JPH03125808A - Fluidized-bed type refuse incinerator - Google Patents

Fluidized-bed type refuse incinerator

Info

Publication number
JPH03125808A
JPH03125808A JP26254889A JP26254889A JPH03125808A JP H03125808 A JPH03125808 A JP H03125808A JP 26254889 A JP26254889 A JP 26254889A JP 26254889 A JP26254889 A JP 26254889A JP H03125808 A JPH03125808 A JP H03125808A
Authority
JP
Japan
Prior art keywords
chamber
combustion
eccentric
section
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26254889A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamamoto
山本 芳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26254889A priority Critical patent/JPH03125808A/en
Publication of JPH03125808A publication Critical patent/JPH03125808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To make it possible to reduce the generation of harmful matters a great deal by providing a refuse charging port at a position that is offset from an eccentric throttling section at the upper section of the furnace body and providing between the eccentric throttling section and a gas cooling chamber a tertiary air supply nozzle and a burner which assist in combustion and at the same time placing a recombustion chamber with an eccentric throttling section on the connecting side with the gas cooling chamber. CONSTITUTION:The upper section of a furnace body 1 that is out of an eccentric throttle section 1a is provided with a dust chute 6 that opens to the central section of a sand layer section 4. The refuse, as it is charged and spread widely and crushed to pieces, is thermally decomposed and burned. The gases that are generated go to a combustion chamber 2 and the gases that are not burned are mixed with secondary air and burn, and go through the eccentric throttle section 1a in the upper section of the combustion chamber 2 and their upwardly directed flow is changed and they flow into a recombustion chamber 9 provided with an eccentric throttle section on the side of the connection with a gas cooling chamber 8 as they are being mixed. The gases that are contained in the secondary combustion gases and have not burned are reburned by the tertiary air that is blown into the recombustion chamber 9 from a tertiary air blowing-in nozzle 9n. And the combustion is always kept in a high temperature and stable condition, and the exhaust gases such as unburned carbon, carbon monoxide, diozine, etc. are completely burned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特にプラスチック類を多く含む、いわゆる高
質ごみといわれている被焼却ごみ(以下、ごみという)
を良好に焼却させて排ガス中に含まれる一酸化炭素やダ
イオキシン等の有害物質の排出量を減少させ得るように
した流動床式ごみ焼却炉に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is particularly applicable to incinerated waste (hereinafter referred to as garbage), which is so-called high-quality waste that contains a large amount of plastics.
The present invention relates to a fluidized bed waste incinerator that can reduce the amount of harmful substances contained in exhaust gas, such as carbon monoxide and dioxins, by effectively incinerating waste gas.

〔従来の技術〕[Conventional technology]

周知のように、都市ごみ等を焼却するごみ焼却設備とし
ては、例えば流動床式ごみ焼却炉(以下、単にごみ焼t
JJ炉という)を備えたごみ焼却設備が良く使用されて
いる。
As is well known, examples of waste incineration equipment for incinerating municipal waste include fluidized bed waste incinerators (hereinafter simply referred to as waste incinerators).
Garbage incineration facilities equipped with JJ furnaces are often used.

上記したようなごみ焼却炉わ)の例を、その模式的構成
説明図の第5図を参照しながら以下に説明すると、同図
に示す符号(1)は、竪形の円胴状体の上部が偏心、か
つ絞られてなる偏心絞部(la)を有する炉本体であっ
て、この炉本体(1)の側面にはごみを投入するごみ投
入口(6)が設けられ、内部の下部には分散板(3)が
設けられると共に、その上には高温の砂で形成されてな
る流動床、いわゆるごみを焼却する砂層部(4)が形成
される他、その上方部位には、砂層部(4)にて発生し
た可燃ガスを燃焼させるための燃焼室(2)が設けられ
ている。
An example of the above-mentioned garbage incinerator will be explained below with reference to FIG. 5, which is a schematic diagram for explaining the configuration. The furnace body has an eccentric throttle part (la) which is eccentric and constricted, and a garbage inlet (6) for inputting garbage is provided on the side of the furnace body (1), and a garbage inlet (6) is provided in the lower part of the inside. is provided with a dispersion plate (3), on which a fluidized bed made of high-temperature sand, so-called a sand layer part (4) for incinerating waste, is formed, and above it, a sand layer part (4) is formed. A combustion chamber (2) is provided for burning the combustible gas generated in step (4).

さらに、炉本体(1)の偏心絞部(1a)の上部には、
外方から冷却水噴霧ノズル(8n)を介して噴霧される
冷却水により燃焼排ガスを所定の温度に冷却するガス冷
却室(8)が設けられており、このガス冷却室(8)の
排ガス出口(8a)側から出た排ガスは、開示省略して
いるが、空気予熱器、集塵器、誘引送風機を順次に介し
て煙突から大気中に排出されるようになっている。
Furthermore, in the upper part of the eccentric constriction part (1a) of the furnace body (1),
A gas cooling chamber (8) is provided in which the combustion exhaust gas is cooled to a predetermined temperature by cooling water sprayed from the outside through a cooling water spray nozzle (8n), and an exhaust gas outlet of this gas cooling chamber (8) is provided. Although not disclosed, the exhaust gas emitted from the side (8a) is discharged into the atmosphere from the chimney through an air preheater, a dust collector, and an induced fan in sequence.

一方、外部に設けた一次空気押込送風1(図示省略)か
ら炉本体(1)の底部と分散板(3)との間に設けた風
箱(7)に一次空気供給口(7a)から一次空気が供給
され、この一次空気は分散板(3)に設けられた複数の
散気ノズル(3n)を介して砂層部(4)へ吹込まれる
ようになっており、また二次空気押込送風機(図示省略
)から二次空気が、前記炉本体(1)内の燃焼室(2)
の円胴部を貫通する二次空気吹込ノズル(21)を介し
てこの燃焼室(2)に吹込まれるようになっている。
On the other hand, a primary air supply port (7a) is sent to a wind box (7) provided between the bottom of the furnace body (1) and the distribution plate (3) from a primary air forced air blower 1 (not shown) provided outside. Air is supplied, and this primary air is blown into the sand layer section (4) through a plurality of aeration nozzles (3n) provided on the dispersion plate (3), and a secondary air forced blower is also used. Secondary air (not shown) flows into the combustion chamber (2) in the furnace body (1).
The secondary air is blown into this combustion chamber (2) through a secondary air blowing nozzle (21) that penetrates the cylindrical portion of the cylinder.

なお、分散板(3)の中心位置からこの炉本体(1)の
下方に突出しているものは、ごみに混入している不燃物
をこの炉外に排出するための不燃物排出口(5)である
What projects downward from the center of the dispersion plate (3) into the furnace body (1) is a non-combustible material discharge port (5) for discharging non-combustible materials mixed in the waste out of the furnace. It is.

以下、上記した構成になるごみ焼却炉軸)の作用態様を
説明する。
Hereinafter, the working mode of the garbage incinerator shaft having the above-mentioned structure will be explained.

一次空気押込送風機から一次空気供給口(7a)を介し
て風箱(7)内に供給された一次空気が散気ノズル(3
n)を通して吹込まれる。砂層はこのこのノズルの口径
を調整し、炉の中央部の空気量を多くすることにより、
砂層部〔4)の砂を中央部からと方に吹上げ、さらに炉
本体(1)の内壁方向に分散させ、砂層下層部が分散板
(3)の傾斜に沿って再び中央に集まるよう流動しなが
ら循環する、所謂対流流動(同図に示す矢印方向)をし
、かつ650〜800′Cの温度範囲にて保持されてい
る砂層部(4)に、給塵装置(図示省略)によりごみ投
入口(6)を介してごみが投入されると、投入されたご
みは砂層部(4)を構成する砂の対流流動と熱とによっ
て分散・解砕されながら熱分解及び燃焼されると共に、
多量の未燃ガスを含む燃焼ガスを発生する。
The primary air supplied from the primary air forced blower into the wind box (7) through the primary air supply port (7a) is supplied to the diffuser nozzle (3).
n). The sand layer is created by adjusting the diameter of this nozzle and increasing the amount of air in the center of the furnace.
The sand in the sand layer [4] is blown up from the center and further dispersed toward the inner wall of the furnace body (1), and the lower sand layer flows along the slope of the dispersion plate (3) so that it gathers in the center again. A dust supply device (not shown) collects dust by a dust supply device (not shown) into the sand layer (4), which circulates through so-called convection flow (in the direction of the arrow shown in the figure) and is maintained at a temperature range of 650 to 800'C. When garbage is input through the input port (6), the input garbage is dispersed and crushed by the convection flow and heat of the sand constituting the sand layer (4), and is thermally decomposed and burned.
Generates combustion gas containing a large amount of unburned gas.

一方、投入されたごみに混入している不燃物は不燃物排
出口(5)から前記砂層部(4)の砂の一部と共にこの
炉本体(1)の下方外方に排出される。
On the other hand, the non-combustibles mixed in the thrown garbage are discharged from the non-combustibles discharge port (5) to the bottom and outside of the furnace body (1) along with a portion of the sand in the sand layer (4).

そして、燃焼ガスのうちの未燃ガスは、上方の燃焼室(
2)に2〜5秒間滞留し、ここにおいて二次空気吹込ノ
ズル(2n)から吹込まれる二次空気によって完全燃焼
が図られることとなる。
The unburned gas in the combustion gas is stored in the upper combustion chamber (
2) for 2 to 5 seconds, at which time complete combustion is achieved by the secondary air blown in from the secondary air blowing nozzle (2n).

次いで、燃焼室(2)から炉本体(1)の上部の偏心絞
部(1a)をとおってガス冷却室(8)に到達した燃焼
排ガスはこのガス冷却室(8)内において冷却水噴霧ノ
ズル(8n)から噴霧される冷却水の噴霧の氷粒の蒸発
により所定の温度に冷却され、前記空気予熱器、集塵器
、誘引送風機を順次介して煙突から大気中に排出されて
いる。
Next, the combustion exhaust gas that reaches the gas cooling chamber (8) from the combustion chamber (2) through the eccentric constriction (1a) in the upper part of the furnace body (1) is passed through the cooling water spray nozzle in this gas cooling chamber (8). The cooling water sprayed from (8n) is cooled to a predetermined temperature by the evaporation of ice particles, and is discharged into the atmosphere from the chimney through the air preheater, dust collector, and induced fan in sequence.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記構成になるごみ焼却炉はそれなりに有用であるが、
ごみの種類に基づくその焼却能力の観点からすると、未
だに以下に説明するような問題点を持っている。
Although the garbage incinerator with the above configuration is useful in its own way,
From the perspective of its incineration capacity based on the type of waste, it still has problems as explained below.

Jjllち、被焼却物としてのごみは種々の物質の混合
物であり、季節や収集地区等によっても大きな変動があ
り、燃焼発熱量の多少によって低質ごみ、基卓ごみ、高
質ごみの3種類のごみ質を設定して炉の設計計画が行わ
れているが、近年ではごみ中へのプラスチック類の混入
率が多くなり高質ごみとして3000〜4000)[c
al/kgという高カロリーごみも多くなっている。
Garbage to be incinerated is a mixture of various substances, and it varies greatly depending on the season and collection area.It is divided into three types depending on the amount of heat generated by combustion: low-quality garbage, basic garbage, and high-quality garbage. Furnace design plans are carried out by setting waste quality, but in recent years the proportion of plastics mixed into waste has increased, and 3,000 to 4,000 plastics are considered high-quality waste.
The amount of high-calorie waste (al/kg) is also increasing.

従って、プラスチック類等の燃焼によって発生するダイ
オキシン等の有害物質をはじめ、ハイドロカーボンやC
oガス等を確実に分解させるためには、排ガスを常に高
温度に保持し続けなければならないが、ガス冷却室から
の影響による燃焼室内の排ガス温度の温度低下を防ぐた
め、これら燃焼室とガス冷却室との接続部を偏心させ、
かつ絞った構成としているものの、定常運転時において
もごみ供給量やごみ発熱量の変動、砂層温度、二次空気
看や冷却水の噴it等から直接的に影響を受け、燃焼室
の温度が750〜950°Cの温度範囲で大きく変動し
てしまうのに加えて、未燃ガスを1つ大きな燃焼室で燃
焼させる構成であるため、この燃焼室内におけるガスの
偏流、二次空気の混合1Ii11合の不均一性等の点か
ら、−酸化炭素やダイオキシンを確実に燃焼させて分解
することが難しく、−酸化炭素を始めダイオキシン、煤
等の未燃カーボン等が燃焼できずにそのままごみ焼却炉
外へ多量に放出される場合があり、大気汚染の一因とな
っていた。
Therefore, harmful substances such as dioxins, which are generated by the combustion of plastics, etc., as well as hydrocarbons and carbon
In order to reliably decompose o gas, etc., it is necessary to maintain the exhaust gas at a high temperature at all times, but in order to prevent the temperature of the exhaust gas in the combustion chamber from decreasing due to the influence of the gas cooling chamber, it is necessary to The connection part with the cooling chamber is made eccentric,
Even during steady operation, the temperature of the combustion chamber is directly affected by fluctuations in the amount of waste supplied, waste calorific value, sand layer temperature, secondary air pressure, cooling water injection, etc. In addition to the large temperature fluctuations in the 750 to 950°C temperature range, the structure is such that unburned gas is combusted in one large combustion chamber, resulting in uneven gas flow and secondary air mixing within this combustion chamber. - It is difficult to reliably burn and decompose carbon oxides and dioxins due to the non-uniformity of the mixture. Large amounts were sometimes released into the environment, contributing to air pollution.

また、ダイオキシン等の発生は、特にごみ焼却炉の運転
立上がり時や停止時の排ガス温度が低く、かつ不安定な
燃焼時期により多くなる。
Furthermore, the generation of dioxins and the like increases due to the low exhaust gas temperature and unstable combustion timing, especially when the garbage incinerator starts up or stops operating.

従って、本発明はごみ焼却炉の燃焼室に続く再燃焼室で
の燃焼温度を高め、かつ連続して安定させることにより
、プラスチックのようなKMカロリーごみの焼却におい
てもごみ焼却炉の運転立上がり・停止も含め一酸化炭素
等の未燃ガス、煤等の未燃カーボン、ダイオキシン等の
有害物質の発生量を大幅に削減することのできるごみ焼
却炉の提供を目的とする。
Therefore, the present invention increases the combustion temperature in the re-combustion chamber following the combustion chamber of the waste incinerator and stabilizes it continuously. The objective is to provide a garbage incinerator that can significantly reduce the amount of unburned gas such as carbon monoxide, unburned carbon such as soot, and harmful substances such as dioxins, even when the incinerator is shut down.

〔課Vを解決するための手段〕[Means for solving Section V]

本発明は、ごみ焼却炉の燃焼室における未燃ガスの燃焼
温度とそれを継続して安定させることに着目して上記し
た課題を解決したものであって、従って、本発明に係る
ごみ焼却炉の構成は、炉本体の下部のmNから散気ノズ
ルを通して供給される一次空気により該炉本体に設けら
れたごみ投入口から投入される被焼却ごみを熱分解、か
つ一次燃焼させる流動床の上方位置の炉本体の内側に、
咳炉本体を貫通する複数の二次空気吹込ノズルが開口す
る燃焼室を備えると共に、該炉本体の上部の偏心綾部の
上方に燃焼排ガスを所定の温度に冷却するガス冷却室を
備えてなるごみ焼却炉において、前記炉本体の上部の偏
心綾部から外れた位置に流動床の中心に向かって開口す
るごみ投入口を設け、該炉本体の上部の偏心綾部とガス
冷却室との間に、外部から内部に三次空気を吹込む三次
空気供給ノズルと助燃用バーナを有すると共に、前記ガ
ス冷却室との接続側に偏心綾部を有する再燃焼室を介装
してなることを特徴とする。
The present invention solves the above-mentioned problems by focusing on the combustion temperature of unburned gas in the combustion chamber of a garbage incinerator and continuously stabilizing it. The structure is above a fluidized bed in which the waste to be incinerated is thermally decomposed and primarily combusted by primary air supplied from mN at the bottom of the furnace body through a diffuser nozzle. Inside the furnace body in position,
Garbage comprising a combustion chamber into which a plurality of secondary air blowing nozzles penetrating the cough oven body are opened, and a gas cooling chamber above the eccentric twill at the top of the oven body for cooling the combustion exhaust gas to a predetermined temperature. In the incinerator, a waste inlet opening toward the center of the fluidized bed is provided at a position away from the eccentric traverse section at the top of the furnace body, and an external It is characterized by having a tertiary air supply nozzle for blowing tertiary air into the interior thereof and an auxiliary combustion burner, and a re-combustion chamber having an eccentric hem on the side connected to the gas cooling chamber.

〔作用] 本発明になるごみ焼却炉によれば、流動床において砂の
流動と熱により攪拌、解砕されながら熱分解及び燃焼さ
れて発生したガスは燃焼室において燃焼され、その燃焼
ガスは再燃焼室に向かって上昇し、炉本体の偏心綾部で
上向流方向が変更され、かつ混合されながら再燃焼室に
流入すると共に、この再燃焼室内において燃焼ガスに含
まれている未燃ガスは三次空気吹込ノズルから吹込まれ
る三次空気によって再燃焼される。
[Function] According to the waste incinerator of the present invention, the gas generated by thermal decomposition and combustion while being stirred and crushed by sand flow and heat in the fluidized bed is combusted in the combustion chamber, and the combustion gas is regenerated. It rises toward the combustion chamber, its upward flow direction is changed by the eccentric traverse of the furnace body, and it flows into the reburning chamber while being mixed. Re-combustion is carried out by tertiary air blown in from the tertiary air blowing nozzle.

そして、燃焼室とガス冷却室との間にそれぞれ偏心綾部
を設けて再燃焼室が介装されているので、他からの影響
を防止できこの燃焼室内の温度はより高温に維持され続
ける。
Since the re-combustion chamber is interposed between the combustion chamber and the gas cooling chamber by providing an eccentric cross section between the combustion chamber and the gas cooling chamber, the temperature inside the combustion chamber can be maintained at a higher temperature, thereby preventing influences from other components.

また、ごみ焼却炉の運転立上がり時および停止時にも再
燃焼室に設けた助燃バーナを使用することにより、運転
の当初から終了まで再燃焼室内を確実に高温度に保持す
ることができる。
Furthermore, by using the auxiliary combustion burner provided in the afterburning chamber when starting up and stopping the operation of the waste incinerator, the inside temperature of the afterburning chamber can be reliably maintained at a high temperature from the beginning to the end of the operation.

そして、再燃焼室から出た排ガスは、偏心綾部により上
向流方向が変更されて従来のごみ焼却炉における排ガス
と同様にガス冷却室内にて冷却された後、大気中に排出
されることとなる。
The upward flow direction of the exhaust gas discharged from the re-combustion chamber is changed by the eccentric cross section, and the exhaust gas is cooled in the gas cooling chamber in the same way as the exhaust gas in a conventional waste incinerator, and then discharged into the atmosphere. Become.

〔実施例〕〔Example〕

本発明の実施例を、第1し1乃至第4図すを参瞭しなが
ら説明する。
Embodiments of the present invention will be described with reference to Figures 1 to 4.

第土尖施贋 この第1実施例を、ごみ焼却炉の模式的構成説明図の第
1図に基づいて、従来と同一のものは同一符号を以て以
下に説明する。
This first embodiment will be described below with reference to FIG. 1, which is a schematic structural explanatory diagram of a waste incinerator, and the same parts as the conventional ones are designated by the same reference numerals.

即ち、第1図に示す符号(1)は上下方向の途中が偏心
し、かつその偏心が絞られた偏心綾部(1a)を存する
竪形の炉本体で、この炉本体(1)の底部付近には一次
空気がとおる複数の散気ノズル(3n)を有してなる分
散板(3)が、またその上には投入されたごみを受は入
れて燃焼させる砂層部(4)が、さらに砂層部(4)の
上方であって、・かつ前記偏心綾部(1a)よりも下方
の内部には、外周回りに周設された複数の二次空気吹込
ノズル(2n)からこの内部に吹込まれる二次空気によ
り可燃ガスを燃焼させる燃焼室(2)が形成されている
。そして、偏心絞部(1a)から外れた炉本体(+)の
上部には砂層部(4)の中心部に向かって開口するごみ
投入口(6)を配設した。
That is, the reference numeral (1) shown in Fig. 1 is a vertical furnace body that is eccentric in the vertical direction and has an eccentric tread (1a) whose eccentricity is narrowed, and near the bottom of this furnace body (1). There is a dispersion plate (3) having a plurality of aeration nozzles (3n) through which primary air passes, and a sand layer section (4) on which the thrown garbage is received and burned. In the interior above the sand layer section (4) and below the eccentric twill section (1a), air is blown into the interior from a plurality of secondary air blowing nozzles (2n) provided around the outer periphery. A combustion chamber (2) is formed in which combustible gas is combusted by secondary air. A waste inlet (6) opening toward the center of the sand layer part (4) was provided at the upper part of the furnace body (+) that was removed from the eccentric constriction part (1a).

一方、上記偏心絞部(1a)の上部に胴部の外周囲りに
所定間隔で周設された複数の三次空気吹込ノズル(9n
)と助燃バーナ0■を備え、上部に偏心絞部(9a)を
備えてなる再燃焼室(9)を設けると共に、この再燃焼
室(9)の偏心絞部(9a)の上に従来と同構成になる
冷却水噴霧ノズル(8n)を備えてなるガス冷却室(8
)を設けた。
On the other hand, a plurality of tertiary air blowing nozzles (9n
) and an auxiliary burner 0■, and an afterburning chamber (9) having an eccentric throttle part (9a) on the upper part, and a conventional reburning chamber (9) on the eccentric throttle part (9a) of the afterburning chamber (9). A gas cooling chamber (8n) equipped with a cooling water spray nozzle (8n) having the same configuration.
) was established.

上記炉本体(1)の上部並びにガス冷却室(8)と再燃
焼室(9)との偏心の程度は、同図に示すように、砂層
部(4)付近の内壁と炉本体(1)の偏心部位の内壁と
再燃焼室(9)の偏心部位の内壁とを直線(xlにて連
ね得る程度とした。
As shown in the figure, the degree of eccentricity between the upper part of the furnace body (1), the gas cooling chamber (8), and the reburning chamber (9) is as follows: The inner wall of the eccentric portion of the reburning chamber (9) was set to such an extent that the inner wall of the eccentric portion of the reburning chamber (9) could be connected in a straight line (xl).

これにより、砂層部(4)および燃焼室(2)の輻射熱
をこの燃焼室(2)の上向壁と再燃焼室(9)の上向壁
とによって反射・吸収し得ることとなり再燃焼室〔9)
内の温度を高温に保持することができる。
As a result, the radiant heat of the sand layer part (4) and the combustion chamber (2) can be reflected and absorbed by the upward wall of the combustion chamber (2) and the upward wall of the afterburning chamber (9), so that the afterburning chamber [9]
The internal temperature can be maintained at a high temperature.

一方、ガス冷却室(8)との接続部の偏心絞部(9a)
は偏心させ、このX線より外側へ出すことにより、この
ガス冷却室(8)が再燃焼室(9)および燃焼室(2)
に悪影響を与えない形状となっている。
On the other hand, the eccentric constriction part (9a) at the connection part with the gas cooling chamber (8)
By making it eccentric and directing it to the outside of this X-ray, this gas cooling chamber (8) becomes the afterburning chamber (9) and the combustion chamber (2).
The shape is such that it does not have a negative impact on the

そして、上記ガス冷却室(8)の排ガス出口(8a)側
は、図示省略しているが、従来の場合と同様に空気予熱
器、集塵器、誘引送風機を順次に介して煙突に連通して
なることは勿論である。
Although not shown, the exhaust gas outlet (8a) side of the gas cooling chamber (8) is connected to the chimney through an air preheater, a dust collector, and an induced blower in sequence, as in the conventional case. Of course it will be.

さらに、炉本体(1)の底部と分散板(3)との間の風
箱(7)には、図示省略しているが、一次空気押込送風
機から一次空気供給ダクトが連通し、また二次空気吹込
ノズル(2n)及び三次空気吹込ノズル(9n)のそれ
ぞれには、図示省略しているが、空気押込送風機から空
気供給ダクトが連通ずる他、ガス冷却室(8)の冷却水
噴霧ノズル(8n)には冷却水供給装置から冷却水が供
給されるようになっている。
Furthermore, although not shown in the figure, a primary air supply duct is connected to the wind box (7) between the bottom of the furnace body (1) and the distribution plate (3), and the secondary air Although not shown, each of the air blowing nozzle (2n) and the tertiary air blowing nozzle (9n) is connected with an air supply duct from the forced air blower, and also has a cooling water spray nozzle (not shown) in the gas cooling chamber (8). 8n) is supplied with cooling water from a cooling water supply device.

なお、ごみ焼却炉(ハ)の側壁を貫通して設けられてい
る複数の棒状をしたものは、ごみ焼却炉(hlの内部の
温度を測定し、測定した温度に基づいてこのごみ焼却炉
(6)内の温度を所定の範囲に保持するための制御に用
いる温度計(S)である。
In addition, the plurality of rod-shaped rods that are installed through the side wall of the garbage incinerator (c) measure the temperature inside the garbage incinerator (hl), and the temperature inside the garbage incinerator (hl) is measured based on the measured temperature. 6) is a thermometer (S) used for control to maintain the temperature within a predetermined range.

以下、上記構成になるごみ焼却炉(ハ)の作用態様を説
明すると、給塵袋W(図示省略)よりごみ投入口(6)
にごみが投入されると、投入されたこのごみは砂層部(
4)の中心に向かって落下し、この砂層部(4)の砂の
対流流動により効果的に広く分散されると共に解砕され
ながら、砂の熱により熱分解かつ燃焼される。
The operation mode of the garbage incinerator (c) with the above configuration will be explained below.
When garbage is thrown into the sand layer (
4), and is effectively and widely dispersed and crushed by the convection flow of the sand in this sand layer (4), while being thermally decomposed and burned by the heat of the sand.

このようにして発生したガスは燃焼室(2)に至り、ガ
スのうちの未燃ガスはここにおいて二次空気吹込ノズル
(2n)から吹込まれる二次空気と混合燃焼される。次
いで、二次燃焼ガスは燃焼室(2〕の上部の偏心絞部(
1a)を通って上向流が変更されると共に、混合されな
がら再燃焼室(9)に流入する。
The gas thus generated reaches the combustion chamber (2), where the unburned gas among the gases is mixed with secondary air blown from the secondary air blowing nozzle (2n) and combusted. Next, the secondary combustion gas flows through the eccentric throttle part (2) at the top of the combustion chamber (2).
The upward flow is modified through 1a) and flows into the afterburning chamber (9) with mixing.

この二次燃焼ガスが燃焼室(2)内の温度変動の程度、
ガスの偏流の程度、二次空気との混合の不均一の程度等
の原因でその燃焼が不完全であったとしても、二次燃焼
ガスに含まれている未燃ガスは、三次空気吹込ノズル(
9n)から再燃焼室(9)内に吹込まれる三次空気によ
って再燃焼される。
This secondary combustion gas causes the degree of temperature fluctuation in the combustion chamber (2),
Even if the combustion is incomplete due to the degree of uneven flow of the gas or the degree of non-uniform mixing with the secondary air, the unburned gas contained in the secondary combustion gas will be transferred to the tertiary air blowing nozzle. (
9n) into the reburning chamber (9).

また、ごみ焼却炉(h)の運転立上がり時や停止時の排
ガス温度が低く安定しない時期においても、再燃焼室(
9)内に設けた助燃バーナOIを使用することにより、
この再燃焼室(9)内をその他の燃焼室(2)の状況に
関係なく、常に高温で安定した状態に保ことかでき、三
次空気の吹込みと合わせて排ガスを完全に燃焼させるこ
とができる。
In addition, even when the exhaust gas temperature is low and unstable when the garbage incinerator (h) starts up or stops, the afterburning chamber (
9) By using the auxiliary combustion burner OI installed in the
Regardless of the situation in the other combustion chambers (2), the inside of this re-combustion chamber (9) can always be maintained at a high temperature and in a stable state, and together with the injection of tertiary air, the exhaust gas can be completely combusted. can.

このように、砂層部(4)においてごみの熱分解と一次
燃焼とにより発生したガスは燃焼室(2)と再燃焼室(
9)とにおいてそれぞれ燃焼されるため、未燃カーボン
をはじめ一酸化炭素やダイオキシン等の有害物質をごみ
焼却炉(5)の運転期間においてより確実に燃焼させる
ことができるようになった。
In this way, the gas generated by the thermal decomposition and primary combustion of garbage in the sand layer part (4) is transferred to the combustion chamber (2) and the afterburning chamber (
9), so that harmful substances such as unburned carbon, carbon monoxide, and dioxins can be more reliably combusted during the operation period of the garbage incinerator (5).

しかも、上記したように、砂層部(4)の砂の流動によ
りごみが素早く分散されるので、ごみの熱分解と一次燃
焼とが安定し、燃焼室(2)における未燃ガスの発生量
も減少するので、−酸化炭素やダイオキシン等の有害物
質の排出防止にとって極めて有効な手段となり得ること
が判った。
Moreover, as mentioned above, the waste is quickly dispersed by the sand flow in the sand layer (4), so the thermal decomposition and primary combustion of the waste are stabilized, and the amount of unburned gas generated in the combustion chamber (2) is also reduced. It has been found that this can be an extremely effective means for preventing the discharge of harmful substances such as carbon oxide and dioxins.

また、上記したように、砂層部(4)および燃焼室(2
)の上向壁と再燃焼室(9)の上向壁とによる輻射熱の
反射・吸収に伴って、再燃焼室(9)内の温度を、90
0〜1100℃の範囲の高温度に安定して確保し得るよ
うになり、−a化炭素の燃焼やダイオキシン等の分解に
対して極めて大きな効果を奏した。
Moreover, as mentioned above, the sand layer part (4) and the combustion chamber (2
) and the upper wall of the afterburning chamber (9) reflect and absorb radiant heat, so that the temperature inside the afterburning chamber (9) decreases to 90°C.
It became possible to stably maintain a high temperature in the range of 0 to 1100°C, and it was extremely effective for the combustion of -a carbon and the decomposition of dioxins and the like.

即ち、この燃焼室(2)に空気比0.4〜0.6の二次
空気を供給して2〜4秒のガス滞留時間を確保すると共
に、再燃焼室(9)に空気比0,2〜0゜4の三次空気
を供給して1〜2秒のガス滞留時間を確保することによ
り、再燃焼室(9)内の温度を900〜1100℃の範
囲内の温度に維持することができる。
That is, secondary air with an air ratio of 0.4 to 0.6 is supplied to this combustion chamber (2) to ensure a gas residence time of 2 to 4 seconds, and an air ratio of 0 to 0.6 is supplied to the reburning chamber (9). By supplying tertiary air at 2 to 0°C and ensuring a gas residence time of 1 to 2 seconds, the temperature inside the afterburning chamber (9) can be maintained within the range of 900 to 1100°C. can.

これにより、再燃焼室(9)から空気予熱器、集塵器、
誘引送風機を順次とおり煙突から大気中に排出される排
ガス中の一酸化炭素の含有率を50ppm以下(従来は
100〜500ppm)に抑制することができ、またダ
イオキシン等の有害物質の排出量も大幅に抑制すること
が可能になった。
This allows the air preheater, dust collector,
The content of carbon monoxide in the exhaust gas emitted into the atmosphere from the chimney can be suppressed to 50 ppm or less (previously 100 to 500 ppm) by sequentially installing induced blowers, and the amount of harmful substances such as dioxins emitted is also significantly reduced. It became possible to suppress the

11実施貫 この第2実施例を、その主要部を示す模式的構成説明図
の第21;2′laと、第2図aのll−ff線断面図
の第2図すに基づいて、第1実施例と構成上相違する点
についてだけ以下に説明する。
11. This second embodiment will be explained based on the schematic configuration explanatory diagram No. 21; Only the points that are different in structure from the first embodiment will be explained below.

即ち、断面が矩形状をした再燃焼室(9)の相対する内
側に燃料の噴射口が開口する一対の助燃バナ(IOa)
と(10b) とを設けてなる構成とした。
That is, a pair of auxiliary combustion burners (IOa) each having a fuel injection port opened on the opposing inner sides of a reburning chamber (9) having a rectangular cross section.
and (10b).

従って、再燃焼室(9)内をこの一対の助燃バーナ(1
0a)と(10b)により前面的にカバーし、燃焼室(
2)から上昇してきた二次燃焼ガスに含まれている未燃
ガスが、ごみ焼却炉の)の運転立上がり時や停止時の低
温不完全燃焼ガスであっても確実、かつより効果的に燃
焼させるので、その作用と効果とは第1実施例と同効で
ある。
Therefore, this pair of auxiliary burners (1
0a) and (10b) to cover the front, and the combustion chamber (
The unburned gas contained in the secondary combustion gas rising from 2) is reliably and more effectively combusted even if it is low-temperature incompletely combusted gas at the time of startup or shutdown of the garbage incinerator. Therefore, its operation and effect are the same as those of the first embodiment.

さらに、この実施例では特にダイオキシンを低減させる
ため再燃焼室(9)内を常に高温(1000℃)側に保
ち、所謂高温燃焼を行う場合、再燃焼室(9)内の助燃
バーナ00)によって通常運転時においても加熱し、再
燃焼室(9)内の温度を高温度に維持する上において効
果がある。
Furthermore, in this embodiment, in order to particularly reduce dioxins, the inside of the afterburning chamber (9) is always kept at a high temperature (1000°C), and when performing so-called high temperature combustion, the auxiliary burner 00) in the afterburning chamber (9) It is effective in heating even during normal operation and maintaining the temperature inside the reburning chamber (9) at a high temperature.

1ユ夫隻炎 この第3実施例を、その主要部を示す模式的構成説明図
の第3図に基づいて、第1実施例と構成上相違する点に
ついてだけ以下に説明する。
1. This third embodiment will be described below with reference to FIG. 3, which is a schematic diagram showing the main parts thereof, and only the points that are structurally different from the first embodiment.

即ち、再燃焼室(9)の入口側に、内側に頂角を向けた
三角断面を有する耐火物になるオリフィス(10を同段
すると共に、このオリフィスQl)の内側面に開口する
三次空気吹込ノズル(9n)を設けてなる構成とした。
That is, on the inlet side of the reburning chamber (9), there is a tertiary air blowing opening on the inner surface of the refractory orifice (10 on the same stage and this orifice Ql) having a triangular cross section with the apex facing inward. The configuration includes a nozzle (9n).

従って、燃焼室〔2)からこの入口を通って再燃焼室(
9)に流入するガスはこのオリフィス00によってその
上向流の方向が変更されることにより混合され、また三
次空気吹込ノズル(9n)から再燃焼室(9)内に吹込
まれる三次空気の勢いにより攪拌され、そしてガスは吹
込まれた三次空気と効果的に混合されるので、その作用
と効果とは第1実施例と同効である。
Therefore, from the combustion chamber [2] through this inlet, the afterburning chamber (
The gas flowing into 9) is mixed by changing its upward flow direction by this orifice 00, and the force of the tertiary air blown into the afterburning chamber (9) from the tertiary air blowing nozzle (9n) is increased. Since the gas is effectively mixed with the blown tertiary air, its action and effect are the same as in the first embodiment.

但し、このオリフィスODは、同図に示すように、再燃
焼室(9)の入口の内周全体にわたって連なった環状で
ある必要がなく、再燃焼室(9)の入口の内周の一部に
おいて突出する構成であっても良(、またオリフィス0
0の内周面側に開口する三次空気吹込ノズル(9n)が
なくても、ガス流はこのオリフィス01)によって混合
されるので、路間等のガス攪拌効果を期待することがで
きる。
However, as shown in the same figure, this orifice OD does not need to be annular, extending over the entire inner periphery of the inlet of the afterburning chamber (9); It is also possible to have a configuration in which the orifice protrudes from the
Even if there is no tertiary air blowing nozzle (9n) that opens on the inner peripheral surface side of the orifice 01), the gas flow is mixed by this orifice 01), so a gas agitation effect can be expected between the passages and the like.

工土尖五■ この第4実施例を、その主要部を示す模式的構成説明図
の第4図aと、第4図aの■矢視図の第4図すとに基づ
いて、第1実施例と構成上相違する点についてだけ以下
・に説明する。
Construction soil tip 5■ This fourth embodiment was constructed based on Figure 4a, which is a schematic explanatory drawing showing the main parts, and Figure 4, which is a view from the ■ arrow in Figure 4a. Only the points that are different in structure from the embodiment will be explained below.

即ち、再燃焼室(9)の外周回りから内部に開口する三
次空気吹込ノズル(9n)の開口付近の中心位置におい
て開口し、偏心綾部(la)から外れた炉本体(1)の
上から燃焼室(2)内の二次燃焼ガスの一部を導く二次
燃焼ガス導入管02)を設けた構成とした。
That is, it opens at a central position near the opening of the tertiary air blowing nozzle (9n) that opens inward from the outer periphery of the afterburning chamber (9), and burns from above the furnace body (1) that has come off the eccentric arbor (la). A configuration was adopted in which a secondary combustion gas introduction pipe 02) was provided to guide a part of the secondary combustion gas in the chamber (2).

従って、三次空気吹込ノズル(9n)から吹込まれる三
次空気の勢いに基づいて生じる負圧により、燃焼室(2
)内の二次燃焼ガスの一部が吸引され、二次燃焼ガス導
入管021から再燃焼室(9)内に流入し、燃焼室(2
)からこの入口を通って再燃焼室(9)内に流入するガ
スと共に効果的に攪拌されるので、その作用と効果とは
第1実施例と同効である。
Therefore, the combustion chamber (2
) is sucked in, flows into the re-combustion chamber (9) from the secondary combustion gas introduction pipe 021, and enters the combustion chamber (2).
) is effectively stirred together with the gas flowing into the afterburning chamber (9) through this inlet, so its action and effect are the same as in the first embodiment.

また、二次燃焼ガスを分岐混合することにより、再燃焼
室(9)内でのNOxの発生量を大!隅に削減させるこ
とができる。
In addition, by branching and mixing the secondary combustion gas, the amount of NOx generated in the afterburning chamber (9) is increased! Can be reduced to the corner.

なお、上記した実施例は何れも本発明の具体例にすぎず
、従ってこれらの実施例によって本発明の技術的思想の
範囲が限定されるものではなく、しかもこの技術的思想
を逸脱しない範囲内における設計変更等は自由自在であ
る。
The above-mentioned embodiments are merely specific examples of the present invention, and therefore, the scope of the technical idea of the present invention is not limited by these embodiments, and furthermore, within the scope of this technical idea, Design changes etc. can be made freely.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明になるごみ焼却炉によれば
1.流動床の砂層部の砂の対流流動と熱により攪拌、解
砕されながら熱分解及び燃焼されて発生したガスは燃焼
室に向かって上昇し、炉本体の偏心綾部で上向流方向が
変更され、かつ混合されながら再燃焼室に流入すると共
に、この再燃焼室内において燃焼ガスに含まれている未
燃ガスは三次空気吹込ノズルから吹込まれる三次空気に
よって燃焼されるので、従来のごみ焼却炉に比較して未
燃ガスの量が少なくなり、排出ガス中に含まれる一酸化
炭素や未燃カーボンに基づく煤の排出量を大幅に削減し
得るようになった。
As detailed above, according to the garbage incinerator of the present invention, 1. The gas generated by thermal decomposition and combustion while being stirred and crushed by the convective flow and heat of the sand in the sand layer of the fluidized bed rises toward the combustion chamber, and the upward flow direction is changed by the eccentric ridge of the furnace body. , and flows into the re-combustion chamber while being mixed, and the unburned gas contained in the combustion gas in this re-combustion chamber is combusted by the tertiary air blown from the tertiary air blowing nozzle. The amount of unburned gas is smaller compared to the previous model, and it has become possible to significantly reduce the amount of soot emitted from carbon monoxide and unburned carbon contained in the exhaust gas.

さらに、燃焼室とガス冷却室との間にそれぞれ偏心綾部
を設けて再燃焼室が介装されているので、各燃焼室内の
温度に対するガス冷却室による温度低下影響が少なくな
り、かつ燃焼室よりの輻射を十分に受け、再燃焼室内の
温度を従来の燃焼室の温度よりも高温度に維持すること
が可能になったため、投入されるごみにプラスチックが
多く含まれている高カロリーごみであっても、これに基
づいて発生するダイオキシンをも十分に燃焼させること
ができるようになり、排出ガス中のダイオキシン量を大
幅に削減することができるようになった・ また、再燃焼室に助燃バーナを設置することにより、ご
み焼却炉の通常運転時のみならず、ごみ焼却炉の運転立
上がり時や停止時を含めた全運転中において、ダイオキ
シンをはじめ各種有害物質、未然物質の排出量壱より大
幅に削減できるようになった。
Furthermore, since the re-combustion chamber is interposed between the combustion chamber and the gas cooling chamber by providing an eccentric traverse section between the combustion chamber and the gas cooling chamber, the temperature reduction effect of the gas cooling chamber on the temperature inside each combustion chamber is reduced, and the As the temperature inside the re-combustion chamber can be maintained at a higher temperature than the conventional combustion chamber, it is possible to maintain the temperature inside the re-combustion chamber at a higher temperature than the conventional combustion chamber. However, it has become possible to sufficiently combust the dioxins generated by this, making it possible to significantly reduce the amount of dioxins in exhaust gas.In addition, an auxiliary burner is installed in the afterburning chamber. By installing this, the amount of emissions of various harmful substances and unnatural substances including dioxins can be significantly reduced not only during normal operation of the garbage incinerator, but also during the entire operation of the garbage incinerator, including when starting up and stopping the operation. It is now possible to reduce

しかも、ごみ投入口を炉本体の上部に設けて、ごみを砂
層部の中心に投入し得るようにしたため、砂層部の砂の
対流流動によってごみが素早く分散されるので、ごみの
安定的な熱分解と燃焼が可能になったことにより燃焼室
内の温度変動が少なくなり、大型不燃物も中央部から抜
出すことができ、かつごみ焼却炉の内壁に張られた耐火
煉瓦等の耐火物の寿命の延長も可能になるというメイン
テナンスコストの削減効果も生じてきた。
In addition, the garbage inlet is provided at the top of the furnace body so that the garbage can be thrown into the center of the sand layer, so the garbage is quickly dispersed by the convection flow of the sand in the sand layer, so the garbage can be heated stably. By making decomposition and combustion possible, temperature fluctuations within the combustion chamber are reduced, large incombustible materials can also be extracted from the center, and the lifespan of refractories such as firebricks placed on the inner walls of the garbage incinerator is reduced. It has also had the effect of reducing maintenance costs by making it possible to extend the time period.

従って、本発明によってプラスチックのような高カロリ
ーごみの焼却において一酸化炭素等の未燃ガス、煤等の
未燃カーボン、ダイオキシン等の有害物質の発生量を大
幅に削減することできる極めて優れ、かつを用なごみ焼
却炉を実現することができたのである。
Therefore, the present invention is extremely superior in that it can significantly reduce the amount of unburned gas such as carbon monoxide, unburned carbon such as soot, and harmful substances such as dioxins when incinerating high-calorie waste such as plastics. As a result, we were able to create a waste incinerator that uses

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例になるごみ焼却炉の模式的構成説明
図、第2図aは第2実施例になるごみ焼却炉の主要部を
示す模式的構成説明図、第2図すは第2図aの■−■線
断面図、第3図は第3実施例になるごみ焼却炉の主要部
を示す模式的構成説明図、第4図aは第4実施例になる
ごみ焼却炉の主要部を示す模式的構成説明図、第4図す
は第4図aの■矢視図、第5図は従来例になるごみ焼却
炉の模式的構成説明図である。
Fig. 1 is a schematic structural explanatory diagram of a waste incinerator according to the first embodiment, Fig. 2 a is a schematic structural explanatory diagram showing the main parts of the waste incinerator according to the second embodiment, Figure 2a is a sectional view taken along the line ■-■ in Figure 2a, Figure 3 is a schematic structural explanatory diagram showing the main parts of the garbage incinerator according to the third embodiment, and Figure 4a is the garbage incinerator according to the fourth embodiment. FIG. 4 is a schematic structural explanatory diagram showing the main parts of FIG. 4A, and FIG. 5 is a schematic structural explanatory diagram of a conventional garbage incinerator.

Claims (1)

【特許請求の範囲】[Claims] (1)炉本体の下部の風箱から散気ノズルを通して供給
される一次空気により該炉本体に設けられたごみ供給口
から投入される被焼却ごみを熱分解、かつ一次燃焼させ
る流動床の上方位置の炉本体の内側に、該炉本体を貫通
する複数の二次空気吹込ノズルが開口する燃焼室を備え
ると共に、該炉本体の上部の偏心絞部の上方に燃焼排ガ
スを所定の温度に冷却するガス冷却室を備えてなる流動
床式ごみ焼却炉において、前記炉本体の上部の偏心絞部
から外れた位置に流動床の中心に向かって開口するごみ
投入口を設け、該炉本体の上部の偏心絞部とガス冷却室
との間に、外部から内部に三次空気を吹込む三次空気吹
込ノズルと助燃バーナを有すると共に、前記ガス冷却室
との接続側に偏心絞部を有する再燃焼室を介装してなる
ことを特徴とする流動床式ごみ焼却炉。
(1) Above the fluidized bed where the waste to be incinerated is thermally decomposed and primarily combusted by the primary air supplied from the wind box at the bottom of the furnace body through the aeration nozzle, which is introduced through the waste supply port provided in the furnace body. A combustion chamber is provided inside the furnace body at a position where a plurality of secondary air blowing nozzles that penetrate the furnace body open, and a combustion chamber is provided above the eccentric constriction at the top of the furnace body to cool the combustion exhaust gas to a predetermined temperature. In a fluidized bed waste incinerator equipped with a gas cooling chamber, a waste inlet opening toward the center of the fluidized bed is provided at a position away from the eccentric constriction at the top of the furnace body, and A re-combustion chamber having a tertiary air blowing nozzle for blowing tertiary air into the interior from the outside and an auxiliary combustion burner between the eccentric throttle part and the gas cooling chamber, and having an eccentric throttle part on the side connected to the gas cooling chamber. A fluidized bed waste incinerator characterized by being equipped with.
JP26254889A 1989-10-06 1989-10-06 Fluidized-bed type refuse incinerator Pending JPH03125808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26254889A JPH03125808A (en) 1989-10-06 1989-10-06 Fluidized-bed type refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26254889A JPH03125808A (en) 1989-10-06 1989-10-06 Fluidized-bed type refuse incinerator

Publications (1)

Publication Number Publication Date
JPH03125808A true JPH03125808A (en) 1991-05-29

Family

ID=17377341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26254889A Pending JPH03125808A (en) 1989-10-06 1989-10-06 Fluidized-bed type refuse incinerator

Country Status (1)

Country Link
JP (1) JPH03125808A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062824A (en) * 1992-06-22 1994-01-11 Kawasaki Heavy Ind Ltd Two-stage type incinerating furnace
JPH062827A (en) * 1992-06-22 1994-01-11 Kawasaki Heavy Ind Ltd Jet layer incinerating furnace
JP2008019687A (en) * 2006-07-14 2008-01-31 Kawasaki Heavy Ind Ltd Construction method of continuous girder bridge, composite floor slab, and continuous girder bridge
USRE40064E1 (en) 2002-03-26 2008-02-19 Asahi Engineering Co., Ltd. Structure of floor slab bridge
JP2008166070A (en) * 2006-12-27 2008-07-17 Mitsubishi Heavy Ind Ltd Fuel cell system with exhaust fuel combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234177B2 (en) * 1972-09-16 1977-09-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234177B2 (en) * 1972-09-16 1977-09-01

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062824A (en) * 1992-06-22 1994-01-11 Kawasaki Heavy Ind Ltd Two-stage type incinerating furnace
JPH062827A (en) * 1992-06-22 1994-01-11 Kawasaki Heavy Ind Ltd Jet layer incinerating furnace
USRE40064E1 (en) 2002-03-26 2008-02-19 Asahi Engineering Co., Ltd. Structure of floor slab bridge
JP2008019687A (en) * 2006-07-14 2008-01-31 Kawasaki Heavy Ind Ltd Construction method of continuous girder bridge, composite floor slab, and continuous girder bridge
JP2008166070A (en) * 2006-12-27 2008-07-17 Mitsubishi Heavy Ind Ltd Fuel cell system with exhaust fuel combustor

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
JPH03274309A (en) Incinerator for polymer material to be incinerated
US6324999B1 (en) Incinerator for removing noxious substances
JP2004084981A (en) Waste incinerator
JP3438861B2 (en) Exhaust gas complete combustion control device
KR20030092086A (en) Slagging combustion furnace
JPH03125808A (en) Fluidized-bed type refuse incinerator
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP4608636B2 (en) Incinerator
CA1290988C (en) Method of combustion for fluidized bed incinerators
JP2642568B2 (en) Secondary combustion method of refuse incinerator
JP2004169956A (en) Operation method for waste incinerator and incinerator for the method
JP3989333B2 (en) Operation method of waste incinerator
JPH07332627A (en) Dust incinerator
KR100660757B1 (en) Method of operating waste incinerator and waste incinerator
JP2961078B2 (en) Exhaust gas reburning device in a top-type gas cooling tower type incinerator
JP2001241629A (en) Low-pollution combustion equipment for waste
JP2004169955A (en) Waste incinerator and method of operating the same
JPH0740826Y2 (en) Vertical incinerator with gas rectifier
JPS6115383Y2 (en)
JPH07233921A (en) Refuse incinerator
JPH04359705A (en) Air blower for secondary combustion in incinerator
JPH07332626A (en) Dust incinerator
JPH0526421A (en) Refuse combustion method in dust incinerator
JP3995237B2 (en) Operation method of waste incinerator