JP3789872B2 - Operation method of waste incinerator using dry sludge - Google Patents

Operation method of waste incinerator using dry sludge Download PDF

Info

Publication number
JP3789872B2
JP3789872B2 JP2002244638A JP2002244638A JP3789872B2 JP 3789872 B2 JP3789872 B2 JP 3789872B2 JP 2002244638 A JP2002244638 A JP 2002244638A JP 2002244638 A JP2002244638 A JP 2002244638A JP 3789872 B2 JP3789872 B2 JP 3789872B2
Authority
JP
Japan
Prior art keywords
furnace
dry sludge
sludge
gas
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002244638A
Other languages
Japanese (ja)
Other versions
JP2004085027A (en
Inventor
正和 澤井
正樹 津澤
修一郎 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002244638A priority Critical patent/JP3789872B2/en
Publication of JP2004085027A publication Critical patent/JP2004085027A/en
Application granted granted Critical
Publication of JP3789872B2 publication Critical patent/JP3789872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乾燥汚泥有機分の熱分解ガス又は乾燥汚泥を燃料として利用することで、下水汚泥の混焼が可能となり、しかも、ダイオキシン類の発生が抑制できる廃棄物焼却炉の運転方法、及び乾燥汚泥が原料となる炭化炉であって熱分解ガスを得るのに適した乾燥汚泥熱分解装置に関するものである。
【0002】
【従来の技術】
ゴミ焼却炉に代表される廃棄物焼却炉には、大きく分けてストーカ炉と流動床炉があるが、流動床炉はストーカ炉と比較してダイオキシン類の発生抑制が難しく、ダイオキシン類の発生を抑制するのが容易なのはストーカ炉の方である。
一方、下水処理場から発生する汚泥の処分は焼却が一般的であるが、水分の多い汚泥のみの焼却施設は効率が悪く、大型のゴミ焼却施設で混焼するのが合理的である。ゴミ焼却炉が流動床炉の場合、水分の高い汚泥は混焼可能である。しかし、ゴミ焼却炉がストーカ炉の場合は水分の高い汚泥の混焼に適さず、ストーカ炉では下水汚泥の混焼が難しい。
【0003】
ゴミ焼却炉に代表される廃棄物焼却炉は、ゴミ等の原料及び原料投入速度が不均一であり、負荷変動が多い。この負荷変動において一時的な空気不足状態が起こり、このことがダイオキシン類の発生につながっている。
ストーカ炉のダイオキシン類抑制方法としては、例えば、図5に示すように、ストーカ式ゴミ焼却炉10の2次燃焼部12に、2次燃焼空気とLNG(液化天然ガス)等の燃料を導入する方法がある。LNGを2次空気とともに投入することによって、2次燃焼部のガスが攪拌されるとともに、LNGが燃焼する温度上昇により、2次燃焼部で燃焼排ガスが完全燃焼してダイオキシン類の発生が抑制される。14は2次燃焼用空気ノズル、16は2次燃焼部LNG投入ノズルである。
【0004】
また、例えば、特開平11−108321号公報には、焼却炉からの排ガスが通過する排気筒に、耐熱フィルター及びフィルター加熱装置を設け、耐熱フィルターを1000℃以上に加熱してダイオキシン類の排出を抑制するという技術が開示されている。
また、特開平10−288325号公報には、ごみ焼却炉で発生する燃焼排ガスを排出する煙道において、燃焼排ガスに2次燃焼用空気、冷却用空気、混合攪拌用空気をそれぞれ吹き込み、燃焼排ガスの2次燃焼、冷却及び混合を的確に行い、かつ未燃ガスの吹抜けを抑制し、ダイオキシン類の発生を抑制するという技術が開示されている。
また、特開平6−300239号公報には、焼却炉へのごみ供給量、排ガスCO濃度、排ガスO2濃度、炉出口ガス温度等の検出値が変化傾向にあるときに、ごみ供給量、2次空気量等を調整することで排ガス中のCO濃度を減少させ、ダイオキシン類の発生を確実に防止する制御技術が開示されている。
【0005】
【発明が解決しようとする課題】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、ストーカ炉等の廃棄物焼却炉のダイオキシン対策として行われている2次燃焼部の攪拌、加熱において、2次燃焼空気とLNG等の燃料ではなく、燃料として乾燥汚泥の炭化熱分解ガス又は乾燥汚泥そのものを利用することにより、ダイオキシン類の発生が抑制できると同時に、従来は受け入れられなかった下水汚泥が受け入れ可能となり、下水汚泥の混焼が可能となる廃棄物焼却炉の運転方法を提供することにある。
また、本発明の目的は、2次燃焼部以降の炉出口温度、排ガスCO濃度といった燃焼の指標となる信号によって、乾燥汚泥の炭化熱分解ガス又は乾燥汚泥の投入量等を制御することにより、負荷変動の少ない焼却が可能になり、空気比低下による未燃の有害ガス発生を低減するだけでなく、炉耐火材の劣化を低減することができる廃棄物焼却炉の運転方法を提供することにある。
また、本発明の目的は、乾燥汚泥が原料となる炭化炉で、熱分解ガスを得るのに適しており、安価、単純な構造、操作性に優れた設備である内燃式旋回炭化炉からなる乾燥汚泥熱分解装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の乾燥汚泥を利用する廃棄物焼却炉の運転方法は、廃棄物焼却炉の2次燃焼部に乾燥汚泥の熱分解ガスを空気とともに導入し、焼却炉で発生した燃焼排ガスと混合してガスを攪拌するとともに、熱分解ガス中の有機分が燃焼する温度上昇により燃焼排ガスを完全燃焼させるように構成されている(図1参照)。この場合、乾燥汚泥を原料とする内燃式の炭化炉で熱分解ガスを得ることができる(図1、図2、図3参照)。
【0007】
また、本発明の方法は、廃棄物焼却炉の2次燃焼部に乾燥汚泥を空気とともに導入し、焼却炉で発生した燃焼排ガスと混合してガスを攪拌するとともに、乾燥汚泥中の有機分が燃焼する温度上昇により燃焼排ガスを完全燃焼させることを特徴としている(図4参照)。
これらの方法において、廃棄物焼却炉の排ガス温度(炉出口温度)及び/又は排ガスCO濃度(炉出口CO濃度)により、乾燥汚泥熱分解ガス又は乾燥汚泥の焼却炉の2次燃焼部への投入量を制御し、廃棄物焼却炉の負荷変動を抑制することが好ましい。
【0008】
本発明の乾燥汚泥熱分解装置は、略円筒縦型の炭化炉本体に空気搬送された乾燥汚泥が投入される原料投入口が炉本体横断面の略接線方向に接続され、乾燥汚泥が空気とともに炭化炉内に旋回しながら投入されるようにし、バーナーノズルから噴射される炎が炭化炉内に起こる旋回流と同じ向きとなるようにバーナーが炉本体横断面の略接線方向に接続され、炭化炉内で乾燥汚泥が旋回流を形成しながら炭化・熱分解されるようにし、炭化炉本体の底部に炭化物を抜き出す炭化物排出手段が設けられ、炉本体の上部に熱分解ガスを排出する熱分解ガス排出配管が接続されてなることを特徴としている(図2、図3参照)。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
図1は、本発明の実施の第1形態による乾燥汚泥を利用する廃棄物焼却炉の運転方法を実施する装置を示している。図1に示すように、収集運搬されたゴミはホッパ18に貯留され、ゴミ焼却原料投入機(プッシャー等)20によりストーカ式ゴミ焼却炉10内へ切り出し投入される。ゴミ焼却原料投入機20はゴミの定量切り出しができるような構成であるが、原料が不均一であるためにストーカ式ゴミ焼却炉10内に投入されるゴミをカロリー(発熱量)で一定にすることは不可能であり、焼却炉での燃焼変動は避けられない。
負荷変動に伴う燃焼変動は、炉出口温度、炉出口CO濃度の変化に現れ、通常は炉出口温度計22、炉出口CO濃度計24に現れる原料負荷変動信号から補助燃料の投入量を制御することによって、いずれも一定に保たれるのであるが、急激な負荷変動には追従できず、低負荷の時は空気過剰で炉出口温度、炉出口CO濃度とも低下傾向にあり、高負荷の時は逆に炉出口温度、炉出口CO濃度とも上昇傾向にある。
【0010】
下水処理場で発生する下水汚泥は脱水、乾燥された後、下水処理場からローリー車等で運搬され、乾燥汚泥サイロ26に一旦貯留される。乾燥汚泥サイロ26に貯留された乾燥汚泥は、乾燥汚泥切り出し機(ロータリーバルブ等)28によって定量切り出しされて、乾燥汚泥空送ブロワ30によって空気輸送されて内燃式旋回炭化炉32に投入される。内燃式旋回炭化炉32では、例えば、配管で接続されたストーカ式ゴミ焼却炉10の2次燃焼部12から十分な吸引力により、マイナス圧が保たれ、内燃式旋回炭化炉32に設けられた炭化バーナー34へは補助燃料(石油、LNG等)と燃焼用空気が送られ、全体の可燃物に対する空気量を抑制しておけば、無酸素状態で汚泥がバーナー34からの補助燃料燃焼熱を受けて加熱される。内燃式のため、若干の乾燥汚泥は灰化してしまうが、炭化汚泥に部分的に焼却灰が含まれても、熱分解ガスを得ることには何ら影響しない。このようにして、無酸素状態での炭化(部分燃焼)が起こり、炭化物はストーカ炉10からの吸引力を利用した内燃式旋回炭化炉32の慣性集塵効果で落下集積し、炭化物排出機(ロータリーバルブ等)36より系外へ排出される。なお、この炭化物の物性は、内燃式旋回炭化炉32の温度と空気比によって変化させることができ、炭化物の有効利用先によってより適切な運転方法を選択することができる。
【0011】
内燃式旋回炭化炉32の慣性集塵機構により炭化物と分離した熱分解ガスは、炭化熱分解ガス投入配管38を経て熱分解ガス吹き込み口40より、ストーカ式ゴミ焼却炉10の2次燃焼部12に吸引投入される。なお、熱分解ガスをストーカ炉の2次燃焼部に押し込み投入する構成としてもよい。
ストーカ炉の2次燃焼部12では、従来は2次燃焼空気とともにLNG等の燃料が注入され、ダイオキシン類の発生抑制を行ってきた。空気は主にガスの攪拌、LNGは主としてガスの再加熱に利用され、均一かつ完全な燃焼を完結させることでダイオキシン類の発生が抑制される。
一例として、熱分解ガス吹き込み口40より2次燃焼部12に投入された約600℃の熱分解ガスは、2次燃焼用空気ノズル14から吹き込まれる2次燃焼空気とともに2次燃焼部12で約800℃以上で燃焼される。本発明では、従来のダイオキシン抑制法におけるLNG等の代わりに、汚泥熱分解ガスを利用しており、ダイオキシン類の発生抑制には同様の効果が認められる。また、下水汚泥の混焼にも適したシステムとなる。
【0012】
さらに、炉出口温度計22、炉出口CO濃度計24に現れる原料負荷変動信号を演算し、乾燥汚泥切り出し機(ロータリーバルブ等)28の切り出し量を調整すれば、空気比の変動の少ない運転が可能となる。例えば、温度が低下したり、CO濃度が低下しやすい一時的な低負荷運転時には、乾燥汚泥切り出し機(ロータリーバルブ)28の切り出し量を増大させてやることで、炉出口温度を一定に保ち、空気過剰な状態も補正ができる。逆に、一時的な高負荷運転時(温度上昇、CO濃度増加)には、乾燥汚泥供給量を下げて、2次燃焼空気は補充することで燃焼への影響を最低限にくい止められる。
【0013】
つぎに、本実施の形態の内燃式旋回炭化炉32、すなわち、乾燥汚泥熱分解装置について説明する。図2、図3に示すように、例えば、サイクロン形状の円筒縦型の炭化炉本体42には、空気搬送された乾燥汚泥が投入される原料投入口44が炉本体横断面の接線方向に接続されている。また、バーナー34が炉本体横断面の接線方向に接続されている。原料投入口44よりもバーナー34の方が上の位置にあり、乾燥汚泥が直接バーナー炎に当たらないようになっている。乾燥汚泥が投入される原料投入口44、バーナー炎が噴射されるバーナー34はいずれも炉本体内に起こる同じ旋回流の接線方向に向いて取り付けられている。原料投入口44から空気とともに導入された乾燥汚泥は、旋回流を形成しながらバーナー34で加熱された炉本体42内を回転し、炭化・熱分解していく。熱分解ガスは酸素不足の状態で生成されており、有機分が燃焼せずにガス中に含まれている。熱分解ガスは炭化物と分離された後、炉本体42上部の熱分解ガス排出配管46から排出される。炭化物は慣性集塵効果で落下集積し、炉本体42底部の炭化物排出機(ロータリーバルブ等)36から排出される。なお、炭化炉本体42を上から見た概略図である図3では、原料投入口44とバーナー34の位置関係の一例を示しているが、この位置関係は同じ向きの旋回流となる接線方向であればよく、何ら限定されるものではない。
【0014】
図4は、本発明の実施の第2形態による乾燥汚泥を利用する廃棄物焼却炉の運転方法を実施する装置を示している。本実施の形態は、ストーカ式ゴミ焼却炉10の2次燃焼部12に乾燥汚泥を空気とともに導入する構成である。図4に示すように、収集運搬されたゴミはホッパ18に貯留され、ゴミ焼却原料投入機(プッシャー等)20によりストーカ式ゴミ焼却炉10内へ切り出し投入される。上述したように、炉内に投入されるゴミをカロリーで一定にすることは不可能であり、焼却炉での燃焼変動は避けられない。
下水処理場から運搬された乾燥汚泥は、乾燥汚泥サイロ26に一旦貯留された後、乾燥汚泥切り出し機(ロータリーバルブ等)28によって定量切り出しされて、乾燥汚泥空送ブロワ30によって空気輸送されてストーカ式ゴミ焼却炉10の2次燃焼部12に投入される。
【0015】
2次燃焼部12に投入された乾燥汚泥は、2次燃焼用空気ノズル14から吹き込まれる2次燃焼空気とともに2次燃焼部12で燃焼してガス温度を上昇させ、燃焼排ガスを完全燃焼させる。本発明では、従来のダイオキシン抑制法におけるLNG等の代わりに、乾燥汚泥を利用しており、ダイオキシン類の発生抑制には同様の効果が認められる。また、下水汚泥の混焼にも適したシステムとなる。
他の構成及び作用等は、実施の第1形態の場合と同様である。
【0016】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) ストーカ炉等の廃棄物焼却炉のダイオキシン対策として行われている2次燃焼部の攪拌、加熱において、2次燃焼空気とLNG等の燃料ではなく、燃料として乾燥汚泥の炭化熱分解ガスを利用することにより、ダイオキシン類の発生が抑制できると同時に、従来は受け入れられなかった下水汚泥が受け入れ可能となり、下水汚泥の混焼が可能となる。
(2) 2次燃焼部以降の炉出口温度、排ガスCO濃度といった燃焼の指標となる信号によって、乾燥汚泥の炭化熱分解ガスの投入量等を制御することにより、負荷変動の少ない焼却が可能になる。このことは空気比低下による未燃の有害ガス発生を低減するだけでなく、炉耐火材の劣化を低減することにも寄与する。
(3) 本発明の乾燥汚泥熱分解装置は、乾燥汚泥が原料となる内燃式旋回炭化炉であって、熱分解ガスを得るのに適しており、安価、単純な構造、操作性に優れた設備である。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による乾燥汚泥を利用する廃棄物焼却炉の運転方法を実施する装置を示す概略構成説明図である。
【図2】本発明の実施の第1形態における乾燥汚泥熱分解装置を示す概略構成説明図である。
【図3】図2に示す装置を上から見た概略構成の一例を示す説明図である。
【図4】本発明の実施の第2形態による乾燥汚泥を利用する廃棄物焼却炉の運転方法を実施する装置を示す概略構成説明図である。
【図5】従来の廃棄物焼却炉の一例を示す概略構成説明図である。
【符号の説明】
10 ストーカ式ゴミ焼却炉
12 2次燃焼部
14 2次燃焼用空気ノズル
16 2次燃焼部LNG投入ノズル
18 ホッパ
20 ゴミ焼却原料投入機
22 炉出口温度計
24 炉出口CO濃度計
26 乾燥汚泥サイロ
28 乾燥汚泥切り出し機
30 乾燥汚泥空送ブロワ
32 内燃式旋回炭化炉
34 炭化バーナー
36 炭化物排出機
38 炭化熱分解ガス投入配管
40 熱分解ガス吹き込み口
42 炭化炉本体
44 原料投入口
46 熱分解ガス排出配管
[0001]
BACKGROUND OF THE INVENTION
The present invention makes it possible to co-fire sewage sludge by using pyrolysis gas or dried sludge as the organic component of dried sludge, and to operate a waste incinerator capable of suppressing the generation of dioxins, and drying. The present invention relates to a dry sludge pyrolysis apparatus suitable for obtaining a pyrolysis gas, which is a carbonization furnace using sludge as a raw material.
[0002]
[Prior art]
Waste incinerators typified by garbage incinerators can be broadly divided into stalker furnaces and fluidized bed furnaces, but fluidized bed furnaces are more difficult to suppress the generation of dioxins than stalker furnaces, and they are less likely to generate dioxins. The stoker furnace is easier to control.
On the other hand, disposal of sludge generated from a sewage treatment plant is generally incinerated. However, incineration facilities using only sludge with a high water content are inefficient, and it is reasonable to co-combust in a large garbage incineration facility. When the garbage incinerator is a fluidized bed furnace, sludge with a high water content can be co-fired. However, when the waste incinerator is a stoker furnace, it is not suitable for co-firing sludge with high water content, and it is difficult to co-fire sewage sludge with a stoker furnace.
[0003]
A waste incinerator represented by a garbage incinerator has a non-uniform raw material such as garbage and a raw material charging speed, and has a large load fluctuation. Due to this load change, a temporary air shortage occurs, which leads to the generation of dioxins.
As a method for suppressing dioxins in a stoker furnace, for example, as shown in FIG. 5, fuel such as secondary combustion air and LNG (liquefied natural gas) is introduced into the secondary combustion section 12 of the stoker type garbage incinerator 10. There is a way. By introducing LNG together with secondary air, the gas in the secondary combustion section is agitated, and due to the temperature rise at which LNG burns, the combustion exhaust gas is completely combusted in the secondary combustion section and the generation of dioxins is suppressed. The Reference numeral 14 is a secondary combustion air nozzle, and 16 is a secondary combustion section LNG injection nozzle.
[0004]
Further, for example, in JP-A-11-108321, a heat-resistant filter and a filter heating device are provided in an exhaust pipe through which exhaust gas from an incinerator passes, and the heat-resistant filter is heated to 1000 ° C. or more to discharge dioxins. The technique of suppressing is disclosed.
Japanese Patent Laid-Open No. 10-288325 discloses a flue that discharges combustion exhaust gas generated in a waste incinerator, and injects secondary combustion air, cooling air, and mixed stirring air into the combustion exhaust gas, respectively. In this technology, the secondary combustion, cooling, and mixing are accurately performed, the blow-off of unburned gas is suppressed, and the generation of dioxins is suppressed.
Japanese Patent Laid-Open No. 6-3000239 discloses that when the detected values such as the waste supply amount to the incinerator, the exhaust gas CO concentration, the exhaust gas O 2 concentration, the furnace outlet gas temperature, etc. tend to change, A control technique for reducing the CO concentration in the exhaust gas by adjusting the amount of secondary air or the like and reliably preventing the generation of dioxins is disclosed.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned points. The object of the present invention is to provide secondary combustion air in the stirring and heating of the secondary combustion section, which is performed as a countermeasure against dioxins in waste incinerators such as stoker furnaces. By using carbonized pyrolysis gas of dried sludge or dried sludge itself as fuel instead of LNG or other fuel, the generation of dioxins can be suppressed and sewage sludge that has not been accepted in the past can be accepted. An object of the present invention is to provide a method for operating a waste incinerator capable of co-firing sludge.
In addition, the purpose of the present invention is to control the amount of carbonized pyrolysis gas or dry sludge in dry sludge, etc., by a signal serving as a combustion index such as the furnace outlet temperature after the secondary combustion section and the exhaust gas CO concentration, To provide a method for operating a waste incinerator that enables incineration with less load fluctuation and not only reduces the generation of unburned harmful gas due to a decrease in the air ratio, but also reduces deterioration of the furnace refractory material. is there.
Another object of the present invention is a carbonization furnace using dry sludge as a raw material, which is suitable for obtaining pyrolysis gas, and comprises an internal combustion type swirl carbonization furnace that is inexpensive, has a simple structure and excellent operability. It is to provide a dry sludge pyrolysis apparatus.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the operation method of the waste incinerator using the dried sludge according to the present invention introduces the pyrolysis gas of the dried sludge together with air into the secondary combustion section of the waste incinerator, The combustion exhaust gas generated in the above is mixed with the combustion exhaust gas, and the gas is stirred, and the combustion exhaust gas is completely combusted by the temperature rise at which the organic component in the pyrolysis gas burns (see FIG. 1). In this case, pyrolysis gas can be obtained in an internal combustion type carbonization furnace using dried sludge as a raw material (see FIGS. 1, 2 and 3).
[0007]
In addition, the method of the present invention introduces dry sludge into the secondary combustion section of the waste incinerator together with air, mixes it with the combustion exhaust gas generated in the incinerator, and stirs the gas. It is characterized in that the combustion exhaust gas is completely burned by the temperature rise at which it burns (see FIG. 4).
In these methods, depending on the exhaust gas temperature (furnace outlet temperature) and / or exhaust gas CO concentration (furnace outlet CO concentration) of the waste incinerator, dry sludge pyrolysis gas or dry sludge is charged into the secondary combustion section of the incinerator. It is preferable to control the amount and suppress the load fluctuation of the waste incinerator.
[0008]
In the dry sludge pyrolysis apparatus of the present invention, the raw material charging port into which the dried sludge conveyed by air to the substantially cylindrical vertical carbonization furnace main body is connected in a substantially tangential direction of the cross section of the furnace main body, and the dried sludge together with air The burner is connected while being swirled into the carbonization furnace, and the burner is connected in a substantially tangential direction of the cross section of the furnace body so that the flame injected from the burner nozzle is in the same direction as the swirl flow generated in the carbonization furnace. Pyrolysis in which dry sludge is carbonized and pyrolyzed while forming a swirl flow in the furnace, and a carbide discharge means for extracting the carbide is provided at the bottom of the main body of the carbonization furnace, and pyrolysis gas is discharged at the top of the furnace main body. It is characterized in that a gas discharge pipe is connected (see FIGS. 2 and 3).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
FIG. 1 shows an apparatus for implementing a method for operating a waste incinerator using dry sludge according to a first embodiment of the present invention. As shown in FIG. 1, the collected and transported garbage is stored in a hopper 18, and cut out and charged into a stoker-type garbage incinerator 10 by a garbage incineration raw material charging machine (pusher or the like) 20. The garbage incineration raw material charging machine 20 is configured so as to be able to quantitatively cut out garbage. However, since the raw materials are not uniform, the garbage input into the stoker-type garbage incinerator 10 is made constant in calories (calorific value). This is impossible, and combustion fluctuations in the incinerator are inevitable.
Combustion fluctuations accompanying load fluctuations appear in changes in the furnace outlet temperature and furnace outlet CO concentration, and the amount of auxiliary fuel input is controlled from the raw material load fluctuation signal that normally appears in the furnace outlet thermometer 22 and the furnace outlet CO concentration meter 24. However, it cannot keep up with sudden load fluctuations, and when the load is low, the air is excessive and the furnace outlet temperature and the furnace outlet CO concentration tend to decrease. Conversely, both the furnace outlet temperature and the furnace outlet CO concentration tend to increase.
[0010]
The sewage sludge generated at the sewage treatment plant is dehydrated and dried, then transported from the sewage treatment plant by a lorry vehicle or the like, and temporarily stored in the dry sludge silo 26. The dry sludge stored in the dry sludge silo 26 is quantitatively cut out by a dry sludge cutting machine (rotary valve or the like) 28, is pneumatically transported by a dry sludge air blower 30, and is charged into an internal combustion swirling carbonization furnace 32. In the internal combustion type swirling carbonization furnace 32, for example, a negative pressure is maintained by a sufficient suction force from the secondary combustion unit 12 of the stoker type garbage incinerator 10 connected by piping, and the internal combustion type swirling carbonization furnace 32 is provided. Auxiliary fuel (petroleum, LNG, etc.) and combustion air are sent to the carbonized burner 34, and if the amount of air for the entire combustible material is suppressed, sludge generates heat from the auxiliary fuel combustion from the burner 34 in the absence of oxygen. Received and heated. Although some dry sludge is incinerated due to the internal combustion type, even if incinerated ash is partially contained in the carbonized sludge, there is no effect on obtaining pyrolysis gas. In this way, carbonization (partial combustion) occurs in an oxygen-free state, and the carbide falls and accumulates due to the inertia dust collection effect of the internal combustion type swirling carbonization furnace 32 using the suction force from the stoker furnace 10, and the carbide discharger ( It is discharged out of the system through a rotary valve 36). In addition, the physical property of this carbide | carbonized_material can be changed with the temperature and air ratio of the internal combustion type | formula turning carbonization furnace 32, and a more suitable operation method can be selected with the effective utilization place of a carbide | carbonized_material.
[0011]
The pyrolysis gas separated from the carbide by the inertia dust collection mechanism of the internal combustion type swirling carbonization furnace 32 passes through the carbonization pyrolysis gas injection pipe 38 and enters the secondary combustion section 12 of the stoker type garbage incinerator 10 through the pyrolysis gas inlet 40. Aspirated. In addition, it is good also as a structure which pushes in and throws in pyrolysis gas into the secondary combustion part of a stoker furnace.
In the secondary combustion section 12 of the stalker furnace, conventionally, a fuel such as LNG is injected together with the secondary combustion air to suppress generation of dioxins. Air is mainly used for gas agitation, and LNG is mainly used for gas reheating, and generation of dioxins is suppressed by completing uniform and complete combustion.
As an example, the pyrolysis gas at about 600 ° C. introduced into the secondary combustion unit 12 from the pyrolysis gas inlet 40 is about about 2 ° C. in the secondary combustion unit 12 together with the secondary combustion air blown from the secondary combustion air nozzle 14. Burned above 800 ° C. In the present invention, a sludge pyrolysis gas is used instead of LNG or the like in the conventional dioxin suppression method, and the same effect is observed in suppressing the generation of dioxins. In addition, the system is suitable for co-firing sewage sludge.
[0012]
Furthermore, if the raw material load fluctuation signal appearing in the furnace outlet thermometer 22 and the furnace outlet CO concentration meter 24 is calculated and the cutout amount of the dry sludge cutout machine (rotary valve or the like) 28 is adjusted, the operation with less fluctuation in the air ratio can be achieved. It becomes possible. For example, during temporary low-load operation where the temperature is likely to decrease or the CO concentration is likely to decrease, the furnace outlet temperature is kept constant by increasing the cutting amount of the dry sludge cutting machine (rotary valve) 28, It can also correct excessive air conditions. Conversely, during temporary high-load operation (temperature rise, CO concentration increase), the dry sludge supply amount is lowered and the secondary combustion air is supplemented, so that the influence on combustion can be kept to a minimum.
[0013]
Next, the internal combustion type swirling carbonization furnace 32 of the present embodiment, that is, the dry sludge pyrolysis apparatus will be described. As shown in FIGS. 2 and 3, for example, a cyclone-shaped cylindrical vertical carbonization furnace main body 42 is connected to a raw material input port 44 into which dried air sludge is supplied in the tangential direction of the cross section of the furnace main body. Has been. A burner 34 is connected in the tangential direction of the cross section of the furnace body. The burner 34 is located above the raw material inlet 44 so that the dried sludge does not directly hit the burner flame. The raw material charging port 44 into which the dried sludge is charged and the burner 34 into which the burner flame is injected are both attached in the tangential direction of the same swirling flow that occurs in the furnace body. The dried sludge introduced together with air from the raw material inlet 44 rotates in the furnace body 42 heated by the burner 34 while forming a swirling flow, and is carbonized and pyrolyzed. Pyrolysis gas is produced in a state of oxygen deficiency, and organic components are contained in the gas without burning. The pyrolysis gas is separated from the carbide and then discharged from the pyrolysis gas discharge pipe 46 at the top of the furnace body 42. The carbides fall and accumulate due to the inertia dust collection effect and are discharged from a carbide discharger (rotary valve or the like) 36 at the bottom of the furnace body 42. In addition, in FIG. 3 which is the schematic diagram which looked at the carbonization furnace main body 42 from the top, an example of the positional relationship between the raw material charging port 44 and the burner 34 is shown, but this positional relationship is a tangential direction that forms a swirling flow in the same direction. As long as it is, it is not limited at all.
[0014]
FIG. 4 shows an apparatus for carrying out a method for operating a waste incinerator using dry sludge according to a second embodiment of the present invention. In the present embodiment, dry sludge is introduced together with air into the secondary combustion section 12 of the stoker type incinerator 10. As shown in FIG. 4, the collected and transported garbage is stored in a hopper 18 and cut out and put into a stoker-type garbage incinerator 10 by a garbage incineration raw material charging machine (pusher or the like) 20. As described above, it is impossible to make the waste introduced into the furnace constant with calories, and combustion fluctuations in the incinerator are unavoidable.
The dry sludge transported from the sewage treatment plant is temporarily stored in the dry sludge silo 26, then quantitatively cut out by a dry sludge cutting machine (rotary valve or the like) 28, and pneumatically transported by a dry sludge air blower 30 to be stokered. It is thrown into the secondary combustion section 12 of the type waste incinerator 10.
[0015]
The dried sludge introduced into the secondary combustion section 12 is combusted in the secondary combustion section 12 together with the secondary combustion air blown from the secondary combustion air nozzle 14 to raise the gas temperature, and the combustion exhaust gas is completely combusted. In the present invention, dry sludge is used instead of LNG or the like in the conventional dioxin suppression method, and the same effect is observed in suppressing the generation of dioxins. In addition, the system is suitable for co-firing sewage sludge.
Other configurations and operations are the same as those in the first embodiment.
[0016]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) The carbonization pyrolysis gas of dry sludge is used as a fuel instead of secondary combustion air and fuel such as LNG in the stirring and heating of the secondary combustion part, which is performed as a countermeasure against dioxins in waste incinerators such as stoker furnaces. By using soot, generation of dioxins can be suppressed, and at the same time, sewage sludge that has not been accepted can be accepted, and sewage sludge can be co-fired.
(2) secondary combustion unit after the furnace outlet temperature, by a signal indicative of combustion such gas CO concentration, by controlling the like input of carbonization pyrolysis gas drying sludge, possible small incineration load variations become. This not only reduces the generation of unburned harmful gas due to a decrease in the air ratio, but also contributes to reducing the deterioration of the furnace refractory material.
(3) The dry sludge pyrolysis apparatus of the present invention is an internal combustion swirling carbonization furnace using dry sludge as a raw material, suitable for obtaining pyrolysis gas, and excellent in low cost, simple structure, and operability. Equipment.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory view showing an apparatus for carrying out a method for operating a waste incinerator using dry sludge according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration explanatory view showing a dry sludge pyrolysis apparatus in a first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing an example of a schematic configuration of the apparatus shown in FIG. 2 as viewed from above.
FIG. 4 is a schematic configuration explanatory view showing an apparatus for carrying out a waste incinerator operating method using dry sludge according to a second embodiment of the present invention.
FIG. 5 is a schematic configuration explanatory view showing an example of a conventional waste incinerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Stoker type waste incinerator 12 Secondary combustion part 14 Secondary combustion air nozzle 16 Secondary combustion part LNG input nozzle 18 Hopper 20 Waste incineration raw material input machine 22 Furnace outlet thermometer 24 Furnace outlet CO concentration meter 26 Dry sludge silo 28 Dry sludge cutting machine 30 Dry sludge air blower 32 Internal combustion type swirling carbonization furnace 34 Carbonization burner 36 Carbide discharge machine 38 Carbonization pyrolysis gas input pipe 40 Pyrolysis gas injection port 42 Carbonization furnace main body 44 Material input port 46 Pyrolysis gas discharge pipe

Claims (1)

廃棄物焼却炉の2次燃焼部に乾燥汚泥を原料として、搬送用空気とバーナーの火炎を円筒縦型燃焼炉の接線方向から導入し、上部からは熱分解ガスを排出し、下部からは炭化物を排出する旋回式熱分解炉で得た熱分解ガスを空気とともに導入し、焼却炉で発生した燃焼排ガスと混合してガスを攪拌するとともに、熱分解ガス中の有機分が燃焼する温度上昇により燃焼排ガスを完全燃焼させ、廃棄物焼却炉の排ガス温度及び/又は排ガスCO濃度により、乾燥汚泥熱分解ガスの焼却炉の2次燃焼部への投入量を制御し、廃棄物焼却炉の負荷変動を抑制することを特徴とする乾燥汚泥を利用する廃棄物焼却炉の運転方法 In the secondary combustion section of the waste incinerator, dry sludge is used as a raw material , conveying air and burner flame are introduced from the tangential direction of the cylindrical vertical combustion furnace, pyrolysis gas is discharged from the upper part, and carbide from the lower part. The pyrolysis gas obtained in the swirling pyrolysis furnace is discharged with air and mixed with the combustion exhaust gas generated in the incinerator to stir the gas, and the temperature rises when the organic components in the pyrolysis gas burn The combustion exhaust gas is completely combusted , the amount of dry sludge pyrolysis gas input to the secondary combustion part of the incinerator is controlled by the exhaust gas temperature and / or exhaust gas CO concentration of the waste incinerator, and the load fluctuation of the waste incinerator the method of operating waste incinerator utilizing dry sludge characterized that you suppressed.
JP2002244638A 2002-08-26 2002-08-26 Operation method of waste incinerator using dry sludge Expired - Lifetime JP3789872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244638A JP3789872B2 (en) 2002-08-26 2002-08-26 Operation method of waste incinerator using dry sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244638A JP3789872B2 (en) 2002-08-26 2002-08-26 Operation method of waste incinerator using dry sludge

Publications (2)

Publication Number Publication Date
JP2004085027A JP2004085027A (en) 2004-03-18
JP3789872B2 true JP3789872B2 (en) 2006-06-28

Family

ID=32053052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244638A Expired - Lifetime JP3789872B2 (en) 2002-08-26 2002-08-26 Operation method of waste incinerator using dry sludge

Country Status (1)

Country Link
JP (1) JP3789872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178814B2 (en) * 2018-07-11 2022-11-28 日鉄エンジニアリング株式会社 Stoker type waste power generation system and method for stabilizing waste power generation amount

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038966A (en) * 1973-08-11 1975-04-10
JPS5682316A (en) * 1979-12-11 1981-07-06 Kubota Ltd Controlling method of combustion state in municipal waste incinerator
JPS5795517A (en) * 1980-12-05 1982-06-14 Ebara Infilco Co Ltd Incinerator
JPH02157509A (en) * 1988-12-09 1990-06-18 Kawasaki Heavy Ind Ltd Incinerating and melting process for sludge and incinerating and melting furnace thereof
JPH05132306A (en) * 1991-02-19 1993-05-28 Oomura Concrete Kk Method for producing active carbon by high-temperature gas flow, device therefor and active carbon
JP3689792B2 (en) * 1994-10-21 2005-08-31 株式会社大川原製作所 Carbonization and incineration treatment method and apparatus for sludge etc.
JPH08170815A (en) * 1994-12-15 1996-07-02 Kubota Corp Equipment for melting treatment of wastes
JP3868206B2 (en) * 2000-12-08 2007-01-17 三菱重工業株式会社 Waste gasification combustion apparatus and combustion method

Also Published As

Publication number Publication date
JP2004085027A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
EP1030110B1 (en) Incinerator for removing noxious substances
JP5611418B2 (en) Combustion control method for gasification melting system and system
KR100917928B1 (en) Multiple incinerator plant consist of duplex hopper and combustion
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JPH11294740A (en) Exhaust gas complete combustion control method and apparatus
JP2895469B1 (en) Method and apparatus for reducing dioxins in a melting furnace
JP4933134B2 (en) Vertical waste incinerator for industrial waste incineration
JP3789872B2 (en) Operation method of waste incinerator using dry sludge
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
CA1290988C (en) Method of combustion for fluidized bed incinerators
KR100339484B1 (en) Rotary kiln incineration system
JP2004239509A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP2001012716A (en) Combustion control system for dry gasifying combustion apparatus
JP3525078B2 (en) Separate incineration ash melting equipment and its operation control method
KR100267146B1 (en) Combustion controlling method and dioxin removal method of stoker incinerator
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JPH03125808A (en) Fluidized-bed type refuse incinerator
JP3598882B2 (en) Two-stream waste incinerator and its operation method
CN106642142A (en) Method and device for reducing emission load of unburned materials and waste incineration treating system
KR100300440B1 (en) Sludge incineration facility
JP2004169955A (en) Waste incinerator and method of operating the same
JP2004271039A (en) Thermal decomposition gasifying melting system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8