に対して供給する燃焼用空気の量は、理論空気量の0.8〜1.3倍程度とすることが一般的であった。   In addition, many conventional vertical waste incinerators combust waste that has accumulated in the lower part of the furnace, and recombust the gaseous combustible material generated by the combustion in the upper part of the furnace. Generally, the amount of combustion air supplied to the deposited layer formed by the generated waste is about 0.8 to 1.3 times the theoretical air amount.

しかしながら、易燃物及び難燃物が混在する廃棄物を竪型ごみ焼却炉で焼却処理するにあたり、堆積層に対して理論空気量の0.8〜1.3倍程度の燃焼用空気を供給すると、堆積層上部において酸素が十分に残存していることから、特に廃棄物の投入時において投入された廃棄物中の易燃物が瞬間的に一気に燃焼し、燃焼状態が不安定になる場合があった。   However, when incinerating waste that contains flammables and incombustibles in a vertical waste incinerator, supply combustion air of 0.8 to 1.3 times the theoretical air volume to the sedimentary layer. Then, since oxygen remains sufficiently in the upper part of the deposition layer, especially when the waste is charged, the flammable material in the waste that is thrown in is instantaneously burned and the combustion state becomes unstable was there.

そこで、この種竪型ごみ焼却炉の安定した燃焼状態を維持すべく、本発明者が鋭意検討を重ねた結果、焼却処理中、前記堆積層の堆積厚が厚くなった場合に燃焼用空気の供給量を多くし、一方、前記堆積層の堆積厚が薄くなった場合に燃焼用空気の供給量を少なくして、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御しながら、前記堆積層の下部から上部に向かって酸素が減少するように燃焼用空気を供給すれば、焼却処理中の堆積層の内、炉内底部に存する焼却灰(灰層)中の未燃物と該焼却灰上に存する燃焼中の層(燃焼層)とが有酸素燃焼することにより堆積層中の酸素が消尽され、燃焼層の上に酸素が殆ど供給されない実質的に無酸素状態の高温下で廃棄物の乾燥及び熱分解(還元)が促進される炭化層(還元層)が形成されるとの知見を得た。 Therefore, as a result of extensive studies by the inventor in order to maintain a stable combustion state of this soot type waste incinerator , the combustion air is not removed when the deposition layer becomes thicker during the incineration process . To increase the supply amount, while reducing the supply amount of combustion air when the deposition thickness of the deposition layer becomes thin, the supply amount of combustion air causes the waste in the deposition layer to completely burn If the combustion air is supplied so that the oxygen decreases from the lower part to the upper part of the deposited layer while controlling the amount of the theoretical air necessary to 0.2 to 0.8 times the incineration process, Of the incinerated ash (ash layer) existing at the bottom of the furnace and the burning layer (combustion layer) existing on the incinerated ash aerobically burns the oxygen in the deposited layer. Waste at high temperatures in a virtually oxygen-free state where no oxygen is supplied above the combustion layer Char layer drying and pyrolysis (reduction) is promoted to give a finding that (reduction layer) is formed.

そして、堆積層における燃焼層上に実質的に無酸素状態の炭化層が形成されると、炭化層より上の層(調質層)中の易燃物が一気に燃焼することによる瞬間的な温度上昇が抑制されて、燃焼状態が非常に安定するとの知見を得た。   When a substantially oxygen-free carbonized layer is formed on the combustion layer in the deposited layer, the instantaneous temperature due to the flammable material in the layer above the carbonized layer (tempered layer) burning at once It was found that the rise was suppressed and the combustion state was very stable.

又、調質層において、高発熱量を有する易燃物が一気に燃焼せずに、廃棄物に多く含有されたままで、調質層から炭化層、炭化層から燃焼層へと移行することから、燃焼層における燃焼カロリーを維持できるとの知見も得た。   Moreover, in the tempered layer, the flammable material having a high calorific value does not burn at a stretch, but remains in a large amount in the waste, and the tempered layer shifts from the carbonized layer to the combustion layer, The knowledge that the combustion calories in the combustion layer can be maintained was also obtained.

更に、前記炭化層は、燃焼層から発生する熱を受けるため高温状態となる。そのため当該炭化層において、廃棄物は、比較的長時間にわたって酸素が不足した状態で高温に晒されて抑制燃焼し、該廃棄物中の難燃物は十分に熱分解される。その結果、廃棄物の均質な焼却処理が促進され、燃焼層における燃焼カロリーの維持と相まって、最終的に排出される焼却灰中の未燃物の残存が極めて小さくなり、熱しゃく減量が非常に低くなるとの知見も得た。   Furthermore, the carbonized layer is in a high temperature state because it receives heat generated from the combustion layer. For this reason, in the carbonized layer, the waste is exposed to a high temperature in a state where oxygen is insufficient for a relatively long period of time, and is suppressed and combusted, and the flame retardant in the waste is sufficiently thermally decomposed. As a result, homogeneous incineration treatment of waste is promoted, and in combination with maintaining the calorie burn in the combustion layer, the remaining unburned matter in the finally discharged incineration ash becomes extremely small, and the heat loss is greatly reduced. The knowledge that it becomes low was also obtained.

なお、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2倍未満になると、燃焼用空気が少なすぎて堆積層における燃焼層の形成が不十分となる。一方、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.8倍を越えると、燃焼用空気が多すぎて堆積層における炭化層の形成が不十分となる。従って、本発明方法においては、燃焼用空気の供給量を、更に、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.3〜0.7倍の範囲にすることが好ましく、0.4〜0.6倍の範囲にすることがより好ましい。   Note that if the supply amount of combustion air is less than 0.2 times the theoretical air amount necessary for complete combustion of the waste in the sedimentary layer, the combustion air is too small to form the combustion layer in the sedimentary layer. Is insufficient. On the other hand, if the supply amount of combustion air exceeds 0.8 times the theoretical air amount necessary for complete combustion of the waste in the sedimentary layer, there is too much combustion air to form a carbonized layer in the sedimentary layer. Is insufficient. Therefore, in the method of the present invention, the supply amount of the combustion air is further set within a range of 0.3 to 0.7 times the theoretical air amount necessary for completely burning the waste in the sedimentary layer. Preferably, the range is 0.4 to 0.6 times.

ところで、従来の竪型ごみ焼却炉においては、燃焼用空気を堆積層に供給するにあたり、炉壁の上下方向にわたって複数の空気送入用のノズルを配置し、段階的に燃焼用空気を供給していた。   By the way, in the conventional vertical waste incinerator, when supplying the combustion air to the deposition layer, a plurality of nozzles for feeding air are arranged in the vertical direction of the furnace wall, and the combustion air is supplied stepwise. It was.

しかしながら、本発明方法においては、炉内に投入された廃棄物が形成する堆積層の下部から上部に向かって徐々に酸素濃度を減少させ、堆積層における燃焼層の上に実質的に無酸素状態の炭化層を積極的に形成する必要があることから、堆積層の中ほどから上部にあたる位置において燃焼用空気を多く供給することは好ましくない。   However, in the method of the present invention, the oxygen concentration is gradually decreased from the lower part to the upper part of the deposited layer formed by the waste thrown into the furnace, so that the oxygen layer is substantially oxygen-free above the combustion layer in the deposited layer. Therefore, it is not preferable to supply a large amount of combustion air at a position from the middle to the upper part of the deposited layer.

即ち、焼却処理中、単に堆積層に対して供給する燃焼用空気を、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍としただけでは、堆積層における燃焼層の上に安定した炭化層を形成することは非常に困難である。   That is, during the incineration process, if the combustion air supplied to the deposition layer is simply 0.2 to 0.8 times the theoretical air amount required to completely burn the waste in the deposition layer, It is very difficult to form a stable carbonized layer on the combustion layer in the deposited layer.

この点につき、本発明方法においては、焼却処理中、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御した上で、前記堆積層の下部から上部に向かって酸素が減少するように燃焼用空気を供給しているから、堆積層における燃焼層の上に実質的に無酸素状態の炭化層を安定して形成することができるのである。   In this regard, in the method of the present invention, during the incineration process, the supply amount of combustion air is 0.2 to 0.8 times the theoretical air amount necessary for completely burning the waste in the sedimentary layer. Since the combustion air is supplied so that oxygen decreases from the lower part to the upper part of the deposited layer, the carbonized layer in a substantially oxygen-free state on the combustion layer in the deposited layer. Can be formed stably.

堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給するにあたっては、堆積層に対して供給される燃焼用空気の総量について、その多くの割合を堆積層の下部(好ましくは底部)から供給する必要がある。より具体的には、堆積層に対して供給される燃焼用空気の全体量の60%以上を堆積層の下部から供給することが好ましく、又、70%以上とすることがより好ましく、更に、90%以上とすることが一層好ましい。   When supplying combustion air so that oxygen in the combustion air decreases from the bottom to the top of the deposition layer, a large proportion of the total amount of combustion air supplied to the deposition layer is deposited. It is necessary to feed from the bottom (preferably the bottom) of the layer. More specifically, 60% or more of the total amount of combustion air supplied to the deposition layer is preferably supplied from the lower part of the deposition layer, more preferably 70% or more, More preferably, it is 90% or more.

即ち、本発明方法においては、堆積層に対して供給される燃焼用空気の殆どを堆積層の下部から供給することが好ましいのであり、従って、本発明方法においては、堆積層の下部のみから燃焼用空気を供給することが好ましい。   That is, in the method of the present invention, it is preferable to supply most of the combustion air supplied to the deposition layer from the lower part of the deposition layer. Therefore, in the method of the present invention, combustion is performed only from the lower part of the deposition layer. It is preferable to supply working air.

続いて本発明の竪型ごみ焼却炉(以下、「本発明焼却炉」と称する。)について説明する。但し、前記本発明方法において既述した点については本発明焼却炉においても同様であり、繰り返しを避けるためここでは説明を省略する。   Next, the vertical waste incinerator of the present invention (hereinafter referred to as “the present incinerator”) will be described. However, the points already described in the method of the present invention are the same in the incinerator of the present invention, and the description thereof is omitted here to avoid repetition.

本発明焼却炉は、竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部に配された焼却灰排出板から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉であって、この竪型ごみ焼却炉は、前記焼却灰排出板に設けられた複数の空気口と、前記複数の空気口を通して堆積層の底部に向かって燃焼用空気を供給するための、前記焼却灰排出板の下部に燃焼用空気を輸送する燃焼用空気供給管と、前記燃焼用空気供給管に備えられた流量計と、前記燃焼用空気供給管に備えられた燃焼用空気の供給量を変更する開閉弁とを具備するものであり、焼却処理中の堆積層において有酸素燃焼する燃焼層の上に、酸素が殆ど供給されない実質的に無酸素状態の高温下で廃棄物の乾燥及び熱分解が促進される炭化層を形成すべく、焼却処理中、堆積層の堆積厚が厚くなって燃焼用空気の輸送負荷が大きくなり、その流量が減少した場合に、前記開閉弁を開いて燃焼用空気の供給量を多くし、一方、廃棄物の堆積厚が薄くなって燃焼用空気の輸送負荷が小さくなり、その流量が増加した場合に、前記開閉弁を絞って燃焼用空気の供給量を少なくし、前記堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給することによって、燃焼用空気の供給量が堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御する制御機構が備えられてなることを特徴とする。 In the incinerator of the present invention, waste is sequentially put into a vertical furnace, and the waste is burned while supplying combustion air to the deposition layer formed by the waste thrown into the furnace, and the combustion is completed. A vertical waste incinerator that incinerates waste by sequentially discharging incineration ash from the incineration ash discharge plate arranged at the bottom of the furnace to the outside of the furnace, and the vertical waste incinerator includes the incineration ash discharge plate A plurality of air ports provided in the combustion chamber, and a combustion air supply for transporting the combustion air to a lower portion of the incineration ash discharge plate for supplying combustion air toward the bottom of the deposition layer through the plurality of air ports A pipe, a flow meter provided in the combustion air supply pipe, and an on-off valve for changing a supply amount of combustion air provided in the combustion air supply pipe. Almost no oxygen is supplied on the combustion layer where aerobic combustion occurs in the deposition layer. During the incineration process, the deposition layer becomes thicker and the combustion air transportation load increases to form a carbonized layer that promotes the drying and thermal decomposition of the waste at a substantially oxygen-free high temperature. When the flow rate decreases, the on-off valve is opened to increase the supply amount of combustion air. On the other hand, the waste accumulation thickness is reduced and the transportation load of combustion air is reduced, and the flow rate is increased. In this case, by reducing the supply amount of the combustion air by narrowing the on-off valve, and supplying the combustion air so that the oxygen in the combustion air decreases from the lower part to the upper part of the deposited layer, It is characterized by comprising a control mechanism for controlling the supply amount of combustion air to be 0.2 to 0.8 times the theoretical air amount necessary for completely burning the waste in the sedimentary layer. To do.

なお、焼却灰排出板に設ける空気口は、1箇所だけでなく複数箇所に分散して配置しても良い。   In addition, the air port provided in the incineration ash discharge plate may be distributed not only at one place but also at a plurality of places.

前記構成を有する本発明方法及び本発明焼却炉は、竪型ごみ焼却炉の安定した燃焼状態を維持し、更に熱しゃく減量の低減も期待することができる。   The method of the present invention and the incinerator of the present invention having the above-described configuration can maintain the stable combustion state of the vertical waste incinerator and can also be expected to reduce the heat loss.

即ち、本発明方法及び本発明焼却炉においては、焼却処理中、燃焼用空気の供給量を、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御した上で、前記堆積層の下部から上部に向かって酸素が減少するように燃焼用空気を供給しているから、焼却処理中の堆積層において実質的に無酸素状態の炭化層が形成されて、炭化層の上に存する調質層中の易燃物が一気に燃焼することによる瞬間的な温度上昇が抑制されるため、燃焼状態が非常に安定する。   That is, in the method of the present invention and the incinerator of the present invention, during the incineration process, the supply amount of combustion air is set to 0.2 to 0.8 of the theoretical air amount necessary for completely burning the waste in the deposited layer. Since the combustion air is supplied so that oxygen decreases from the lower part to the upper part of the deposited layer after controlling to be doubled, the deposited layer in the incineration process is substantially in an oxygen-free state. Since the carbonized layer is formed and the instantaneous temperature rise due to the flammable material in the tempered layer existing on the carbonized layer burning at once is suppressed, the combustion state is very stable.

又、高発熱量を有する易燃物が、調質層において一気に燃焼せずに、廃棄物に多く含有されたままで、調質層から炭化層、炭化層から燃焼層へと移行することから、燃焼層における燃焼カロリーを維持することができる。   In addition, since the flammable material having a high calorific value does not burn at once in the tempered layer, it remains contained in a large amount of waste, and shifts from the tempered layer to the carbonized layer, from the carbonized layer to the combustion layer, Burning calories in the combustion layer can be maintained.

更に、前記炭化層は、燃焼層から発生する熱を受けるため高温状態となる。そのため当該炭化層において、廃棄物は、高発熱量の易燃物を含有したまま、比較的長時間にわたって酸素が不足した状態で高温に晒されて抑制燃焼し、該廃棄物中の難燃物は十分に熱分解される。その結果、廃棄物の均質な焼却処理が促進され、燃焼層における燃焼カロリーの維持と相まって、最終的に排出される焼却灰中の未燃物の残存が極めて小さくなり、熱しゃく減量が非常に低くなる。   Furthermore, since the carbonized layer receives heat generated from the combustion layer, the carbonized layer is in a high temperature state. Therefore, in the carbonized layer, the waste contains a high calorific value of flammable material, and is subjected to suppressed combustion by being exposed to high temperature in a state where oxygen is insufficient for a relatively long time. Is fully pyrolyzed. As a result, homogeneous incineration treatment of waste is promoted, and in combination with maintaining the calorie burn in the combustion layer, the remaining unburned matter in the finally discharged incineration ash becomes extremely small, and the heat loss is greatly reduced. Lower.

図1は、本発明に係る竪型ごみ焼却炉の概略構造を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a schematic structure of a vertical waste incinerator according to the present invention. 図2は、本発明に係る竪型ごみ焼却炉における焼却灰排出板を示す平面図である。FIG. 2 is a plan view showing an incineration ash discharge plate in the vertical waste incinerator according to the present invention. 図3(a)〜(f)は、燃焼用空気の供給量を理論空気量の0.8〜1.3倍にした場合の竪型ごみ焼却炉における堆積層の燃焼状態を説明する説明図である。FIGS. 3A to 3F are explanatory diagrams for explaining the combustion state of the deposited layer in the vertical waste incinerator when the supply amount of combustion air is 0.8 to 1.3 times the theoretical air amount. It is. 図4(a)〜(f)は、燃焼用空気の供給量を理論空気量の0.2〜0.8倍にした場合の竪型ごみ焼却炉における堆積層の燃焼状態を説明する説明図である。4 (a) to 4 (f) are explanatory diagrams for explaining the combustion state of the sedimentary layer in the vertical waste incinerator when the supply amount of combustion air is 0.2 to 0.8 times the theoretical air amount. It is.

以下、本発明を実施するための形態を図面を参照して説明するが、本発明はこの実施の形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments.

図1は、竪型ごみ焼却炉の概略構造を示す断面模式図である。図1において、竪型ごみ焼却炉1は、円筒部21とその下部に連接する漏斗部22とからなる焼却炉本体2、焼却炉本体2の底部に配設された焼却灰排出機構3、及び焼却炉本体2の上部に排ガス混合手段4を介して戴置された再燃焼室5を主体に構築されている。   FIG. 1 is a schematic cross-sectional view showing a schematic structure of a vertical waste incinerator. In FIG. 1, the vertical waste incinerator 1 includes an incinerator body 2 including a cylindrical portion 21 and a funnel portion 22 connected to the lower portion thereof, an incineration ash discharge mechanism 3 disposed at the bottom of the incinerator body 2, and It is constructed mainly of a recombustion chamber 5 placed on the upper part of the incinerator body 2 via an exhaust gas mixing means 4.

上記焼却炉本体2は、その外殻をなす鋼製のケーシング(図示せず)と内側の上部耐火物23(円筒部21に配置)及び下部耐火物24(漏斗部22に配置)から構成される。焼却炉本体2の側面には、廃棄物Rを炉内に投入するための投入口6が、二重ダンパ等のシール機構を備えて設けられている。又、焼却炉本体2の側面には、堆積層を燃焼させることによって発生するガス状の可燃性物質eを再燃焼するための複数の二次燃焼用空気口25が配置されている。この二次燃焼用空気口25から円筒部21内に向かって、押込送風機26を介して常温の二次燃焼用空気bが供給される。   The incinerator body 2 is composed of a steel casing (not shown) that forms an outer shell, an upper refractory 23 (arranged in the cylindrical portion 21) and a lower refractory 24 (arranged in the funnel portion 22). The On the side surface of the incinerator main body 2, a charging port 6 for charging the waste R into the furnace is provided with a sealing mechanism such as a double damper. A plurality of secondary combustion air ports 25 are disposed on the side surface of the incinerator body 2 for recombusting the gaseous combustible substance e generated by burning the deposited layer. The secondary combustion air b at normal temperature is supplied from the secondary combustion air port 25 toward the inside of the cylindrical portion 21 via the forced blower 26.

投入された廃棄物Rを積層する漏斗部22は、漏斗状に絞られて形成されている。漏斗部22に配置された下部耐火物24には、内部を通過する冷却水によって、下部耐火物24を冷却する水冷ジャケット8が外周全面にわたって設けられている。炉内に投入された廃棄物Rは、この漏斗部22内において堆積層を形成する。   The funnel portion 22 for laminating the thrown-in waste R is formed in a funnel shape. The lower refractory 24 arranged in the funnel portion 22 is provided with a water cooling jacket 8 that cools the lower refractory 24 by cooling water passing through the inside. The waste R thrown into the furnace forms a deposited layer in the funnel portion 22.

焼却灰排出機構3は、漏斗部22下部に設けられており、上側に配置された対向する一対の出没自在なごみ支持手段31、下側に設けられた開閉自在の焼却灰排出板32、灰搬出装置33、及び図示しないこれらの駆動機構から構成されている。   The incineration ash discharge mechanism 3 is provided at the lower portion of the funnel portion 22, a pair of opposed in / out trash support means 31 disposed on the upper side, an openable / closable incineration ash discharge plate 32 provided on the lower side, ash discharge It is comprised from the apparatus 33 and these drive mechanisms which are not shown in figure.

ごみ支持手段31は、通常時は焼却炉本体2内から没した状態に位置する。このごみ支持手段31は、焼却灰排出板32を開放して焼却完結後の焼却灰Aを排出する時のみ、焼却炉本体2内に突出させて(図中一点鎖線で示す。)、ごみ支持手段31より上方にある堆積層の荷重を支持する。ごみ支持手段31より下方の焼却灰Aは、焼却灰排出板32を回動することにより(図中一点鎖線で示す。)、焼却灰排出機構3の下方に配置された灰搬出装置33に排出される。   The dust support means 31 is normally located in a state of being submerged from the incinerator body 2. The dust support means 31 protrudes into the incinerator main body 2 only when the incineration ash discharge plate 32 is opened and the incineration ash A after completion of the incineration is discharged (indicated by a one-dot chain line in the figure). It supports the load of the deposited layer above the means 31. The incineration ash A below the dust support means 31 is discharged to an ash carry-out device 33 arranged below the incineration ash discharge mechanism 3 by rotating the incineration ash discharge plate 32 (indicated by a one-dot chain line in the figure). Is done.

図2に示すように、焼却灰排出板32には、複数の空気口28(28a、28b)が放射状に穿孔されている。本実施の形態においては、焼却灰排出板32に空気口28を放射状に穿孔するにあたり、その中心付近に口径35〜45mm程度の空気口28aを複数配し、その周囲に口径25〜35mm程度の空気口27aを複数配している。即ち、前記焼却灰排出板32の中心付近に比較的大きな口径の空気口28aを複数配することにより、多くの燃焼用空気aが堆積層の底部中心付近に向かって供給されるようにしている。   As shown in FIG. 2, a plurality of air ports 28 (28 a, 28 b) are radially perforated in the incineration ash discharge plate 32. In the present embodiment, when the air port 28 is pierced radially in the incineration ash discharge plate 32, a plurality of air ports 28a having a diameter of about 35 to 45 mm are arranged near the center thereof, and a diameter of about 25 to 35 mm is provided around the air port 28a. A plurality of air ports 27a are arranged. That is, by disposing a plurality of air ports 28a having a relatively large diameter near the center of the incinerated ash discharge plate 32, a large amount of combustion air a is supplied toward the vicinity of the bottom center of the deposited layer. .

燃焼用空気供給管7から輸送された燃焼用空気aは、前記空気口28を通って堆積層に供給される。この燃焼用空気aは、再燃焼室5内に設けた高温用空気予熱器52で昇温されたものが、押込送風機27を介して供給される。燃焼用空気供給管7には、管路に燃焼用空気aの流量を監視する流量計Fと、燃焼用空気aの供給量を変更する開閉弁(ダンパ)Dが備えられている。本実施の形態における燃焼用空気aの供給量の制御は、堆積層の堆積厚が厚くなって燃焼用空気aの輸送負荷が大きくなり、その流量が減少した場合に、前記開閉弁Dを開いて燃焼用空気aの供給量が多くし、一方、廃棄物Rの堆積厚が薄くなって燃焼用空気aの輸送負荷が小さくなり、その流量が増加した場合に、前記開閉弁Dを絞って燃焼用空気aの供給量を少なくすることによってなされる。   The combustion air a transported from the combustion air supply pipe 7 is supplied to the deposited layer through the air port 28. The combustion air “a” heated by the high-temperature air preheater 52 provided in the recombustion chamber 5 is supplied via the forced air blower 27. The combustion air supply pipe 7 is provided with a flow meter F that monitors the flow rate of the combustion air a and an on-off valve (damper) D that changes the supply amount of the combustion air a. In the present embodiment, the supply amount of the combustion air a is controlled by opening the on-off valve D when the deposition thickness of the deposition layer increases and the transportation load of the combustion air a increases and the flow rate decreases. When the supply amount of the combustion air a is increased, while the deposition thickness of the waste R is reduced, the transportation load of the combustion air a is reduced, and the flow rate is increased, the on-off valve D is throttled. This is done by reducing the supply amount of the combustion air a.

堆積層の燃焼によって発生した高温のガス状の可燃性物質eは、二次燃焼用バーナ50による加熱及び二次燃焼用空気口25から供給される常温の二次燃焼用空気bによって燃焼ガスwとなったのち、排ガス混合手段4を通過して再燃焼室5に入り、再燃焼用バーナ51の加熱により未反応ガスや浮遊炭素粒子の完全焼却とダイオキシン類等の有機化合物の熱分解及び燃焼がなされた再燃ガスrとなって、炉外の処理設備に送られる。   The high-temperature gaseous combustible substance e generated by the combustion of the deposited layer is heated by the secondary combustion burner 50 and the combustion gas w is generated by the secondary combustion air b at normal temperature supplied from the secondary combustion air port 25. After that, it passes through the exhaust gas mixing means 4 and enters the recombustion chamber 5, where the reburn burner 51 is heated to completely incinerate unreacted gas and suspended carbon particles and to thermally decompose and burn organic compounds such as dioxins. The reburned gas r has been sent to a processing facility outside the furnace.

次に、このように構成された竪型ごみ焼却炉1における炉内下部に堆積された堆積層の燃焼状態を説明する。   Next, the combustion state of the deposited layer deposited in the lower part of the vertical waste incinerator 1 configured as described above will be described.

<燃焼用空気aの供給量を理論空気量の0.8〜1.3倍にした場合の燃焼状態>
始業時において、投入口6から焼却炉本体2内に投入された廃棄物Rは、漏斗部22の底部に残存する灰層z上に堆積されて調質層uとなり、初期の堆積層を形成する(図3(a)参照)。初期の堆積層において、調質層u中の廃棄物Rは、灰層zを通過して上昇する高温の燃焼用空気aと接触することにより乾燥し、酸素を消費しながら易燃物から燃焼を始め、難燃物と共に火種を保有しながら燃焼層yを形成する(図3(b)参照)。
<Combustion state when the supply amount of combustion air a is 0.8 to 1.3 times the theoretical air amount>
At the start of work, the waste R thrown into the incinerator body 2 from the inlet 6 is deposited on the ash layer z remaining at the bottom of the funnel portion 22 to become a tempered layer u, forming an initial deposited layer. (See FIG. 3A). In the initial sedimentary layer, the waste R in the tempered layer u is dried by contact with the high-temperature combustion air a that passes through the ash layer z and burns from combustible materials while consuming oxygen. In addition, the combustion layer y is formed while holding the fire type together with the flame retardant (see FIG. 3B).

ここで、燃焼用空気aの供給量を理論空気量の0.8〜1.3倍にした場合、堆積層の上部まで酸素が十分に供給されることから、燃焼層yは酸素を消費しながら徐々に調質層u上部にまで拡がっていく。又、燃焼層yにおいて燃焼が完結した焼却灰Aは、灰層zに堆積していく(図3(c)参照。図右に併記したグラフは、燃焼によって、堆積層の下部から上部に向かって酸素が消費されていく状態(残O2量)を示す。)。 Here, when the supply amount of the combustion air a is 0.8 to 1.3 times the theoretical air amount, oxygen is sufficiently supplied to the upper part of the deposition layer, so the combustion layer y consumes oxygen. However, it gradually expands to the upper part of the tempered layer u. The incinerated ash A that has been completely combusted in the combustion layer y is deposited on the ash layer z (see FIG. 3C). The graph shown on the right side of the figure is directed from the lower part to the upper part of the deposited layer by combustion. In this state, oxygen is consumed (remaining amount of O 2 ).

灰層zに一定量以上焼却灰Aが堆積すると、ごみ支持手段31及び焼却灰排出板32を順次作動させ、ごみ支持手段31よりも下方の焼却灰Aを灰搬出装置33に落下させる(図3(d)参照)。   When a certain amount or more of incineration ash A accumulates on the ash layer z, the dust support means 31 and the incineration ash discharge plate 32 are sequentially operated, and the incineration ash A below the dust support means 31 is dropped onto the ash carry-out device 33 (see FIG. 3 (d)).

焼却灰Aの排出後、焼却灰排出板32は元の位置に復帰し、ごみ支持手段31は焼却炉本体2外へと没する。これより、ごみ支持手段31の上部にある残余の灰層z、燃焼層y及び調質層uは、焼却灰排出板32上に順次落下する(図3(e)参照)。   After the incineration ash A is discharged, the incineration ash discharge plate 32 returns to its original position, and the dust support means 31 is submerged outside the incinerator body 2. As a result, the remaining ash layer z, combustion layer y, and tempered layer u at the upper part of the dust support means 31 sequentially fall on the incineration ash discharge plate 32 (see FIG. 3 (e)).

この落下時のショックにより、灰層z、燃焼層y及び調質層uの通気性が良くなる。又、燃焼層y及び調質層uにおける焼却残渣の塊が崩壊させられるため、塊の内部まで空気が通るようになる。このため、残留していた火種により更なる燃焼が促進される。   The shock at the time of dropping improves the air permeability of the ash layer z, the combustion layer y, and the tempered layer u. Moreover, since the lump of the incineration residue in the combustion layer y and the tempered layer u is collapsed, air passes to the inside of the lump. For this reason, further combustion is promoted by the remaining fire type.

その後、同様に投入口6から廃棄物Rを順次投入すれば、投入された廃棄物Rは新たな調質層uを形成する。又、調質層uの下部が燃焼層yの熱と燃焼用空気aにより燃焼を始め、新たな燃焼層yを形成する。燃焼が完結した焼却灰Aは灰層zに堆積していく(図3(f)参照)。   Thereafter, similarly, if the waste R is sequentially input from the input port 6, the input waste R forms a new tempered layer u. In addition, the lower part of the tempered layer u starts to combust by the heat of the combustion layer y and the combustion air a to form a new combustion layer y. The incinerated ash A that has been combusted is deposited on the ash layer z (see FIG. 3F).

即ち、焼却処理中、堆積層に供給する燃焼用空気aの供給量を理論空気量の0.8〜1.3倍とした場合、堆積層は、その燃焼状態により位置が移動するものの、上から「調質層u」、「燃焼層y」及び「灰層z」を形成し、定常状態となる。   That is, when the supply amount of combustion air a supplied to the deposition layer is set to 0.8 to 1.3 times the theoretical air amount during the incineration process, the position of the deposition layer moves depending on the combustion state. Thus, the “tempered layer u”, “combustion layer y”, and “ash layer z” are formed and become a steady state.

しかしながら、この定常状態においては、調質層uと燃焼層yが隣接しており、又、堆積層の上部に至るまで酸素が十分に供給されることから、特に廃棄物Rの投入時、調質層u中の易燃物が瞬間的に一気に燃焼する現象が起こり、燃焼状態が不安定になる場合がある。   However, in this steady state, the tempered layer u and the combustion layer y are adjacent to each other, and oxygen is sufficiently supplied up to the upper part of the deposited layer. There is a case in which the flammable material in the layer u burns instantaneously at once, and the combustion state becomes unstable.

<燃焼用空気aの供給量を理論空気量の0.2〜0.8倍にした場合の燃焼状態>
始業時において、投入口6から焼却炉本体2内に投入された廃棄物Rは、漏斗部22の底部に残存する灰層z上に堆積されて調質層uとなり、初期の堆積層を形成する(図4(a)参照)。初期の堆積層において、調質層u中の廃棄物Rは、灰層zを通過して上昇する高温の燃焼用空気aと接触することにより乾燥し、酸素を消費しながら易燃物から燃焼を始め、難燃物と共に火種を保有しながら燃焼層yを形成する(図4(b)参照)。
<Combustion state when the supply amount of the combustion air a is 0.2 to 0.8 times the theoretical air amount>
At the start of work, the waste R thrown into the incinerator body 2 from the inlet 6 is deposited on the ash layer z remaining at the bottom of the funnel portion 22 to become a tempered layer u, forming an initial deposited layer. (See FIG. 4 (a)). In the initial sedimentary layer, the waste R in the tempered layer u is dried by contact with the high-temperature combustion air a that passes through the ash layer z and burns from combustible materials while consuming oxygen. In addition, the combustion layer y is formed while holding the fire type together with the flame retardant (see FIG. 4B).

ここで、燃焼用空気aの供給量を理論空気量の0.2〜0.8倍にした場合、徐々に燃焼層yが調質層uに拡がっていくが、この燃焼層yの拡がりは燃焼用空気a中の酸素の消尽と共に停滞する。燃焼層yの拡がりが停滞すると、燃焼層y上の調質層uは、殆ど酸素が存在しない状態で燃焼層yの熱に晒されるため、実質的に無酸素状態の高温下で廃棄物Rの熱分解が促進される炭化層cを形成する。又、燃焼層yにおいて燃焼が完結した焼却灰Aは灰層zに堆積していく。(図4(c)参照。図右に併記したグラフは、燃焼によって、堆積層の下部から上部に向かって酸素が消費されていく状態(残O2量)を示す。)。 Here, when the supply amount of the combustion air a is 0.2 to 0.8 times the theoretical air amount, the combustion layer y gradually expands to the tempered layer u. It stagnates with the exhaustion of oxygen in the combustion air a. When the expansion of the combustion layer y stagnates, the tempered layer u on the combustion layer y is exposed to the heat of the combustion layer y in a state where almost no oxygen is present, and therefore, the waste R under a substantially oxygen-free high temperature. The carbonized layer c is formed in which the thermal decomposition of is promoted. Further, the incinerated ash A that has been combusted in the combustion layer y is deposited on the ash layer z. (See FIG. 4C. The graph shown on the right side of the figure shows a state where oxygen is consumed from the lower part of the deposited layer to the upper part by combustion (the amount of remaining O 2 ).)

灰層zに一定量以上焼却灰Aが堆積すると、ごみ支持手段31及び焼却灰排出板32を順次作動させ、ごみ支持手段31よりも下方の焼却灰Aを灰搬出装置33に落下させる(図4(d)参照)。   When a certain amount or more of incineration ash A accumulates on the ash layer z, the dust support means 31 and the incineration ash discharge plate 32 are sequentially operated, and the incineration ash A below the dust support means 31 is dropped onto the ash carry-out device 33 (see FIG. 4 (d)).

焼却灰Aの排出後、焼却灰排出板32は元の位置に復帰し、ごみ支持手段31は焼却炉本体2外へと没する。これより、ごみ支持手段31の上部にある残余の灰層z、燃焼層y、炭化層c及び調質層uは、焼却灰排出板32上に順次落下する(図4(e)参照)。   After the incineration ash A is discharged, the incineration ash discharge plate 32 returns to its original position, and the dust support means 31 is submerged outside the incinerator body 2. As a result, the remaining ash layer z, combustion layer y, carbonized layer c, and tempered layer u on the upper part of the dust support means 31 are sequentially dropped onto the incineration ash discharge plate 32 (see FIG. 4 (e)).

この落下時のショックにより、灰層z、燃焼層y、炭化層c及び調質層uの通気性が良くなる。又、燃焼層y、炭化層c及び調質層uにおける焼却残渣の塊が崩壊させられるため、塊の内部まで空気が通るようになる。このため、残留していた火種により更なる燃焼が促進される。   The shock at the time of dropping improves the air permeability of the ash layer z, the combustion layer y, the carbonized layer c, and the tempered layer u. Moreover, since the lump of the incineration residue in the combustion layer y, the carbonized layer c, and the tempered layer u is destroyed, air passes to the inside of the lump. For this reason, further combustion is promoted by the remaining fire type.

その後、同様に投入口6から廃棄物Rを順次投入すれば、投入された廃棄物Rは新たな調質層uを形成する。又、落下により燃焼用空気aの酸素が供給されるようになった炭化層cは燃焼を始め、新たな燃焼層yを形成する。更に、酸素が不足している調質層uの下部が新たな炭化層cとして形成される。燃焼が完結した焼却灰Aは灰層zに堆積していく(図4(f)参照)。   Thereafter, similarly, if the waste R is sequentially input from the input port 6, the input waste R forms a new tempered layer u. In addition, the carbonized layer c that is supplied with oxygen of the combustion air a by falling starts to burn and forms a new combustion layer y. Furthermore, the lower part of the tempered layer u lacking oxygen is formed as a new carbonized layer c. The incinerated ash A that has been combusted is deposited on the ash layer z (see FIG. 4F).

即ち、焼却処理中、堆積層に対して供給する燃焼用空気aの供給量を理論空気量の0.2〜0.8倍とした場合、堆積層は、その燃焼状態により位置が移動するものの、上から「調質層u」、「炭化層c」、「燃焼層y」及び「灰層z」を形成し、定常状態となる。   That is, during the incineration process, when the supply amount of combustion air a supplied to the deposit layer is 0.2 to 0.8 times the theoretical air amount, the position of the deposit layer moves depending on its combustion state. Then, “tempered layer u”, “carbonized layer c”, “combustion layer y”, and “ash layer z” are formed from above, and a steady state is obtained.

そして、堆積層中において、調質層uと燃焼層yの間に実質的に無酸素状態の炭化層cが形成されると、調質層u中の易燃物が瞬間的に一気に燃焼する現象が抑制されて、燃焼状態が非常に安定する。   When the substantially oxygen-free carbonized layer c is formed between the tempered layer u and the combustion layer y in the deposited layer, the flammable material in the tempered layer u is instantaneously burned at once. The phenomenon is suppressed and the combustion state becomes very stable.

又、調質層u中の易燃物が一気に燃焼せずに、廃棄物Rに多く含有されたままで、調質層uから炭化層c、炭化層cから燃焼層yへと移行することから、燃焼層yにおける燃焼カロリーを維持することができる。   In addition, since the flammable material in the tempered layer u does not burn at a stretch, but remains contained in the waste R in a large amount, it shifts from the tempered layer u to the carbonized layer c and from the carbonized layer c to the combustion layer y. The combustion calories in the combustion layer y can be maintained.

更に、前記炭化層cにおいて、廃棄物Rは、高発熱量の易燃物を含有したまま、比較的長時間にわたって酸素が不足した状態で高温に晒されて抑制燃焼し、該廃棄物R中の難燃物は十分に熱分解される。その結果、廃棄物Rの均質な燃焼処理が促進され、燃焼層yにおける燃焼カロリーの維持と相まって、最終的に排出される焼却灰A中の未燃物の残存が極めて小さくなり、熱しゃく減量が非常に低くなる。   Furthermore, in the carbonized layer c, the waste R contains a high calorific value of flammable material and is subjected to suppressed combustion by being exposed to high temperature in a state where oxygen is insufficient for a relatively long time. The flame retardant is fully pyrolyzed. As a result, the homogeneous combustion treatment of the waste R is promoted, and in combination with the maintenance of the combustion calories in the combustion layer y, the remaining unburned matter in the finally discharged incineration ash A becomes extremely small, and the heat loss is reduced. Is very low.

1 竪型ごみ焼却炉
2 焼却炉本体
3 焼却灰排出機構
4 排ガス混合手段
5 再燃焼室
6 投入口
7 燃焼用空気供給管
8 水冷ジャケット
28 空気口
32 焼却灰排出板
a 燃焼用空気
u 調質層
c 炭化層
y 燃焼層
z 灰層
DESCRIPTION OF SYMBOLS 1 Vertical waste incinerator 2 Incinerator main body 3 Incinerator ash discharge mechanism 4 Exhaust ash discharge means 5 Recombustion chamber 6 Input port 7 Combustion air supply pipe 8 Water cooling jacket 28 Air port 32 Incineration ash discharge plate a Combustion air u Conditioning Layer c Carbonized layer y Combustion layer z Ash layer

Claims (3)

竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉における燃焼用空気の供給方法であって、この供給方法は、
焼却処理中、前記堆積層の堆積厚が厚くなった場合に燃焼用空気の供給量を多くし、一方、前記堆積層の堆積厚が薄くなった場合に燃焼用空気の供給量を少なくして、燃焼用空気の供給量が、堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御しながら、前記堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給することによって、
焼却処理中の堆積層において有酸素燃焼する燃焼層の上に、酸素が殆ど供給されない実質的に無酸素状態の高温下で廃棄物の乾燥及び熱分解が促進される炭化層を形成することを特徴とする竪型ごみ焼却炉における燃焼用空気の供給方法。
The waste is sequentially put into the vertical furnace, and the waste is burned while supplying combustion air to the sedimentary layer formed by the waste thrown into the furnace. A method for supplying combustion air in a vertical waste incinerator that incinerates waste by sequentially discharging to the outside of the furnace.
During the incineration process, the amount of combustion air supplied is increased when the deposited layer thickness is increased, while the amount of combustion air supplied is decreased when the deposited layer thickness is decreased. , the supply amount of combustion air, while controlling so that 0.2 to 0.8 times the theoretical amount of air required to complete combustion of waste deposited layer, from the lower portion to the upper portion of the deposited layer by supplying combustion air so that the oxygen of the combustion air decreases towards,
Forming a carbonized layer on the combustion layer that undergoes aerobic combustion in the deposition layer during the incineration process, which promotes the drying and thermal decomposition of waste at a substantially oxygen-free high temperature with almost no oxygen supply. A method for supplying combustion air in a vertical waste incinerator.
請求項1に記載の竪型ごみ焼却炉における燃焼用空気の供給方法において、堆積層の下部のみから燃焼用空気を供給する竪型ごみ焼却炉における燃焼用空気の供給方法。   2. The method for supplying combustion air in a vertical waste incinerator according to claim 1, wherein the combustion air is supplied from only the lower part of the deposition layer. 竪型の炉内に廃棄物を順次投入し、炉内に投入された廃棄物が形成する堆積層に燃焼用空気を供給しながら廃棄物を燃焼させ、燃焼が完結した焼却灰を炉底部に配された焼却灰排出板から炉外に順次排出することにより廃棄物を焼却処理する竪型ごみ焼却炉であって、この竪型ごみ焼却炉は、
前記焼却灰排出板に設けられた複数の空気口と、
前記複数の空気口を通して堆積層の底部に向かって燃焼用空気を供給するための、前記焼却灰排出板の下部に燃焼用空気を輸送する燃焼用空気供給管と、
前記燃焼用空気供給管に備えられた流量計と、
前記燃焼用空気供給管に備えられた燃焼用空気の供給量を変更する開閉弁とを具備するものであり、
焼却処理中の堆積層において有酸素燃焼する燃焼層の上に、酸素が殆ど供給されない実質的に無酸素状態の高温下で廃棄物の乾燥及び熱分解が促進される炭化層を形成すべく、焼却処理中、堆積層の堆積厚が厚くなって燃焼用空気の輸送負荷が大きくなり、その流量が減少した場合に、前記開閉弁を開いて燃焼用空気の供給量を多くし、一方、廃棄物の堆積厚が薄くなって燃焼用空気の輸送負荷が小さくなり、その流量が増加した場合に、前記開閉弁を絞って燃焼用空気の供給量を少なくし、前記堆積層の下部から上部に向かって燃焼用空気中の酸素が減少するように燃焼用空気を供給することによって、燃焼用空気の供給量が堆積層中の廃棄物を完全燃焼させるために必要な理論空気量の0.2〜0.8倍となるように制御する制御機構が備えられてなることを特徴とする竪型ごみ焼却炉。
The waste is sequentially put into the vertical furnace, and the waste is burned while supplying combustion air to the sedimentary layer formed by the waste thrown into the furnace. It is a vertical waste incinerator that incinerates waste by sequentially discharging it from the disposed incineration ash discharge plate to the outside of the furnace.
A plurality of air ports provided in the incineration ash discharge plate;
A combustion air supply pipe for transporting combustion air to a lower part of the incineration ash discharge plate for supplying combustion air to the bottom of the deposition layer through the plurality of air ports;
A flow meter provided in the combustion air supply pipe;
An on-off valve for changing a supply amount of combustion air provided in the combustion air supply pipe,
In order to form a carbonized layer on the combustion layer that undergoes aerobic combustion in the deposition layer during the incineration process, which promotes the drying and thermal decomposition of the waste at a substantially oxygen-free high temperature with almost no oxygen supply. During the incineration process, when the deposition layer becomes thicker and the transportation load of combustion air increases and the flow rate decreases, the on-off valve is opened to increase the supply amount of combustion air, while discarding When the deposit thickness of the material is reduced and the transportation load of the combustion air is reduced and the flow rate is increased, the on-off valve is throttled to reduce the supply amount of the combustion air, and from the lower part to the upper part of the deposited layer. By supplying the combustion air so that the oxygen in the combustion air is reduced, the supply amount of the combustion air is 0.2 of the theoretical air amount necessary for completely burning the waste in the sedimentary layer. The control mechanism that controls to be 0.8 times Vertical refuse incinerator, characterized in that the gills are composed.
JP2010062538A 2010-03-18 2010-03-18 Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator Active JP4593688B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2010062538A JP4593688B1 (en) 2010-03-18 2010-03-18 Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator
CN2011800144214A CN102803852A (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
PCT/JP2011/052375 WO2011114794A1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
HUE11755984A HUE026063T2 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
ES11755984.9T ES2549436T3 (en) 2010-03-18 2011-02-04 A method of supplying combustion air to a vertical waste incinerator and a vertical waste incinerator
PL11755984T PL2549184T3 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
EP11755984.9A EP2549184B1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
US13/635,014 US20130000531A1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical incinerator and vertical incinerator
EA201290922A EA026470B1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical incinerator and vertical incinerator
SI201130690T SI2549184T1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
DK11755984.9T DK2549184T3 (en) 2010-03-18 2011-02-04 Method of supplying combustion air in a vertical incinerator as well as a vertical incinerator
KR1020127027103A KR101233919B1 (en) 2010-03-18 2011-02-04 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator
TW100105407A TWI468626B (en) 2010-03-18 2011-02-18 A method of air for combustion of a vertical incinerator, and a vertical waste incinerator
HRP20151175TT HRP20151175T1 (en) 2010-03-18 2015-11-03 Method for supplying combustion air in vertical waste incinerator, and vertical waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062538A JP4593688B1 (en) 2010-03-18 2010-03-18 Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator

Publications (2)

Publication Number Publication Date
JP4593688B1 true JP4593688B1 (en) 2010-12-08
JP2011196598A JP2011196598A (en) 2011-10-06

Family

ID=43425709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062538A Active JP4593688B1 (en) 2010-03-18 2010-03-18 Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator

Country Status (14)

Country Link
US (1) US20130000531A1 (en)
EP (1) EP2549184B1 (en)
JP (1) JP4593688B1 (en)
KR (1) KR101233919B1 (en)
CN (1) CN102803852A (en)
DK (1) DK2549184T3 (en)
EA (1) EA026470B1 (en)
ES (1) ES2549436T3 (en)
HR (1) HRP20151175T1 (en)
HU (1) HUE026063T2 (en)
PL (1) PL2549184T3 (en)
SI (1) SI2549184T1 (en)
TW (1) TWI468626B (en)
WO (1) WO2011114794A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390347A (en) * 2014-10-17 2015-03-04 芜湖市泰能电热器具有限公司 Energy-saving boiler system
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118684B1 (en) * 2014-03-13 2019-07-24 Mitsubishi Gas Chemical Company, Inc. Resist composition and method for forming resist pattern
JP6286516B1 (en) * 2016-12-06 2018-02-28 株式会社プランテック Incinerator
HUP1700093A2 (en) * 2017-03-02 2018-09-28 Primus Net Kft Pellet boiler with grid burner and proceedings of the combustion to maintain
JP6951789B2 (en) * 2020-03-27 2021-10-20 株式会社プランテック Waste treatment amount adjustment method for vertical waste incinerators and vertical waste incinerators
JP6962607B2 (en) * 2020-03-27 2021-11-05 株式会社プランテック Exhaust gas treatment equipment and exhaust gas treatment method for waste incinerators
TWI762399B (en) * 2021-08-04 2022-04-21 崑山科技大學 Environmentally friendly biomass fuel combustion furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198171A (en) * 1975-02-26 1976-08-28
JP2001289418A (en) * 2000-04-10 2001-10-19 Hitachi Metals Ltd Dust treating device
JP2004233048A (en) * 2004-02-16 2004-08-19 Kinsei Sangyo:Kk Carbonization-gasification and incineration device of waste
JP2007057113A (en) * 2005-08-22 2007-03-08 Plantec Inc Vertical refuse incinerator provided with water tube wall

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI50663C (en) * 1973-03-21 1976-05-10 Tampella Oy Ab Device for regulating the supply of combustion air and excess oxygen in fall incinerators
US4291636A (en) * 1980-05-29 1981-09-29 Union Carbide Corporation Solid refuse disposal process
US4441435A (en) * 1981-10-21 1984-04-10 Hitachi, Ltd. Fluidizing gas control system in fluidized-bed incinerator
US5020451A (en) * 1989-10-05 1991-06-04 Ishikawajima-Harima Heavy Industries Co., Ltd. Fluidized-bed combustion furnace
JP2603364B2 (en) 1990-10-23 1997-04-23 株式会社 プランテック Vertical incinerator and its incineration method
JPH0531383A (en) 1991-07-31 1993-02-09 Iseki & Co Ltd Dehulling rate detector of huller
WO1997049954A1 (en) * 1996-06-24 1997-12-31 Nippon Steel Corporation Burning/melting method of waste melting furnace
TW325515B (en) * 1997-06-25 1998-01-21 Nippon Steel Corp Burning and melting method for waste melting furnace
US7244399B2 (en) * 2002-04-26 2007-07-17 Foster Wheeler Energia Oy Grid construction for a fluidized bed reactor
JP3759116B2 (en) * 2003-03-28 2006-03-22 株式会社プランテック Vertical waste incinerator for waste incineration and control method thereof
CN2898602Y (en) * 2006-04-14 2007-05-09 蔡楀灏 Submersible flashlight
WO2008097493A2 (en) * 2007-02-02 2008-08-14 Infilco Degremont Inc. Apparatus and methods for incinerating sludge in a combustor
CN100572917C (en) * 2007-07-27 2009-12-23 福建省丰泉环保设备有限公司 The double-loop double-pyrogenation incinerator and the using method thereof that are used for rubbish processing to be harmless
RU2476772C2 (en) * 2007-11-07 2013-02-27 Метауотер Ко., Лтд. Waste incineration furnace with fluidised bed and method to burn bottom sediment in such furnace (versions)
WO2010022741A2 (en) * 2008-08-30 2010-03-04 Dall Energy Holding Aps Method and system for production of a clean hot gas based on solid fuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198171A (en) * 1975-02-26 1976-08-28
JP2001289418A (en) * 2000-04-10 2001-10-19 Hitachi Metals Ltd Dust treating device
JP2004233048A (en) * 2004-02-16 2004-08-19 Kinsei Sangyo:Kk Carbonization-gasification and incineration device of waste
JP2007057113A (en) * 2005-08-22 2007-03-08 Plantec Inc Vertical refuse incinerator provided with water tube wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390347A (en) * 2014-10-17 2015-03-04 芜湖市泰能电热器具有限公司 Energy-saving boiler system
CN104390347B (en) * 2014-10-17 2017-05-03 安徽明太生物科技有限公司 Energy-saving boiler system
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method

Also Published As

Publication number Publication date
EA201290922A1 (en) 2013-02-28
WO2011114794A1 (en) 2011-09-22
KR101233919B1 (en) 2013-02-15
HUE026063T2 (en) 2016-05-30
EA026470B1 (en) 2017-04-28
TW201202631A (en) 2012-01-16
PL2549184T3 (en) 2016-06-30
SI2549184T1 (en) 2016-01-29
US20130000531A1 (en) 2013-01-03
EP2549184A1 (en) 2013-01-23
TWI468626B (en) 2015-01-11
EP2549184A4 (en) 2013-07-03
KR20120132555A (en) 2012-12-05
EP2549184B1 (en) 2015-09-23
DK2549184T3 (en) 2015-11-23
HRP20151175T1 (en) 2015-12-04
CN102803852A (en) 2012-11-28
ES2549436T3 (en) 2015-10-28
JP2011196598A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP4593688B1 (en) Method of supplying combustion air in vertical waste incinerator and vertical waste incinerator
CN203586222U (en) Vertical-shaft compound type waste pyrolysis gasification and melting incinerator
CN103672908A (en) Vertical shaft multiple incinerator for refuse pyrolysis, gasification and fusion
CN206094112U (en) Sludge incineration system
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
JP3426562B2 (en) Vertical waste incinerator for incineration of industrial waste
KR100917928B1 (en) Multiple incinerator plant consist of duplex hopper and combustion
JP2006023030A (en) Vertical refuse incinerator with primary combustion device, and operation control method thereof
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP4933134B2 (en) Vertical waste incinerator for industrial waste incineration
CN104728846A (en) Rotating dual-roller incinerator
JP2000283427A (en) Reaction type refuse incinerating furnace and method for incinerating refuse using the same
JP3600811B2 (en) Waste support plate in vertical incinerator and control method thereof
JP2005069542A (en) Vertical refuse incinerating furnace and combustion control method for higher heating value waste in furnace thereof
RU2334171C2 (en) Device for wastes recycling
JP5490956B1 (en) Incinerator
KR100458470B1 (en) A burning apparatus using r.d.f and method thereof
JP7460096B1 (en) Vertical waste incinerator and combustion method thereof
JP2006153371A (en) Combustion control method of vertical refuse incinerator for incinerating industrial wastes
RU2387925C2 (en) Device for waste burning
JP2005273975A (en) Waste treatment apparatus and waste treatment method
JP3959067B2 (en) Incinerator
JP3789872B2 (en) Operation method of waste incinerator using dry sludge
JP2005226953A (en) Incinerator
KR101052271B1 (en) Combustion device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250